
Django Documentation
Release 1.10.9.dev20171123183751

Django Software Foundation

November 23, 2017

Contents

1 Django documentation 1
1.1 Getting help . 1
1.2 How the documentation is organized . 1
1.3 First steps . 2
1.4 The model layer . 2
1.5 The view layer . 2
1.6 The template layer . 2
1.7 Forms . 3
1.8 The development process . 3
1.9 The admin . 3
1.10 Security . 3
1.11 Internationalization and localization . 4
1.12 Performance and optimization . 4
1.13 Python compatibility . 4
1.14 Geographic framework . 4
1.15 Common Web application tools . 4
1.16 Other core functionalities . 5
1.17 The Django open-source project . 5

2 Getting started 7
2.1 Django at a glance . 7
2.2 Quick install guide . 12
2.3 Writing your first Django app, part 1 . 13
2.4 Writing your first Django app, part 2 . 19
2.5 Writing your first Django app, part 3 . 31
2.6 Writing your first Django app, part 4 . 37
2.7 Writing your first Django app, part 5 . 42
2.8 Writing your first Django app, part 6 . 52
2.9 Writing your first Django app, part 7 . 53
2.10 Advanced tutorial: How to write reusable apps . 62
2.11 What to read next . 67
2.12 Writing your first patch for Django . 70

3 Using Django 81
3.1 How to install Django . 81
3.2 Models and databases . 84
3.3 Handling HTTP requests . 181

i

3.4 Working with forms . 221
3.5 Templates . 267
3.6 Class-based views . 279
3.7 Migrations . 304
3.8 Managing files . 315
3.9 Testing in Django . 318
3.10 User authentication in Django . 357
3.11 Django’s cache framework . 405
3.12 Conditional View Processing . 422
3.13 Cryptographic signing . 425
3.14 Sending email . 428
3.15 Internationalization and localization . 438
3.16 Logging . 485
3.17 Pagination . 495
3.18 Porting to Python 3 . 499
3.19 Security in Django . 505
3.20 Performance and optimization . 508
3.21 Serializing Django objects . 515
3.22 Django settings . 523
3.23 Signals . 527
3.24 System check framework . 531
3.25 External packages . 534

4 “How-to” guides 537
4.1 Authentication using REMOTE_USER . 537
4.2 Writing custom django-admin commands . 539
4.3 Writing custom model fields . 544
4.4 Custom Lookups . 555
4.5 Custom template tags and filters . 559
4.6 Writing a custom storage system . 576
4.7 Deploying Django . 578
4.8 Upgrading Django to a newer version . 590
4.9 Error reporting . 592
4.10 Providing initial data for models . 596
4.11 Running Django on Jython . 597
4.12 Integrating Django with a legacy database . 598
4.13 Outputting CSV with Django . 599
4.14 Outputting PDFs with Django . 602
4.15 Managing static files (e.g. images, JavaScript, CSS) . 604
4.16 Deploying static files . 606
4.17 How to install Django on Windows . 609
4.18 Writing database migrations . 610

5 Django FAQ 617
5.1 FAQ: General . 617
5.2 FAQ: Installation . 620
5.3 FAQ: Using Django . 621
5.4 FAQ: Getting Help . 622
5.5 FAQ: Databases and models . 623
5.6 FAQ: The admin . 624
5.7 FAQ: Contributing code . 626
5.8 Troubleshooting . 627

6 API Reference 629

ii

6.1 Applications . 629
6.2 System check framework . 635
6.3 Built-in class-based views API . 646
6.4 Clickjacking Protection . 694
6.5 contrib packages . 696
6.6 Cross Site Request Forgery protection . 962
6.7 Databases . 969
6.8 django-admin and manage.py . 982
6.9 Running management commands from your code . 1006
6.10 Django Exceptions . 1007
6.11 File handling . 1011
6.12 Forms . 1018
6.13 Middleware . 1077
6.14 Migration Operations . 1083
6.15 Models . 1090
6.16 Request and response objects . 1215
6.17 SchemaEditor . 1229
6.18 Settings . 1232
6.19 Signals . 1277
6.20 Templates . 1285
6.21 TemplateResponse and SimpleTemplateResponse . 1350
6.22 Unicode data . 1354
6.23 django.urls utility functions . 1360
6.24 django.conf.urls utility functions . 1363
6.25 Django Utils . 1366
6.26 Validators . 1380
6.27 Built-in Views . 1384

7 Meta-documentation and miscellany 1387
7.1 API stability . 1387
7.2 Design philosophies . 1388
7.3 Third-party distributions of Django . 1393

8 Glossary 1395

9 Release notes 1397
9.1 Final releases . 1397
9.2 Security releases . 1661

10 Django internals 1679
10.1 Contributing to Django . 1679
10.2 Mailing lists . 1723
10.3 Organization of the Django Project . 1724
10.4 Django team . 1727
10.5 Roles . 1734
10.6 Django’s security policies . 1735
10.7 Django’s release process . 1738
10.8 Django Deprecation Timeline . 1741
10.9 The Django source code repository . 1753
10.10 How is Django Formed? . 1756

11 Indices, glossary and tables 1763

Python Module Index 1765

iii

iv

CHAPTER 1

Django documentation

Everything you need to know about Django.

1.1 Getting help

Having trouble? We’d like to help!

• Try the FAQ – it’s got answers to many common questions.

• Looking for specific information? Try the genindex, modindex or the detailed table of contents.

• Search for information in the archives of the django-users mailing list, or post a question.

• Ask a question in the #django IRC channel, or search the IRC logs to see if it’s been asked before.

• Report bugs with Django in our ticket tracker.

1.2 How the documentation is organized

Django has a lot of documentation. A high-level overview of how it’s organized will help you know where to look for
certain things:

• Tutorials take you by the hand through a series of steps to create a Web application. Start here if you’re new to
Django or Web application development. Also look at the “First steps” below.

• Topic guides discuss key topics and concepts at a fairly high level and provide useful background information
and explanation.

• Reference guides contain technical reference for APIs and other aspects of Django’s machinery. They describe
how it works and how to use it but assume that you have a basic understanding of key concepts.

• How-to guides are recipes. They guide you through the steps involved in addressing key problems and use-cases.
They are more advanced than tutorials and assume some knowledge of how Django works.

1

https://groups.google.com/d/forum/django-users
irc://irc.freenode.net/django
http://django-irc-logs.com/
https://code.djangoproject.com/

Django Documentation, Release 1.10.9.dev20171123183751

1.3 First steps

Are you new to Django or to programming? This is the place to start!

• From scratch: Overview | Installation

• Tutorial: Part 1: Requests and responses | Part 2: Models and the admin site | Part 3: Views and templates |
Part 4: Forms and generic views | Part 5: Testing | Part 6: Static files | Part 7: Customizing the admin site

• Advanced Tutorials: How to write reusable apps | Writing your first patch for Django

1.4 The model layer

Django provides an abstraction layer (the “models”) for structuring and manipulating the data of your Web application.
Learn more about it below:

• Models: Introduction to models | Field types | Meta options | Model class

• QuerySets: Executing queries | QuerySet method reference | Lookup expressions

• Model instances: Instance methods | Accessing related objects

• Migrations: Introduction to Migrations | Operations reference | SchemaEditor | Writing migrations

• Advanced: Managers | Raw SQL | Transactions | Aggregation | Search | Custom fields | Multiple databases |
Custom lookups | Query Expressions | Conditional Expressions | Database Functions

• Other: Supported databases | Legacy databases | Providing initial data | Optimize database access | PostgreSQL
specific features

1.5 The view layer

Django has the concept of “views” to encapsulate the logic responsible for processing a user’s request and for returning
the response. Find all you need to know about views via the links below:

• The basics: URLconfs | View functions | Shortcuts | Decorators

• Reference: Built-in Views | Request/response objects | TemplateResponse objects

• File uploads: Overview | File objects | Storage API | Managing files | Custom storage

• Class-based views: Overview | Built-in display views | Built-in editing views | Using mixins | API reference |
Flattened index

• Advanced: Generating CSV | Generating PDF

• Middleware: Overview | Built-in middleware classes

1.6 The template layer

The template layer provides a designer-friendly syntax for rendering the information to be presented to the user. Learn
how this syntax can be used by designers and how it can be extended by programmers:

• The basics: Overview

• For designers: Language overview | Built-in tags and filters | Humanization

2 Chapter 1. Django documentation

Django Documentation, Release 1.10.9.dev20171123183751

• For programmers: Template API | Custom tags and filters

1.7 Forms

Django provides a rich framework to facilitate the creation of forms and the manipulation of form data.

• The basics: Overview | Form API | Built-in fields | Built-in widgets

• Advanced: Forms for models | Integrating media | Formsets | Customizing validation

1.8 The development process

Learn about the various components and tools to help you in the development and testing of Django applications:

• Settings: Overview | Full list of settings

• Applications: Overview

• Exceptions: Overview

• django-admin and manage.py: Overview | Adding custom commands

• Testing: Introduction | Writing and running tests | Included testing tools | Advanced topics

• Deployment: Overview | WSGI servers | Deploying static files | Tracking code errors by email

1.9 The admin

Find all you need to know about the automated admin interface, one of Django’s most popular features:

• Admin site

• Admin actions

• Admin documentation generator

1.10 Security

Security is a topic of paramount importance in the development of Web applications and Django provides multiple
protection tools and mechanisms:

• Security overview

• Disclosed security issues in Django

• Clickjacking protection

• Cross Site Request Forgery protection

• Cryptographic signing

• Security Middleware

1.7. Forms 3

Django Documentation, Release 1.10.9.dev20171123183751

1.11 Internationalization and localization

Django offers a robust internationalization and localization framework to assist you in the development of applications
for multiple languages and world regions:

• Overview | Internationalization | Localization | Localized Web UI formatting and form input

• Time zones

1.12 Performance and optimization

There are a variety of techniques and tools that can help get your code running more efficiently - faster, and using
fewer system resources.

• Performance and optimization overview

1.13 Python compatibility

Django aims to be compatible with multiple different flavors and versions of Python:

• Jython support

• Python 3 compatibility

1.14 Geographic framework

GeoDjango intends to be a world-class geographic Web framework. Its goal is to make it as easy as possible to build
GIS Web applications and harness the power of spatially enabled data.

1.15 Common Web application tools

Django offers multiple tools commonly needed in the development of Web applications:

• Authentication: Overview | Using the authentication system | Password management | Customizing authentica-
tion | API Reference

• Caching

• Logging

• Sending emails

• Syndication feeds (RSS/Atom)

• Pagination

• Messages framework

• Serialization

• Sessions

• Sitemaps

• Static files management

4 Chapter 1. Django documentation

Django Documentation, Release 1.10.9.dev20171123183751

• Data validation

1.16 Other core functionalities

Learn about some other core functionalities of the Django framework:

• Conditional content processing

• Content types and generic relations

• Flatpages

• Redirects

• Signals

• System check framework

• The sites framework

• Unicode in Django

1.17 The Django open-source project

Learn about the development process for the Django project itself and about how you can contribute:

• Community: How to get involved | The release process | Team organization | Meet the team | Current roles |
The Django source code repository | Security policies | Mailing lists

• Design philosophies: Overview

• Documentation: About this documentation

• Third-party distributions: Overview

• Django over time: API stability | Release notes and upgrading instructions | Deprecation Timeline

1.16. Other core functionalities 5

Django Documentation, Release 1.10.9.dev20171123183751

6 Chapter 1. Django documentation

CHAPTER 2

Getting started

New to Django? Or to Web development in general? Well, you came to the right place: read this material to quickly
get up and running.

2.1 Django at a glance

Because Django was developed in a fast-paced newsroom environment, it was designed to make common Web-
development tasks fast and easy. Here’s an informal overview of how to write a database-driven Web app with Django.

The goal of this document is to give you enough technical specifics to understand how Django works, but this isn’t
intended to be a tutorial or reference – but we’ve got both! When you’re ready to start a project, you can start with the
tutorial or dive right into more detailed documentation.

2.1.1 Design your model

Although you can use Django without a database, it comes with an object-relational mapper in which you describe
your database layout in Python code.

The data-model syntax offers many rich ways of representing your models – so far, it’s been solving many years’
worth of database-schema problems. Here’s a quick example:

mysite/news/models.py

from django.db import models

class Reporter(models.Model):
full_name = models.CharField(max_length=70)

def __str__(self): # __unicode__ on Python 2
return self.full_name

class Article(models.Model):
pub_date = models.DateField()
headline = models.CharField(max_length=200)

7

https://en.wikipedia.org/wiki/Object-relational_mapping

Django Documentation, Release 1.10.9.dev20171123183751

content = models.TextField()
reporter = models.ForeignKey(Reporter, on_delete=models.CASCADE)

def __str__(self): # __unicode__ on Python 2
return self.headline

2.1.2 Install it

Next, run the Django command-line utility to create the database tables automatically:

$ python manage.py migrate

The migrate command looks at all your available models and creates tables in your database for whichever tables
don’t already exist, as well as optionally providing much richer schema control.

2.1.3 Enjoy the free API

With that, you’ve got a free, and rich, Python API to access your data. The API is created on the fly, no code generation
necessary:

Import the models we created from our "news" app
>>> from news.models import Reporter, Article

No reporters are in the system yet.
>>> Reporter.objects.all()
<QuerySet []>

Create a new Reporter.
>>> r = Reporter(full_name='John Smith')

Save the object into the database. You have to call save() explicitly.
>>> r.save()

Now it has an ID.
>>> r.id
1

Now the new reporter is in the database.
>>> Reporter.objects.all()
<QuerySet [<Reporter: John Smith>]>

Fields are represented as attributes on the Python object.
>>> r.full_name
'John Smith'

Django provides a rich database lookup API.
>>> Reporter.objects.get(id=1)
<Reporter: John Smith>
>>> Reporter.objects.get(full_name__startswith='John')
<Reporter: John Smith>
>>> Reporter.objects.get(full_name__contains='mith')
<Reporter: John Smith>
>>> Reporter.objects.get(id=2)
Traceback (most recent call last):

...
DoesNotExist: Reporter matching query does not exist.

8 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

Create an article.
>>> from datetime import date
>>> a = Article(pub_date=date.today(), headline='Django is cool',
... content='Yeah.', reporter=r)
>>> a.save()

Now the article is in the database.
>>> Article.objects.all()
<QuerySet [<Article: Django is cool>]>

Article objects get API access to related Reporter objects.
>>> r = a.reporter
>>> r.full_name
'John Smith'

And vice versa: Reporter objects get API access to Article objects.
>>> r.article_set.all()
<QuerySet [<Article: Django is cool>]>

The API follows relationships as far as you need, performing efficient
JOINs for you behind the scenes.
This finds all articles by a reporter whose name starts with "John".
>>> Article.objects.filter(reporter__full_name__startswith='John')
<QuerySet [<Article: Django is cool>]>

Change an object by altering its attributes and calling save().
>>> r.full_name = 'Billy Goat'
>>> r.save()

Delete an object with delete().
>>> r.delete()

2.1.4 A dynamic admin interface: it’s not just scaffolding – it’s the whole house

Once your models are defined, Django can automatically create a professional, production ready administrative inter-
face – a website that lets authenticated users add, change and delete objects. It’s as easy as registering your model in
the admin site:

mysite/news/models.py

from django.db import models

class Article(models.Model):
pub_date = models.DateField()
headline = models.CharField(max_length=200)
content = models.TextField()
reporter = models.ForeignKey(Reporter, on_delete=models.CASCADE)

mysite/news/admin.py

from django.contrib import admin

from . import models

admin.site.register(models.Article)

2.1. Django at a glance 9

Django Documentation, Release 1.10.9.dev20171123183751

The philosophy here is that your site is edited by a staff, or a client, or maybe just you – and you don’t want to have to
deal with creating backend interfaces just to manage content.

One typical workflow in creating Django apps is to create models and get the admin sites up and running as fast as
possible, so your staff (or clients) can start populating data. Then, develop the way data is presented to the public.

2.1.5 Design your URLs

A clean, elegant URL scheme is an important detail in a high-quality Web application. Django encourages beautiful
URL design and doesn’t put any cruft in URLs, like .php or .asp.

To design URLs for an app, you create a Python module called a URLconf . A table of contents for your app, it contains
a simple mapping between URL patterns and Python callback functions. URLconfs also serve to decouple URLs from
Python code.

Here’s what a URLconf might look like for the Reporter/Article example above:

mysite/news/urls.py

from django.conf.urls import url

from . import views

urlpatterns = [
url(r'^articles/([0-9]{4})/$', views.year_archive),
url(r'^articles/([0-9]{4})/([0-9]{2})/$', views.month_archive),
url(r'^articles/([0-9]{4})/([0-9]{2})/([0-9]+)/$', views.article_detail),

]

The code above maps URLs, as simple regular expressions, to the location of Python callback functions (“views”).
The regular expressions use parenthesis to “capture” values from the URLs. When a user requests a page, Django runs
through each pattern, in order, and stops at the first one that matches the requested URL. (If none of them matches,
Django calls a special-case 404 view.) This is blazingly fast, because the regular expressions are compiled at load
time.

Once one of the regexes matches, Django imports and calls the given view, which is a simple Python function. Each
view gets passed a request object – which contains request metadata – and the values captured in the regex.

For example, if a user requested the URL “/articles/2005/05/39323/”, Django would call the function news.views.
article_detail(request, '2005', '05', '39323').

2.1.6 Write your views

Each view is responsible for doing one of two things: Returning an HttpResponse object containing the content
for the requested page, or raising an exception such as Http404. The rest is up to you.

Generally, a view retrieves data according to the parameters, loads a template and renders the template with the
retrieved data. Here’s an example view for year_archive from above:

mysite/news/views.py

from django.shortcuts import render

from .models import Article

def year_archive(request, year):
a_list = Article.objects.filter(pub_date__year=year)
context = {'year': year, 'article_list': a_list}
return render(request, 'news/year_archive.html', context)

10 Chapter 2. Getting started

https://docs.python.org/3/howto/regex.html#regex-howto

Django Documentation, Release 1.10.9.dev20171123183751

This example uses Django’s template system, which has several powerful features but strives to stay simple enough
for non-programmers to use.

2.1.7 Design your templates

The code above loads the news/year_archive.html template.

Django has a template search path, which allows you to minimize redundancy among templates. In your Django
settings, you specify a list of directories to check for templates with DIRS. If a template doesn’t exist in the first
directory, it checks the second, and so on.

Let’s say the news/year_archive.html template was found. Here’s what that might look like:

mysite/news/templates/news/year_archive.html

{% extends "base.html" %}

{% block title %}Articles for {{ year }}{% endblock %}

{% block content %}
<h1>Articles for {{ year }}</h1>

{% for article in article_list %}
<p>{{ article.headline }}</p>
<p>By {{ article.reporter.full_name }}</p>
<p>Published {{ article.pub_date|date:"F j, Y" }}</p>

{% endfor %}
{% endblock %}

Variables are surrounded by double-curly braces. {{ article.headline }} means “Output the value of the
article’s headline attribute.” But dots aren’t used only for attribute lookup. They also can do dictionary-key lookup,
index lookup and function calls.

Note {{ article.pub_date|date:"F j, Y" }} uses a Unix-style “pipe” (the “|” character). This is called
a template filter, and it’s a way to filter the value of a variable. In this case, the date filter formats a Python datetime
object in the given format (as found in PHP’s date function).

You can chain together as many filters as you’d like. You can write custom template filters. You can write custom
template tags, which run custom Python code behind the scenes.

Finally, Django uses the concept of “template inheritance”. That’s what the {% extends "base.html" %}
does. It means “First load the template called ‘base’, which has defined a bunch of blocks, and fill the blocks with
the following blocks.” In short, that lets you dramatically cut down on redundancy in templates: each template has to
define only what’s unique to that template.

Here’s what the “base.html” template, including the use of static files, might look like:

mysite/templates/base.html

{% load static %}
<html>
<head>

<title>{% block title %}{% endblock %}</title>
</head>
<body>

{% block content %}{% endblock %}

</body>
</html>

2.1. Django at a glance 11

Django Documentation, Release 1.10.9.dev20171123183751

Simplistically, it defines the look-and-feel of the site (with the site’s logo), and provides “holes” for child templates to
fill. This makes a site redesign as easy as changing a single file – the base template.

It also lets you create multiple versions of a site, with different base templates, while reusing child templates. Django’s
creators have used this technique to create strikingly different mobile versions of sites – simply by creating a new base
template.

Note that you don’t have to use Django’s template system if you prefer another system. While Django’s template
system is particularly well-integrated with Django’s model layer, nothing forces you to use it. For that matter, you
don’t have to use Django’s database API, either. You can use another database abstraction layer, you can read XML
files, you can read files off disk, or anything you want. Each piece of Django – models, views, templates – is decoupled
from the next.

2.1.8 This is just the surface

This has been only a quick overview of Django’s functionality. Some more useful features:

• A caching framework that integrates with memcached or other backends.

• A syndication framework that makes creating RSS and Atom feeds as easy as writing a small Python class.

• More sexy automatically-generated admin features – this overview barely scratched the surface.

The next obvious steps are for you to download Django, read the tutorial and join the community. Thanks for your
interest!

2.2 Quick install guide

Before you can use Django, you’ll need to get it installed. We have a complete installation guide that covers all
the possibilities; this guide will guide you to a simple, minimal installation that’ll work while you walk through the
introduction.

2.2.1 Install Python

Being a Python Web framework, Django requires Python. See What Python version can I use with Django? for details.
Python includes a lightweight database called SQLite so you won’t need to set up a database just yet.

Get the latest version of Python at https://www.python.org/download/ or with your operating system’s package man-
ager.

Django on Jython

If you use Jython (a Python implementation for the Java platform), you’ll need to follow a few additional steps. See
Running Django on Jython for details.

You can verify that Python is installed by typing python from your shell; you should see something like:

Python 3.4.x
[GCC 4.x] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

12 Chapter 2. Getting started

https://www.djangoproject.com/download/
https://www.djangoproject.com/community/
https://sqlite.org/
https://www.python.org/download/
http://www.jython.org/

Django Documentation, Release 1.10.9.dev20171123183751

2.2.2 Set up a database

This step is only necessary if you’d like to work with a “large” database engine like PostgreSQL, MySQL, or Oracle.
To install such a database, consult the database installation information.

2.2.3 Remove any old versions of Django

If you are upgrading your installation of Django from a previous version, you will need to uninstall the old Django
version before installing the new version.

2.2.4 Install Django

You’ve got three easy options to install Django:

• Install an official release. This is the best approach for most users.

• Install a version of Django provided by your operating system distribution.

• Install the latest development version. This option is for enthusiasts who want the latest-and-greatest features
and aren’t afraid of running brand new code. You might encounter new bugs in the development version, but
reporting them helps the development of Django. Also, releases of third-party packages are less likely to be
compatible with the development version than with the latest stable release.

Always refer to the documentation that corresponds to the version of Django you’re using!

If you do either of the first two steps, keep an eye out for parts of the documentation marked new in development
version. That phrase flags features that are only available in development versions of Django, and they likely won’t
work with an official release.

2.2.5 Verifying

To verify that Django can be seen by Python, type python from your shell. Then at the Python prompt, try to import
Django:

>>> import django
>>> print(django.get_version())
1.10

You may have another version of Django installed.

2.2.6 That’s it!

That’s it – you can now move onto the tutorial.

2.3 Writing your first Django app, part 1

Let’s learn by example.

Throughout this tutorial, we’ll walk you through the creation of a basic poll application.

It’ll consist of two parts:

2.3. Writing your first Django app, part 1 13

Django Documentation, Release 1.10.9.dev20171123183751

• A public site that lets people view polls and vote in them.

• An admin site that lets you add, change, and delete polls.

We’ll assume you have Django installed already. You can tell Django is installed and which version by running the
following command:

$ python -m django --version

If Django is installed, you should see the version of your installation. If it isn’t, you’ll get an error telling “No module
named django”.

This tutorial is written for Django 1.10 and Python 3.4 or later. If the Django version doesn’t match, you can refer to
the tutorial for your version of Django by using the version switcher at the bottom right corner of this page, or update
Django to the newest version. If you are still using Python 2.7, you will need to adjust the code samples slightly, as
described in comments.

See How to install Django for advice on how to remove older versions of Django and install a newer one.

Where to get help:

If you’re having trouble going through this tutorial, please post a message to django-users or drop by #django on
irc.freenode.net to chat with other Django users who might be able to help.

2.3.1 Creating a project

If this is your first time using Django, you’ll have to take care of some initial setup. Namely, you’ll need to auto-
generate some code that establishes a Django project – a collection of settings for an instance of Django, including
database configuration, Django-specific options and application-specific settings.

From the command line, cd into a directory where you’d like to store your code, then run the following command:

$ django-admin startproject mysite

This will create a mysite directory in your current directory. If it didn’t work, see Problems running django-admin.

Note: You’ll need to avoid naming projects after built-in Python or Django components. In particular, this means
you should avoid using names like django (which will conflict with Django itself) or test (which conflicts with a
built-in Python package).

Where should this code live?

If your background is in plain old PHP (with no use of modern frameworks), you’re probably used to putting code
under the Web server’s document root (in a place such as /var/www). With Django, you don’t do that. It’s not a
good idea to put any of this Python code within your Web server’s document root, because it risks the possibility that
people may be able to view your code over the Web. That’s not good for security.

Put your code in some directory outside of the document root, such as /home/mycode.

Let’s look at what startproject created:

mysite/
manage.py
mysite/

14 Chapter 2. Getting started

irc://irc.freenode.net/django
irc://irc.freenode.net/django

Django Documentation, Release 1.10.9.dev20171123183751

__init__.py
settings.py
urls.py
wsgi.py

These files are:

• The outer mysite/ root directory is just a container for your project. Its name doesn’t matter to Django; you
can rename it to anything you like.

• manage.py: A command-line utility that lets you interact with this Django project in various ways. You can
read all the details about manage.py in django-admin and manage.py.

• The inner mysite/ directory is the actual Python package for your project. Its name is the Python package
name you’ll need to use to import anything inside it (e.g. mysite.urls).

• mysite/__init__.py: An empty file that tells Python that this directory should be considered a Python
package. If you’re a Python beginner, read more about packages in the official Python docs.

• mysite/settings.py: Settings/configuration for this Django project. Django settings will tell you all
about how settings work.

• mysite/urls.py: The URL declarations for this Django project; a “table of contents” of your Django-
powered site. You can read more about URLs in URL dispatcher.

• mysite/wsgi.py: An entry-point for WSGI-compatible web servers to serve your project. See How to
deploy with WSGI for more details.

2.3.2 The development server

Let’s verify your Django project works. Change into the outer mysite directory, if you haven’t already, and run the
following commands:

$ python manage.py runserver

You’ll see the following output on the command line:

Performing system checks...

System check identified no issues (0 silenced).

You have unapplied migrations; your app may not work properly until they are
→˓applied.
Run 'python manage.py migrate' to apply them.

November 23, 2017 - 15:50:53
Django version 1.10, using settings 'mysite.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Note: Ignore the warning about unapplied database migrations for now; we’ll deal with the database shortly.

You’ve started the Django development server, a lightweight Web server written purely in Python. We’ve included this
with Django so you can develop things rapidly, without having to deal with configuring a production server – such as
Apache – until you’re ready for production.

2.3. Writing your first Django app, part 1 15

https://docs.python.org/3/tutorial/modules.html#tut-packages
http://127.0.0.1:8000/

Django Documentation, Release 1.10.9.dev20171123183751

Now’s a good time to note: don’t use this server in anything resembling a production environment. It’s intended only
for use while developing. (We’re in the business of making Web frameworks, not Web servers.)

Now that the server’s running, visit http://127.0.0.1:8000/ with your Web browser. You’ll see a “Welcome to Django”
page, in pleasant, light-blue pastel. It worked!

Changing the port

By default, the runserver command starts the development server on the internal IP at port 8000.

If you want to change the server’s port, pass it as a command-line argument. For instance, this command starts the
server on port 8080:

$ python manage.py runserver 8080

If you want to change the server’s IP, pass it along with the port. So to listen on all public IPs (useful if you want to
show off your work on other computers on your network), use:

$ python manage.py runserver 0.0.0.0:8000

Full docs for the development server can be found in the runserver reference.

Automatic reloading of runserver

The development server automatically reloads Python code for each request as needed. You don’t need to restart the
server for code changes to take effect. However, some actions like adding files don’t trigger a restart, so you’ll have to
restart the server in these cases.

2.3.3 Creating the Polls app

Now that your environment – a “project” – is set up, you’re set to start doing work.

Each application you write in Django consists of a Python package that follows a certain convention. Django comes
with a utility that automatically generates the basic directory structure of an app, so you can focus on writing code
rather than creating directories.

Projects vs. apps

What’s the difference between a project and an app? An app is a Web application that does something – e.g., a Weblog
system, a database of public records or a simple poll app. A project is a collection of configuration and apps for a
particular website. A project can contain multiple apps. An app can be in multiple projects.

Your apps can live anywhere on your Python path. In this tutorial, we’ll create our poll app right next to your manage.
py file so that it can be imported as its own top-level module, rather than a submodule of mysite.

To create your app, make sure you’re in the same directory as manage.py and type this command:

$ python manage.py startapp polls

That’ll create a directory polls, which is laid out like this:

polls/
__init__.py
admin.py

16 Chapter 2. Getting started

http://127.0.0.1:8000/
https://docs.python.org/3/tutorial/modules.html#tut-searchpath

Django Documentation, Release 1.10.9.dev20171123183751

apps.py
migrations/

__init__.py
models.py
tests.py
views.py

This directory structure will house the poll application.

2.3.4 Write your first view

Let’s write the first view. Open the file polls/views.py and put the following Python code in it:

polls/views.py

from django.http import HttpResponse

def index(request):
return HttpResponse("Hello, world. You're at the polls index.")

This is the simplest view possible in Django. To call the view, we need to map it to a URL - and for this we need a
URLconf.

