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A. Network Architectures

Our proposed DG-Net consists of the appearance en-
coder Ea, structure encoder Es, decoder G, and discrimi-
nator D. As described in the paper that Ea is modified from
ResNet50, we now introduce the architecture details of Es,
G, and D. Following the common practice in GANs, we
mainly adopt convolutional layers and residual blocks [3]
to construct them.

Table 6 shows the architecture of Es. After each convo-
lutional layer, we apply the instance normalization layer [9]
and LReLU (negative slope set to 0.2). We also add the
optional atrous spatial pyramid pooling (ASPP) [2], which
contains dilated convolutions and can be used to exploit
multi-scale features. Table 7 demonstrates the architecture
of decoder G, which involves several residual blocks fol-
lowed by upsampling and convolutional layers. Similar to
[4], we insert the adaptive instance normalization (AdaIN)
layer in every residual block to integrate the appearance
code from Ea as the dynamically generated weight and bias
parameters of AdaIN. We employ the multi-scale Patch-
GAN [13] as the descriminator D. Given an input image of
256× 128, we resize the image to the three different scales:
256× 128, 128× 64, 64× 32 before feeding them into the
discriminator. LReLU (negative slope set to 0.2) is applied
after each convolutional layer. We present the architecture
of D in Table 8.

B. More Discriminative Evaluations

In order to have a more thorough evaluation of our ap-
proach, we further evaluate the performance of DG-Net on
a relatively small dataset. So we generalize our approach
to CUHK03-NP [12], which contains much fewer images
(9.6 training images per person on average) compared to
Market-1501 [11], DukeMTMC-reID [7] and MSMT17
[10]. As compared in Table 9, DG-Net achieves 65.6%
Rank@1 and 61.1% mAP.

∗Work done during an internship at NVIDIA Research.

Layer Parameters Output Size
Input - 1 × 256 × 128
Conv1 [ 3×3, 16 ] 16 × 128 × 64
Conv2 [ 3×3, 32 ] 32 × 128 × 64
Conv3 [ 3×3, 32 ] 32 × 128 × 64
Conv4 [ 3×3, 64 ] 64 × 64 × 32

ResBlocks
[

3×3, 64
3×3, 64

]
×4 64 × 64 × 32

ASPP

[ 1×1, 32 ]

128 × 64 × 32
[

1×1, 32
3×3, 32

]
×3

Conv5 [ 1×1, 128 ] 128 × 64 × 32

Table 6: Architecture of the structure encoder Es.

Layer Parameters Output Size
Input - 128 × 64 × 32

ResBlocks
[

3×3, 128
3×3, 128

]
×4 128 × 64 × 32

Upsample - 128 × 128 × 64
Conv1 [ 5×5, 64 ] 64 × 128 × 64
Upsample - 64 × 256 × 128
Conv2 [ 5×5, 32 ] 32 × 256 × 128
Conv3 [ 3×3, 32 ] 32 × 256 × 128
Conv4 [ 3×3, 32 ] 32 × 256 × 128
Conv5 [ 1×1, 3 ] 3 × 256 × 128

Table 7: Architecture of the decoder G.

C. Appearance and Structure Codes

Since we cannot quantitatively justify the attributes of
appearance/structure codes, Table 1 in the paper is used to
qualitatively give an intuition. Our design of Es (a shal-
low network) makes the structure space primarily preserve
the structural information, such as position and geometry of
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Layer Parameters Output Size
Input - 3 × 256 × 128
Conv1 [ 1×1, 32 ] 32 × 256 × 128
Conv2 [ 3×3, 32 ] 32 × 256 × 128
Conv3 [ 3×3, 32 ] 32 × 128 × 64
Conv4 [ 3×3, 32 ] 32 × 128 × 64
Conv5 [ 3×3, 64 ] 64 × 64 × 32

ResBlocks
[

3×3, 64
3×3, 64

]
×4 64 × 64 × 32

Conv6 [ 1×1, 1 ] 1 × 64 × 32

Table 8: Architecture of the discriminator D.

humans and objects. Thus, the structure code is mainly used
to hold the low-level positional and geometric information,
such as pose and background that are non-id-related, to fa-
cilitate image synthesis. On the other hand, certain structure
cues, such as bag/hair/body outline, are clearly id-related
and are better to be captured by the discriminative module.
However, softmax loss is generally too “lazy” to be able
to capture useful structure information besides appearance
features, therefore, the goal of fine-grained feature mining
upon the appearance code promotes mining the id-related
semantics out of structure cues, also guarantees the comple-
mentary nature between primary and fine-grained features.

D. Interpolate between Structure Codes
Figure 5 in the paper shows the examples of synthe-

sized images by linear interpolation between two appear-
ance codes. This qualitatively validates the continuity in
the appearance space. As a complementary study, here we
generate the images by linearly interpolating between two
structure codes while keeping the appearance codes intact
in Figure 9. This demonstrates the exact opposite setting to
Figure 5. As expected, most images (both foreground and
background) look not realistic. Our hypothesis is that the
structure codes are extracted by a shallow network and con-
tain the positional and geometric information of inputs. So
the interpolation between the low-level features is not able
to preserve semantic smoothness or consistency.
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