To create a URLconf in the polls directory, create a file called urls.py. Your app directory should now look like:

polls/
__init__.py
admin.py
apps.py
migrations/

__init__.py
models.py
tests.py
urls.py
views.py

In the polls/urls.py file include the following code:

polls/urls.py

from django.conf.urls import url

from . import views

urlpatterns = [
url(r'^$', views.index, name='index'),

]

The next step is to point the root URLconf at the polls.urls module. In mysite/urls.py, add an import for
django.conf.urls.include and insert an include() in the urlpatterns list, so you have:

mysite/urls.py

from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [
url(r'^polls/', include('polls.urls')),

2.3. Writing your first Django app, part 1 17

Django Documentation, Release 1.10.9.dev20171123183751

url(r'^admin/', admin.site.urls),
]

The include() function allows referencing other URLconfs. Note that the regular expressions for the include()
function doesn’t have a $ (end-of-string match character) but rather a trailing slash. Whenever Django encounters
include(), it chops off whatever part of the URL matched up to that point and sends the remaining string to the
included URLconf for further processing.

The idea behind include() is to make it easy to plug-and-play URLs. Since polls are in their own URLconf
(polls/urls.py), they can be placed under “/polls/”, or under “/fun_polls/”, or under “/content/polls/”, or any
other path root, and the app will still work.

When to use include()

You should always use include() when you include other URL patterns. admin.site.urls is the only excep-
tion to this.

Doesn’t match what you see?

If you’re seeing include(admin.site.urls) instead of just admin.site.urls, you’re probably using a
version of Django that doesn’t match this tutorial version. You’ll want to either switch to the older tutorial or the
newer Django version.

You have now wired an index view into the URLconf. Lets verify it’s working, run the following command:

$ python manage.py runserver

Go to http://localhost:8000/polls/ in your browser, and you should see the text “Hello, world. You’re at the polls
index.”, which you defined in the index view.

The url() function is passed four arguments, two required: regex and view, and two optional: kwargs, and
name. At this point, it’s worth reviewing what these arguments are for.

url() argument: regex

The term “regex” is a commonly used short form meaning “regular expression”, which is a syntax for matching
patterns in strings, or in this case, url patterns. Django starts at the first regular expression and makes its way down the
list, comparing the requested URL against each regular expression until it finds one that matches.

Note that these regular expressions do not search GET and POST parameters, or the domain name. For example,
in a request to https://www.example.com/myapp/, the URLconf will look for myapp/. In a request to
https://www.example.com/myapp/?page=3, the URLconf will also look for myapp/.

If you need help with regular expressions, see Wikipedia’s entry and the documentation of the re module. Also, the
O’Reilly book “Mastering Regular Expressions” by Jeffrey Friedl is fantastic. In practice, however, you don’t need to
be an expert on regular expressions, as you really only need to know how to capture simple patterns. In fact, complex
regexes can have poor lookup performance, so you probably shouldn’t rely on the full power of regexes.

Finally, a performance note: these regular expressions are compiled the first time the URLconf module is loaded.
They’re super fast (as long as the lookups aren’t too complex as noted above).

url() argument: view

When Django finds a regular expression match, Django calls the specified view function, with an HttpRequest
object as the first argument and any “captured” values from the regular expression as other arguments. If the regex

18 Chapter 2. Getting started

http://localhost:8000/polls/
https://en.wikipedia.org/wiki/Regular_expression
https://docs.python.org/3/library/re.html#module-re

Django Documentation, Release 1.10.9.dev20171123183751

uses simple captures, values are passed as positional arguments; if it uses named captures, values are passed as keyword
arguments. We’ll give an example of this in a bit.

url() argument: kwargs

Arbitrary keyword arguments can be passed in a dictionary to the target view. We aren’t going to use this feature of
Django in the tutorial.

url() argument: name

Naming your URL lets you refer to it unambiguously from elsewhere in Django, especially from within templates.
This powerful feature allows you to make global changes to the URL patterns of your project while only touching a
single file.

When you’re comfortable with the basic request and response flow, read part 2 of this tutorial to start working with
the database.

2.4 Writing your first Django app, part 2

This tutorial begins where Tutorial 1 left off. We’ll setup the database, create your first model, and get a quick
introduction to Django’s automatically-generated admin site.

2.4.1 Database setup

Now, open up mysite/settings.py. It’s a normal Python module with module-level variables representing
Django settings.

By default, the configuration uses SQLite. If you’re new to databases, or you’re just interested in trying Django, this is
the easiest choice. SQLite is included in Python, so you won’t need to install anything else to support your database.
When starting your first real project, however, you may want to use a more scalable database like PostgreSQL, to avoid
database-switching headaches down the road.

If you wish to use another database, install the appropriate database bindings and change the following keys in the
DATABASES 'default' item to match your database connection settings:

• ENGINE – Either 'django.db.backends.sqlite3', 'django.db.backends.postgresql',
'django.db.backends.mysql', or 'django.db.backends.oracle'. Other backends are also
available.

• NAME – The name of your database. If you’re using SQLite, the database will be a file on your computer; in
that case, NAME should be the full absolute path, including filename, of that file. The default value, os.path.
join(BASE_DIR, 'db.sqlite3'), will store the file in your project directory.

If you are not using SQLite as your database, additional settings such as USER, PASSWORD, and HOST must be added.
For more details, see the reference documentation for DATABASES.

For databases other than SQLite

If you’re using a database besides SQLite, make sure you’ve created a database by this point. Do that with “CREATE
DATABASE database_name;” within your database’s interactive prompt.

Also make sure that the database user provided in mysite/settings.py has “create database” privileges. This
allows automatic creation of a test database which will be needed in a later tutorial.

2.4. Writing your first Django app, part 2 19

Django Documentation, Release 1.10.9.dev20171123183751

If you’re using SQLite, you don’t need to create anything beforehand - the database file will be created automatically
when it is needed.

While you’re editing mysite/settings.py, set TIME_ZONE to your time zone.

Also, note the INSTALLED_APPS setting at the top of the file. That holds the names of all Django applications that
are activated in this Django instance. Apps can be used in multiple projects, and you can package and distribute them
for use by others in their projects.

By default, INSTALLED_APPS contains the following apps, all of which come with Django:

• django.contrib.admin – The admin site. You’ll use it shortly.

• django.contrib.auth – An authentication system.

• django.contrib.contenttypes – A framework for content types.

• django.contrib.sessions – A session framework.

• django.contrib.messages – A messaging framework.

• django.contrib.staticfiles – A framework for managing static files.

These applications are included by default as a convenience for the common case.

Some of these applications make use of at least one database table, though, so we need to create the tables in the
database before we can use them. To do that, run the following command:

$ python manage.py migrate

The migrate command looks at the INSTALLED_APPS setting and creates any necessary database tables according
to the database settings in your mysite/settings.py file and the database migrations shipped with the app (we’ll
cover those later). You’ll see a message for each migration it applies. If you’re interested, run the command-line
client for your database and type \dt (PostgreSQL), SHOW TABLES; (MySQL), .schema (SQLite), or SELECT
TABLE_NAME FROM USER_TABLES; (Oracle) to display the tables Django created.

For the minimalists

Like we said above, the default applications are included for the common case, but not everybody needs them. If you
don’t need any or all of them, feel free to comment-out or delete the appropriate line(s) from INSTALLED_APPS
before running migrate. The migrate command will only run migrations for apps in INSTALLED_APPS.

2.4.2 Creating models

Now we’ll define your models – essentially, your database layout, with additional metadata.

Philosophy

A model is the single, definitive source of truth about your data. It contains the essential fields and behaviors of
the data you’re storing. Django follows the DRY Principle. The goal is to define your data model in one place and
automatically derive things from it.

This includes the migrations - unlike in Ruby On Rails, for example, migrations are entirely derived from your models
file, and are essentially just a history that Django can roll through to update your database schema to match your
current models.

20 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

In our simple poll app, we’ll create two models: Question and Choice. A Question has a question and a
publication date. A Choice has two fields: the text of the choice and a vote tally. Each Choice is associated with a
Question.

These concepts are represented by simple Python classes. Edit the polls/models.py file so it looks like this:

polls/models.py

from django.db import models

class Question(models.Model):
question_text = models.CharField(max_length=200)
pub_date = models.DateTimeField('date published')

class Choice(models.Model):
question = models.ForeignKey(Question, on_delete=models.CASCADE)
choice_text = models.CharField(max_length=200)
votes = models.IntegerField(default=0)

The code is straightforward. Each model is represented by a class that subclasses django.db.models.Model.
Each model has a number of class variables, each of which represents a database field in the model.

Each field is represented by an instance of a Field class – e.g., CharField for character fields and
DateTimeField for datetimes. This tells Django what type of data each field holds.

The name of each Field instance (e.g. question_text or pub_date) is the field’s name, in machine-friendly
format. You’ll use this value in your Python code, and your database will use it as the column name.

You can use an optional first positional argument to a Field to designate a human-readable name. That’s used
in a couple of introspective parts of Django, and it doubles as documentation. If this field isn’t provided, Django
will use the machine-readable name. In this example, we’ve only defined a human-readable name for Question.
pub_date. For all other fields in this model, the field’s machine-readable name will suffice as its human-readable
name.

Some Field classes have required arguments. CharField, for example, requires that you give it a max_length.
That’s used not only in the database schema, but in validation, as we’ll soon see.

A Field can also have various optional arguments; in this case, we’ve set the default value of votes to 0.

Finally, note a relationship is defined, using ForeignKey . That tells Django each Choice is related to a single
Question. Django supports all the common database relationships: many-to-one, many-to-many, and one-to-one.

2.4.3 Activating models

That small bit of model code gives Django a lot of information. With it, Django is able to:

• Create a database schema (CREATE TABLE statements) for this app.

• Create a Python database-access API for accessing Question and Choice objects.

But first we need to tell our project that the polls app is installed.

Philosophy

Django apps are “pluggable”: You can use an app in multiple projects, and you can distribute apps, because they don’t
have to be tied to a given Django installation.

2.4. Writing your first Django app, part 2 21

Django Documentation, Release 1.10.9.dev20171123183751

To include the app in our project, we need to add a reference to its configuration class in the INSTALLED_APPS
setting. The PollsConfig class is in the polls/apps.py file, so its dotted path is 'polls.apps.
PollsConfig'. Edit the mysite/settings.py file and add that dotted path to the INSTALLED_APPS setting.
It’ll look like this:

mysite/settings.py

INSTALLED_APPS = [
'polls.apps.PollsConfig',
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',

]

Now Django knows to include the polls app. Let’s run another command:

$ python manage.py makemigrations polls

You should see something similar to the following:

Migrations for 'polls':
polls/migrations/0001_initial.py:
- Create model Choice
- Create model Question
- Add field question to choice

By running makemigrations, you’re telling Django that you’ve made some changes to your models (in this case,
you’ve made new ones) and that you’d like the changes to be stored as a migration.

Migrations are how Django stores changes to your models (and thus your database schema) - they’re just files on disk.
You can read the migration for your new model if you like; it’s the file polls/migrations/0001_initial.py.
Don’t worry, you’re not expected to read them every time Django makes one, but they’re designed to be human-editable
in case you want to manually tweak how Django changes things.

There’s a command that will run the migrations for you and manage your database schema automatically - that’s
called migrate, and we’ll come to it in a moment - but first, let’s see what SQL that migration would run. The
sqlmigrate command takes migration names and returns their SQL:

$ python manage.py sqlmigrate polls 0001

You should see something similar to the following (we’ve reformatted it for readability):

BEGIN;
--
-- Create model Choice
--
CREATE TABLE "polls_choice" (

"id" serial NOT NULL PRIMARY KEY,
"choice_text" varchar(200) NOT NULL,
"votes" integer NOT NULL

);
--
-- Create model Question
--
CREATE TABLE "polls_question" (

"id" serial NOT NULL PRIMARY KEY,
"question_text" varchar(200) NOT NULL,

22 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

"pub_date" timestamp with time zone NOT NULL
);
--
-- Add field question to choice
--
ALTER TABLE "polls_choice" ADD COLUMN "question_id" integer NOT NULL;
ALTER TABLE "polls_choice" ALTER COLUMN "question_id" DROP DEFAULT;
CREATE INDEX "polls_choice_7aa0f6ee" ON "polls_choice" ("question_id");
ALTER TABLE "polls_choice"
ADD CONSTRAINT "polls_choice_question_id_246c99a640fbbd72_fk_polls_question_id"
FOREIGN KEY ("question_id")
REFERENCES "polls_question" ("id")
DEFERRABLE INITIALLY DEFERRED;

COMMIT;

Note the following:

• The exact output will vary depending on the database you are using. The example above is generated for
PostgreSQL.

• Table names are automatically generated by combining the name of the app (polls) and the lowercase name
of the model – question and choice. (You can override this behavior.)

• Primary keys (IDs) are added automatically. (You can override this, too.)

• By convention, Django appends "_id" to the foreign key field name. (Yes, you can override this, as well.)

• The foreign key relationship is made explicit by a FOREIGN KEY constraint. Don’t worry about the
DEFERRABLE parts; that’s just telling PostgreSQL to not enforce the foreign key until the end of the trans-
action.

• It’s tailored to the database you’re using, so database-specific field types such as auto_increment (MySQL),
serial (PostgreSQL), or integer primary key autoincrement (SQLite) are handled for you au-
tomatically. Same goes for the quoting of field names – e.g., using double quotes or single quotes.

• The sqlmigrate command doesn’t actually run the migration on your database - it just prints it to the screen
so that you can see what SQL Django thinks is required. It’s useful for checking what Django is going to do or
if you have database administrators who require SQL scripts for changes.

If you’re interested, you can also run python manage.py check; this checks for any problems in your project
without making migrations or touching the database.

Now, run migrate again to create those model tables in your database:

$ python manage.py migrate
Operations to perform:

Apply all migrations: admin, auth, contenttypes, polls, sessions
Running migrations:

Rendering model states... DONE
Applying polls.0001_initial... OK

The migrate command takes all the migrations that haven’t been applied (Django tracks which ones are applied us-
ing a special table in your database called django_migrations) and runs them against your database - essentially,
synchronizing the changes you made to your models with the schema in the database.

Migrations are very powerful and let you change your models over time, as you develop your project, without the need
to delete your database or tables and make new ones - it specializes in upgrading your database live, without losing
data. We’ll cover them in more depth in a later part of the tutorial, but for now, remember the three-step guide to
making model changes:

2.4. Writing your first Django app, part 2 23

Django Documentation, Release 1.10.9.dev20171123183751

• Change your models (in models.py).

• Run python manage.py makemigrations to create migrations for those changes

• Run python manage.py migrate to apply those changes to the database.

The reason that there are separate commands to make and apply migrations is because you’ll commit migrations to
your version control system and ship them with your app; they not only make your development easier, they’re also
useable by other developers and in production.

Read the django-admin documentation for full information on what the manage.py utility can do.

2.4.4 Playing with the API

Now, let’s hop into the interactive Python shell and play around with the free API Django gives you. To invoke the
Python shell, use this command:

$ python manage.py shell

We’re using this instead of simply typing “python”, because manage.py sets the DJANGO_SETTINGS_MODULE
environment variable, which gives Django the Python import path to your mysite/settings.py file.

Bypassing manage.py

If you’d rather not use manage.py, no problem. Just set the DJANGO_SETTINGS_MODULE environment variable
to mysite.settings, start a plain Python shell, and set up Django:

>>> import django
>>> django.setup()

If this raises an AttributeError, you’re probably using a version of Django that doesn’t match this tutorial
version. You’ll want to either switch to the older tutorial or the newer Django version.

You must run python from the same directory manage.py is in, or ensure that directory is on the Python path, so
that import mysite works.

For more information on all of this, see the django-admin documentation.

Once you’re in the shell, explore the database API:

>>> from polls.models import Question, Choice # Import the model classes we just
→˓wrote.

No questions are in the system yet.
>>> Question.objects.all()
<QuerySet []>

Create a new Question.
Support for time zones is enabled in the default settings file, so
Django expects a datetime with tzinfo for pub_date. Use timezone.now()
instead of datetime.datetime.now() and it will do the right thing.
>>> from django.utils import timezone
>>> q = Question(question_text="What's new?", pub_date=timezone.now())

Save the object into the database. You have to call save() explicitly.
>>> q.save()

Now it has an ID. Note that this might say "1L" instead of "1", depending

24 Chapter 2. Getting started

https://docs.python.org/3/library/exceptions.html#AttributeError

Django Documentation, Release 1.10.9.dev20171123183751

on which database you're using. That's no biggie; it just means your
database backend prefers to return integers as Python long integer
objects.
>>> q.id
1

Access model field values via Python attributes.
>>> q.question_text
"What's new?"
>>> q.pub_date
datetime.datetime(2012, 2, 26, 13, 0, 0, 775217, tzinfo=<UTC>)

Change values by changing the attributes, then calling save().
>>> q.question_text = "What's up?"
>>> q.save()

objects.all() displays all the questions in the database.
>>> Question.objects.all()
<QuerySet [<Question: Question object>]>

Wait a minute. <Question: Question object> is, utterly, an unhelpful representation of this object. Let’s
fix that by editing the Question model (in the polls/models.py file) and adding a __str__() method to
both Question and Choice:

polls/models.py

from django.db import models
from django.utils.encoding import python_2_unicode_compatible

@python_2_unicode_compatible # only if you need to support Python 2
class Question(models.Model):

...
def __str__(self):

return self.question_text

@python_2_unicode_compatible # only if you need to support Python 2
class Choice(models.Model):

...
def __str__(self):

return self.choice_text

It’s important to add __str__() methods to your models, not only for your own convenience when dealing with the
interactive prompt, but also because objects’ representations are used throughout Django’s automatically-generated
admin.

Note these are normal Python methods. Let’s add a custom method, just for demonstration:

polls/models.py

import datetime

from django.db import models
from django.utils import timezone

class Question(models.Model):
...
def was_published_recently(self):

return self.pub_date >= timezone.now() - datetime.timedelta(days=1)

2.4. Writing your first Django app, part 2 25

Django Documentation, Release 1.10.9.dev20171123183751

Note the addition of import datetime and from django.utils import timezone, to reference
Python’s standard datetime module and Django’s time-zone-related utilities in django.utils.timezone,
respectively. If you aren’t familiar with time zone handling in Python, you can learn more in the time zone support
docs.

Save these changes and start a new Python interactive shell by running python manage.py shell again:

>>> from polls.models import Question, Choice

Make sure our __str__() addition worked.
>>> Question.objects.all()
<QuerySet [<Question: What's up?>]>

Django provides a rich database lookup API that's entirely driven by
keyword arguments.
>>> Question.objects.filter(id=1)
<QuerySet [<Question: What's up?>]>
>>> Question.objects.filter(question_text__startswith='What')
<QuerySet [<Question: What's up?>]>

Get the question that was published this year.
>>> from django.utils import timezone
>>> current_year = timezone.now().year
>>> Question.objects.get(pub_date__year=current_year)
<Question: What's up?>

Request an ID that doesn't exist, this will raise an exception.
>>> Question.objects.get(id=2)
Traceback (most recent call last):

...
DoesNotExist: Question matching query does not exist.

Lookup by a primary key is the most common case, so Django provides a
shortcut for primary-key exact lookups.
The following is identical to Question.objects.get(id=1).
>>> Question.objects.get(pk=1)
<Question: What's up?>

Make sure our custom method worked.
>>> q = Question.objects.get(pk=1)
>>> q.was_published_recently()
True

Give the Question a couple of Choices. The create call constructs a new
Choice object, does the INSERT statement, adds the choice to the set
of available choices and returns the new Choice object. Django creates
a set to hold the "other side" of a ForeignKey relation
(e.g. a question's choice) which can be accessed via the API.
>>> q = Question.objects.get(pk=1)

Display any choices from the related object set -- none so far.
>>> q.choice_set.all()
<QuerySet []>

Create three choices.
>>> q.choice_set.create(choice_text='Not much', votes=0)
<Choice: Not much>
>>> q.choice_set.create(choice_text='The sky', votes=0)
<Choice: The sky>

26 Chapter 2. Getting started

https://docs.python.org/3/library/datetime.html#module-datetime

Django Documentation, Release 1.10.9.dev20171123183751

>>> c = q.choice_set.create(choice_text='Just hacking again', votes=0)

Choice objects have API access to their related Question objects.
>>> c.question
<Question: What's up?>

And vice versa: Question objects get access to Choice objects.
>>> q.choice_set.all()
<QuerySet [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]>
>>> q.choice_set.count()
3

The API automatically follows relationships as far as you need.
Use double underscores to separate relationships.
This works as many levels deep as you want; there's no limit.
Find all Choices for any question whose pub_date is in this year
(reusing the 'current_year' variable we created above).
>>> Choice.objects.filter(question__pub_date__year=current_year)
<QuerySet [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]>

Let's delete one of the choices. Use delete() for that.
>>> c = q.choice_set.filter(choice_text__startswith='Just hacking')
>>> c.delete()

For more information on model relations, see Accessing related objects. For more on how to use double underscores
to perform field lookups via the API, see Field lookups. For full details on the database API, see our Database API
reference.

2.4.5 Introducing the Django Admin

Philosophy

Generating admin sites for your staff or clients to add, change, and delete content is tedious work that doesn’t require
much creativity. For that reason, Django entirely automates creation of admin interfaces for models.

Django was written in a newsroom environment, with a very clear separation between “content publishers” and the
“public” site. Site managers use the system to add news stories, events, sports scores, etc., and that content is displayed
on the public site. Django solves the problem of creating a unified interface for site administrators to edit content.

The admin isn’t intended to be used by site visitors. It’s for site managers.

Creating an admin user

First we’ll need to create a user who can login to the admin site. Run the following command:

$ python manage.py createsuperuser

Enter your desired username and press enter.

Username: admin

You will then be prompted for your desired email address:

2.4. Writing your first Django app, part 2 27

Django Documentation, Release 1.10.9.dev20171123183751

Email address: admin@example.com

The final step is to enter your password. You will be asked to enter your password twice, the second time as a
confirmation of the first.

Password: **********
Password (again): *********
Superuser created successfully.

Start the development server

The Django admin site is activated by default. Let’s start the development server and explore it.

If the server is not running start it like so:

$ python manage.py runserver

Now, open a Web browser and go to “/admin/” on your local domain – e.g., http://127.0.0.1:8000/admin/. You should
see the admin’s login screen:

Since translation is turned on by default, the login screen may be displayed in your own language, depending on your
browser’s settings and if Django has a translation for this language.

Enter the admin site

Now, try logging in with the superuser account you created in the previous step. You should see the Django admin
index page:

28 Chapter 2. Getting started

http://127.0.0.1:8000/admin/

Django Documentation, Release 1.10.9.dev20171123183751

You should see a few types of editable content: groups and users. They are provided by django.contrib.auth,
the authentication framework shipped by Django.

Make the poll app modifiable in the admin

But where’s our poll app? It’s not displayed on the admin index page.

Just one thing to do: we need to tell the admin that Question objects have an admin interface. To do this, open the
polls/admin.py file, and edit it to look like this:

polls/admin.py

from django.contrib import admin

from .models import Question

admin.site.register(Question)

Explore the free admin functionality

Now that we’ve registered Question, Django knows that it should be displayed on the admin index page:

Click “Questions”. Now you’re at the “change list” page for questions. This page displays all the questions in the
database and lets you choose one to change it. There’s the “What’s up?” question we created earlier:

2.4. Writing your first Django app, part 2 29

Django Documentation, Release 1.10.9.dev20171123183751

Click the “What’s up?” question to edit it:

Things to note here:

• The form is automatically generated from the Question model.

• The different model field types (DateTimeField, CharField) correspond to the appropriate HTML input
widget. Each type of field knows how to display itself in the Django admin.

• Each DateTimeField gets free JavaScript shortcuts. Dates get a “Today” shortcut and calendar popup, and
times get a “Now” shortcut and a convenient popup that lists commonly entered times.

The bottom part of the page gives you a couple of options:

• Save – Saves changes and returns to the change-list page for this type of object.

• Save and continue editing – Saves changes and reloads the admin page for this object.

• Save and add another – Saves changes and loads a new, blank form for this type of object.

• Delete – Displays a delete confirmation page.

If the value of “Date published” doesn’t match the time when you created the question in Tutorial 1, it probably means
you forgot to set the correct value for the TIME_ZONE setting. Change it, reload the page and check that the correct
value appears.

Change the “Date published” by clicking the “Today” and “Now” shortcuts. Then click “Save and continue editing.”
Then click “History” in the upper right. You’ll see a page listing all changes made to this object via the Django admin,
with the timestamp and username of the person who made the change:

30 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

When you’re comfortable with the models API and have familiarized yourself with the admin site, read part 3 of this
tutorial to learn about how to add more views to our polls app.

2.5 Writing your first Django app, part 3

This tutorial begins where Tutorial 2 left off. We’re continuing the Web-poll application and will focus on creating the
public interface – “views.”

2.5.1 Overview

A view is a “type” of Web page in your Django application that generally serves a specific function and has a specific
template. For example, in a blog application, you might have the following views:

• Blog homepage – displays the latest few entries.

• Entry “detail” page – permalink page for a single entry.

• Year-based archive page – displays all months with entries in the given year.

• Month-based archive page – displays all days with entries in the given month.

• Day-based archive page – displays all entries in the given day.

• Comment action – handles posting comments to a given entry.

In our poll application, we’ll have the following four views:

• Question “index” page – displays the latest few questions.

• Question “detail” page – displays a question text, with no results but with a form to vote.

• Question “results” page – displays results for a particular question.

• Vote action – handles voting for a particular choice in a particular question.

In Django, web pages and other content are delivered by views. Each view is represented by a simple Python function
(or method, in the case of class-based views). Django will choose a view by examining the URL that’s requested (to
be precise, the part of the URL after the domain name).

Now in your time on the web you may have come across such beauties as
“ME2/Sites/dirmod.asp?sid=&type=gen&mod=Core+Pages&gid=A6CD4967199A42D9B65B1B”. You will be
pleased to know that Django allows us much more elegant URL patterns than that.

A URL pattern is simply the general form of a URL - for example: /newsarchive/<year>/<month>/.

To get from a URL to a view, Django uses what are known as ‘URLconfs’. A URLconf maps URL patterns (described
as regular expressions) to views.

This tutorial provides basic instruction in the use of URLconfs, and you can refer to django.urls for more infor-
mation.

2.5. Writing your first Django app, part 3 31

Django Documentation, Release 1.10.9.dev20171123183751

2.5.2 Writing more views

Now let’s add a few more views to polls/views.py. These views are slightly different, because they take an
argument:

polls/views.py

def detail(request, question_id):
return HttpResponse("You're looking at question %s." % question_id)

def results(request, question_id):
response = "You're looking at the results of question %s."
return HttpResponse(response % question_id)

def vote(request, question_id):
return HttpResponse("You're voting on question %s." % question_id)

Wire these new views into the polls.urls module by adding the following url() calls:

polls/urls.py

from django.conf.urls import url

from . import views

urlpatterns = [
ex: /polls/
url(r'^$', views.index, name='index'),
ex: /polls/5/
url(r'^(?P<question_id>[0-9]+)/$', views.detail, name='detail'),
ex: /polls/5/results/
url(r'^(?P<question_id>[0-9]+)/results/$', views.results, name='results'),
ex: /polls/5/vote/
url(r'^(?P<question_id>[0-9]+)/vote/$', views.vote, name='vote'),

]

Take a look in your browser, at “/polls/34/”. It’ll run the detail() method and display whatever ID you provide
in the URL. Try “/polls/34/results/” and “/polls/34/vote/” too – these will display the placeholder results and voting
pages.

When somebody requests a page from your website – say, “/polls/34/”, Django will load the mysite.urls Python
module because it’s pointed to by the ROOT_URLCONF setting. It finds the variable named urlpatterns and
traverses the regular expressions in order. After finding the match at '^polls/', it strips off the matching text
("polls/") and sends the remaining text – "34/" – to the ‘polls.urls’ URLconf for further processing. There it
matches r'^(?P<question_id>[0-9]+)/$', resulting in a call to the detail() view like so:

detail(request=<HttpRequest object>, question_id='34')

The question_id='34' part comes from (?P<question_id>[0-9]+). Using parentheses around a pattern
“captures” the text matched by that pattern and sends it as an argument to the view function; ?P<question_id>
defines the name that will be used to identify the matched pattern; and [0-9]+ is a regular expression to match a
sequence of digits (i.e., a number).

Because the URL patterns are regular expressions, there really is no limit on what you can do with them. And there’s
no need to add URL cruft such as .html – unless you want to, in which case you can do something like this:

url(r'^polls/latest\.html$', views.index),

But, don’t do that. It’s silly.

32 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

2.5.3 Write views that actually do something

Each view is responsible for doing one of two things: returning an HttpResponse object containing the content for
the requested page, or raising an exception such as Http404. The rest is up to you.

Your view can read records from a database, or not. It can use a template system such as Django’s – or a third-party
Python template system – or not. It can generate a PDF file, output XML, create a ZIP file on the fly, anything you
want, using whatever Python libraries you want.

All Django wants is that HttpResponse. Or an exception.

Because it’s convenient, let’s use Django’s own database API, which we covered in Tutorial 2. Here’s one stab at
a new index() view, which displays the latest 5 poll questions in the system, separated by commas, according to
publication date:

polls/views.py

from django.http import HttpResponse

from .models import Question

def index(request):
latest_question_list = Question.objects.order_by('-pub_date')[:5]
output = ', '.join([q.question_text for q in latest_question_list])
return HttpResponse(output)

Leave the rest of the views (detail, results, vote) unchanged

There’s a problem here, though: the page’s design is hard-coded in the view. If you want to change the way the page
looks, you’ll have to edit this Python code. So let’s use Django’s template system to separate the design from Python
by creating a template that the view can use.

First, create a directory called templates in your polls directory. Django will look for templates in there.

Your project’s TEMPLATES setting describes how Django will load and render templates. The default set-
tings file configures a DjangoTemplates backend whose APP_DIRS option is set to True. By convention
DjangoTemplates looks for a “templates” subdirectory in each of the INSTALLED_APPS.

Within the templates directory you have just created, create another directory called polls, and within that create
a file called index.html. In other words, your template should be at polls/templates/polls/index.
html. Because of how the app_directories template loader works as described above, you can refer to this
template within Django simply as polls/index.html.

Template namespacing

Now we might be able to get away with putting our templates directly in polls/templates (rather than creating
another polls subdirectory), but it would actually be a bad idea. Django will choose the first template it finds whose
name matches, and if you had a template with the same name in a different application, Django would be unable to
distinguish between them. We need to be able to point Django at the right one, and the easiest way to ensure this is by
namespacing them. That is, by putting those templates inside another directory named for the application itself.

Put the following code in that template:

polls/templates/polls/index.html

{% if latest_question_list %}

{% for question in latest_question_list %}

{{ question.question_text }}

2.5. Writing your first Django app, part 3 33

Django Documentation, Release 1.10.9.dev20171123183751

{% endfor %}

{% else %}
<p>No polls are available.</p>

{% endif %}

Now let’s update our index view in polls/views.py to use the template:

polls/views.py

from django.http import HttpResponse
from django.template import loader

from .models import Question

def index(request):
latest_question_list = Question.objects.order_by('-pub_date')[:5]
template = loader.get_template('polls/index.html')
context = {

'latest_question_list': latest_question_list,
}
return HttpResponse(template.render(context, request))

That code loads the template called polls/index.html and passes it a context. The context is a dictionary
mapping template variable names to Python objects.

Load the page by pointing your browser at “/polls/”, and you should see a bulleted-list containing the “What’s up”
question from Tutorial 2. The link points to the question’s detail page.

A shortcut: render()

It’s a very common idiom to load a template, fill a context and return an HttpResponse object with the result of the
rendered template. Django provides a shortcut. Here’s the full index() view, rewritten:

polls/views.py

from django.shortcuts import render

from .models import Question

def index(request):
latest_question_list = Question.objects.order_by('-pub_date')[:5]
context = {'latest_question_list': latest_question_list}
return render(request, 'polls/index.html', context)

Note that once we’ve done this in all these views, we no longer need to import loader and HttpResponse (you’ll
want to keep HttpResponse if you still have the stub methods for detail, results, and vote).

The render() function takes the request object as its first argument, a template name as its second argument and a
dictionary as its optional third argument. It returns an HttpResponse object of the given template rendered with
the given context.

2.5.4 Raising a 404 error

Now, let’s tackle the question detail view – the page that displays the question text for a given poll. Here’s the view:

polls/views.py

34 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

from django.http import Http404
from django.shortcuts import render

from .models import Question
...
def detail(request, question_id):

try:
question = Question.objects.get(pk=question_id)

except Question.DoesNotExist:
raise Http404("Question does not exist")

return render(request, 'polls/detail.html', {'question': question})

The new concept here: The view raises the Http404 exception if a question with the requested ID doesn’t exist.

We’ll discuss what you could put in that polls/detail.html template a bit later, but if you’d like to quickly get
the above example working, a file containing just:

polls/templates/polls/detail.html

{{ question }}

will get you started for now.

A shortcut: get_object_or_404()

It’s a very common idiom to use get() and raise Http404 if the object doesn’t exist. Django provides a shortcut.
Here’s the detail() view, rewritten:

polls/views.py

from django.shortcuts import get_object_or_404, render

from .models import Question
...
def detail(request, question_id):

question = get_object_or_404(Question, pk=question_id)
return render(request, 'polls/detail.html', {'question': question})

The get_object_or_404() function takes a Django model as its first argument and an arbitrary number of
keyword arguments, which it passes to the get() function of the model’s manager. It raises Http404 if the object
doesn’t exist.

Philosophy

Why do we use a helper function get_object_or_404() instead of automatically catching the
ObjectDoesNotExist exceptions at a higher level, or having the model API raise Http404 instead of
ObjectDoesNotExist?

Because that would couple the model layer to the view layer. One of the foremost design goals of Django is to maintain
loose coupling. Some controlled coupling is introduced in the django.shortcuts module.

There’s also a get_list_or_404() function, which works just as get_object_or_404() – except using
filter() instead of get(). It raises Http404 if the list is empty.

2.5.5 Use the template system

Back to the detail() view for our poll application. Given the context variable question, here’s what the polls/
detail.html template might look like:

2.5. Writing your first Django app, part 3 35

Django Documentation, Release 1.10.9.dev20171123183751

polls/templates/polls/detail.html

<h1>{{ question.question_text }}</h1>

{% for choice in question.choice_set.all %}

{{ choice.choice_text }}
{% endfor %}

The template system uses dot-lookup syntax to access variable attributes. In the example of {{ question.
question_text }}, first Django does a dictionary lookup on the object question. Failing that, it tries an
attribute lookup – which works, in this case. If attribute lookup had failed, it would’ve tried a list-index lookup.

Method-calling happens in the {% for %} loop: question.choice_set.all is interpreted as the Python code
question.choice_set.all(), which returns an iterable of Choice objects and is suitable for use in the {%
for %} tag.

See the template guide for more about templates.

2.5.6 Removing hardcoded URLs in templates

Remember, when we wrote the link to a question in the polls/index.html template, the link was partially
hardcoded like this:

{{ question.question_text }}

The problem with this hardcoded, tightly-coupled approach is that it becomes challenging to change URLs on projects
with a lot of templates. However, since you defined the name argument in the url() functions in the polls.urls
module, you can remove a reliance on specific URL paths defined in your url configurations by using the {% url
%} template tag:

{{ question.question_text }}

The way this works is by looking up the URL definition as specified in the polls.urlsmodule. You can see exactly
where the URL name of ‘detail’ is defined below:

...
the 'name' value as called by the {% url %} template tag
url(r'^(?P<question_id>[0-9]+)/$', views.detail, name='detail'),
...

If you want to change the URL of the polls detail view to something else, perhaps to something like polls/
specifics/12/ instead of doing it in the template (or templates) you would change it in polls/urls.py:

...
added the word 'specifics'
url(r'^specifics/(?P<question_id>[0-9]+)/$', views.detail, name='detail'),
...

2.5.7 Namespacing URL names

The tutorial project has just one app, polls. In real Django projects, there might be five, ten, twenty apps or more.
How does Django differentiate the URL names between them? For example, the polls app has a detail view, and
so might an app on the same project that is for a blog. How does one make it so that Django knows which app view to
create for a url when using the {% url %} template tag?

36 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

The answer is to add namespaces to your URLconf. In the polls/urls.py file, go ahead and add an app_name
to set the application namespace:

polls/urls.py

from django.conf.urls import url

from . import views

app_name = 'polls'
urlpatterns = [

url(r'^$', views.index, name='index'),
url(r'^(?P<question_id>[0-9]+)/$', views.detail, name='detail'),
url(r'^(?P<question_id>[0-9]+)/results/$', views.results, name='results'),
url(r'^(?P<question_id>[0-9]+)/vote/$', views.vote, name='vote'),

]

Now change your polls/index.html template from:

polls/templates/polls/index.html

{{ question.question_text }}

to point at the namespaced detail view:

polls/templates/polls/index.html

{{ question.question_text }}

When you’re comfortable with writing views, read part 4 of this tutorial to learn about simple form processing and
generic views.

2.6 Writing your first Django app, part 4

This tutorial begins where Tutorial 3 left off. We’re continuing the Web-poll application and will focus on simple form
processing and cutting down our code.

2.6.1 Write a simple form

Let’s update our poll detail template (“polls/detail.html”) from the last tutorial, so that the template contains an HTML
<form> element:

polls/templates/polls/detail.html

<h1>{{ question.question_text }}</h1>

{% if error_message %}<p>{{ error_message }}</p>{% endif %}

<form action="{% url 'polls:vote' question.id %}" method="post">
{% csrf_token %}
{% for choice in question.choice_set.all %}

<input type="radio" name="choice" id="choice{{ forloop.counter }}" value="{{ choice.id }}" />
<label for="choice{{ forloop.counter }}">{{ choice.choice_text }}</label>

{% endfor %}
<input type="submit" value="Vote" />
</form>

A quick rundown:

2.6. Writing your first Django app, part 4 37

Django Documentation, Release 1.10.9.dev20171123183751

• The above template displays a radio button for each question choice. The value of each radio button is the
associated question choice’s ID. The name of each radio button is "choice". That means, when somebody
selects one of the radio buttons and submits the form, it’ll send the POST data choice=# where # is the ID of
the selected choice. This is the basic concept of HTML forms.

• We set the form’s action to {% url 'polls:vote' question.id %}, and we set
method="post". Using method="post" (as opposed to method="get") is very important, be-
cause the act of submitting this form will alter data server-side. Whenever you create a form that alters data
server-side, use method="post". This tip isn’t specific to Django; it’s just good Web development practice.

• forloop.counter indicates how many times the for tag has gone through its loop

• Since we’re creating a POST form (which can have the effect of modifying data), we need to worry about Cross
Site Request Forgeries. Thankfully, you don’t have to worry too hard, because Django comes with a very easy-
to-use system for protecting against it. In short, all POST forms that are targeted at internal URLs should use
the {% csrf_token %} template tag.

Now, let’s create a Django view that handles the submitted data and does something with it. Remember, in Tutorial 3,
we created a URLconf for the polls application that includes this line:

polls/urls.py

url(r'^(?P<question_id>[0-9]+)/vote/$', views.vote, name='vote'),

We also created a dummy implementation of the vote() function. Let’s create a real version. Add the following to
polls/views.py:

polls/views.py

from django.shortcuts import get_object_or_404, render
from django.http import HttpResponseRedirect, HttpResponse
from django.urls import reverse

from .models import Choice, Question
...
def vote(request, question_id):

question = get_object_or_404(Question, pk=question_id)
try:

selected_choice = question.choice_set.get(pk=request.POST['choice'])
except (KeyError, Choice.DoesNotExist):

Redisplay the question voting form.
return render(request, 'polls/detail.html', {

'question': question,
'error_message': "You didn't select a choice.",

})
else:

selected_choice.votes += 1
selected_choice.save()
Always return an HttpResponseRedirect after successfully dealing
with POST data. This prevents data from being posted twice if a
user hits the Back button.
return HttpResponseRedirect(reverse('polls:results', args=(question.id,)))

This code includes a few things we haven’t covered yet in this tutorial:

• request.POST is a dictionary-like object that lets you access submitted data by key name. In this case,
request.POST['choice'] returns the ID of the selected choice, as a string. request.POST values are
always strings.

Note that Django also provides request.GET for accessing GET data in the same way – but we’re explicitly
using request.POST in our code, to ensure that data is only altered via a POST call.

38 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

• request.POST['choice'] will raise KeyError if choice wasn’t provided in POST data. The above
code checks for KeyError and redisplays the question form with an error message if choice isn’t given.

• After incrementing the choice count, the code returns an HttpResponseRedirect rather than a normal
HttpResponse. HttpResponseRedirect takes a single argument: the URL to which the user will be
redirected (see the following point for how we construct the URL in this case).

As the Python comment above points out, you should always return an HttpResponseRedirect after
successfully dealing with POST data. This tip isn’t specific to Django; it’s just good Web development practice.

• We are using the reverse() function in the HttpResponseRedirect constructor in this example. This
function helps avoid having to hardcode a URL in the view function. It is given the name of the view that we
want to pass control to and the variable portion of the URL pattern that points to that view. In this case, using
the URLconf we set up in Tutorial 3, this reverse() call will return a string like

'/polls/3/results/'

where the 3 is the value of question.id. This redirected URL will then call the 'results' view to display
the final page.

As mentioned in Tutorial 3, request is an HttpRequest object. For more on HttpRequest objects, see the
request and response documentation.

After somebody votes in a question, the vote() view redirects to the results page for the question. Let’s write that
view:

polls/views.py

from django.shortcuts import get_object_or_404, render

def results(request, question_id):
question = get_object_or_404(Question, pk=question_id)
return render(request, 'polls/results.html', {'question': question})

This is almost exactly the same as the detail() view from Tutorial 3. The only difference is the template name.
We’ll fix this redundancy later.

Now, create a polls/results.html template:

polls/templates/polls/results.html

<h1>{{ question.question_text }}</h1>

{% for choice in question.choice_set.all %}

{{ choice.choice_text }} -- {{ choice.votes }} vote{{ choice.votes|pluralize }}
{% endfor %}

Vote again?

Now, go to /polls/1/ in your browser and vote in the question. You should see a results page that gets updated
each time you vote. If you submit the form without having chosen a choice, you should see the error message.

Note: The code for our vote() view does have a small problem. It first gets the selected_choice object from
the database, then computes the new value of votes, and then saves it back to the database. If two users of your
website try to vote at exactly the same time, this might go wrong: The same value, let’s say 42, will be retrieved for
votes. Then, for both users the new value of 43 is computed and saved, but 44 would be the expected value.

2.6. Writing your first Django app, part 4 39

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#KeyError

Django Documentation, Release 1.10.9.dev20171123183751

This is called a race condition. If you are interested, you can read Avoiding race conditions using F() to learn how you
can solve this issue.

2.6.2 Use generic views: Less code is better

The detail() (from Tutorial 3) and results() views are very simple – and, as mentioned above, redundant. The
index() view, which displays a list of polls, is similar.

These views represent a common case of basic Web development: getting data from the database according to a
parameter passed in the URL, loading a template and returning the rendered template. Because this is so common,
Django provides a shortcut, called the “generic views” system.

Generic views abstract common patterns to the point where you don’t even need to write Python code to write an app.

Let’s convert our poll app to use the generic views system, so we can delete a bunch of our own code. We’ll just have
to take a few steps to make the conversion. We will:

1. Convert the URLconf.

2. Delete some of the old, unneeded views.

3. Introduce new views based on Django’s generic views.

Read on for details.

Why the code-shuffle?

Generally, when writing a Django app, you’ll evaluate whether generic views are a good fit for your problem, and
you’ll use them from the beginning, rather than refactoring your code halfway through. But this tutorial intentionally
has focused on writing the views “the hard way” until now, to focus on core concepts.

You should know basic math before you start using a calculator.

Amend URLconf

First, open the polls/urls.py URLconf and change it like so:

polls/urls.py

from django.conf.urls import url

from . import views

app_name = 'polls'
urlpatterns = [

url(r'^$', views.IndexView.as_view(), name='index'),
url(r'^(?P<pk>[0-9]+)/$', views.DetailView.as_view(), name='detail'),
url(r'^(?P<pk>[0-9]+)/results/$', views.ResultsView.as_view(), name='results'),
url(r'^(?P<question_id>[0-9]+)/vote/$', views.vote, name='vote'),

]

Note that the name of the matched pattern in the regexes of the second and third patterns has changed from
<question_id> to <pk>.

40 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

Amend views

Next, we’re going to remove our old index, detail, and results views and use Django’s generic views instead.
To do so, open the polls/views.py file and change it like so:

polls/views.py

from django.shortcuts import get_object_or_404, render
from django.http import HttpResponseRedirect
from django.urls import reverse
from django.views import generic

from .models import Choice, Question

class IndexView(generic.ListView):
template_name = 'polls/index.html'
context_object_name = 'latest_question_list'

def get_queryset(self):
"""Return the last five published questions."""
return Question.objects.order_by('-pub_date')[:5]

class DetailView(generic.DetailView):
model = Question
template_name = 'polls/detail.html'

class ResultsView(generic.DetailView):
model = Question
template_name = 'polls/results.html'

def vote(request, question_id):
... # same as above, no changes needed.

We’re using two generic views here: ListView and DetailView . Respectively, those two views abstract the
concepts of “display a list of objects” and “display a detail page for a particular type of object.”

• Each generic view needs to know what model it will be acting upon. This is provided using the model attribute.

• The DetailView generic view expects the primary key value captured from the URL to be called "pk", so
we’ve changed question_id to pk for the generic views.

By default, the DetailView generic view uses a template called <app name>/<model name>_detail.
html. In our case, it would use the template "polls/question_detail.html". The template_name
attribute is used to tell Django to use a specific template name instead of the autogenerated default template name. We
also specify the template_name for the results list view – this ensures that the results view and the detail view
have a different appearance when rendered, even though they’re both a DetailView behind the scenes.

Similarly, the ListView generic view uses a default template called <app name>/<model name>_list.
html; we use template_name to tell ListView to use our existing "polls/index.html" template.

In previous parts of the tutorial, the templates have been provided with a context that contains the question
and latest_question_list context variables. For DetailView the question variable is provided
automatically – since we’re using a Django model (Question), Django is able to determine an appropri-
ate name for the context variable. However, for ListView, the automatically generated context variable is
question_list. To override this we provide the context_object_name attribute, specifying that we want to

2.6. Writing your first Django app, part 4 41

Django Documentation, Release 1.10.9.dev20171123183751

use latest_question_list instead. As an alternative approach, you could change your templates to match the
new default context variables – but it’s a lot easier to just tell Django to use the variable you want.

Run the server, and use your new polling app based on generic views.

For full details on generic views, see the generic views documentation.

When you’re comfortable with forms and generic views, read part 5 of this tutorial to learn about testing our polls
app.

2.7 Writing your first Django app, part 5

This tutorial begins where Tutorial 4 left off. We’ve built a Web-poll application, and we’ll now create some automated
tests for it.

2.7.1 Introducing automated testing

What are automated tests?

Tests are simple routines that check the operation of your code.

Testing operates at different levels. Some tests might apply to a tiny detail (does a particular model method return
values as expected?) while others examine the overall operation of the software (does a sequence of user inputs on the
site produce the desired result?). That’s no different from the kind of testing you did earlier in Tutorial 2, using the
shell to examine the behavior of a method, or running the application and entering data to check how it behaves.

What’s different in automated tests is that the testing work is done for you by the system. You create a set of tests
once, and then as you make changes to your app, you can check that your code still works as you originally intended,
without having to perform time consuming manual testing.

Why you need to create tests

So why create tests, and why now?

You may feel that you have quite enough on your plate just learning Python/Django, and having yet another thing
to learn and do may seem overwhelming and perhaps unnecessary. After all, our polls application is working quite
happily now; going through the trouble of creating automated tests is not going to make it work any better. If creating
the polls application is the last bit of Django programming you will ever do, then true, you don’t need to know how to
create automated tests. But, if that’s not the case, now is an excellent time to learn.

Tests will save you time

Up to a certain point, ‘checking that it seems to work’ will be a satisfactory test. In a more sophisticated application,
you might have dozens of complex interactions between components.

A change in any of those components could have unexpected consequences on the application’s behavior. Checking
that it still ‘seems to work’ could mean running through your code’s functionality with twenty different variations of
your test data just to make sure you haven’t broken something - not a good use of your time.

That’s especially true when automated tests could do this for you in seconds. If something’s gone wrong, tests will
also assist in identifying the code that’s causing the unexpected behavior.

Sometimes it may seem a chore to tear yourself away from your productive, creative programming work to face the
unglamorous and unexciting business of writing tests, particularly when you know your code is working properly.

42 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

However, the task of writing tests is a lot more fulfilling than spending hours testing your application manually or
trying to identify the cause of a newly-introduced problem.

Tests don’t just identify problems, they prevent them

It’s a mistake to think of tests merely as a negative aspect of development.

Without tests, the purpose or intended behavior of an application might be rather opaque. Even when it’s your own
code, you will sometimes find yourself poking around in it trying to find out what exactly it’s doing.

Tests change that; they light up your code from the inside, and when something goes wrong, they focus light on the
part that has gone wrong - even if you hadn’t even realized it had gone wrong.

Tests make your code more attractive

You might have created a brilliant piece of software, but you will find that many other developers will simply refuse
to look at it because it lacks tests; without tests, they won’t trust it. Jacob Kaplan-Moss, one of Django’s original
developers, says “Code without tests is broken by design.”

That other developers want to see tests in your software before they take it seriously is yet another reason for you to
start writing tests.

Tests help teams work together

The previous points are written from the point of view of a single developer maintaining an application. Complex
applications will be maintained by teams. Tests guarantee that colleagues don’t inadvertently break your code (and
that you don’t break theirs without knowing). If you want to make a living as a Django programmer, you must be good
at writing tests!

2.7.2 Basic testing strategies

There are many ways to approach writing tests.

Some programmers follow a discipline called “test-driven development”; they actually write their tests before they
write their code. This might seem counter-intuitive, but in fact it’s similar to what most people will often do anyway:
they describe a problem, then create some code to solve it. Test-driven development simply formalizes the problem in
a Python test case.

More often, a newcomer to testing will create some code and later decide that it should have some tests. Perhaps it
would have been better to write some tests earlier, but it’s never too late to get started.

Sometimes it’s difficult to figure out where to get started with writing tests. If you have written several thousand lines
of Python, choosing something to test might not be easy. In such a case, it’s fruitful to write your first test the next
time you make a change, either when you add a new feature or fix a bug.

So let’s do that right away.

2.7.3 Writing our first test

We identify a bug

Fortunately, there’s a little bug in the polls application for us to fix right away: the Question.
was_published_recently() method returns True if the Question was published within the last day (which

2.7. Writing your first Django app, part 5 43

https://en.wikipedia.org/wiki/Test-driven_development

Django Documentation, Release 1.10.9.dev20171123183751

is correct) but also if the Question’s pub_date field is in the future (which certainly isn’t).

To check if the bug really exists, using the Admin create a question whose date lies in the future and check the method
using the shell:

>>> import datetime
>>> from django.utils import timezone
>>> from polls.models import Question
>>> # create a Question instance with pub_date 30 days in the future
>>> future_question = Question(pub_date=timezone.now() + datetime.timedelta(days=30))
>>> # was it published recently?
>>> future_question.was_published_recently()
True

Since things in the future are not ‘recent’, this is clearly wrong.

Create a test to expose the bug

What we’ve just done in the shell to test for the problem is exactly what we can do in an automated test, so let’s
turn that into an automated test.

A conventional place for an application’s tests is in the application’s tests.py file; the testing system will automat-
ically find tests in any file whose name begins with test.

Put the following in the tests.py file in the polls application:

polls/tests.py

import datetime

from django.utils import timezone
from django.test import TestCase

from .models import Question

class QuestionMethodTests(TestCase):

def test_was_published_recently_with_future_question(self):
"""
was_published_recently() should return False for questions whose
pub_date is in the future.
"""
time = timezone.now() + datetime.timedelta(days=30)
future_question = Question(pub_date=time)
self.assertIs(future_question.was_published_recently(), False)

What we have done here is created a django.test.TestCase subclass with a method that creates a Question
instance with a pub_date in the future. We then check the output of was_published_recently() - which
ought to be False.

Running tests

In the terminal, we can run our test:

$ python manage.py test polls

and you’ll see something like:

44 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

Creating test database for alias 'default'...
F
==
FAIL: test_was_published_recently_with_future_question (polls.tests.
→˓QuestionMethodTests)
--
Traceback (most recent call last):

File "/path/to/mysite/polls/tests.py", line 16, in test_was_published_recently_with_
→˓future_question

self.assertIs(future_question.was_published_recently(), False)
AssertionError: True is not False

--
Ran 1 test in 0.001s

FAILED (failures=1)
Destroying test database for alias 'default'...

What happened is this:

• python manage.py test polls looked for tests in the polls application

• it found a subclass of the django.test.TestCase class

• it created a special database for the purpose of testing

• it looked for test methods - ones whose names begin with test

• in test_was_published_recently_with_future_question it created a Question instance
whose pub_date field is 30 days in the future

• ... and using the assertIs()method, it discovered that its was_published_recently() returns True,
though we wanted it to return False

The test informs us which test failed and even the line on which the failure occurred.

Fixing the bug

We already know what the problem is: Question.was_published_recently() should return False if its
pub_date is in the future. Amend the method in models.py, so that it will only return True if the date is also in
the past:

polls/models.py

def was_published_recently(self):
now = timezone.now()
return now - datetime.timedelta(days=1) <= self.pub_date <= now

and run the test again:

Creating test database for alias 'default'...
.
--
Ran 1 test in 0.001s

OK
Destroying test database for alias 'default'...

After identifying a bug, we wrote a test that exposes it and corrected the bug in the code so our test passes.

2.7. Writing your first Django app, part 5 45

Django Documentation, Release 1.10.9.dev20171123183751

Many other things might go wrong with our application in the future, but we can be sure that we won’t inadvertently
reintroduce this bug, because simply running the test will warn us immediately. We can consider this little portion of
the application pinned down safely forever.

More comprehensive tests

While we’re here, we can further pin down the was_published_recently() method; in fact, it would be posi-
tively embarrassing if in fixing one bug we had introduced another.

Add two more test methods to the same class, to test the behavior of the method more comprehensively:

polls/tests.py

def test_was_published_recently_with_old_question(self):
"""
was_published_recently() should return False for questions whose
pub_date is older than 1 day.
"""
time = timezone.now() - datetime.timedelta(days=30)
old_question = Question(pub_date=time)
self.assertIs(old_question.was_published_recently(), False)

def test_was_published_recently_with_recent_question(self):
"""
was_published_recently() should return True for questions whose
pub_date is within the last day.
"""
time = timezone.now() - datetime.timedelta(hours=1)
recent_question = Question(pub_date=time)
self.assertIs(recent_question.was_published_recently(), True)

And now we have three tests that confirm that Question.was_published_recently() returns sensible values
for past, recent, and future questions.

Again, polls is a simple application, but however complex it grows in the future and whatever other code it interacts
with, we now have some guarantee that the method we have written tests for will behave in expected ways.

2.7.4 Test a view

The polls application is fairly undiscriminating: it will publish any question, including ones whose pub_date field
lies in the future. We should improve this. Setting a pub_date in the future should mean that the Question is
published at that moment, but invisible until then.

A test for a view

When we fixed the bug above, we wrote the test first and then the code to fix it. In fact that was a simple example of
test-driven development, but it doesn’t really matter in which order we do the work.

In our first test, we focused closely on the internal behavior of the code. For this test, we want to check its behavior as
it would be experienced by a user through a web browser.

Before we try to fix anything, let’s have a look at the tools at our disposal.

46 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

The Django test client

Django provides a test Client to simulate a user interacting with the code at the view level. We can use it in
tests.py or even in the shell.

We will start again with the shell, where we need to do a couple of things that won’t be necessary in tests.py.
The first is to set up the test environment in the shell:

>>> from django.test.utils import setup_test_environment
>>> setup_test_environment()

setup_test_environment() installs a template renderer which will allow us to examine some additional at-
tributes on responses such as response.context that otherwise wouldn’t be available. Note that this method
does not setup a test database, so the following will be run against the existing database and the output may differ
slightly depending on what questions you already created. You might get unexpected results if your TIME_ZONE in
settings.py isn’t correct. If you don’t remember setting it earlier, check it before continuing.

Next we need to import the test client class (later in tests.py we will use the django.test.TestCase class,
which comes with its own client, so this won’t be required):

>>> from django.test import Client
>>> # create an instance of the client for our use
>>> client = Client()

With that ready, we can ask the client to do some work for us:

>>> # get a response from '/'
>>> response = client.get('/')
>>> # we should expect a 404 from that address
>>> response.status_code
404
>>> # on the other hand we should expect to find something at '/polls/'
>>> # we'll use 'reverse()' rather than a hardcoded URL
>>> from django.urls import reverse
>>> response = client.get(reverse('polls:index'))
>>> response.status_code
200
>>> response.content
b'\n \n \n What's up?\n \n
→˓ \n\n'
>>> # If the following doesn't work, you probably omitted the call to
>>> # setup_test_environment() described above
>>> response.context['latest_question_list']
<QuerySet [<Question: What's up?>]>

Improving our view

The list of polls shows polls that aren’t published yet (i.e. those that have a pub_date in the future). Let’s fix that.

In Tutorial 4 we introduced a class-based view, based on ListView :

polls/views.py

class IndexView(generic.ListView):
template_name = 'polls/index.html'
context_object_name = 'latest_question_list'

def get_queryset(self):

2.7. Writing your first Django app, part 5 47

Django Documentation, Release 1.10.9.dev20171123183751

"""Return the last five published questions."""
return Question.objects.order_by('-pub_date')[:5]

We need to amend the get_queryset() method and change it so that it also checks the date by comparing it with
timezone.now(). First we need to add an import:

polls/views.py

from django.utils import timezone

and then we must amend the get_queryset method like so:

polls/views.py

def get_queryset(self):
"""
Return the last five published questions (not including those set to be
published in the future).
"""
return Question.objects.filter(

pub_date__lte=timezone.now()
).order_by('-pub_date')[:5]

Question.objects.filter(pub_date__lte=timezone.now()) returns a queryset containing
Questions whose pub_date is less than or equal to - that is, earlier than or equal to - timezone.now.

Testing our new view

Now you can satisfy yourself that this behaves as expected by firing up the runserver, loading the site in your browser,
creating Questions with dates in the past and future, and checking that only those that have been published are
listed. You don’t want to have to do that every single time you make any change that might affect this - so let’s also
create a test, based on our shell session above.

Add the following to polls/tests.py:

polls/tests.py

from django.urls import reverse

and we’ll create a shortcut function to create questions as well as a new test class:

polls/tests.py

def create_question(question_text, days):
"""
Creates a question with the given `question_text` and published the
given number of `days` offset to now (negative for questions published
in the past, positive for questions that have yet to be published).
"""
time = timezone.now() + datetime.timedelta(days=days)
return Question.objects.create(question_text=question_text, pub_date=time)

class QuestionViewTests(TestCase):
def test_index_view_with_no_questions(self):

"""
If no questions exist, an appropriate message should be displayed.
"""
response = self.client.get(reverse('polls:index'))
self.assertEqual(response.status_code, 200)
self.assertContains(response, "No polls are available.")
self.assertQuerysetEqual(response.context['latest_question_list'], [])

48 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

def test_index_view_with_a_past_question(self):
"""
Questions with a pub_date in the past should be displayed on the
index page.
"""
create_question(question_text="Past question.", days=-30)
response = self.client.get(reverse('polls:index'))
self.assertQuerysetEqual(

response.context['latest_question_list'],
['<Question: Past question.>']

)

def test_index_view_with_a_future_question(self):
"""
Questions with a pub_date in the future should not be displayed on
the index page.
"""
create_question(question_text="Future question.", days=30)
response = self.client.get(reverse('polls:index'))
self.assertContains(response, "No polls are available.")
self.assertQuerysetEqual(response.context['latest_question_list'], [])

def test_index_view_with_future_question_and_past_question(self):
"""
Even if both past and future questions exist, only past questions
should be displayed.
"""
create_question(question_text="Past question.", days=-30)
create_question(question_text="Future question.", days=30)
response = self.client.get(reverse('polls:index'))
self.assertQuerysetEqual(

response.context['latest_question_list'],
['<Question: Past question.>']

)

def test_index_view_with_two_past_questions(self):
"""
The questions index page may display multiple questions.
"""
create_question(question_text="Past question 1.", days=-30)
create_question(question_text="Past question 2.", days=-5)
response = self.client.get(reverse('polls:index'))
self.assertQuerysetEqual(

response.context['latest_question_list'],
['<Question: Past question 2.>', '<Question: Past question 1.>']

)

Let’s look at some of these more closely.

First is a question shortcut function, create_question, to take some repetition out of the process of creating
questions.

test_index_view_with_no_questions doesn’t create any questions, but checks the message: “No polls
are available.” and verifies the latest_question_list is empty. Note that the django.test.TestCase
class provides some additional assertion methods. In these examples, we use assertContains() and
assertQuerysetEqual().

In test_index_view_with_a_past_question, we create a question and verify that it appears in the list.

2.7. Writing your first Django app, part 5 49

Django Documentation, Release 1.10.9.dev20171123183751

In test_index_view_with_a_future_question, we create a question with a pub_date in the future.
The database is reset for each test method, so the first question is no longer there, and so again the index shouldn’t
have any questions in it.

And so on. In effect, we are using the tests to tell a story of admin input and user experience on the site, and checking
that at every state and for every new change in the state of the system, the expected results are published.

Testing the DetailView

What we have works well; however, even though future questions don’t appear in the index, users can still reach them
if they know or guess the right URL. So we need to add a similar constraint to DetailView:

polls/views.py

class DetailView(generic.DetailView):
...
def get_queryset(self):

"""
Excludes any questions that aren't published yet.
"""
return Question.objects.filter(pub_date__lte=timezone.now())

And of course, we will add some tests, to check that a Question whose pub_date is in the past can be displayed,
and that one with a pub_date in the future is not:

polls/tests.py

class QuestionIndexDetailTests(TestCase):
def test_detail_view_with_a_future_question(self):

"""
The detail view of a question with a pub_date in the future should
return a 404 not found.
"""
future_question = create_question(question_text='Future question.', days=5)
url = reverse('polls:detail', args=(future_question.id,))
response = self.client.get(url)
self.assertEqual(response.status_code, 404)

def test_detail_view_with_a_past_question(self):
"""
The detail view of a question with a pub_date in the past should
display the question's text.
"""
past_question = create_question(question_text='Past Question.', days=-5)
url = reverse('polls:detail', args=(past_question.id,))
response = self.client.get(url)
self.assertContains(response, past_question.question_text)

Ideas for more tests

We ought to add a similar get_queryset method to ResultsView and create a new test class for that view. It’ll
be very similar to what we have just created; in fact there will be a lot of repetition.

We could also improve our application in other ways, adding tests along the way. For example, it’s silly that
Questions can be published on the site that have no Choices. So, our views could check for this, and exclude
such Questions. Our tests would create a Question without Choices and then test that it’s not published, as
well as create a similar Question with Choices, and test that it is published.

50 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

Perhaps logged-in admin users should be allowed to see unpublished Questions, but not ordinary visitors. Again:
whatever needs to be added to the software to accomplish this should be accompanied by a test, whether you write the
test first and then make the code pass the test, or work out the logic in your code first and then write a test to prove it.

At a certain point you are bound to look at your tests and wonder whether your code is suffering from test bloat, which
brings us to:

2.7.5 When testing, more is better

It might seem that our tests are growing out of control. At this rate there will soon be more code in our tests than in
our application, and the repetition is unaesthetic, compared to the elegant conciseness of the rest of our code.

It doesn’t matter. Let them grow. For the most part, you can write a test once and then forget about it. It will continue
performing its useful function as you continue to develop your program.

Sometimes tests will need to be updated. Suppose that we amend our views so that only Questions with Choices
are published. In that case, many of our existing tests will fail - telling us exactly which tests need to be amended to
bring them up to date, so to that extent tests help look after themselves.

At worst, as you continue developing, you might find that you have some tests that are now redundant. Even that’s not
a problem; in testing redundancy is a good thing.

As long as your tests are sensibly arranged, they won’t become unmanageable. Good rules-of-thumb include having:

• a separate TestClass for each model or view

• a separate test method for each set of conditions you want to test

• test method names that describe their function

2.7.6 Further testing

This tutorial only introduces some of the basics of testing. There’s a great deal more you can do, and a number of very
useful tools at your disposal to achieve some very clever things.

For example, while our tests here have covered some of the internal logic of a model and the way our views publish
information, you can use an “in-browser” framework such as Selenium to test the way your HTML actually renders in
a browser. These tools allow you to check not just the behavior of your Django code, but also, for example, of your
JavaScript. It’s quite something to see the tests launch a browser, and start interacting with your site, as if a human
being were driving it! Django includes LiveServerTestCase to facilitate integration with tools like Selenium.

If you have a complex application, you may want to run tests automatically with every commit for the purposes of
continuous integration, so that quality control is itself - at least partially - automated.

A good way to spot untested parts of your application is to check code coverage. This also helps identify fragile or
even dead code. If you can’t test a piece of code, it usually means that code should be refactored or removed. Coverage
will help to identify dead code. See Integration with coverage.py for details.

Testing in Django has comprehensive information about testing.

2.7.7 What’s next?

For full details on testing, see Testing in Django.

When you’re comfortable with testing Django views, read part 6 of this tutorial to learn about static files management.

2.7. Writing your first Django app, part 5 51

http://seleniumhq.org/
https://en.wikipedia.org/wiki/Continuous_integration

Django Documentation, Release 1.10.9.dev20171123183751

2.8 Writing your first Django app, part 6

This tutorial begins where Tutorial 5 left off. We’ve built a tested Web-poll application, and we’ll now add a stylesheet
and an image.

Aside from the HTML generated by the server, web applications generally need to serve additional files — such as
images, JavaScript, or CSS — necessary to render the complete web page. In Django, we refer to these files as “static
files”.

For small projects, this isn’t a big deal, because you can just keep the static files somewhere your web server can find
it. However, in bigger projects – especially those comprised of multiple apps – dealing with the multiple sets of static
files provided by each application starts to get tricky.

That’s what django.contrib.staticfiles is for: it collects static files from each of your applications (and
any other places you specify) into a single location that can easily be served in production.

2.8.1 Customize your app’s look and feel

First, create a directory called static in your polls directory. Django will look for static files there, similarly to
how Django finds templates inside polls/templates/.

Django’s STATICFILES_FINDERS setting contains a list of finders that know how to discover static files from
various sources. One of the defaults is AppDirectoriesFinder which looks for a “static” subdirectory in each
of the INSTALLED_APPS, like the one in polls we just created. The admin site uses the same directory structure
for its static files.

Within the static directory you have just created, create another directory called polls and within that create a file
called style.css. In other words, your stylesheet should be at polls/static/polls/style.css. Because
of how the AppDirectoriesFinder staticfile finder works, you can refer to this static file in Django simply as
polls/style.css, similar to how you reference the path for templates.

Static file namespacing

Just like templates, we might be able to get away with putting our static files directly in polls/static (rather than
creating another polls subdirectory), but it would actually be a bad idea. Django will choose the first static file it
finds whose name matches, and if you had a static file with the same name in a different application, Django would be
unable to distinguish between them. We need to be able to point Django at the right one, and the easiest way to ensure
this is by namespacing them. That is, by putting those static files inside another directory named for the application
itself.

Put the following code in that stylesheet (polls/static/polls/style.css):

polls/static/polls/style.css

li a {
color: green;

}

Next, add the following at the top of polls/templates/polls/index.html:

polls/templates/polls/index.html

{% load static %}

<link rel="stylesheet" type="text/css" href="{% static 'polls/style.css' %}" />

The {% static %} template tag generates the absolute URL of static files.

52 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

That’s all you need to do for development. Reload http://localhost:8000/polls/ and you should see that
the question links are green (Django style!) which means that your stylesheet was properly loaded.

2.8.2 Adding a background-image

Next, we’ll create a subdirectory for images. Create an images subdirectory in the polls/static/polls/
directory. Inside this directory, put an image called background.gif. In other words, put your image in polls/
static/polls/images/background.gif.

Then, add to your stylesheet (polls/static/polls/style.css):

polls/static/polls/style.css

body {
background: white url("images/background.gif") no-repeat right bottom;

}

Reload http://localhost:8000/polls/ and you should see the background loaded in the bottom right of the
screen.

Warning: Of course the {% static %} template tag is not available for use in static files like your stylesheet
which aren’t generated by Django. You should always use relative paths to link your static files between each
other, because then you can change STATIC_URL (used by the static template tag to generate its URLs)
without having to modify a bunch of paths in your static files as well.

These are the basics. For more details on settings and other bits included with the framework see the static files howto
and the staticfiles reference. Deploying static files discusses how to use static files on a real server.

When you’re comfortable with the static files, read part 7 of this tutorial to learn how to customize Django’s
automatically-generated admin site.

2.9 Writing your first Django app, part 7

This tutorial begins where Tutorial 6 left off. We’re continuing the Web-poll application and will focus on customizing
Django’s automatically-generated admin site that we first explored in Tutorial 2.

2.9.1 Customize the admin form

By registering the Question model with admin.site.register(Question), Django was able to construct
a default form representation. Often, you’ll want to customize how the admin form looks and works. You’ll do this by
telling Django the options you want when you register the object.

Let’s see how this works by reordering the fields on the edit form. Replace the admin.site.
register(Question) line with:

polls/admin.py

from django.contrib import admin

from .models import Question

class QuestionAdmin(admin.ModelAdmin):
fields = ['pub_date', 'question_text']

2.9. Writing your first Django app, part 7 53

Django Documentation, Release 1.10.9.dev20171123183751

admin.site.register(Question, QuestionAdmin)

You’ll follow this pattern – create a model admin class, then pass it as the second argument to admin.site.
register() – any time you need to change the admin options for a model.

This particular change above makes the “Publication date” come before the “Question” field:

This isn’t impressive with only two fields, but for admin forms with dozens of fields, choosing an intuitive order is an
important usability detail.

And speaking of forms with dozens of fields, you might want to split the form up into fieldsets:

polls/admin.py

from django.contrib import admin

from .models import Question

class QuestionAdmin(admin.ModelAdmin):
fieldsets = [

(None, {'fields': ['question_text']}),
('Date information', {'fields': ['pub_date']}),

]

admin.site.register(Question, QuestionAdmin)

The first element of each tuple in fieldsets is the title of the fieldset. Here’s what our form looks like now:

54 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

2.9.2 Adding related objects

OK, we have our Question admin page, but a Question has multiple Choices, and the admin page doesn’t display
choices.

Yet.

There are two ways to solve this problem. The first is to register Choice with the admin just as we did with
Question. That’s easy:

polls/admin.py

from django.contrib import admin

from .models import Choice, Question
...
admin.site.register(Choice)

Now “Choices” is an available option in the Django admin. The “Add choice” form looks like this:

2.9. Writing your first Django app, part 7 55

Django Documentation, Release 1.10.9.dev20171123183751

In that form, the “Question” field is a select box containing every question in the database. Django knows that a
ForeignKey should be represented in the admin as a <select> box. In our case, only one question exists at this
point.

Also note the “Add Another” link next to “Question.” Every object with a ForeignKey relationship to another gets
this for free. When you click “Add Another”, you’ll get a popup window with the “Add question” form. If you add a
question in that window and click “Save”, Django will save the question to the database and dynamically add it as the
selected choice on the “Add choice” form you’re looking at.

But, really, this is an inefficient way of adding Choice objects to the system. It’d be better if you could add a bunch
of Choices directly when you create the Question object. Let’s make that happen.

Remove the register() call for the Choice model. Then, edit the Question registration code to read:

polls/admin.py

from django.contrib import admin

from .models import Choice, Question

class ChoiceInline(admin.StackedInline):
model = Choice
extra = 3

class QuestionAdmin(admin.ModelAdmin):
fieldsets = [

(None, {'fields': ['question_text']}),
('Date information', {'fields': ['pub_date'], 'classes': ['collapse']}),

]
inlines = [ChoiceInline]

admin.site.register(Question, QuestionAdmin)

This tells Django: “Choice objects are edited on the Question admin page. By default, provide enough fields for
3 choices.”

56 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

Load the “Add question” page to see how that looks:

It works like this: There are three slots for related Choices – as specified by extra – and each time you come back
to the “Change” page for an already-created object, you get another three extra slots.

At the end of the three current slots you will find an “Add another Choice” link. If you click on it, a new slot will be
added. If you want to remove the added slot, you can click on the X to the top right of the added slot. Note that you
can’t remove the original three slots. This image shows an added slot:

2.9. Writing your first Django app, part 7 57

Django Documentation, Release 1.10.9.dev20171123183751

One small problem, though. It takes a lot of screen space to display all the fields for entering related Choice
objects. For that reason, Django offers a tabular way of displaying inline related objects; you just need to change the
ChoiceInline declaration to read:

polls/admin.py

class ChoiceInline(admin.TabularInline):
#...

With that TabularInline (instead of StackedInline), the related objects are displayed in a more compact,
table-based format:

Note that there is an extra “Delete?” column that allows removing rows added using the “Add Another Choice” button
and rows that have already been saved.

58 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

2.9.3 Customize the admin change list

Now that the Question admin page is looking good, let’s make some tweaks to the “change list” page – the one that
displays all the questions in the system.

Here’s what it looks like at this point:

By default, Django displays the str() of each object. But sometimes it’d be more helpful if we could display
individual fields. To do that, use the list_display admin option, which is a tuple of field names to display, as
columns, on the change list page for the object:

polls/admin.py

class QuestionAdmin(admin.ModelAdmin):
...
list_display = ('question_text', 'pub_date')

Just for good measure, let’s also include the was_published_recently() method from Tutorial 2:

polls/admin.py

class QuestionAdmin(admin.ModelAdmin):
...
list_display = ('question_text', 'pub_date', 'was_published_recently')

Now the question change list page looks like this:

You can click on the column headers to sort by those values – except in the case of the was_published_recently
header, because sorting by the output of an arbitrary method is not supported. Also note that the column header for
was_published_recently is, by default, the name of the method (with underscores replaced with spaces), and
that each line contains the string representation of the output.

2.9. Writing your first Django app, part 7 59

Django Documentation, Release 1.10.9.dev20171123183751

You can improve that by giving that method (in polls/models.py) a few attributes, as follows:

polls/models.py

class Question(models.Model):
...
def was_published_recently(self):

now = timezone.now()
return now - datetime.timedelta(days=1) <= self.pub_date <= now

was_published_recently.admin_order_field = 'pub_date'
was_published_recently.boolean = True
was_published_recently.short_description = 'Published recently?'

For more information on these method properties, see list_display .

Edit your polls/admin.py file again and add an improvement to the Question change list page: filters using
the list_filter. Add the following line to QuestionAdmin:

list_filter = ['pub_date']

That adds a “Filter” sidebar that lets people filter the change list by the pub_date field:

The type of filter displayed depends on the type of field you’re filtering on. Because pub_date is a
DateTimeField, Django knows to give appropriate filter options: “Any date”, “Today”, “Past 7 days”, “This
month”, “This year”.

This is shaping up well. Let’s add some search capability:

search_fields = ['question_text']

That adds a search box at the top of the change list. When somebody enters search terms, Django will search the
question_text field. You can use as many fields as you’d like – although because it uses a LIKE query behind
the scenes, limiting the number of search fields to a reasonable number will make it easier for your database to do the
search.

Now’s also a good time to note that change lists give you free pagination. The default is to display 100
items per page. Change list pagination, search boxes, filters, date-hierarchies, and
column-header-ordering all work together like you think they should.

2.9.4 Customize the admin look and feel

Clearly, having “Django administration” at the top of each admin page is ridiculous. It’s just placeholder text.

60 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

That’s easy to change, though, using Django’s template system. The Django admin is powered by Django itself, and
its interfaces use Django’s own template system.

Customizing your project’s templates

Create a templates directory in your project directory (the one that contains manage.py). Templates can live
anywhere on your filesystem that Django can access. (Django runs as whatever user your server runs.) However,
keeping your templates within the project is a good convention to follow.

Open your settings file (mysite/settings.py, remember) and add a DIRS option in the TEMPLATES setting:

mysite/settings.py

TEMPLATES = [
{

'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [os.path.join(BASE_DIR, 'templates')],
'APP_DIRS': True,
'OPTIONS': {

'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',

],
},

},
]

DIRS is a list of filesystem directories to check when loading Django templates; it’s a search path.

Organizing templates

Just like the static files, we could have all our templates together, in one big templates directory, and it would work
perfectly well. However, templates that belong to a particular application should be placed in that application’s tem-
plate directory (e.g. polls/templates) rather than the project’s (templates). We’ll discuss in more detail in
the reusable apps tutorial why we do this.

Now create a directory called admin inside templates, and copy the template admin/base_site.html from
within the default Django admin template directory in the source code of Django itself (django/contrib/admin/
templates) into that directory.

Where are the Django source files?

If you have difficulty finding where the Django source files are located on your system, run the following command:

$ python -c "import django; print(django.__path__)"

Then, just edit the file and replace {{ site_header|default:_('Django administration') }} (in-
cluding the curly braces) with your own site’s name as you see fit. You should end up with a section of code like:

{% block branding %}
<h1 id="site-name">Polls Administration</h1>
{% endblock %}

2.9. Writing your first Django app, part 7 61

Django Documentation, Release 1.10.9.dev20171123183751

We use this approach to teach you how to override templates. In an actual project, you would probably use
the django.contrib.admin.AdminSite.site_header attribute to more easily make this particular cus-
tomization.

This template file contains lots of text like {% block branding %} and {{ title }}. The {% and {{ tags
are part of Django’s template language. When Django renders admin/base_site.html, this template language
will be evaluated to produce the final HTML page, just like we saw in Tutorial 3.

Note that any of Django’s default admin templates can be overridden. To override a template, just do the same thing
you did with base_site.html – copy it from the default directory into your custom directory, and make changes.

Customizing your application’s templates

Astute readers will ask: But if DIRS was empty by default, how was Django finding the default admin templates? The
answer is that, since APP_DIRS is set to True, Django automatically looks for a templates/ subdirectory within
each application package, for use as a fallback (don’t forget that django.contrib.admin is an application).

Our poll application is not very complex and doesn’t need custom admin templates. But if it grew more sophisticated
and required modification of Django’s standard admin templates for some of its functionality, it would be more sensible
to modify the application’s templates, rather than those in the project. That way, you could include the polls application
in any new project and be assured that it would find the custom templates it needed.

See the template loading documentation for more information about how Django finds its templates.

2.9.5 Customize the admin index page

On a similar note, you might want to customize the look and feel of the Django admin index page.

By default, it displays all the apps in INSTALLED_APPS that have been registered with the admin application, in
alphabetical order. You may want to make significant changes to the layout. After all, the index is probably the most
important page of the admin, and it should be easy to use.

The template to customize is admin/index.html. (Do the same as with admin/base_site.html in the
previous section – copy it from the default directory to your custom template directory). Edit the file, and you’ll see it
uses a template variable called app_list. That variable contains every installed Django app. Instead of using that,
you can hard-code links to object-specific admin pages in whatever way you think is best.

2.9.6 What’s next?

The beginner tutorial ends here. In the meantime, you might want to check out some pointers on where to go from
here.

If you are familiar with Python packaging and interested in learning how to turn polls into a “reusable app”, check out
Advanced tutorial: How to write reusable apps.

2.10 Advanced tutorial: How to write reusable apps

This advanced tutorial begins where Tutorial 7 left off. We’ll be turning our Web-poll into a standalone Python
package you can reuse in new projects and share with other people.

If you haven’t recently completed Tutorials 1–7, we encourage you to review these so that your example project
matches the one described below.

62 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

2.10.1 Reusability matters

It’s a lot of work to design, build, test and maintain a web application. Many Python and Django projects share
common problems. Wouldn’t it be great if we could save some of this repeated work?

Reusability is the way of life in Python. The Python Package Index (PyPI) has a vast range of packages you can use
in your own Python programs. Check out Django Packages for existing reusable apps you could incorporate in your
project. Django itself is also just a Python package. This means that you can take existing Python packages or Django
apps and compose them into your own web project. You only need to write the parts that make your project unique.

Let’s say you were starting a new project that needed a polls app like the one we’ve been working on. How do you
make this app reusable? Luckily, you’re well on the way already. In Tutorial 3, we saw how we could decouple polls
from the project-level URLconf using an include. In this tutorial, we’ll take further steps to make the app easy to
use in new projects and ready to publish for others to install and use.

Package? App?

A Python package provides a way of grouping related Python code for easy reuse. A package contains one or more
files of Python code (also known as “modules”).

A package can be imported with import foo.bar or from foo import bar. For a directory (like polls)
to form a package, it must contain a special file __init__.py, even if this file is empty.

A Django application is just a Python package that is specifically intended for use in a Django project. An application
may use common Django conventions, such as having models, tests, urls, and views submodules.

Later on we use the term packaging to describe the process of making a Python package easy for others to install. It
can be a little confusing, we know.

2.10.2 Your project and your reusable app

After the previous tutorials, our project should look like this:

mysite/
manage.py
mysite/

__init__.py
settings.py
urls.py
wsgi.py

polls/
__init__.py
admin.py
migrations/

__init__.py
0001_initial.py

models.py
static/

polls/
images/

background.gif
style.css

templates/
polls/

detail.html
index.html

2.10. Advanced tutorial: How to write reusable apps 63

https://pypi.python.org/pypi
https://www.djangopackages.com
https://docs.python.org/3/glossary.html#term-package

Django Documentation, Release 1.10.9.dev20171123183751

results.html
tests.py
urls.py
views.py

templates/
admin/

base_site.html

You created mysite/templates in Tutorial 7, and polls/templates in Tutorial 3. Now perhaps it is clearer
why we chose to have separate template directories for the project and application: everything that is part of the polls
application is in polls. It makes the application self-contained and easier to drop into a new project.

The polls directory could now be copied into a new Django project and immediately reused. It’s not quite ready to
be published though. For that, we need to package the app to make it easy for others to install.

2.10.3 Installing some prerequisites

The current state of Python packaging is a bit muddled with various tools. For this tutorial, we’re going to use
setuptools to build our package. It’s the recommended packaging tool (merged with the distribute fork). We’ll
also be using pip to install and uninstall it. You should install these two packages now. If you need help, you can refer
to how to install Django with pip. You can install setuptools the same way.

2.10.4 Packaging your app

Python packaging refers to preparing your app in a specific format that can be easily installed and used. Django itself
is packaged very much like this. For a small app like polls, this process isn’t too difficult.

1. First, create a parent directory for polls, outside of your Django project. Call this directory django-polls.

Choosing a name for your app

When choosing a name for your package, check resources like PyPI to avoid naming conflicts with existing
packages. It’s often useful to prepend django- to your module name when creating a package to distribute.
This helps others looking for Django apps identify your app as Django specific.

Application labels (that is, the final part of the dotted path to application packages) must be unique in
INSTALLED_APPS. Avoid using the same label as any of the Django contrib packages, for example auth,
admin, or messages.

2. Move the polls directory into the django-polls directory.

3. Create a file django-polls/README.rst with the following contents:

django-polls/README.rst

=====
Polls
=====

Polls is a simple Django app to conduct Web-based polls. For each
question, visitors can choose between a fixed number of answers.

Detailed documentation is in the "docs" directory.

Quick start

64 Chapter 2. Getting started

https://pypi.python.org/pypi/setuptools
https://pypi.python.org/pypi/pip

Django Documentation, Release 1.10.9.dev20171123183751

1. Add "polls" to your INSTALLED_APPS setting like this::

INSTALLED_APPS = [
...
'polls',

]

2. Include the polls URLconf in your project urls.py like this::

url(r'^polls/', include('polls.urls')),

3. Run `python manage.py migrate` to create the polls models.

4. Start the development server and visit http://127.0.0.1:8000/admin/
to create a poll (you'll need the Admin app enabled).

5. Visit http://127.0.0.1:8000/polls/ to participate in the poll.

4. Create a django-polls/LICENSE file. Choosing a license is beyond the scope of this tutorial, but suffice
it to say that code released publicly without a license is useless. Django and many Django-compatible apps
are distributed under the BSD license; however, you’re free to pick your own license. Just be aware that your
licensing choice will affect who is able to use your code.

5. Next we’ll create a setup.py file which provides details about how to build and install the app. A full
explanation of this file is beyond the scope of this tutorial, but the setuptools docs have a good explanation.
Create a file django-polls/setup.py with the following contents:

django-polls/setup.py

import os
from setuptools import find_packages, setup

with open(os.path.join(os.path.dirname(__file__), 'README.rst')) as readme:
README = readme.read()

allow setup.py to be run from any path
os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir)))

setup(
name='django-polls',
version='0.1',
packages=find_packages(),
include_package_data=True,
license='BSD License', # example license
description='A simple Django app to conduct Web-based polls.',
long_description=README,
url='https://www.example.com/',
author='Your Name',
author_email='yourname@example.com',
classifiers=[

'Environment :: Web Environment',
'Framework :: Django',
'Framework :: Django :: X.Y', # replace "X.Y" as appropriate
'Intended Audience :: Developers',
'License :: OSI Approved :: BSD License', # example license
'Operating System :: OS Independent',
'Programming Language :: Python',
Replace these appropriately if you are stuck on Python 2.
'Programming Language :: Python :: 3',

2.10. Advanced tutorial: How to write reusable apps 65

https://setuptools.readthedocs.io/en/latest/

Django Documentation, Release 1.10.9.dev20171123183751

'Programming Language :: Python :: 3.4',
'Programming Language :: Python :: 3.5',
'Topic :: Internet :: WWW/HTTP',
'Topic :: Internet :: WWW/HTTP :: Dynamic Content',

],
)

6. Only Python modules and packages are included in the package by default. To include additional files, we’ll
need to create a MANIFEST.in file. The setuptools docs referred to in the previous step discuss this file in more
details. To include the templates, the README.rst and our LICENSE file, create a file django-polls/
MANIFEST.in with the following contents:

django-polls/MANIFEST.in

include LICENSE
include README.rst
recursive-include polls/static *
recursive-include polls/templates *

7. It’s optional, but recommended, to include detailed documentation with your app. Create an empty directory
django-polls/docs for future documentation. Add an additional line to django-polls/MANIFEST.
in:

recursive-include docs *

Note that the docs directory won’t be included in your package unless you add some files to it. Many Django
apps also provide their documentation online through sites like readthedocs.org.

8. Try building your package with python setup.py sdist (run from inside django-polls). This cre-
ates a directory called dist and builds your new package, django-polls-0.1.tar.gz.

For more information on packaging, see Python’s Tutorial on Packaging and Distributing Projects.

2.10.5 Using your own package

Since we moved the polls directory out of the project, it’s no longer working. We’ll now fix this by installing our
new django-polls package.

Installing as a user library

The following steps install django-polls as a user library. Per-user installs have a lot of advantages over installing
the package system-wide, such as being usable on systems where you don’t have administrator access as well as
preventing the package from affecting system services and other users of the machine.

Note that per-user installations can still affect the behavior of system tools that run as that user, so virtualenv is a
more robust solution (see below).

1. To install the package, use pip (you already installed it, right?):

pip install --user django-polls/dist/django-polls-0.1.tar.gz

2. With luck, your Django project should now work correctly again. Run the server again to confirm this.

3. To uninstall the package, use pip:

pip uninstall django-polls

66 Chapter 2. Getting started

https://readthedocs.org
https://packaging.python.org/en/latest/distributing.html

Django Documentation, Release 1.10.9.dev20171123183751

2.10.6 Publishing your app

Now that we’ve packaged and tested django-polls, it’s ready to share with the world! If this wasn’t just an
example, you could now:

• Email the package to a friend.

• Upload the package on your website.

• Post the package on a public repository, such as the Python Package Index (PyPI). packaging.python.org has a
good tutorial for doing this.

2.10.7 Installing Python packages with virtualenv

Earlier, we installed the polls app as a user library. This has some disadvantages:

• Modifying the user libraries can affect other Python software on your system.

• You won’t be able to run multiple versions of this package (or others with the same name).

Typically, these situations only arise once you’re maintaining several Django projects. When they do, the best solution
is to use virtualenv. This tool allows you to maintain multiple isolated Python environments, each with its own copy
of the libraries and package namespace.

2.11 What to read next

So you’ve read all the introductory material and have decided you’d like to keep using Django. We’ve only just
scratched the surface with this intro (in fact, if you’ve read every single word, you’ve read about 5% of the overall
documentation).

So what’s next?

Well, we’ve always been big fans of learning by doing. At this point you should know enough to start a project of your
own and start fooling around. As you need to learn new tricks, come back to the documentation.

We’ve put a lot of effort into making Django’s documentation useful, easy to read and as complete as possible. The
rest of this document explains more about how the documentation works so that you can get the most out of it.

(Yes, this is documentation about documentation. Rest assured we have no plans to write a document about how to
read the document about documentation.)

2.11.1 Finding documentation

Django’s got a lot of documentation – almost 450,000 words and counting – so finding what you need can sometimes
be tricky. A few good places to start are the search and the genindex.

Or you can just browse around!

2.11.2 How the documentation is organized

Django’s main documentation is broken up into “chunks” designed to fill different needs:

• The introductory material is designed for people new to Django – or to Web development in general. It doesn’t
cover anything in depth, but instead gives a high-level overview of how developing in Django “feels”.

2.11. What to read next 67

https://pypi.python.org/pypi
https://packaging.python.org
https://packaging.python.org/en/latest/distributing.html#uploading-your-project-to-pypi
https://packaging.python.org/en/latest/distributing.html#uploading-your-project-to-pypi
https://virtualenv.pypa.io/

Django Documentation, Release 1.10.9.dev20171123183751

• The topic guides, on the other hand, dive deep into individual parts of Django. There are complete guides to
Django’s model system, template engine, forms framework, and much more.

This is probably where you’ll want to spend most of your time; if you work your way through these guides you
should come out knowing pretty much everything there is to know about Django.

• Web development is often broad, not deep – problems span many domains. We’ve written a set of how-to guides
that answer common “How do I ...?” questions. Here you’ll find information about generating PDFs with
Django, writing custom template tags, and more.

Answers to really common questions can also be found in the FAQ.

• The guides and how-to’s don’t cover every single class, function, and method available in Django – that would
be overwhelming when you’re trying to learn. Instead, details about individual classes, functions, methods, and
modules are kept in the reference. This is where you’ll turn to find the details of a particular function or whatever
you need.

• If you are interested in deploying a project for public use, our docs have several guides for various deployment
setups as well as a deployment checklist for some things you’ll need to think about.

• Finally, there’s some “specialized” documentation not usually relevant to most developers. This includes the
release notes and internals documentation for those who want to add code to Django itself, and a few other
things that simply don’t fit elsewhere.

2.11.3 How documentation is updated

Just as the Django code base is developed and improved on a daily basis, our documentation is consistently improving.
We improve documentation for several reasons:

• To make content fixes, such as grammar/typo corrections.

• To add information and/or examples to existing sections that need to be expanded.

• To document Django features that aren’t yet documented. (The list of such features is shrinking but exists
nonetheless.)

• To add documentation for new features as new features get added, or as Django APIs or behaviors change.

Django’s documentation is kept in the same source control system as its code. It lives in the docs directory of our Git
repository. Each document online is a separate text file in the repository.

2.11.4 Where to get it

You can read Django documentation in several ways. They are, in order of preference:

On the Web

The most recent version of the Django documentation lives at https://docs.djangoproject.com/en/dev/. These HTML
pages are generated automatically from the text files in source control. That means they reflect the “latest and greatest”
in Django – they include the very latest corrections and additions, and they discuss the latest Django features, which
may only be available to users of the Django development version. (See “Differences between versions” below.)

We encourage you to help improve the docs by submitting changes, corrections and suggestions in the ticket system.
The Django developers actively monitor the ticket system and use your feedback to improve the documentation for
everybody.

68 Chapter 2. Getting started

https://github.com/django/django/tree/master/docs
https://docs.djangoproject.com/en/dev/
https://code.djangoproject.com/

Django Documentation, Release 1.10.9.dev20171123183751

Note, however, that tickets should explicitly relate to the documentation, rather than asking broad tech-support ques-
tions. If you need help with your particular Django setup, try the django-users mailing list or the #django IRC channel
instead.

In plain text

For offline reading, or just for convenience, you can read the Django documentation in plain text.

If you’re using an official release of Django, note that the zipped package (tarball) of the code includes a docs/
directory, which contains all the documentation for that release.

If you’re using the development version of Django (aka “trunk”), note that the docs/ directory contains all of the
documentation. You can update your Git checkout to get the latest changes.

One low-tech way of taking advantage of the text documentation is by using the Unix grep utility to search for a
phrase in all of the documentation. For example, this will show you each mention of the phrase “max_length” in any
Django document:

$ grep -r max_length /path/to/django/docs/

As HTML, locally

You can get a local copy of the HTML documentation following a few easy steps:

• Django’s documentation uses a system called Sphinx to convert from plain text to HTML. You’ll need to install
Sphinx by either downloading and installing the package from the Sphinx website, or with pip:

$ pip install Sphinx

• Then, just use the included Makefile to turn the documentation into HTML:

$ cd path/to/django/docs
$ make html

You’ll need GNU Make installed for this.

If you’re on Windows you can alternatively use the included batch file:

cd path\to\django\docs
make.bat html

• The HTML documentation will be placed in docs/_build/html.

2.11.5 Differences between versions

As previously mentioned, the text documentation in our Git repository contains the “latest and greatest” changes and
additions. These changes often include documentation of new features added in the Django development version
– the Git (“trunk”) version of Django. For that reason, it’s worth pointing out our policy on keeping straight the
documentation for various versions of the framework.

We follow this policy:

• The primary documentation on djangoproject.com is an HTML version of the latest docs in Git. These docs
always correspond to the latest official Django release, plus whatever features we’ve added/changed in the
framework since the latest release.

2.11. What to read next 69

irc://irc.freenode.net/django
http://sphinx-doc.org/
https://www.gnu.org/software/make/

Django Documentation, Release 1.10.9.dev20171123183751

• As we add features to Django’s development version, we try to update the documentation in the same Git commit
transaction.

• To distinguish feature changes/additions in the docs, we use the phrase: “New in version X.Y”, being X.Y the
next release version (hence, the one being developed).

• Documentation fixes and improvements may be backported to the last release branch, at the discretion of the
committer, however, once a version of Django is no longer supported, that version of the docs won’t get any
further updates.

• The main documentation Web page includes links to documentation for all previous versions. Be sure you are
using the version of the docs corresponding to the version of Django you are using!

2.12 Writing your first patch for Django

2.12.1 Introduction

Interested in giving back to the community a little? Maybe you’ve found a bug in Django that you’d like to see fixed,
or maybe there’s a small feature you want added.

Contributing back to Django itself is the best way to see your own concerns addressed. This may seem daunting at
first, but it’s really pretty simple. We’ll walk you through the entire process, so you can learn by example.

Who’s this tutorial for?

See also:

If you are looking for a reference on how to submit patches, see the Submitting patches documentation.

For this tutorial, we expect that you have at least a basic understanding of how Django works. This means you should
be comfortable going through the existing tutorials on writing your first Django app. In addition, you should have
a good understanding of Python itself. But if you don’t, Dive Into Python is a fantastic (and free) online book for
beginning Python programmers.

Those of you who are unfamiliar with version control systems and Trac will find that this tutorial and its links include
just enough information to get started. However, you’ll probably want to read some more about these different tools if
you plan on contributing to Django regularly.

For the most part though, this tutorial tries to explain as much as possible, so that it can be of use to the widest
audience.

Where to get help:

If you’re having trouble going through this tutorial, please post a message to django-developers or drop by #django-dev
on irc.freenode.net to chat with other Django users who might be able to help.

What does this tutorial cover?

We’ll be walking you through contributing a patch to Django for the first time. By the end of this tutorial, you should
have a basic understanding of both the tools and the processes involved. Specifically, we’ll be covering the following:

• Installing Git.

• How to download a development copy of Django.

70 Chapter 2. Getting started

https://docs.djangoproject.com/en/dev/
http://www.diveintopython3.net/
irc://irc.freenode.net/django-dev
irc://irc.freenode.net/django-dev

Django Documentation, Release 1.10.9.dev20171123183751

• Running Django’s test suite.

• Writing a test for your patch.

• Writing the code for your patch.

• Testing your patch.

• Submitting a pull request.

• Where to look for more information.

Once you’re done with the tutorial, you can look through the rest of Django’s documentation on contributing. It
contains lots of great information and is a must read for anyone who’d like to become a regular contributor to Django.
If you’ve got questions, it’s probably got the answers.

Python 3 required!

This tutorial assumes you are using Python 3. Get the latest version at Python’s download page or with your operating
system’s package manager.

For Windows users

When installing Python on Windows, make sure you check the option “Add python.exe to Path”, so that it is always
available on the command line.

2.12.2 Code of Conduct

As a contributor, you can help us keep the Django community open and inclusive. Please read and follow our Code of
Conduct.

2.12.3 Installing Git

For this tutorial, you’ll need Git installed to download the current development version of Django and to generate
patch files for the changes you make.

To check whether or not you have Git installed, enter git into the command line. If you get messages saying that this
command could not be found, you’ll have to download and install it, see Git’s download page.

For Windows users

When installing Git on Windows, it is recommended that you pick the “Git Bash” option so that Git runs in its own
shell. This tutorial assumes that’s how you have installed it.

If you’re not that familiar with Git, you can always find out more about its commands (once it’s installed) by typing
git help into the command line.

2.12.4 Getting a copy of Django’s development version

The first step to contributing to Django is to get a copy of the source code. First, fork Django on GitHub. Then, from
the command line, use the cd command to navigate to the directory where you’ll want your local copy of Django to
live.

2.12. Writing your first patch for Django 71

https://www.python.org/download/
https://www.djangoproject.com/conduct/
https://www.djangoproject.com/conduct/
http://git-scm.com/download
https://github.com/django/django/fork

Django Documentation, Release 1.10.9.dev20171123183751

Download the Django source code repository using the following command:

$ git clone git@github.com:YourGitHubName/django.git

Now that you have a local copy of Django, you can install it just like you would install any package using pip. The
most convenient way to do so is by using a virtual environment (or virtualenv) which is a feature built into Python that
allows you to keep a separate directory of installed packages for each of your projects so that they don’t interfere with
each other.

It’s a good idea to keep all your virtualenvs in one place, for example in .virtualenvs/ in your home directory.
Create it if it doesn’t exist yet:

$ mkdir ~/.virtualenvs

Now create a new virtualenv by running:

$ python3 -m venv ~/.virtualenvs/djangodev

The path is where the new environment will be saved on your computer.

For Windows users

Using the built-in venv module will not work if you are also using the Git Bash shell on Windows, since activation
scripts are only created for the system shell (.bat) and PowerShell (.ps1). Use the virtualenv package instead:

$ pip install virtualenv
$ virtualenv ~/.virtualenvs/djangodev

For Ubuntu users

On some versions of Ubuntu the above command might fail. Use the virtualenv package instead, first making
sure you have pip3:

$ sudo apt-get install python3-pip
$ # Prefix the next command with sudo if it gives a permission denied error
$ pip3 install virtualenv
$ virtualenv --python=`which python3` ~/.virtualenvs/djangodev

The final step in setting up your virtualenv is to activate it:

$ source ~/.virtualenvs/djangodev/bin/activate

If the source command is not available, you can try using a dot instead:

$. ~/.virtualenvs/djangodev/bin/activate

For Windows users

To activate your virtualenv on Windows, run:

$ source ~/virtualenvs/djangodev/Scripts/activate

72 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

You have to activate the virtualenv whenever you open a new terminal window. virtualenvwrapper is a useful tool for
making this more convenient.

Anything you install through pip from now on will be installed in your new virtualenv, isolated from other environ-
ments and system-wide packages. Also, the name of the currently activated virtualenv is displayed on the command
line to help you keep track of which one you are using. Go ahead and install the previously cloned copy of Django:

$ pip install -e /path/to/your/local/clone/django/

The installed version of Django is now pointing at your local copy. You will immediately see any changes you make
to it, which is of great help when writing your first patch.

2.12.5 Rolling back to a previous revision of Django

For this tutorial, we’ll be using ticket #24788 as a case study, so we’ll rewind Django’s version history in git to before
that ticket’s patch was applied. This will allow us to go through all of the steps involved in writing that patch from
scratch, including running Django’s test suite.

Keep in mind that while we’ll be using an older revision of Django’s trunk for the purposes of the tutorial
below, you should always use the current development revision of Django when working on your own patch for
a ticket!

Note: The patch for this ticket was written by Paweł Marczewski, and it was applied to Django as commit
4df7e8483b2679fc1cba3410f08960bac6f51115. Consequently, we’ll be using the revision of Django just prior to
that, commit 4ccfc4439a7add24f8db4ef3960d02ef8ae09887.

Navigate into Django’s root directory (that’s the one that contains django, docs, tests, AUTHORS, etc.). You can
then check out the older revision of Django that we’ll be using in the tutorial below:

$ git checkout 4ccfc4439a7add24f8db4ef3960d02ef8ae09887

2.12.6 Running Django’s test suite for the first time

When contributing to Django it’s very important that your code changes don’t introduce bugs into other areas of
Django. One way to check that Django still works after you make your changes is by running Django’s test suite. If
all the tests still pass, then you can be reasonably sure that your changes haven’t completely broken Django. If you’ve
never run Django’s test suite before, it’s a good idea to run it once beforehand just to get familiar with what its output
is supposed to look like.

Before running the test suite, install its dependencies by first cd-ing into the Django tests/ directory and then
running:

$ pip install -r requirements/py3.txt

If you encounter an error during the installation, your system might be missing a dependency for one or more of the
Python packages. Consult the failing package’s documentation or search the Web with the error message that you
encounter.

Now we are ready to run the test suite. If you’re using GNU/Linux, Mac OS X or some other flavor of Unix, run:

$./runtests.py

Now sit back and relax. Django’s entire test suite has over 9,600 different tests, so it can take anywhere from 5 to 15
minutes to run, depending on the speed of your computer.

2.12. Writing your first patch for Django 73

https://virtualenvwrapper.readthedocs.io/en/latest/
https://code.djangoproject.com/ticket/24788
https://github.com/django/django/commit/4df7e8483b2679fc1cba3410f08960bac6f51115
https://github.com/django/django/commit/4df7e8483b2679fc1cba3410f08960bac6f51115
https://github.com/django/django/commit/4ccfc4439a7add24f8db4ef3960d02ef8ae09887

Django Documentation, Release 1.10.9.dev20171123183751

While Django’s test suite is running, you’ll see a stream of characters representing the status of each test as it’s run.
E indicates that an error was raised during a test, and F indicates that a test’s assertions failed. Both of these are
considered to be test failures. Meanwhile, x and s indicated expected failures and skipped tests, respectively. Dots
indicate passing tests.

Skipped tests are typically due to missing external libraries required to run the test; see Running all the tests for a list
of dependencies and be sure to install any for tests related to the changes you are making (we won’t need any for this
tutorial). Some tests are specific to a particular database backend and will be skipped if not testing with that backend.
SQLite is the database backend for the default settings. To run the tests using a different backend, see Using another
settings module.

Once the tests complete, you should be greeted with a message informing you whether the test suite passed or failed.
Since you haven’t yet made any changes to Django’s code, the entire test suite should pass. If you get failures or
errors make sure you’ve followed all of the previous steps properly. See Running the unit tests for more information.
If you’re using Python 3.5+, there will be a couple failures related to deprecation warnings that you can ignore. These
failures have since been fixed in Django.

Note that the latest Django trunk may not always be stable. When developing against trunk, you can check Django’s
continuous integration builds to determine if the failures are specific to your machine or if they are also present in
Django’s official builds. If you click to view a particular build, you can view the “Configuration Matrix” which shows
failures broken down by Python version and database backend.

Note: For this tutorial and the ticket we’re working on, testing against SQLite is sufficient, however, it’s possible (and
sometimes necessary) to run the tests using a different database.

2.12.7 Creating a branch for your patch

Before making any changes, create a new branch for the ticket:

$ git checkout -b ticket_24788

You can choose any name that you want for the branch, “ticket_24788” is an example. All changes made in this branch
will be specific to the ticket and won’t affect the main copy of the code that we cloned earlier.

2.12.8 Writing some tests for your ticket

In most cases, for a patch to be accepted into Django it has to include tests. For bug fix patches, this means writing a
regression test to ensure that the bug is never reintroduced into Django later on. A regression test should be written in
such a way that it will fail while the bug still exists and pass once the bug has been fixed. For patches containing new
features, you’ll need to include tests which ensure that the new features are working correctly. They too should fail
when the new feature is not present, and then pass once it has been implemented.

A good way to do this is to write your new tests first, before making any changes to the code. This style of development
is called test-driven development and can be applied to both entire projects and single patches. After writing your tests,
you then run them to make sure that they do indeed fail (since you haven’t fixed that bug or added that feature yet). If
your new tests don’t fail, you’ll need to fix them so that they do. After all, a regression test that passes regardless of
whether a bug is present is not very helpful at preventing that bug from reoccurring down the road.

Now for our hands-on example.

74 Chapter 2. Getting started

http://djangoci.com
http://djangoci.com
https://en.wikipedia.org/wiki/Test-driven_development

Django Documentation, Release 1.10.9.dev20171123183751

Writing some tests for ticket #24788

Ticket #24788 proposes a small feature addition: the ability to specify the class level attribute prefix on Form
classes, so that:

[...] forms which ship with apps could effectively namespace themselves such
that N overlapping form fields could be POSTed at once and resolved to the
correct form.

In order to resolve this ticket, we’ll add a prefix attribute to the BaseForm class. When creating instances of this
class, passing a prefix to the __init__() method will still set that prefix on the created instance. But not passing a
prefix (or passing None) will use the class-level prefix. Before we make those changes though, we’re going to write a
couple tests to verify that our modification functions correctly and continues to function correctly in the future.

Navigate to Django’s tests/forms_tests/tests/ folder and open the test_forms.py file. Add the fol-
lowing code on line 1674 right before the test_forms_with_null_boolean function:

def test_class_prefix(self):
Prefix can be also specified at the class level.
class Person(Form):

first_name = CharField()
prefix = 'foo'

p = Person()
self.assertEqual(p.prefix, 'foo')

p = Person(prefix='bar')
self.assertEqual(p.prefix, 'bar')

This new test checks that setting a class level prefix works as expected, and that passing a prefix parameter when
creating an instance still works too.

But this testing thing looks kinda hard...

If you’ve never had to deal with tests before, they can look a little hard to write at first glance. Fortunately, testing is a
very big subject in computer programming, so there’s lots of information out there:

• A good first look at writing tests for Django can be found in the documentation on Writing and running tests.

• Dive Into Python (a free online book for beginning Python developers) includes a great introduction to Unit
Testing.

• After reading those, if you want something a little meatier to sink your teeth into, there’s always the Python
unittest documentation.

Running your new test

Remember that we haven’t actually made any modifications to BaseForm yet, so our tests are going to fail. Let’s run
all the tests in the forms_tests folder to make sure that’s really what happens. From the command line, cd into
the Django tests/ directory and run:

$./runtests.py forms_tests

If the tests ran correctly, you should see one failure corresponding to the test method we added. If all of the tests
passed, then you’ll want to make sure that you added the new test shown above to the appropriate folder and class.

2.12. Writing your first patch for Django 75

https://code.djangoproject.com/ticket/24788
http://www.diveintopython.net/unit_testing/index.html
http://www.diveintopython.net/unit_testing/index.html
https://docs.python.org/3/library/unittest.html#module-unittest

Django Documentation, Release 1.10.9.dev20171123183751

2.12.9 Writing the code for your ticket

Next we’ll be adding the functionality described in ticket #24788 to Django.

Writing the code for ticket #24788

Navigate to the django/django/forms/ folder and open the forms.py file. Find the BaseForm class on line
72 and add the prefix class attribute right after the field_order attribute:

class BaseForm(object):
This is the main implementation of all the Form logic. Note that this
class is different than Form. See the comments by the Form class for
more information. Any improvements to the form API should be made to
this class, not to the Form class.
field_order = None
prefix = None

Verifying your test now passes

Once you’re done modifying Django, we need to make sure that the tests we wrote earlier pass, so we can see whether
the code we wrote above is working correctly. To run the tests in the forms_tests folder, cd into the Django
tests/ directory and run:

$./runtests.py forms_tests

Oops, good thing we wrote those tests! You should still see one failure with the following exception:

AssertionError: None != 'foo'

We forgot to add the conditional statement in the __init__ method. Go ahead and change self.prefix =
prefix that is now on line 87 of django/forms/forms.py, adding a conditional statement:

if prefix is not None:
self.prefix = prefix

Re-run the tests and everything should pass. If it doesn’t, make sure you correctly modified the BaseForm class as
shown above and copied the new test correctly.

2.12.10 Running Django’s test suite for the second time

Once you’ve verified that your patch and your test are working correctly, it’s a good idea to run the entire Django test
suite just to verify that your change hasn’t introduced any bugs into other areas of Django. While successfully passing
the entire test suite doesn’t guarantee your code is bug free, it does help identify many bugs and regressions that might
otherwise go unnoticed.

To run the entire Django test suite, cd into the Django tests/ directory and run:

$./runtests.py

As long as you don’t see any failures, you’re good to go.

76 Chapter 2. Getting started

https://code.djangoproject.com/ticket/24788

Django Documentation, Release 1.10.9.dev20171123183751

2.12.11 Writing Documentation

This is a new feature, so it should be documented. Add the following section on line 1068 (at the end of the file) of
django/docs/ref/forms/api.txt:

The prefix can also be specified on the form class::

>>> class PersonForm(forms.Form):
... ...
... prefix = 'person'

.. versionadded:: 1.9

The ability to specify ``prefix`` on the form class was added.

Since this new feature will be in an upcoming release it is also added to the release notes for Django 1.9, on line 164
under the “Forms” section in the file docs/releases/1.9.txt:

* A form prefix can be specified inside a form class, not only when
instantiating a form. See :ref:`form-prefix` for details.

For more information on writing documentation, including an explanation of what the versionadded bit is all
about, see Writing documentation. That page also includes an explanation of how to build a copy of the documentation
locally, so you can preview the HTML that will be generated.

2.12.12 Previewing your changes

Now it’s time to go through all the changes made in our patch. To display the differences between your current copy
of Django (with your changes) and the revision that you initially checked out earlier in the tutorial:

$ git diff

Use the arrow keys to move up and down.

diff --git a/django/forms/forms.py b/django/forms/forms.py
index 509709f..d1370de 100644
--- a/django/forms/forms.py
+++ b/django/forms/forms.py
@@ -75,6 +75,7 @@ class BaseForm(object):

information. Any improvements to the form API should be made to *this*
class, not to the Form class.
field_order = None

+ prefix = None

def __init__(self, data=None, files=None, auto_id='id_%s', prefix=None,
initial=None, error_class=ErrorList, label_suffix=None,

@@ -83,7 +84,8 @@ class BaseForm(object):
self.data = data or {}
self.files = files or {}
self.auto_id = auto_id

- self.prefix = prefix
+ if prefix is not None:
+ self.prefix = prefix

self.initial = initial or {}
self.error_class = error_class
Translators: This is the default suffix added to form field labels

diff --git a/docs/ref/forms/api.txt b/docs/ref/forms/api.txt

2.12. Writing your first patch for Django 77

Django Documentation, Release 1.10.9.dev20171123183751

index 3bc39cd..008170d 100644
--- a/docs/ref/forms/api.txt
+++ b/docs/ref/forms/api.txt
@@ -1065,3 +1065,13 @@ You can put several Django forms inside one ``<form>`` tag. To
→˓give each

>>> print(father.as_ul())
<label for="id_father-first_name">First name:</label> <input type="text"

→˓name="father-first_name" id="id_father-first_name" />
<label for="id_father-last_name">Last name:</label> <input type="text" name=

→˓"father-last_name" id="id_father-last_name" />
+
+The prefix can also be specified on the form class::
+
+ >>> class PersonForm(forms.Form):
+
+ ... prefix = 'person'
+
+.. versionadded:: 1.9
+
+ The ability to specify ``prefix`` on the form class was added.
diff --git a/docs/releases/1.9.txt b/docs/releases/1.9.txt
index 5b58f79..f9bb9de 100644
--- a/docs/releases/1.9.txt
+++ b/docs/releases/1.9.txt
@@ -161,6 +161,9 @@ Forms

:attr:`~django.forms.Form.field_order` attribute, the ``field_order``
constructor argument , or the :meth:`~django.forms.Form.order_fields` method.

+* A form prefix can be specified inside a form class, not only when
+ instantiating a form. See :ref:`form-prefix` for details.
+
Generic Views
^^^^^^^^^^^^^

diff --git a/tests/forms_tests/tests/test_forms.py b/tests/forms_tests/tests/test_
→˓forms.py
index 690f205..e07fae2 100644
--- a/tests/forms_tests/tests/test_forms.py
+++ b/tests/forms_tests/tests/test_forms.py
@@ -1671,6 +1671,18 @@ class FormsTestCase(SimpleTestCase):

self.assertEqual(p.cleaned_data['last_name'], 'Lennon')
self.assertEqual(p.cleaned_data['birthday'], datetime.date(1940, 10, 9))

+ def test_class_prefix(self):
+ # Prefix can be also specified at the class level.
+ class Person(Form):
+ first_name = CharField()
+ prefix = 'foo'
+
+ p = Person()
+ self.assertEqual(p.prefix, 'foo')
+
+ p = Person(prefix='bar')
+ self.assertEqual(p.prefix, 'bar')
+

def test_forms_with_null_boolean(self):
NullBooleanField is a bit of a special case because its presentation

→˓(widget)

78 Chapter 2. Getting started

Django Documentation, Release 1.10.9.dev20171123183751

is different than its data. This is handled transparently, though.

When you’re done previewing the patch, hit the q key to return to the command line. If the patch’s content looked
okay, it’s time to commit the changes.

2.12.13 Committing the changes in the patch

To commit the changes:

$ git commit -a

This opens up a text editor to type the commit message. Follow the commit message guidelines and write a message
like:

Fixed #24788 -- Allowed Forms to specify a prefix at the class level.

2.12.14 Pushing the commit and making a pull request

After committing the patch, send it to your fork on GitHub (substitute “ticket_24788” with the name of your branch if
it’s different):

$ git push origin ticket_24788

You can create a pull request by visiting the Django GitHub page. You’ll see your branch under “Your recently pushed
branches”. Click “Compare & pull request” next to it.

Please don’t do it for this tutorial, but on the next page that displays a preview of the patch, you would click “Create
pull request”.

2.12.15 Next steps

Congratulations, you’ve learned how to make a pull request to Django! Details of more advanced techniques you may
need are in Working with Git and GitHub.

Now you can put those skills to good use by helping to improve Django’s codebase.

More information for new contributors

Before you get too into writing patches for Django, there’s a little more information on contributing that you should
probably take a look at:

• You should make sure to read Django’s documentation on claiming tickets and submitting patches. It covers
Trac etiquette, how to claim tickets for yourself, expected coding style for patches, and many other important
details.

• First time contributors should also read Django’s documentation for first time contributors. It has lots of good
advice for those of us who are new to helping out with Django.

• After those, if you’re still hungry for more information about contributing, you can always browse through the
rest of Django’s documentation on contributing. It contains a ton of useful information and should be your first
source for answering any questions you might have.

2.12. Writing your first patch for Django 79

https://github.com/django/django/

Django Documentation, Release 1.10.9.dev20171123183751

Finding your first real ticket

Once you’ve looked through some of that information, you’ll be ready to go out and find a ticket of your own to write
a patch for. Pay special attention to tickets with the “easy pickings” criterion. These tickets are often much simpler in
nature and are great for first time contributors. Once you’re familiar with contributing to Django, you can move on to
writing patches for more difficult and complicated tickets.

If you just want to get started already (and nobody would blame you!), try taking a look at the list of easy tickets that
need patches and the easy tickets that have patches which need improvement. If you’re familiar with writing tests, you
can also look at the list of easy tickets that need tests. Just remember to follow the guidelines about claiming tickets
that were mentioned in the link to Django’s documentation on claiming tickets and submitting patches.

What’s next after creating a pull request?

After a ticket has a patch, it needs to be reviewed by a second set of eyes. After submitting a pull request, update the
ticket metadata by setting the flags on the ticket to say “has patch”, “doesn’t need tests”, etc, so others can find it for
review. Contributing doesn’t necessarily always mean writing a patch from scratch. Reviewing existing patches is also
a very helpful contribution. See Triaging tickets for details.

See also:

If you’re new to Python, you might want to start by getting an idea of what the language is like. Django is 100%
Python, so if you’ve got minimal comfort with Python you’ll probably get a lot more out of Django.

If you’re new to programming entirely, you might want to start with this list of Python resources for non-programmers

If you already know a few other languages and want to get up to speed with Python quickly, we recommend Dive Into
Python. If that’s not quite your style, there are many other books about Python.

80 Chapter 2. Getting started

https://code.djangoproject.com/query?status=new&status=reopened&has_patch=0&easy=1&col=id&col=summary&col=status&col=owner&col=type&col=milestone&order=priority
https://code.djangoproject.com/query?status=new&status=reopened&has_patch=0&easy=1&col=id&col=summary&col=status&col=owner&col=type&col=milestone&order=priority
https://code.djangoproject.com/query?status=new&status=reopened&needs_better_patch=1&easy=1&col=id&col=summary&col=status&col=owner&col=type&col=milestone&order=priority
https://code.djangoproject.com/query?status=new&status=reopened&needs_tests=1&easy=1&col=id&col=summary&col=status&col=owner&col=type&col=milestone&order=priority
https://python.org/
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers
http://www.diveintopython3.net/
http://www.diveintopython3.net/
https://wiki.python.org/moin/PythonBooks

CHAPTER 3

Using Django

Introductions to all the key parts of Django you’ll need to know:

3.1 How to install Django

This document will get you up and running with Django.

3.1.1 Install Python

Being a Python Web framework, Django requires Python. See What Python version can I use with Django? for details.

Get the latest version of Python at https://www.python.org/download/ or with your operating system’s package man-
ager.

Django on Jython

If you use Jython (a Python implementation for the Java platform), you’ll need to follow a few additional steps. See
Running Django on Jython for details.

Python on Windows

If you are just starting with Django and using Windows, you may find How to install Django on Windows useful.

3.1.2 Install Apache and mod_wsgi

If you just want to experiment with Django, skip ahead to the next section; Django includes a lightweight web server
you can use for testing, so you won’t need to set up Apache until you’re ready to deploy Django in production.

81

https://www.python.org/download/
http://jython.org/

Django Documentation, Release 1.10.9.dev20171123183751

If you want to use Django on a production site, use Apache with mod_wsgi. mod_wsgi can operate in one of two
modes: an embedded mode and a daemon mode. In embedded mode, mod_wsgi is similar to mod_perl – it embeds
Python within Apache and loads Python code into memory when the server starts. Code stays in memory throughout
the life of an Apache process, which leads to significant performance gains over other server arrangements. In daemon
mode, mod_wsgi spawns an independent daemon process that handles requests. The daemon process can run as a
different user than the Web server, possibly leading to improved security, and the daemon process can be restarted
without restarting the entire Apache Web server, possibly making refreshing your codebase more seamless. Consult
the mod_wsgi documentation to determine which mode is right for your setup. Make sure you have Apache installed,
with the mod_wsgi module activated. Django will work with any version of Apache that supports mod_wsgi.

See How to use Django with mod_wsgi for information on how to configure mod_wsgi once you have it installed.

If you can’t use mod_wsgi for some reason, fear not: Django supports many other deployment options. One is uWSGI;
it works very well with nginx. Additionally, Django follows the WSGI spec (PEP 3333), which allows it to run on a
variety of server platforms.

3.1.3 Get your database running

If you plan to use Django’s database API functionality, you’ll need to make sure a database server is running. Django
supports many different database servers and is officially supported with PostgreSQL, MySQL, Oracle and SQLite.

If you are developing a simple project or something you don’t plan to deploy in a production environment, SQLite is
generally the simplest option as it doesn’t require running a separate server. However, SQLite has many differences
from other databases, so if you are working on something substantial, it’s recommended to develop with the same
database as you plan on using in production.

In addition to the officially supported databases, there are backends provided by 3rd parties that allow you to use other
databases with Django.

In addition to a database backend, you’ll need to make sure your Python database bindings are installed.

• If you’re using PostgreSQL, you’ll need the psycopg2 package. Refer to the PostgreSQL notes for further details.

• If you’re using MySQL, you’ll need a DB API driver like mysqlclient. See notes for the MySQL backend
for details.

• If you’re using SQLite you might want to read the SQLite backend notes.

• If you’re using Oracle, you’ll need a copy of cx_Oracle, but please read the notes for the Oracle backend for
details regarding supported versions of both Oracle and cx_Oracle.

• If you’re using an unofficial 3rd party backend, please consult the documentation provided for any additional
requirements.

If you plan to use Django’s manage.py migrate command to automatically create database tables for your models
(after first installing Django and creating a project), you’ll need to ensure that Django has permission to create and alter
tables in the database you’re using; if you plan to manually create the tables, you can simply grant Django SELECT,
INSERT, UPDATE and DELETE permissions. After creating a database user with these permissions, you’ll specify
the details in your project’s settings file, see DATABASES for details.

If you’re using Django’s testing framework to test database queries, Django will need permission to create a test
database.

3.1.4 Remove any old versions of Django

If you are upgrading your installation of Django from a previous version, you will need to uninstall the old Django
version before installing the new version.

82 Chapter 3. Using Django

https://httpd.apache.org/
http://www.modwsgi.org/
http://nginx.org/
https://www.python.org/dev/peps/pep-3333
https://www.postgresql.org/
https://www.mysql.com/
http://www.oracle.com/
https://www.sqlite.org/
http://initd.org/psycopg/
http://cx-oracle.sourceforge.net/

Django Documentation, Release 1.10.9.dev20171123183751

If you installed Django using pip or easy_install previously, installing with pip or easy_install again will
automatically take care of the old version, so you don’t need to do it yourself.

If you previously installed Django using python setup.py install, uninstalling is as simple as deleting the
django directory from your Python site-packages. To find the directory you need to remove, you can run the
following at your shell prompt (not the interactive Python prompt):

$ python -c "import django; print(django.__path__)"

3.1.5 Install the Django code

Installation instructions are slightly different depending on whether you’re installing a distribution-specific package,
downloading the latest official release, or fetching the latest development version.

It’s easy, no matter which way you choose.

Installing an official release with pip

This is the recommended way to install Django.

1. Install pip. The easiest is to use the standalone pip installer. If your distribution already has pip installed, you
might need to update it if it’s outdated. If it’s outdated, you’ll know because installation won’t work.

2. Take a look at virtualenv and virtualenvwrapper. These tools provide isolated Python environments, which are
more practical than installing packages systemwide. They also allow installing packages without administrator
privileges. The contributing tutorial walks through how to create a virtualenv on Python 3.

3. After you’ve created and activated a virtual environment, enter the command pip install Django at the
shell prompt.

Installing a distribution-specific package

Check the distribution specific notes to see if your platform/distribution provides official Django packages/installers.
Distribution-provided packages will typically allow for automatic installation of dependencies and easy upgrade paths;
however, these packages will rarely contain the latest release of Django.

Installing the development version

Tracking Django development

If you decide to use the latest development version of Django, you’ll want to pay close attention to the development
timeline, and you’ll want to keep an eye on the release notes for the upcoming release. This will help you stay on top
of any new features you might want to use, as well as any changes you’ll need to make to your code when updating
your copy of Django. (For stable releases, any necessary changes are documented in the release notes.)

If you’d like to be able to update your Django code occasionally with the latest bug fixes and improvements, follow
these instructions:

1. Make sure that you have Git installed and that you can run its commands from a shell. (Enter git help at a
shell prompt to test this.)

2. Check out Django’s main development branch like so:

3.1. How to install Django 83

https://pip.pypa.io/
https://pip.pypa.io/
https://pip.pypa.io/
https://pip.pypa.io/en/latest/installing/#installing-with-get-pip-py
https://virtualenv.pypa.io/
https://virtualenvwrapper.readthedocs.io/en/latest/
https://code.djangoproject.com/timeline
https://code.djangoproject.com/timeline
http://git-scm.com/

Django Documentation, Release 1.10.9.dev20171123183751

$ git clone git://github.com/django/django.git

This will create a directory django in your current directory.

3. Make sure that the Python interpreter can load Django’s code. The most convenient way to do this is to use
virtualenv, virtualenvwrapper, and pip. The contributing tutorial walks through how to create a virtualenv on
Python 3.

4. After setting up and activating the virtualenv, run the following command:

$ pip install -e django/

This will make Django’s code importable, and will also make the django-admin utility command available.
In other words, you’re all set!

When you want to update your copy of the Django source code, just run the command git pull from within the
django directory. When you do this, Git will automatically download any changes.

3.2 Models and databases

A model is the single, definitive source of data about your data. It contains the essential fields and behaviors of the
data you’re storing. Generally, each model maps to a single database table.

3.2.1 Models

A model is the single, definitive source of information about your data. It contains the essential fields and behaviors
of the data you’re storing. Generally, each model maps to a single database table.

The basics:

• Each model is a Python class that subclasses django.db.models.Model.

• Each attribute of the model represents a database field.

• With all of this, Django gives you an automatically-generated database-access API; see Making queries.

Quick example

This example model defines a Person, which has a first_name and last_name:

from django.db import models

class Person(models.Model):
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=30)

first_name and last_name are fields of the model. Each field is specified as a class attribute, and each attribute
maps to a database column.

The above Person model would create a database table like this:

CREATE TABLE myapp_person (
"id" serial NOT NULL PRIMARY KEY,
"first_name" varchar(30) NOT NULL,
"last_name" varchar(30) NOT NULL

);

84 Chapter 3. Using Django

https://virtualenv.pypa.io/
https://virtualenvwrapper.readthedocs.io/en/latest/
https://pip.pypa.io/

Django Documentation, Release 1.10.9.dev20171123183751

Some technical notes:

• The name of the table, myapp_person, is automatically derived from some model metadata but can be over-
ridden. See Table names for more details.

• An id field is added automatically, but this behavior can be overridden. See Automatic primary key fields.

• The CREATE TABLE SQL in this example is formatted using PostgreSQL syntax, but it’s worth noting Django
uses SQL tailored to the database backend specified in your settings file.

Using models

Once you have defined your models, you need to tell Django you’re going to use those models. Do this by editing
your settings file and changing the INSTALLED_APPS setting to add the name of the module that contains your
models.py.

For example, if the models for your application live in the module myapp.models (the package structure that is
created for an application by the manage.py startapp script), INSTALLED_APPS should read, in part:

INSTALLED_APPS = [
#...
'myapp',
#...

]

When you add new apps to INSTALLED_APPS, be sure to run manage.py migrate, optionally making migra-
tions for them first with manage.py makemigrations.

Fields

The most important part of a model – and the only required part of a model – is the list of database fields it defines.
Fields are specified by class attributes. Be careful not to choose field names that conflict with the models API like
clean, save, or delete.

Example:

from django.db import models

class Musician(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)
instrument = models.CharField(max_length=100)

class Album(models.Model):
artist = models.ForeignKey(Musician, on_delete=models.CASCADE)
name = models.CharField(max_length=100)
release_date = models.DateField()
num_stars = models.IntegerField()

Field types

Each field in your model should be an instance of the appropriate Field class. Django uses the field class types to
determine a few things:

3.2. Models and databases 85

Django Documentation, Release 1.10.9.dev20171123183751

• The column type, which tells the database what kind of data to store (e.g. INTEGER, VARCHAR, TEXT).

• The default HTML widget to use when rendering a form field (e.g. <input type="text">, <select>).

• The minimal validation requirements, used in Django’s admin and in automatically-generated forms.

Django ships with dozens of built-in field types; you can find the complete list in the model field reference. You can
easily write your own fields if Django’s built-in ones don’t do the trick; see Writing custom model fields.

Field options

Each field takes a certain set of field-specific arguments (documented in the model field reference). For example,
CharField (and its subclasses) require a max_length argument which specifies the size of the VARCHAR database
field used to store the data.

There’s also a set of common arguments available to all field types. All are optional. They’re fully explained in the
reference, but here’s a quick summary of the most often-used ones:

null If True, Django will store empty values as NULL in the database. Default is False.

blank If True, the field is allowed to be blank. Default is False.

Note that this is different than null. null is purely database-related, whereas blank is validation-related. If
a field has blank=True, form validation will allow entry of an empty value. If a field has blank=False,
the field will be required.

choices An iterable (e.g., a list or tuple) of 2-tuples to use as choices for this field. If this is given, the default form
widget will be a select box instead of the standard text field and will limit choices to the choices given.

A choices list looks like this:

YEAR_IN_SCHOOL_CHOICES = (
('FR', 'Freshman'),
('SO', 'Sophomore'),
('JR', 'Junior'),
('SR', 'Senior'),
('GR', 'Graduate'),

)

The first element in each tuple is the value that will be stored in the database. The second element will be
displayed by the default form widget or in a ModelChoiceField. Given a model instance, the display value
for a choices field can be accessed using the get_FOO_display() method. For example:

from django.db import models

class Person(models.Model):
SHIRT_SIZES = (

('S', 'Small'),
('M', 'Medium'),
('L', 'Large'),

)
name = models.CharField(max_length=60)
shirt_size = models.CharField(max_length=1, choices=SHIRT_SIZES)

>>> p = Person(name="Fred Flintstone", shirt_size="L")
>>> p.save()
>>> p.shirt_size
'L'

86 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

>>> p.get_shirt_size_display()
'Large'

default The default value for the field. This can be a value or a callable object. If callable it will be called every
time a new object is created.

help_text Extra “help” text to be displayed with the form widget. It’s useful for documentation even if your field
isn’t used on a form.

primary_key If True, this field is the primary key for the model.

If you don’t specify primary_key=True for any fields in your model, Django will automatically add an
IntegerField to hold the primary key, so you don’t need to set primary_key=True on any of your
fields unless you want to override the default primary-key behavior. For more, see Automatic primary key fields.

The primary key field is read-only. If you change the value of the primary key on an existing object and then
save it, a new object will be created alongside the old one. For example:

from django.db import models

class Fruit(models.Model):
name = models.CharField(max_length=100, primary_key=True)

>>> fruit = Fruit.objects.create(name='Apple')
>>> fruit.name = 'Pear'
>>> fruit.save()
>>> Fruit.objects.values_list('name', flat=True)
['Apple', 'Pear']

unique If True, this field must be unique throughout the table.

Again, these are just short descriptions of the most common field options. Full details can be found in the common
model field option reference.

Automatic primary key fields

By default, Django gives each model the following field:

id = models.AutoField(primary_key=True)

This is an auto-incrementing primary key.

If you’d like to specify a custom primary key, just specify primary_key=True on one of your fields. If Django
sees you’ve explicitly set Field.primary_key , it won’t add the automatic id column.

Each model requires exactly one field to have primary_key=True (either explicitly declared or automatically
added).

Verbose field names

Each field type, except for ForeignKey , ManyToManyField and OneToOneField, takes an optional first
positional argument – a verbose name. If the verbose name isn’t given, Django will automatically create it using the
field’s attribute name, converting underscores to spaces.

In this example, the verbose name is "person's first name":

3.2. Models and databases 87

Django Documentation, Release 1.10.9.dev20171123183751

first_name = models.CharField("person's first name", max_length=30)

In this example, the verbose name is "first name":

first_name = models.CharField(max_length=30)

ForeignKey , ManyToManyField and OneToOneField require the first argument to be a model class, so use
the verbose_name keyword argument:

poll = models.ForeignKey(
Poll,
on_delete=models.CASCADE,
verbose_name="the related poll",

)
sites = models.ManyToManyField(Site, verbose_name="list of sites")
place = models.OneToOneField(

Place,
on_delete=models.CASCADE,
verbose_name="related place",

)

The convention is not to capitalize the first letter of the verbose_name. Django will automatically capitalize the
first letter where it needs to.

Relationships

Clearly, the power of relational databases lies in relating tables to each other. Django offers ways to define the three
most common types of database relationships: many-to-one, many-to-many and one-to-one.

Many-to-one relationships

To define a many-to-one relationship, use django.db.models.ForeignKey . You use it just like any other
Field type: by including it as a class attribute of your model.

ForeignKey requires a positional argument: the class to which the model is related.

For example, if a Car model has a Manufacturer – that is, a Manufacturer makes multiple cars but each Car
only has one Manufacturer – use the following definitions:

from django.db import models

class Manufacturer(models.Model):
...
pass

class Car(models.Model):
manufacturer = models.ForeignKey(Manufacturer, on_delete=models.CASCADE)
...

You can also create recursive relationships (an object with a many-to-one relationship to itself) and relationships to
models not yet defined; see the model field reference for details.

It’s suggested, but not required, that the name of a ForeignKey field (manufacturer in the example above) be
the name of the model, lowercase. You can, of course, call the field whatever you want. For example:

88 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

class Car(models.Model):
company_that_makes_it = models.ForeignKey(

Manufacturer,
on_delete=models.CASCADE,

)
...

See also:

ForeignKey fields accept a number of extra arguments which are explained in the model field reference. These
options help define how the relationship should work; all are optional.

For details on accessing backwards-related objects, see the Following relationships backward example.

For sample code, see the Many-to-one relationship model example.

Many-to-many relationships

To define a many-to-many relationship, use ManyToManyField. You use it just like any other Field type: by
including it as a class attribute of your model.

ManyToManyField requires a positional argument: the class to which the model is related.

For example, if a Pizza has multiple Topping objects – that is, a Topping can be on multiple pizzas and each
Pizza has multiple toppings – here’s how you’d represent that:

from django.db import models

class Topping(models.Model):
...
pass

class Pizza(models.Model):
...
toppings = models.ManyToManyField(Topping)

As with ForeignKey , you can also create recursive relationships (an object with a many-to-many relationship to
itself) and relationships to models not yet defined.

It’s suggested, but not required, that the name of a ManyToManyField (toppings in the example above) be a
plural describing the set of related model objects.

It doesn’t matter which model has the ManyToManyField, but you should only put it in one of the models – not
both.

Generally, ManyToManyField instances should go in the object that’s going to be edited on a form. In the above
example, toppings is in Pizza (rather than Topping having a pizzas ManyToManyField) because it’s
more natural to think about a pizza having toppings than a topping being on multiple pizzas. The way it’s set up above,
the Pizza form would let users select the toppings.

See also:

See the Many-to-many relationship model example for a full example.

ManyToManyField fields also accept a number of extra arguments which are explained in the model field reference.
These options help define how the relationship should work; all are optional.

3.2. Models and databases 89

Django Documentation, Release 1.10.9.dev20171123183751

Extra fields on many-to-many relationships

When you’re only dealing with simple many-to-many relationships such as mixing and matching pizzas and toppings,
a standard ManyToManyField is all you need. However, sometimes you may need to associate data with the
relationship between two models.

For example, consider the case of an application tracking the musical groups which musicians belong to. There
is a many-to-many relationship between a person and the groups of which they are a member, so you could use a
ManyToManyField to represent this relationship. However, there is a lot of detail about the membership that you
might want to collect, such as the date at which the person joined the group.

For these situations, Django allows you to specify the model that will be used to govern the many-to-many rela-
tionship. You can then put extra fields on the intermediate model. The intermediate model is associated with the
ManyToManyField using the through argument to point to the model that will act as an intermediary. For our
musician example, the code would look something like this:

from django.db import models

class Person(models.Model):
name = models.CharField(max_length=128)

def __str__(self): # __unicode__ on Python 2
return self.name

class Group(models.Model):
name = models.CharField(max_length=128)
members = models.ManyToManyField(Person, through='Membership')

def __str__(self): # __unicode__ on Python 2
return self.name

class Membership(models.Model):
person = models.ForeignKey(Person, on_delete=models.CASCADE)
group = models.ForeignKey(Group, on_delete=models.CASCADE)
date_joined = models.DateField()
invite_reason = models.CharField(max_length=64)

When you set up the intermediary model, you explicitly specify foreign keys to the models that are involved in the
many-to-many relationship. This explicit declaration defines how the two models are related.

There are a few restrictions on the intermediate model:

• Your intermediate model must contain one - and only one - foreign key to the source model (this would
be Group in our example), or you must explicitly specify the foreign keys Django should use for the re-
lationship using ManyToManyField.through_fields. If you have more than one foreign key and
through_fields is not specified, a validation error will be raised. A similar restriction applies to the foreign
key to the target model (this would be Person in our example).

• For a model which has a many-to-many relationship to itself through an intermediary model, two foreign keys
to the same model are permitted, but they will be treated as the two (different) sides of the many-to-many
relationship. If there are more than two foreign keys though, you must also specify through_fields as
above, or a validation error will be raised.

• When defining a many-to-many relationship from a model to itself, using an intermediary model, you must use
symmetrical=False (see the model field reference).

Now that you have set up your ManyToManyField to use your intermediary model (Membership, in this case),
you’re ready to start creating some many-to-many relationships. You do this by creating instances of the intermediate
model:

90 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

>>> ringo = Person.objects.create(name="Ringo Starr")
>>> paul = Person.objects.create(name="Paul McCartney")
>>> beatles = Group.objects.create(name="The Beatles")
>>> m1 = Membership(person=ringo, group=beatles,
... date_joined=date(1962, 8, 16),
... invite_reason="Needed a new drummer.")
>>> m1.save()
>>> beatles.members.all()
<QuerySet [<Person: Ringo Starr>]>
>>> ringo.group_set.all()
<QuerySet [<Group: The Beatles>]>
>>> m2 = Membership.objects.create(person=paul, group=beatles,
... date_joined=date(1960, 8, 1),
... invite_reason="Wanted to form a band.")
>>> beatles.members.all()
<QuerySet [<Person: Ringo Starr>, <Person: Paul McCartney>]>

Unlike normal many-to-many fields, you can’t use add(), create(), or set() to create relationships:

>>> # The following statements will not work
>>> beatles.members.add(john)
>>> beatles.members.create(name="George Harrison")
>>> beatles.members.set([john, paul, ringo, george])

Why? You can’t just create a relationship between a Person and a Group - you need to specify all the detail for the
relationship required by the Membership model. The simple add, create and assignment calls don’t provide a
way to specify this extra detail. As a result, they are disabled for many-to-many relationships that use an intermediate
model. The only way to create this type of relationship is to create instances of the intermediate model.

The remove() method is disabled for similar reasons. For example, if the custom through table defined by the
intermediate model does not enforce uniqueness on the (model1, model2) pair, a remove() call would not
provide enough information as to which intermediate model instance should be deleted:

>>> Membership.objects.create(person=ringo, group=beatles,
... date_joined=date(1968, 9, 4),
... invite_reason="You've been gone for a month and we miss you.")
>>> beatles.members.all()
<QuerySet [<Person: Ringo Starr>, <Person: Paul McCartney>, <Person: Ringo Starr>]>
>>> # This will not work because it cannot tell which membership to remove
>>> beatles.members.remove(ringo)

However, the clear() method can be used to remove all many-to-many relationships for an instance:

>>> # Beatles have broken up
>>> beatles.members.clear()
>>> # Note that this deletes the intermediate model instances
>>> Membership.objects.all()
<QuerySet []>

Once you have established the many-to-many relationships by creating instances of your intermediate model, you can
issue queries. Just as with normal many-to-many relationships, you can query using the attributes of the many-to-
many-related model:

Find all the groups with a member whose name starts with 'Paul'
>>> Group.objects.filter(members__name__startswith='Paul')
<QuerySet [<Group: The Beatles>]>

As you are using an intermediate model, you can also query on its attributes:

3.2. Models and databases 91

Django Documentation, Release 1.10.9.dev20171123183751

Find all the members of the Beatles that joined after 1 Jan 1961
>>> Person.objects.filter(
... group__name='The Beatles',
... membership__date_joined__gt=date(1961,1,1))
<QuerySet [<Person: Ringo Starr]>

If you need to access a membership’s information you may do so by directly querying the Membership model:

>>> ringos_membership = Membership.objects.get(group=beatles, person=ringo)
>>> ringos_membership.date_joined
datetime.date(1962, 8, 16)
>>> ringos_membership.invite_reason
'Needed a new drummer.'

Another way to access the same information is by querying the many-to-many reverse relationship from a Person
object:

>>> ringos_membership = ringo.membership_set.get(group=beatles)
>>> ringos_membership.date_joined
datetime.date(1962, 8, 16)
>>> ringos_membership.invite_reason
'Needed a new drummer.'

One-to-one relationships

To define a one-to-one relationship, use OneToOneField. You use it just like any other Field type: by including
it as a class attribute of your model.

This is most useful on the primary key of an object when that object “extends” another object in some way.

OneToOneField requires a positional argument: the class to which the model is related.

For example, if you were building a database of “places”, you would build pretty standard stuff such as address, phone
number, etc. in the database. Then, if you wanted to build a database of restaurants on top of the places, instead of
repeating yourself and replicating those fields in the Restaurant model, you could make Restaurant have a
OneToOneField to Place (because a restaurant “is a” place; in fact, to handle this you’d typically use inheritance,
which involves an implicit one-to-one relation).

As with ForeignKey , a recursive relationship can be defined and references to as-yet undefined models can be
made.

See also:

See the One-to-one relationship model example for a full example.

OneToOneField fields also accept an optional parent_link argument.

OneToOneField classes used to automatically become the primary key on a model. This is no longer true (although
you can manually pass in the primary_key argument if you like). Thus, it’s now possible to have multiple fields of
type OneToOneField on a single model.

Models across files

It’s perfectly OK to relate a model to one from another app. To do this, import the related model at the top of the file
where your model is defined. Then, just refer to the other model class wherever needed. For example:

92 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

from django.db import models
from geography.models import ZipCode

class Restaurant(models.Model):
...
zip_code = models.ForeignKey(

ZipCode,
on_delete=models.SET_NULL,
blank=True,
null=True,

)

Field name restrictions

Django places only two restrictions on model field names:

1. A field name cannot be a Python reserved word, because that would result in a Python syntax error. For example:

class Example(models.Model):
pass = models.IntegerField() # 'pass' is a reserved word!

2. A field name cannot contain more than one underscore in a row, due to the way Django’s query lookup syntax
works. For example:

class Example(models.Model):
foo__bar = models.IntegerField() # 'foo__bar' has two underscores!

These limitations can be worked around, though, because your field name doesn’t necessarily have to match your
database column name. See the db_column option.

SQL reserved words, such as join, where or select, are allowed as model field names, because Django escapes all
database table names and column names in every underlying SQL query. It uses the quoting syntax of your particular
database engine.

Custom field types

If one of the existing model fields cannot be used to fit your purposes, or if you wish to take advantage of some less
common database column types, you can create your own field class. Full coverage of creating your own fields is
provided in Writing custom model fields.

Meta options

Give your model metadata by using an inner class Meta, like so:

from django.db import models

class Ox(models.Model):
horn_length = models.IntegerField()

class Meta:
ordering = ["horn_length"]
verbose_name_plural = "oxen"

3.2. Models and databases 93

Django Documentation, Release 1.10.9.dev20171123183751

Model metadata is “anything that’s not a field”, such as ordering options (ordering), database table name
(db_table), or human-readable singular and plural names (verbose_name and verbose_name_plural).
None are required, and adding class Meta to a model is completely optional.

A complete list of all possible Meta options can be found in the model option reference.

Model attributes

objects The most important attribute of a model is the Manager. It’s the interface through which database query
operations are provided to Django models and is used to retrieve the instances from the database. If no custom
Manager is defined, the default name is objects. Managers are only accessible via model classes, not the
model instances.

Model methods

Define custom methods on a model to add custom “row-level” functionality to your objects. Whereas Manager
methods are intended to do “table-wide” things, model methods should act on a particular model instance.

This is a valuable technique for keeping business logic in one place – the model.

For example, this model has a few custom methods:

from django.db import models

class Person(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)
birth_date = models.DateField()

def baby_boomer_status(self):
"Returns the person's baby-boomer status."
import datetime
if self.birth_date < datetime.date(1945, 8, 1):

return "Pre-boomer"
elif self.birth_date < datetime.date(1965, 1, 1):

return "Baby boomer"
else:

return "Post-boomer"

def _get_full_name(self):
"Returns the person's full name."
return '%s %s' % (self.first_name, self.last_name)

full_name = property(_get_full_name)

The last method in this example is a property.

The model instance reference has a complete list of methods automatically given to each model. You can override
most of these – see overriding predefined model methods, below – but there are a couple that you’ll almost always
want to define:

__str__() (Python 3) A Python “magic method” that returns a unicode “representation” of any object. This is
what Python and Django will use whenever a model instance needs to be coerced and displayed as a plain
string. Most notably, this happens when you display an object in an interactive console or in the admin.

You’ll always want to define this method; the default isn’t very helpful at all.

__unicode__() (Python 2) Python 2 equivalent of __str__().

94 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

get_absolute_url() This tells Django how to calculate the URL for an object. Django uses this in its admin
interface, and any time it needs to figure out a URL for an object.

Any object that has a URL that uniquely identifies it should define this method.

Overriding predefined model methods

There’s another set of model methods that encapsulate a bunch of database behavior that you’ll want to customize. In
particular you’ll often want to change the way save() and delete() work.

You’re free to override these methods (and any other model method) to alter behavior.

A classic use-case for overriding the built-in methods is if you want something to happen whenever you save an object.
For example (see save() for documentation of the parameters it accepts):

from django.db import models

class Blog(models.Model):
name = models.CharField(max_length=100)
tagline = models.TextField()

def save(self, *args, **kwargs):
do_something()
super(Blog, self).save(*args, **kwargs) # Call the "real" save() method.
do_something_else()

You can also prevent saving:

from django.db import models

class Blog(models.Model):
name = models.CharField(max_length=100)
tagline = models.TextField()

def save(self, *args, **kwargs):
if self.name == "Yoko Ono's blog":

return # Yoko shall never have her own blog!
else:

super(Blog, self).save(*args, **kwargs) # Call the "real" save() method.

It’s important to remember to call the superclass method – that’s that super(Blog, self).save(*args,

**kwargs) business – to ensure that the object still gets saved into the database. If you forget to call the super-
class method, the default behavior won’t happen and the database won’t get touched.

It’s also important that you pass through the arguments that can be passed to the model method – that’s what the
*args, **kwargs bit does. Django will, from time to time, extend the capabilities of built-in model methods,
adding new arguments. If you use *args, **kwargs in your method definitions, you are guaranteed that your
code will automatically support those arguments when they are added.

Overridden model methods are not called on bulk operations

Note that the delete() method for an object is not necessarily called when deleting objects in bulk using a
QuerySet or as a result of a cascading delete. To ensure customized delete logic gets executed, you can use
pre_delete and/or post_delete signals.

Unfortunately, there isn’t a workaround when creating or updating objects in bulk, since none of save(),
pre_save, and post_save are called.

3.2. Models and databases 95

Django Documentation, Release 1.10.9.dev20171123183751

Executing custom SQL

Another common pattern is writing custom SQL statements in model methods and module-level methods. For more
details on using raw SQL, see the documentation on using raw SQL.

Model inheritance

Model inheritance in Django works almost identically to the way normal class inheritance works in Python, but the
basics at the beginning of the page should still be followed. That means the base class should subclass django.db.
models.Model.

The only decision you have to make is whether you want the parent models to be models in their own right (with their
own database tables), or if the parents are just holders of common information that will only be visible through the
child models.

There are three styles of inheritance that are possible in Django.

1. Often, you will just want to use the parent class to hold information that you don’t want to have to type out for
each child model. This class isn’t going to ever be used in isolation, so Abstract base classes are what you’re
after.

2. If you’re subclassing an existing model (perhaps something from another application entirely) and want each
model to have its own database table, Multi-table inheritance is the way to go.

3. Finally, if you only want to modify the Python-level behavior of a model, without changing the models fields in
any way, you can use Proxy models.

Abstract base classes

Abstract base classes are useful when you want to put some common information into a number of other models. You
write your base class and put abstract=True in the Meta class. This model will then not be used to create any
database table. Instead, when it is used as a base class for other models, its fields will be added to those of the child
class. It is an error to have fields in the abstract base class with the same name as those in the child (and Django will
raise an exception).

An example:

from django.db import models

class CommonInfo(models.Model):
name = models.CharField(max_length=100)
age = models.PositiveIntegerField()

class Meta:
abstract = True

class Student(CommonInfo):
home_group = models.CharField(max_length=5)

The Student model will have three fields: name, age and home_group. The CommonInfo model cannot be
used as a normal Django model, since it is an abstract base class. It does not generate a database table or have a
manager, and cannot be instantiated or saved directly.

For many uses, this type of model inheritance will be exactly what you want. It provides a way to factor out common
information at the Python level, while still only creating one database table per child model at the database level.

96 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Meta inheritance

When an abstract base class is created, Django makes any Meta inner class you declared in the base class available as
an attribute. If a child class does not declare its own Meta class, it will inherit the parent’s Meta. If the child wants to
extend the parent’s Meta class, it can subclass it. For example:

from django.db import models

class CommonInfo(models.Model):
...
class Meta:

abstract = True
ordering = ['name']

class Student(CommonInfo):
...
class Meta(CommonInfo.Meta):

db_table = 'student_info'

Django does make one adjustment to the Meta class of an abstract base class: before installing the Meta attribute,
it sets abstract=False. This means that children of abstract base classes don’t automatically become abstract
classes themselves. Of course, you can make an abstract base class that inherits from another abstract base class. You
just need to remember to explicitly set abstract=True each time.

Some attributes won’t make sense to include in the Meta class of an abstract base class. For example, including
db_table would mean that all the child classes (the ones that don’t specify their own Meta) would use the same
database table, which is almost certainly not what you want.

Be careful with related_name and related_query_name

If you are using related_name or related_query_name on a ForeignKey or ManyToManyField, you
must always specify a unique reverse name and query name for the field. This would normally cause a problem in
abstract base classes, since the fields on this class are included into each of the child classes, with exactly the same
values for the attributes (including related_name and related_query_name) each time.

To work around this problem, when you are using related_name or related_query_name in an abstract base
class (only), part of the value should contain '%(app_label)s' and '%(class)s'.

• '%(class)s' is replaced by the lower-cased name of the child class that the field is used in.

• '%(app_label)s' is replaced by the lower-cased name of the app the child class is contained within. Each
installed application name must be unique and the model class names within each app must also be unique,
therefore the resulting name will end up being different.

For example, given an app common/models.py:

from django.db import models

class Base(models.Model):
m2m = models.ManyToManyField(

OtherModel,
related_name="%(app_label)s_%(class)s_related",
related_query_name="%(app_label)s_%(class)ss",

)

class Meta:
abstract = True

3.2. Models and databases 97

Django Documentation, Release 1.10.9.dev20171123183751

class ChildA(Base):
pass

class ChildB(Base):
pass

Along with another app rare/models.py:

from common.models import Base

class ChildB(Base):
pass

The reverse name of the common.ChildA.m2m field will be common_childa_related and the reverse
query name will be common_childas. The reverse name of the common.ChildB.m2m field will be
common_childb_related and the reverse query name will be common_childbs. Finally, the reverse
name of the rare.ChildB.m2m field will be rare_childb_related and the reverse query name will be
rare_childbs. It’s up to you how you use the '%(class)s' and '%(app_label)s' portion to construct
your related name or related query name but if you forget to use it, Django will raise errors when you perform system
checks (or run migrate).

If you don’t specify a related_name attribute for a field in an abstract base class, the default reverse name will be
the name of the child class followed by '_set', just as it normally would be if you’d declared the field directly on
the child class. For example, in the above code, if the related_name attribute was omitted, the reverse name for
the m2m field would be childa_set in the ChildA case and childb_set for the ChildB field.

Interpolation of '%(app_label)s' and '%(class)s' for related_query_name was added.

Multi-table inheritance

The second type of model inheritance supported by Django is when each model in the hierarchy is a model all by
itself. Each model corresponds to its own database table and can be queried and created individually. The inher-
itance relationship introduces links between the child model and each of its parents (via an automatically-created
OneToOneField). For example:

from django.db import models

class Place(models.Model):
name = models.CharField(max_length=50)
address = models.CharField(max_length=80)

class Restaurant(Place):
serves_hot_dogs = models.BooleanField(default=False)
serves_pizza = models.BooleanField(default=False)

All of the fields of Place will also be available in Restaurant, although the data will reside in a different database
table. So these are both possible:

>>> Place.objects.filter(name="Bob's Cafe")
>>> Restaurant.objects.filter(name="Bob's Cafe")

If you have a Place that is also a Restaurant, you can get from the Place object to the Restaurant object
by using the lower-case version of the model name:

98 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

>>> p = Place.objects.get(id=12)
If p is a Restaurant object, this will give the child class:
>>> p.restaurant
<Restaurant: ...>

However, if p in the above example was not a Restaurant (it had been created directly as a Place object or
was the parent of some other class), referring to p.restaurant would raise a Restaurant.DoesNotExist
exception.

Meta and multi-table inheritance

In the multi-table inheritance situation, it doesn’t make sense for a child class to inherit from its parent’s Meta class.
All the Meta options have already been applied to the parent class and applying them again would normally only lead
to contradictory behavior (this is in contrast with the abstract base class case, where the base class doesn’t exist in its
own right).

So a child model does not have access to its parent’s Meta class. However, there are a few limited cases where the
child inherits behavior from the parent: if the child does not specify an ordering attribute or a get_latest_by
attribute, it will inherit these from its parent.

If the parent has an ordering and you don’t want the child to have any natural ordering, you can explicitly disable it:

class ChildModel(ParentModel):
...
class Meta:

Remove parent's ordering effect
ordering = []

Inheritance and reverse relations

Because multi-table inheritance uses an implicit OneToOneField to link the child and the parent, it’s possible to
move from the parent down to the child, as in the above example. However, this uses up the name that is the default
related_name value for ForeignKey and ManyToManyField relations. If you are putting those types of
relations on a subclass of the parent model, you must specify the related_name attribute on each such field. If you
forget, Django will raise a validation error.

For example, using the above Place class again, let’s create another subclass with a ManyToManyField:

class Supplier(Place):
customers = models.ManyToManyField(Place)

This results in the error:

Reverse query name for 'Supplier.customers' clashes with reverse query
name for 'Supplier.place_ptr'.

HINT: Add or change a related_name argument to the definition for
'Supplier.customers' or 'Supplier.place_ptr'.

Adding related_name to the customers field as follows would resolve the error: models.
ManyToManyField(Place, related_name='provider').

3.2. Models and databases 99

Django Documentation, Release 1.10.9.dev20171123183751

Specifying the parent link field

As mentioned, Django will automatically create a OneToOneField linking your child class back to any non-abstract
parent models. If you want to control the name of the attribute linking back to the parent, you can create your own
OneToOneField and set parent_link=True to indicate that your field is the link back to the parent class.

Proxy models

When using multi-table inheritance, a new database table is created for each subclass of a model. This is usually the
desired behavior, since the subclass needs a place to store any additional data fields that are not present on the base
class. Sometimes, however, you only want to change the Python behavior of a model – perhaps to change the default
manager, or add a new method.

This is what proxy model inheritance is for: creating a proxy for the original model. You can create, delete and update
instances of the proxy model and all the data will be saved as if you were using the original (non-proxied) model. The
difference is that you can change things like the default model ordering or the default manager in the proxy, without
having to alter the original.

Proxy models are declared like normal models. You tell Django that it’s a proxy model by setting the proxy attribute
of the Meta class to True.

For example, suppose you want to add a method to the Person model. You can do it like this:

from django.db import models

class Person(models.Model):
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=30)

class MyPerson(Person):
class Meta:

proxy = True

def do_something(self):
...
pass

The MyPerson class operates on the same database table as its parent Person class. In particular, any new instances
of Person will also be accessible through MyPerson, and vice-versa:

>>> p = Person.objects.create(first_name="foobar")
>>> MyPerson.objects.get(first_name="foobar")
<MyPerson: foobar>

You could also use a proxy model to define a different default ordering on a model. You might not always want to
order the Person model, but regularly order by the last_name attribute when you use the proxy. This is easy:

class OrderedPerson(Person):
class Meta:

ordering = ["last_name"]
proxy = True

Now normal Person queries will be unordered and OrderedPerson queries will be ordered by last_name.

Proxy models inherit Meta attributes in the same way as regular models.

100 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

QuerySets still return the model that was requested

There is no way to have Django return, say, a MyPerson object whenever you query for Person objects. A queryset
for Person objects will return those types of objects. The whole point of proxy objects is that code relying on the
original Person will use those and your own code can use the extensions you included (that no other code is relying
on anyway). It is not a way to replace the Person (or any other) model everywhere with something of your own
creation.

Base class restrictions

A proxy model must inherit from exactly one non-abstract model class. You can’t inherit from multiple non-abstract
models as the proxy model doesn’t provide any connection between the rows in the different database tables. A proxy
model can inherit from any number of abstract model classes, providing they do not define any model fields. A proxy
model may also inherit from any number of proxy models that share a common non-abstract parent class.

In earlier versions, a proxy model couldn’t inherit more than one proxy model that shared the same parent class.

Proxy model managers

If you don’t specify any model managers on a proxy model, it inherits the managers from its model parents. If you
define a manager on the proxy model, it will become the default, although any managers defined on the parent classes
will still be available.

Continuing our example from above, you could change the default manager used when you query the Person model
like this:

from django.db import models

class NewManager(models.Manager):
...
pass

class MyPerson(Person):
objects = NewManager()

class Meta:
proxy = True

If you wanted to add a new manager to the Proxy, without replacing the existing default, you can use the techniques
described in the custom manager documentation: create a base class containing the new managers and inherit that
after the primary base class:

Create an abstract class for the new manager.
class ExtraManagers(models.Model):

secondary = NewManager()

class Meta:
abstract = True

class MyPerson(Person, ExtraManagers):
class Meta:

proxy = True

You probably won’t need to do this very often, but, when you do, it’s possible.

3.2. Models and databases 101

Django Documentation, Release 1.10.9.dev20171123183751

Differences between proxy inheritance and unmanaged models

Proxy model inheritance might look fairly similar to creating an unmanaged model, using the managed attribute on
a model’s Meta class.

With careful setting of Meta.db_table you could create an unmanaged model that shadows an existing model
and adds Python methods to it. However, that would be very repetitive and fragile as you need to keep both copies
synchronized if you make any changes.

On the other hand, proxy models are intended to behave exactly like the model they are proxying for. They are always
in sync with the parent model since they directly inherit its fields and managers.

The general rules are:

1. If you are mirroring an existing model or database table and don’t want all the original database table columns,
use Meta.managed=False. That option is normally useful for modeling database views and tables not under
the control of Django.

2. If you are wanting to change the Python-only behavior of a model, but keep all the same fields as in the original,
use Meta.proxy=True. This sets things up so that the proxy model is an exact copy of the storage structure
of the original model when data is saved.

Multiple inheritance

Just as with Python’s subclassing, it’s possible for a Django model to inherit from multiple parent models. Keep in
mind that normal Python name resolution rules apply. The first base class that a particular name (e.g. Meta) appears
in will be the one that is used; for example, this means that if multiple parents contain a Meta class, only the first one
is going to be used, and all others will be ignored.

Generally, you won’t need to inherit from multiple parents. The main use-case where this is useful is for “mix-in”
classes: adding a particular extra field or method to every class that inherits the mix-in. Try to keep your inheritance
hierarchies as simple and straightforward as possible so that you won’t have to struggle to work out where a particular
piece of information is coming from.

Note that inheriting from multiple models that have a common id primary key field will raise an error. To properly
use multiple inheritance, you can use an explicit AutoField in the base models:

class Article(models.Model):
article_id = models.AutoField(primary_key=True)
...

class Book(models.Model):
book_id = models.AutoField(primary_key=True)
...

class BookReview(Book, Article):
pass

Or use a common ancestor to hold the AutoField:

class Piece(models.Model):
pass

class Article(Piece):
...

class Book(Piece):
...

102 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

class BookReview(Book, Article):
pass

Field name “hiding” is not permitted

In normal Python class inheritance, it is permissible for a child class to override any attribute from the parent class. In
Django, this isn’t usually permitted for model fields. If a non-abstract model base class has a field called author, you
can’t create another model field or define an attribute called author in any class that inherits from that base class.

This restriction doesn’t apply to model fields inherited from an abstract model. Such fields may be overridden with
another field or value, or be removed by setting field_name = None.

The ability to override abstract fields was added.

Warning: Model managers are inherited from abstract base classes. Overriding an inherited field which is
referenced by an inherited Manager may cause subtle bugs. See custom managers and model inheritance.

Note: Some fields define extra attributes on the model, e.g. a ForeignKey defines an extra attribute with _id
appended to the field name, as well as related_name and related_query_name on the foreign model.

These extra attributes cannot be overridden unless the field that defines it is changed or removed so that it no longer
defines the extra attribute.

Overriding fields in a parent model leads to difficulties in areas such as initializing new instances (specifying which
field is being initialized in Model.__init__) and serialization. These are features which normal Python class
inheritance doesn’t have to deal with in quite the same way, so the difference between Django model inheritance and
Python class inheritance isn’t arbitrary.

This restriction only applies to attributes which are Field instances. Normal Python attributes can be overridden if
you wish. It also only applies to the name of the attribute as Python sees it: if you are manually specifying the database
column name, you can have the same column name appearing in both a child and an ancestor model for multi-table
inheritance (they are columns in two different database tables).

Django will raise a FieldError if you override any model field in any ancestor model.

Organizing models in a package

The manage.py startapp command creates an application structure that includes a models.py file. If you
have many models, organizing them in separate files may be useful.

To do so, create a models package. Remove models.py and create a myapp/models/ directory with an
__init__.py file and the files to store your models. You must import the models in the __init__.py file.

For example, if you had organic.py and synthetic.py in the models directory:

myapp/models/__init__.py

from .organic import Person
from .synthetic import Robot

Explicitly importing each model rather than using from .models import * has the advantages of not cluttering
the namespace, making code more readable, and keeping code analysis tools useful.

3.2. Models and databases 103

Django Documentation, Release 1.10.9.dev20171123183751

See also:

The Models Reference Covers all the model related APIs including model fields, related objects, and QuerySet.

3.2.2 Making queries

Once you’ve created your data models, Django automatically gives you a database-abstraction API that lets you create,
retrieve, update and delete objects. This document explains how to use this API. Refer to the data model reference for
full details of all the various model lookup options.

Throughout this guide (and in the reference), we’ll refer to the following models, which comprise a Weblog applica-
tion:

from django.db import models

class Blog(models.Model):
name = models.CharField(max_length=100)
tagline = models.TextField()

def __str__(self): # __unicode__ on Python 2
return self.name

class Author(models.Model):
name = models.CharField(max_length=200)
email = models.EmailField()

def __str__(self): # __unicode__ on Python 2
return self.name

class Entry(models.Model):
blog = models.ForeignKey(Blog)
headline = models.CharField(max_length=255)
body_text = models.TextField()
pub_date = models.DateField()
mod_date = models.DateField()
authors = models.ManyToManyField(Author)
n_comments = models.IntegerField()
n_pingbacks = models.IntegerField()
rating = models.IntegerField()

def __str__(self): # __unicode__ on Python 2
return self.headline

Creating objects

To represent database-table data in Python objects, Django uses an intuitive system: A model class represents a
database table, and an instance of that class represents a particular record in the database table.

To create an object, instantiate it using keyword arguments to the model class, then call save() to save it to the
database.

Assuming models live in a file mysite/blog/models.py, here’s an example:

>>> from blog.models import Blog
>>> b = Blog(name='Beatles Blog', tagline='All the latest Beatles news.')
>>> b.save()

104 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

This performs an INSERT SQL statement behind the scenes. Django doesn’t hit the database until you explicitly call
save().

The save() method has no return value.

See also:

save() takes a number of advanced options not described here. See the documentation for save() for complete
details.

To create and save an object in a single step, use the create() method.

Saving changes to objects

To save changes to an object that’s already in the database, use save().

Given a Blog instance b5 that has already been saved to the database, this example changes its name and updates its
record in the database:

>>> b5.name = 'New name'
>>> b5.save()

This performs an UPDATE SQL statement behind the scenes. Django doesn’t hit the database until you explicitly call
save().

Saving ForeignKey and ManyToManyField fields

Updating a ForeignKey field works exactly the same way as saving a normal field – simply assign an object of the
right type to the field in question. This example updates the blog attribute of an Entry instance entry, assuming
appropriate instances of Entry and Blog are already saved to the database (so we can retrieve them below):

>>> from blog.models import Entry
>>> entry = Entry.objects.get(pk=1)
>>> cheese_blog = Blog.objects.get(name="Cheddar Talk")
>>> entry.blog = cheese_blog
>>> entry.save()

Updating a ManyToManyField works a little differently – use the add() method on the field to add a record to the
relation. This example adds the Author instance joe to the entry object:

>>> from blog.models import Author
>>> joe = Author.objects.create(name="Joe")
>>> entry.authors.add(joe)

To add multiple records to a ManyToManyField in one go, include multiple arguments in the call to add(), like
this:

>>> john = Author.objects.create(name="John")
>>> paul = Author.objects.create(name="Paul")
>>> george = Author.objects.create(name="George")
>>> ringo = Author.objects.create(name="Ringo")
>>> entry.authors.add(john, paul, george, ringo)

Django will complain if you try to assign or add an object of the wrong type.

3.2. Models and databases 105

Django Documentation, Release 1.10.9.dev20171123183751

Retrieving objects

To retrieve objects from your database, construct a QuerySet via a Manager on your model class.

A QuerySet represents a collection of objects from your database. It can have zero, one or many filters. Filters
narrow down the query results based on the given parameters. In SQL terms, a QuerySet equates to a SELECT
statement, and a filter is a limiting clause such as WHERE or LIMIT.

You get a QuerySet by using your model’s Manager. Each model has at least one Manager, and it’s called
objects by default. Access it directly via the model class, like so:

>>> Blog.objects
<django.db.models.manager.Manager object at ...>
>>> b = Blog(name='Foo', tagline='Bar')
>>> b.objects
Traceback:

...
AttributeError: "Manager isn't accessible via Blog instances."

Note: Managers are accessible only via model classes, rather than from model instances, to enforce a separation
between “table-level” operations and “record-level” operations.

The Manager is the main source of QuerySets for a model. For example, Blog.objects.all() returns a
QuerySet that contains all Blog objects in the database.

Retrieving all objects

The simplest way to retrieve objects from a table is to get all of them. To do this, use the all() method on a
Manager:

>>> all_entries = Entry.objects.all()

The all() method returns a QuerySet of all the objects in the database.

Retrieving specific objects with filters

The QuerySet returned by all() describes all objects in the database table. Usually, though, you’ll need to select
only a subset of the complete set of objects.

To create such a subset, you refine the initial QuerySet, adding filter conditions. The two most common ways to
refine a QuerySet are:

filter(**kwargs) Returns a new QuerySet containing objects that match the given lookup parameters.

exclude(**kwargs) Returns a new QuerySet containing objects that do not match the given lookup parame-
ters.

The lookup parameters (**kwargs in the above function definitions) should be in the format described in Field
lookups below.

For example, to get a QuerySet of blog entries from the year 2006, use filter() like so:

Entry.objects.filter(pub_date__year=2006)

With the default manager class, it is the same as:

106 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Entry.objects.all().filter(pub_date__year=2006)

Chaining filters

The result of refining a QuerySet is itself a QuerySet, so it’s possible to chain refinements together. For example:

>>> Entry.objects.filter(
... headline__startswith='What'
...).exclude(
... pub_date__gte=datetime.date.today()
...).filter(
... pub_date__gte=datetime(2005, 1, 30)
...)

This takes the initial QuerySet of all entries in the database, adds a filter, then an exclusion, then another filter. The
final result is a QuerySet containing all entries with a headline that starts with “What”, that were published between
January 30, 2005, and the current day.

Filtered QuerySets are unique

Each time you refine a QuerySet, you get a brand-new QuerySet that is in no way bound to the previous
QuerySet. Each refinement creates a separate and distinct QuerySet that can be stored, used and reused.

Example:

>>> q1 = Entry.objects.filter(headline__startswith="What")
>>> q2 = q1.exclude(pub_date__gte=datetime.date.today())
>>> q3 = q1.filter(pub_date__gte=datetime.date.today())

These three QuerySets are separate. The first is a base QuerySet containing all entries that contain a headline
starting with “What”. The second is a subset of the first, with an additional criteria that excludes records whose
pub_date is today or in the future. The third is a subset of the first, with an additional criteria that selects only
the records whose pub_date is today or in the future. The initial QuerySet (q1) is unaffected by the refinement
process.

QuerySets are lazy

QuerySets are lazy – the act of creating a QuerySet doesn’t involve any database activity. You can stack filters
together all day long, and Django won’t actually run the query until the QuerySet is evaluated. Take a look at this
example:

>>> q = Entry.objects.filter(headline__startswith="What")
>>> q = q.filter(pub_date__lte=datetime.date.today())
>>> q = q.exclude(body_text__icontains="food")
>>> print(q)

Though this looks like three database hits, in fact it hits the database only once, at the last line (print(q)). In
general, the results of a QuerySet aren’t fetched from the database until you “ask” for them. When you do, the
QuerySet is evaluated by accessing the database. For more details on exactly when evaluation takes place, see
When QuerySets are evaluated.

3.2. Models and databases 107

Django Documentation, Release 1.10.9.dev20171123183751

Retrieving a single object with get()

filter() will always give you a QuerySet, even if only a single object matches the query - in this case, it will be
a QuerySet containing a single element.

If you know there is only one object that matches your query, you can use the get() method on a Manager which
returns the object directly:

>>> one_entry = Entry.objects.get(pk=1)

You can use any query expression with get(), just like with filter() - again, see Field lookups below.

Note that there is a difference between using get(), and using filter() with a slice of [0]. If there are no results
that match the query, get() will raise a DoesNotExist exception. This exception is an attribute of the model
class that the query is being performed on - so in the code above, if there is no Entry object with a primary key of 1,
Django will raise Entry.DoesNotExist.

Similarly, Django will complain if more than one item matches the get() query. In this case, it will raise
MultipleObjectsReturned, which again is an attribute of the model class itself.

Other QuerySet methods

Most of the time you’ll use all(), get(), filter() and exclude() when you need to look up objects from
the database. However, that’s far from all there is; see the QuerySet API Reference for a complete list of all the various
QuerySet methods.

Limiting QuerySets

Use a subset of Python’s array-slicing syntax to limit your QuerySet to a certain number of results. This is the
equivalent of SQL’s LIMIT and OFFSET clauses.

For example, this returns the first 5 objects (LIMIT 5):

>>> Entry.objects.all()[:5]

This returns the sixth through tenth objects (OFFSET 5 LIMIT 5):

>>> Entry.objects.all()[5:10]

Negative indexing (i.e. Entry.objects.all()[-1]) is not supported.

Generally, slicing a QuerySet returns a new QuerySet – it doesn’t evaluate the query. An exception is if you use
the “step” parameter of Python slice syntax. For example, this would actually execute the query in order to return a
list of every second object of the first 10:

>>> Entry.objects.all()[:10:2]

To retrieve a single object rather than a list (e.g. SELECT foo FROM bar LIMIT 1), use a simple index instead
of a slice. For example, this returns the first Entry in the database, after ordering entries alphabetically by headline:

>>> Entry.objects.order_by('headline')[0]

This is roughly equivalent to:

>>> Entry.objects.order_by('headline')[0:1].get()

108 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Note, however, that the first of these will raise IndexError while the second will raise DoesNotExist if no
objects match the given criteria. See get() for more details.

Field lookups

Field lookups are how you specify the meat of an SQL WHERE clause. They’re specified as keyword arguments to the
QuerySet methods filter(), exclude() and get().

Basic lookups keyword arguments take the form field__lookuptype=value. (That’s a double-underscore).
For example:

>>> Entry.objects.filter(pub_date__lte='2006-01-01')

translates (roughly) into the following SQL:

SELECT * FROM blog_entry WHERE pub_date <= '2006-01-01';

How this is possible

Python has the ability to define functions that accept arbitrary name-value arguments whose names and values are
evaluated at runtime. For more information, see Keyword Arguments in the official Python tutorial.

The field specified in a lookup has to be the name of a model field. There’s one exception though, in case of a
ForeignKey you can specify the field name suffixed with _id. In this case, the value parameter is expected to
contain the raw value of the foreign model’s primary key. For example:

>>> Entry.objects.filter(blog_id=4)

If you pass an invalid keyword argument, a lookup function will raise TypeError.

The database API supports about two dozen lookup types; a complete reference can be found in the field lookup
reference. To give you a taste of what’s available, here’s some of the more common lookups you’ll probably use:

exact An “exact” match. For example:

>>> Entry.objects.get(headline__exact="Cat bites dog")

Would generate SQL along these lines:

SELECT ... WHERE headline = 'Cat bites dog';

If you don’t provide a lookup type – that is, if your keyword argument doesn’t contain a double underscore –
the lookup type is assumed to be exact.

For example, the following two statements are equivalent:

>>> Blog.objects.get(id__exact=14) # Explicit form
>>> Blog.objects.get(id=14) # __exact is implied

This is for convenience, because exact lookups are the common case.

iexact A case-insensitive match. So, the query:

>>> Blog.objects.get(name__iexact="beatles blog")

Would match a Blog titled "Beatles Blog", "beatles blog", or even "BeAtlES blOG".

3.2. Models and databases 109

https://docs.python.org/3/tutorial/controlflow.html#tut-keywordargs

Django Documentation, Release 1.10.9.dev20171123183751

contains Case-sensitive containment test. For example:

Entry.objects.get(headline__contains='Lennon')

Roughly translates to this SQL:

SELECT ... WHERE headline LIKE '%Lennon%';

Note this will match the headline 'Today Lennon honored' but not 'today lennon honored'.

There’s also a case-insensitive version, icontains.

startswith, endswith Starts-with and ends-with search, respectively. There are also case-insensitive versions
called istartswith and iendswith.

Again, this only scratches the surface. A complete reference can be found in the field lookup reference.

Lookups that span relationships

Django offers a powerful and intuitive way to “follow” relationships in lookups, taking care of the SQL JOINs for
you automatically, behind the scenes. To span a relationship, just use the field name of related fields across models,
separated by double underscores, until you get to the field you want.

This example retrieves all Entry objects with a Blog whose name is 'Beatles Blog':

>>> Entry.objects.filter(blog__name='Beatles Blog')

This spanning can be as deep as you’d like.

It works backwards, too. To refer to a “reverse” relationship, just use the lowercase name of the model.

This example retrieves all Blog objects which have at least one Entry whose headline contains 'Lennon':

>>> Blog.objects.filter(entry__headline__contains='Lennon')

If you are filtering across multiple relationships and one of the intermediate models doesn’t have a value that meets
the filter condition, Django will treat it as if there is an empty (all values are NULL), but valid, object there. All this
means is that no error will be raised. For example, in this filter:

Blog.objects.filter(entry__authors__name='Lennon')

(if there was a related Author model), if there was no author associated with an entry, it would be treated as if
there was also no name attached, rather than raising an error because of the missing author. Usually this is exactly
what you want to have happen. The only case where it might be confusing is if you are using isnull. Thus:

Blog.objects.filter(entry__authors__name__isnull=True)

will return Blog objects that have an empty name on the author and also those which have an empty author on
the entry. If you don’t want those latter objects, you could write:

Blog.objects.filter(entry__authors__isnull=False, entry__authors__name__isnull=True)

Spanning multi-valued relationships

When you are filtering an object based on a ManyToManyField or a reverse ForeignKey , there are two different
sorts of filter you may be interested in. Consider the Blog/Entry relationship (Blog to Entry is a one-to-many

110 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

relation). We might be interested in finding blogs that have an entry which has both “Lennon” in the headline and
was published in 2008. Or we might want to find blogs that have an entry with “Lennon” in the headline as well as an
entry that was published in 2008. Since there are multiple entries associated with a single Blog, both of these queries
are possible and make sense in some situations.

The same type of situation arises with a ManyToManyField. For example, if an Entry has a ManyToManyField
called tags, we might want to find entries linked to tags called “music” and “bands” or we might want an entry that
contains a tag with a name of “music” and a status of “public”.

To handle both of these situations, Django has a consistent way of processing filter() calls. Everything inside
a single filter() call is applied simultaneously to filter out items matching all those requirements. Successive
filter() calls further restrict the set of objects, but for multi-valued relations, they apply to any object linked to
the primary model, not necessarily those objects that were selected by an earlier filter() call.

That may sound a bit confusing, so hopefully an example will clarify. To select all blogs that contain entries with
both “Lennon” in the headline and that were published in 2008 (the same entry satisfying both conditions), we would
write:

Blog.objects.filter(entry__headline__contains='Lennon', entry__pub_date__year=2008)

To select all blogs that contain an entry with “Lennon” in the headline as well as an entry that was published in 2008,
we would write:

Blog.objects.filter(entry__headline__contains='Lennon').filter(entry__pub_date__
→˓year=2008)

Suppose there is only one blog that had both entries containing “Lennon” and entries from 2008, but that none of the
entries from 2008 contained “Lennon”. The first query would not return any blogs, but the second query would return
that one blog.

In the second example, the first filter restricts the queryset to all those blogs linked to entries with “Lennon” in the
headline. The second filter restricts the set of blogs further to those that are also linked to entries that were published
in 2008. The entries selected by the second filter may or may not be the same as the entries in the first filter. We are
filtering the Blog items with each filter statement, not the Entry items.

Note: The behavior of filter() for queries that span multi-value relationships, as described above, is not imple-
mented equivalently for exclude(). Instead, the conditions in a single exclude() call will not necessarily refer
to the same item.

For example, the following query would exclude blogs that contain both entries with “Lennon” in the headline and
entries published in 2008:

Blog.objects.exclude(
entry__headline__contains='Lennon',
entry__pub_date__year=2008,

)

However, unlike the behavior when using filter(), this will not limit blogs based on entries that satisfy both
conditions. In order to do that, i.e. to select all blogs that do not contain entries published with “Lennon” that were
published in 2008, you need to make two queries:

Blog.objects.exclude(
entry__in=Entry.objects.filter(

headline__contains='Lennon',
pub_date__year=2008,

),
)

3.2. Models and databases 111

Django Documentation, Release 1.10.9.dev20171123183751

Filters can reference fields on the model

In the examples given so far, we have constructed filters that compare the value of a model field with a constant. But
what if you want to compare the value of a model field with another field on the same model?

Django provides F expressions to allow such comparisons. Instances of F() act as a reference to a model field
within a query. These references can then be used in query filters to compare the values of two different fields on the
same model instance.

For example, to find a list of all blog entries that have had more comments than pingbacks, we construct an F() object
to reference the pingback count, and use that F() object in the query:

>>> from django.db.models import F
>>> Entry.objects.filter(n_comments__gt=F('n_pingbacks'))

Django supports the use of addition, subtraction, multiplication, division, modulo, and power arithmetic with F()
objects, both with constants and with other F() objects. To find all the blog entries with more than twice as many
comments as pingbacks, we modify the query:

>>> Entry.objects.filter(n_comments__gt=F('n_pingbacks') * 2)

To find all the entries where the rating of the entry is less than the sum of the pingback count and comment count, we
would issue the query:

>>> Entry.objects.filter(rating__lt=F('n_comments') + F('n_pingbacks'))

You can also use the double underscore notation to span relationships in an F() object. An F() object with a double
underscore will introduce any joins needed to access the related object. For example, to retrieve all the entries where
the author’s name is the same as the blog name, we could issue the query:

>>> Entry.objects.filter(authors__name=F('blog__name'))

For date and date/time fields, you can add or subtract a timedelta object. The following would return all entries
that were modified more than 3 days after they were published:

>>> from datetime import timedelta
>>> Entry.objects.filter(mod_date__gt=F('pub_date') + timedelta(days=3))

The F() objects support bitwise operations by .bitand() and .bitor(), for example:

>>> F('somefield').bitand(16)

The pk lookup shortcut

For convenience, Django provides a pk lookup shortcut, which stands for “primary key”.

In the example Blog model, the primary key is the id field, so these three statements are equivalent:

>>> Blog.objects.get(id__exact=14) # Explicit form
>>> Blog.objects.get(id=14) # __exact is implied
>>> Blog.objects.get(pk=14) # pk implies id__exact

The use of pk isn’t limited to __exact queries – any query term can be combined with pk to perform a query on the
primary key of a model:

112 Chapter 3. Using Django

https://docs.python.org/3/library/datetime.html#datetime.timedelta

Django Documentation, Release 1.10.9.dev20171123183751

Get blogs entries with id 1, 4 and 7
>>> Blog.objects.filter(pk__in=[1,4,7])

Get all blog entries with id > 14
>>> Blog.objects.filter(pk__gt=14)

pk lookups also work across joins. For example, these three statements are equivalent:

>>> Entry.objects.filter(blog__id__exact=3) # Explicit form
>>> Entry.objects.filter(blog__id=3) # __exact is implied
>>> Entry.objects.filter(blog__pk=3) # __pk implies __id__exact

Escaping percent signs and underscores in LIKE statements

The field lookups that equate to LIKE SQL statements (iexact, contains, icontains, startswith,
istartswith, endswith and iendswith) will automatically escape the two special characters used in LIKE
statements – the percent sign and the underscore. (In a LIKE statement, the percent sign signifies a multiple-character
wildcard and the underscore signifies a single-character wildcard.)

This means things should work intuitively, so the abstraction doesn’t leak. For example, to retrieve all the entries that
contain a percent sign, just use the percent sign as any other character:

>>> Entry.objects.filter(headline__contains='%')

Django takes care of the quoting for you; the resulting SQL will look something like this:

SELECT ... WHERE headline LIKE '%\%%';

Same goes for underscores. Both percentage signs and underscores are handled for you transparently.

Caching and QuerySets

Each QuerySet contains a cache to minimize database access. Understanding how it works will allow you to write
the most efficient code.

In a newly created QuerySet, the cache is empty. The first time a QuerySet is evaluated – and, hence, a database
query happens – Django saves the query results in the QuerySet’s cache and returns the results that have been
explicitly requested (e.g., the next element, if the QuerySet is being iterated over). Subsequent evaluations of the
QuerySet reuse the cached results.

Keep this caching behavior in mind, because it may bite you if you don’t use your QuerySets correctly. For example,
the following will create two QuerySets, evaluate them, and throw them away:

>>> print([e.headline for e in Entry.objects.all()])
>>> print([e.pub_date for e in Entry.objects.all()])

That means the same database query will be executed twice, effectively doubling your database load. Also, there’s
a possibility the two lists may not include the same database records, because an Entry may have been added or
deleted in the split second between the two requests.

To avoid this problem, simply save the QuerySet and reuse it:

>>> queryset = Entry.objects.all()
>>> print([p.headline for p in queryset]) # Evaluate the query set.
>>> print([p.pub_date for p in queryset]) # Re-use the cache from the evaluation.

3.2. Models and databases 113

Django Documentation, Release 1.10.9.dev20171123183751

When QuerySets are not cached

Querysets do not always cache their results. When evaluating only part of the queryset, the cache is checked, but if it
is not populated then the items returned by the subsequent query are not cached. Specifically, this means that limiting
the queryset using an array slice or an index will not populate the cache.

For example, repeatedly getting a certain index in a queryset object will query the database each time:

>>> queryset = Entry.objects.all()
>>> print(queryset[5]) # Queries the database
>>> print(queryset[5]) # Queries the database again

However, if the entire queryset has already been evaluated, the cache will be checked instead:

>>> queryset = Entry.objects.all()
>>> [entry for entry in queryset] # Queries the database
>>> print(queryset[5]) # Uses cache
>>> print(queryset[5]) # Uses cache

Here are some examples of other actions that will result in the entire queryset being evaluated and therefore populate
the cache:

>>> [entry for entry in queryset]
>>> bool(queryset)
>>> entry in queryset
>>> list(queryset)

Note: Simply printing the queryset will not populate the cache. This is because the call to __repr__() only returns
a slice of the entire queryset.

Complex lookups with Q objects

Keyword argument queries – in filter(), etc. – are “AND”ed together. If you need to execute more complex
queries (for example, queries with OR statements), you can use Q objects.

A Q object (django.db.models.Q) is an object used to encapsulate a collection of keyword arguments. These
keyword arguments are specified as in “Field lookups” above.

For example, this Q object encapsulates a single LIKE query:

from django.db.models import Q
Q(question__startswith='What')

Q objects can be combined using the & and | operators. When an operator is used on two Q objects, it yields a new Q
object.

For example, this statement yields a single Q object that represents the “OR” of two "question__startswith"
queries:

Q(question__startswith='Who') | Q(question__startswith='What')

This is equivalent to the following SQL WHERE clause:

WHERE question LIKE 'Who%' OR question LIKE 'What%'

114 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

You can compose statements of arbitrary complexity by combining Q objects with the & and | operators and use
parenthetical grouping. Also, Q objects can be negated using the ~ operator, allowing for combined lookups that
combine both a normal query and a negated (NOT) query:

Q(question__startswith='Who') | ~Q(pub_date__year=2005)

Each lookup function that takes keyword-arguments (e.g. filter(), exclude(), get()) can also be passed
one or more Q objects as positional (not-named) arguments. If you provide multiple Q object arguments to a lookup
function, the arguments will be “AND”ed together. For example:

Poll.objects.get(
Q(question__startswith='Who'),
Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6))

)

... roughly translates into the SQL:

SELECT * from polls WHERE question LIKE 'Who%'
AND (pub_date = '2005-05-02' OR pub_date = '2005-05-06')

Lookup functions can mix the use of Q objects and keyword arguments. All arguments provided to a lookup function
(be they keyword arguments or Q objects) are “AND”ed together. However, if a Q object is provided, it must precede
the definition of any keyword arguments. For example:

Poll.objects.get(
Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)),
question__startswith='Who',

)

... would be a valid query, equivalent to the previous example; but:

INVALID QUERY
Poll.objects.get(

question__startswith='Who',
Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6))

)

... would not be valid.

See also:

The OR lookups examples in the Django unit tests show some possible uses of Q.

Comparing objects

To compare two model instances, just use the standard Python comparison operator, the double equals sign: ==.
Behind the scenes, that compares the primary key values of two models.

Using the Entry example above, the following two statements are equivalent:

>>> some_entry == other_entry
>>> some_entry.id == other_entry.id

If a model’s primary key isn’t called id, no problem. Comparisons will always use the primary key, whatever it’s
called. For example, if a model’s primary key field is called name, these two statements are equivalent:

>>> some_obj == other_obj
>>> some_obj.name == other_obj.name

3.2. Models and databases 115

https://github.com/django/django/blob/master/tests/or_lookups/tests.py

Django Documentation, Release 1.10.9.dev20171123183751

Deleting objects

The delete method, conveniently, is named delete(). This method immediately deletes the object and returns the
number of objects deleted and a dictionary with the number of deletions per object type. Example:

>>> e.delete()
(1, {'weblog.Entry': 1})

The return value describing the number of objects deleted was added.

You can also delete objects in bulk. Every QuerySet has a delete() method, which deletes all members of that
QuerySet.

For example, this deletes all Entry objects with a pub_date year of 2005:

>>> Entry.objects.filter(pub_date__year=2005).delete()
(5, {'webapp.Entry': 5})

Keep in mind that this will, whenever possible, be executed purely in SQL, and so the delete() methods of in-
dividual object instances will not necessarily be called during the process. If you’ve provided a custom delete()
method on a model class and want to ensure that it is called, you will need to “manually” delete instances of that model
(e.g., by iterating over a QuerySet and calling delete() on each object individually) rather than using the bulk
delete() method of a QuerySet.

The return value describing the number of objects deleted was added.

When Django deletes an object, by default it emulates the behavior of the SQL constraint ON DELETE CASCADE –
in other words, any objects which had foreign keys pointing at the object to be deleted will be deleted along with it.
For example:

b = Blog.objects.get(pk=1)
This will delete the Blog and all of its Entry objects.
b.delete()

This cascade behavior is customizable via the on_delete argument to the ForeignKey .

Note that delete() is the only QuerySet method that is not exposed on a Manager itself. This is a safety
mechanism to prevent you from accidentally requesting Entry.objects.delete(), and deleting all the entries.
If you do want to delete all the objects, then you have to explicitly request a complete query set:

Entry.objects.all().delete()

Copying model instances

Although there is no built-in method for copying model instances, it is possible to easily create new instance with all
fields’ values copied. In the simplest case, you can just set pk to None. Using our blog example:

blog = Blog(name='My blog', tagline='Blogging is easy')
blog.save() # blog.pk == 1

blog.pk = None
blog.save() # blog.pk == 2

Things get more complicated if you use inheritance. Consider a subclass of Blog:

class ThemeBlog(Blog):
theme = models.CharField(max_length=200)

116 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

django_blog = ThemeBlog(name='Django', tagline='Django is easy', theme='python')
django_blog.save() # django_blog.pk == 3

Due to how inheritance works, you have to set both pk and id to None:

django_blog.pk = None
django_blog.id = None
django_blog.save() # django_blog.pk == 4

This process doesn’t copy relations that aren’t part of the model’s database table. For example, Entry has a
ManyToManyField to Author. After duplicating an entry, you must set the many-to-many relations for the new
entry:

entry = Entry.objects.all()[0] # some previous entry
old_authors = entry.authors.all()
entry.pk = None
entry.save()
entry.authors.set(old_authors)

For a OneToOneField, you must duplicate the related object and assign it to the new object’s field to avoid violating
the one-to-one unique constraint. For example, assuming entry is already duplicated as above:

detail = EntryDetail.objects.all()[0]
detail.pk = None
detail.entry = entry
detail.save()

Updating multiple objects at once

Sometimes you want to set a field to a particular value for all the objects in a QuerySet. You can do this with the
update() method. For example:

Update all the headlines with pub_date in 2007.
Entry.objects.filter(pub_date__year=2007).update(headline='Everything is the same')

You can only set non-relation fields and ForeignKey fields using this method. To update a non-relation field,
provide the new value as a constant. To update ForeignKey fields, set the new value to be the new model instance
you want to point to. For example:

>>> b = Blog.objects.get(pk=1)

Change every Entry so that it belongs to this Blog.
>>> Entry.objects.all().update(blog=b)

The update() method is applied instantly and returns the number of rows matched by the query (which may not be
equal to the number of rows updated if some rows already have the new value). The only restriction on the QuerySet
being updated is that it can only access one database table: the model’s main table. You can filter based on related
fields, but you can only update columns in the model’s main table. Example:

>>> b = Blog.objects.get(pk=1)

Update all the headlines belonging to this Blog.
>>> Entry.objects.select_related().filter(blog=b).update(headline='Everything is the
→˓same')

3.2. Models and databases 117

Django Documentation, Release 1.10.9.dev20171123183751

Be aware that the update() method is converted directly to an SQL statement. It is a bulk operation for direct
updates. It doesn’t run any save() methods on your models, or emit the pre_save or post_save signals (which
are a consequence of calling save()), or honor the auto_now field option. If you want to save every item in a
QuerySet and make sure that the save() method is called on each instance, you don’t need any special function
to handle that. Just loop over them and call save():

for item in my_queryset:
item.save()

Calls to update can also use F expressions to update one field based on the value of another field in the model.
This is especially useful for incrementing counters based upon their current value. For example, to increment the
pingback count for every entry in the blog:

>>> Entry.objects.all().update(n_pingbacks=F('n_pingbacks') + 1)

However, unlike F() objects in filter and exclude clauses, you can’t introduce joins when you use F() objects in an
update – you can only reference fields local to the model being updated. If you attempt to introduce a join with an
F() object, a FieldError will be raised:

This will raise a FieldError
>>> Entry.objects.update(headline=F('blog__name'))

Related objects

When you define a relationship in a model (i.e., a ForeignKey , OneToOneField, or ManyToManyField),
instances of that model will have a convenient API to access the related object(s).

Using the models at the top of this page, for example, an Entry object e can get its associated Blog object by
accessing the blog attribute: e.blog.

(Behind the scenes, this functionality is implemented by Python descriptors. This shouldn’t really matter to you, but
we point it out here for the curious.)

Django also creates API accessors for the “other” side of the relationship – the link from the related model to the
model that defines the relationship. For example, a Blog object b has access to a list of all related Entry objects via
the entry_set attribute: b.entry_set.all().

All examples in this section use the sample Blog, Author and Entry models defined at the top of this page.

One-to-many relationships

Forward

If a model has a ForeignKey , instances of that model will have access to the related (foreign) object via a simple
attribute of the model.

Example:

>>> e = Entry.objects.get(id=2)
>>> e.blog # Returns the related Blog object.

You can get and set via a foreign-key attribute. As you may expect, changes to the foreign key aren’t saved to the
database until you call save(). Example:

118 Chapter 3. Using Django

http://users.rcn.com/python/download/Descriptor.htm

Django Documentation, Release 1.10.9.dev20171123183751

>>> e = Entry.objects.get(id=2)
>>> e.blog = some_blog
>>> e.save()

If a ForeignKey field has null=True set (i.e., it allows NULL values), you can assign None to remove the
relation. Example:

>>> e = Entry.objects.get(id=2)
>>> e.blog = None
>>> e.save() # "UPDATE blog_entry SET blog_id = NULL ...;"

Forward access to one-to-many relationships is cached the first time the related object is accessed. Subsequent accesses
to the foreign key on the same object instance are cached. Example:

>>> e = Entry.objects.get(id=2)
>>> print(e.blog) # Hits the database to retrieve the associated Blog.
>>> print(e.blog) # Doesn't hit the database; uses cached version.

Note that the select_related() QuerySet method recursively prepopulates the cache of all one-to-many rela-
tionships ahead of time. Example:

>>> e = Entry.objects.select_related().get(id=2)
>>> print(e.blog) # Doesn't hit the database; uses cached version.
>>> print(e.blog) # Doesn't hit the database; uses cached version.

Following relationships “backward”

If a model has a ForeignKey , instances of the foreign-key model will have access to a Manager that returns
all instances of the first model. By default, this Manager is named FOO_set, where FOO is the source model
name, lowercased. This Manager returns QuerySets, which can be filtered and manipulated as described in the
“Retrieving objects” section above.

Example:

>>> b = Blog.objects.get(id=1)
>>> b.entry_set.all() # Returns all Entry objects related to Blog.

b.entry_set is a Manager that returns QuerySets.
>>> b.entry_set.filter(headline__contains='Lennon')
>>> b.entry_set.count()

You can override the FOO_set name by setting the related_name parameter in the ForeignKey definition. For
example, if the Entrymodel was altered to blog = ForeignKey(Blog, on_delete=models.CASCADE,
related_name='entries'), the above example code would look like this:

>>> b = Blog.objects.get(id=1)
>>> b.entries.all() # Returns all Entry objects related to Blog.

b.entries is a Manager that returns QuerySets.
>>> b.entries.filter(headline__contains='Lennon')
>>> b.entries.count()

3.2. Models and databases 119

Django Documentation, Release 1.10.9.dev20171123183751

Using a custom reverse manager

By default the RelatedManager used for reverse relations is a subclass of the default manager for that model. If
you would like to specify a different manager for a given query you can use the following syntax:

from django.db import models

class Entry(models.Model):
#...
objects = models.Manager() # Default Manager
entries = EntryManager() # Custom Manager

b = Blog.objects.get(id=1)
b.entry_set(manager='entries').all()

If EntryManager performed default filtering in its get_queryset() method, that filtering would apply to the
all() call.

Of course, specifying a custom reverse manager also enables you to call its custom methods:

b.entry_set(manager='entries').is_published()

Additional methods to handle related objects

In addition to the QuerySet methods defined in “Retrieving objects” above, the ForeignKey Manager has
additional methods used to handle the set of related objects. A synopsis of each is below, and complete details can be
found in the related objects reference.

add(obj1, obj2, ...) Adds the specified model objects to the related object set.

create(**kwargs) Creates a new object, saves it and puts it in the related object set. Returns the newly created
object.

remove(obj1, obj2, ...) Removes the specified model objects from the related object set.

clear() Removes all objects from the related object set.

set(objs) Replace the set of related objects.

To assign the members of a related set, use the set() method with an iterable of object instances or a list of primary
key values. For example:

b = Blog.objects.get(id=1)
b.entry_set.set([e1, e2])

In this example, e1 and e2 can be full Entry instances, or integer primary key values.

If the clear() method is available, any pre-existing objects will be removed from the entry_set before all
objects in the iterable (in this case, a list) are added to the set. If the clear() method is not available, all objects in
the iterable will be added without removing any existing elements.

Each “reverse” operation described in this section has an immediate effect on the database. Every addition, creation
and deletion is immediately and automatically saved to the database.

120 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Many-to-many relationships

Both ends of a many-to-many relationship get automatic API access to the other end. The API works just as a
“backward” one-to-many relationship, above.

The only difference is in the attribute naming: The model that defines the ManyToManyField uses the attribute
name of that field itself, whereas the “reverse” model uses the lowercased model name of the original model, plus
'_set' (just like reverse one-to-many relationships).

An example makes this easier to understand:

e = Entry.objects.get(id=3)
e.authors.all() # Returns all Author objects for this Entry.
e.authors.count()
e.authors.filter(name__contains='John')

a = Author.objects.get(id=5)
a.entry_set.all() # Returns all Entry objects for this Author.

Like ForeignKey , ManyToManyField can specify related_name. In the above example, if the
ManyToManyField in Entry had specified related_name='entries', then each Author instance would
have an entries attribute instead of entry_set.

One-to-one relationships

One-to-one relationships are very similar to many-to-one relationships. If you define a OneToOneField on your
model, instances of that model will have access to the related object via a simple attribute of the model.

For example:

class EntryDetail(models.Model):
entry = models.OneToOneField(Entry, on_delete=models.CASCADE)
details = models.TextField()

ed = EntryDetail.objects.get(id=2)
ed.entry # Returns the related Entry object.

The difference comes in “reverse” queries. The related model in a one-to-one relationship also has access to a
Manager object, but that Manager represents a single object, rather than a collection of objects:

e = Entry.objects.get(id=2)
e.entrydetail # returns the related EntryDetail object

If no object has been assigned to this relationship, Django will raise a DoesNotExist exception.

Instances can be assigned to the reverse relationship in the same way as you would assign the forward relationship:

e.entrydetail = ed

How are the backward relationships possible?

Other object-relational mappers require you to define relationships on both sides. The Django developers believe this
is a violation of the DRY (Don’t Repeat Yourself) principle, so Django only requires you to define the relationship on
one end.

3.2. Models and databases 121

Django Documentation, Release 1.10.9.dev20171123183751

But how is this possible, given that a model class doesn’t know which other model classes are related to it until those
other model classes are loaded?

The answer lies in the app registry . When Django starts, it imports each application listed in
INSTALLED_APPS, and then the models module inside each application. Whenever a new model class is cre-
ated, Django adds backward-relationships to any related models. If the related models haven’t been imported yet,
Django keeps tracks of the relationships and adds them when the related models eventually are imported.

For this reason, it’s particularly important that all the models you’re using be defined in applications listed in
INSTALLED_APPS. Otherwise, backwards relations may not work properly.

Queries over related objects

Queries involving related objects follow the same rules as queries involving normal value fields. When specifying the
value for a query to match, you may use either an object instance itself, or the primary key value for the object.

For example, if you have a Blog object b with id=5, the following three queries would be identical:

Entry.objects.filter(blog=b) # Query using object instance
Entry.objects.filter(blog=b.id) # Query using id from instance
Entry.objects.filter(blog=5) # Query using id directly

Falling back to raw SQL

If you find yourself needing to write an SQL query that is too complex for Django’s database-mapper to handle, you
can fall back on writing SQL by hand. Django has a couple of options for writing raw SQL queries; see Performing
raw SQL queries.

Finally, it’s important to note that the Django database layer is merely an interface to your database. You can access
your database via other tools, programming languages or database frameworks; there’s nothing Django-specific about
your database.

3.2.3 Aggregation

The topic guide on Django’s database-abstraction API described the way that you can use Django queries that create,
retrieve, update and delete individual objects. However, sometimes you will need to retrieve values that are derived by
summarizing or aggregating a collection of objects. This topic guide describes the ways that aggregate values can be
generated and returned using Django queries.

Throughout this guide, we’ll refer to the following models. These models are used to track the inventory for a series
of online bookstores:

from django.db import models

class Author(models.Model):
name = models.CharField(max_length=100)
age = models.IntegerField()

class Publisher(models.Model):
name = models.CharField(max_length=300)
num_awards = models.IntegerField()

class Book(models.Model):
name = models.CharField(max_length=300)
pages = models.IntegerField()

122 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

price = models.DecimalField(max_digits=10, decimal_places=2)
rating = models.FloatField()
authors = models.ManyToManyField(Author)
publisher = models.ForeignKey(Publisher)
pubdate = models.DateField()

class Store(models.Model):
name = models.CharField(max_length=300)
books = models.ManyToManyField(Book)
registered_users = models.PositiveIntegerField()

Cheat sheet

In a hurry? Here’s how to do common aggregate queries, assuming the models above:

Total number of books.
>>> Book.objects.count()
2452

Total number of books with publisher=BaloneyPress
>>> Book.objects.filter(publisher__name='BaloneyPress').count()
73

Average price across all books.
>>> from django.db.models import Avg
>>> Book.objects.all().aggregate(Avg('price'))
{'price__avg': 34.35}

Max price across all books.
>>> from django.db.models import Max
>>> Book.objects.all().aggregate(Max('price'))
{'price__max': Decimal('81.20')}

Cost per page
>>> from django.db.models import F, FloatField, Sum
>>> Book.objects.all().aggregate(
... price_per_page=Sum(F('price')/F('pages'), output_field=FloatField()))
{'price_per_page': 0.4470664529184653}

All the following queries involve traversing the Book<->Publisher
foreign key relationship backwards.

Each publisher, each with a count of books as a "num_books" attribute.
>>> from django.db.models import Count
>>> pubs = Publisher.objects.annotate(num_books=Count('book'))
>>> pubs
<QuerySet [<Publisher: BaloneyPress>, <Publisher: SalamiPress>, ...]>
>>> pubs[0].num_books
73

The top 5 publishers, in order by number of books.
>>> pubs = Publisher.objects.annotate(num_books=Count('book')).order_by('-num_books
→˓')[:5]
>>> pubs[0].num_books
1323

3.2. Models and databases 123

Django Documentation, Release 1.10.9.dev20171123183751

Generating aggregates over a QuerySet

Django provides two ways to generate aggregates. The first way is to generate summary values over an entire
QuerySet. For example, say you wanted to calculate the average price of all books available for sale. Django’s
query syntax provides a means for describing the set of all books:

>>> Book.objects.all()

What we need is a way to calculate summary values over the objects that belong to this QuerySet. This is done by
appending an aggregate() clause onto the QuerySet:

>>> from django.db.models import Avg
>>> Book.objects.all().aggregate(Avg('price'))
{'price__avg': 34.35}

The all() is redundant in this example, so this could be simplified to:

>>> Book.objects.aggregate(Avg('price'))
{'price__avg': 34.35}

The argument to the aggregate() clause describes the aggregate value that we want to compute - in this case, the
average of the price field on the Book model. A list of the aggregate functions that are available can be found in the
QuerySet reference.

aggregate() is a terminal clause for a QuerySet that, when invoked, returns a dictionary of name-value pairs.
The name is an identifier for the aggregate value; the value is the computed aggregate. The name is automatically
generated from the name of the field and the aggregate function. If you want to manually specify a name for the
aggregate value, you can do so by providing that name when you specify the aggregate clause:

>>> Book.objects.aggregate(average_price=Avg('price'))
{'average_price': 34.35}

If you want to generate more than one aggregate, you just add another argument to the aggregate() clause. So, if
we also wanted to know the maximum and minimum price of all books, we would issue the query:

>>> from django.db.models import Avg, Max, Min
>>> Book.objects.aggregate(Avg('price'), Max('price'), Min('price'))
{'price__avg': 34.35, 'price__max': Decimal('81.20'), 'price__min': Decimal('12.99')}

Generating aggregates for each item in a QuerySet

The second way to generate summary values is to generate an independent summary for each object in a QuerySet.
For example, if you are retrieving a list of books, you may want to know how many authors contributed to each book.
Each Book has a many-to-many relationship with the Author; we want to summarize this relationship for each book
in the QuerySet.

Per-object summaries can be generated using the annotate() clause. When an annotate() clause is specified,
each object in the QuerySet will be annotated with the specified values.

The syntax for these annotations is identical to that used for the aggregate() clause. Each argument to
annotate() describes an aggregate that is to be calculated. For example, to annotate books with the number of
authors:

Build an annotated queryset
>>> from django.db.models import Count
>>> q = Book.objects.annotate(Count('authors'))

124 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Interrogate the first object in the queryset
>>> q[0]
<Book: The Definitive Guide to Django>
>>> q[0].authors__count
2
Interrogate the second object in the queryset
>>> q[1]
<Book: Practical Django Projects>
>>> q[1].authors__count
1

As with aggregate(), the name for the annotation is automatically derived from the name of the aggregate function
and the name of the field being aggregated. You can override this default name by providing an alias when you specify
the annotation:

>>> q = Book.objects.annotate(num_authors=Count('authors'))
>>> q[0].num_authors
2
>>> q[1].num_authors
1

Unlike aggregate(), annotate() is not a terminal clause. The output of the annotate() clause is
a QuerySet; this QuerySet can be modified using any other QuerySet operation, including filter(),
order_by(), or even additional calls to annotate().

Combining multiple aggregations

Combining multiple aggregations with annotate() will yield the wrong results because joins are used instead of
subqueries:

>>> book = Book.objects.first()
>>> book.authors.count()
2
>>> book.store_set.count()
3
>>> q = Book.objects.annotate(Count('authors'), Count('store'))
>>> q[0].authors__count
6
>>> q[0].store__count
6

For most aggregates, there is no way to avoid this problem, however, the Count aggregate has a distinct parameter
that may help:

>>> q = Book.objects.annotate(Count('authors', distinct=True), Count('store',
→˓distinct=True))
>>> q[0].authors__count
2
>>> q[0].store__count
3

If in doubt, inspect the SQL query!

In order to understand what happens in your query, consider inspecting the query property of your QuerySet.

3.2. Models and databases 125

https://code.djangoproject.com/ticket/10060

Django Documentation, Release 1.10.9.dev20171123183751

Joins and aggregates

So far, we have dealt with aggregates over fields that belong to the model being queried. However, sometimes the
value you want to aggregate will belong to a model that is related to the model you are querying.

When specifying the field to be aggregated in an aggregate function, Django will allow you to use the same double
underscore notation that is used when referring to related fields in filters. Django will then handle any table joins that
are required to retrieve and aggregate the related value.

For example, to find the price range of books offered in each store, you could use the annotation:

>>> from django.db.models import Max, Min
>>> Store.objects.annotate(min_price=Min('books__price'), max_price=Max('books__price
→˓'))

This tells Django to retrieve the Store model, join (through the many-to-many relationship) with the Book model,
and aggregate on the price field of the book model to produce a minimum and maximum value.

The same rules apply to the aggregate() clause. If you wanted to know the lowest and highest price of any book
that is available for sale in any of the stores, you could use the aggregate:

>>> Store.objects.aggregate(min_price=Min('books__price'), max_price=Max('books__price
→˓'))

Join chains can be as deep as you require. For example, to extract the age of the youngest author of any book available
for sale, you could issue the query:

>>> Store.objects.aggregate(youngest_age=Min('books__authors__age'))

Following relationships backwards

In a way similar to Lookups that span relationships, aggregations and annotations on fields of models or models that
are related to the one you are querying can include traversing “reverse” relationships. The lowercase name of related
models and double-underscores are used here too.

For example, we can ask for all publishers, annotated with their respective total book stock counters (note how we use
'book' to specify the Publisher -> Book reverse foreign key hop):

>>> from django.db.models import Count, Min, Sum, Avg
>>> Publisher.objects.annotate(Count('book'))

(Every Publisher in the resulting QuerySet will have an extra attribute called book__count.)

We can also ask for the oldest book of any of those managed by every publisher:

>>> Publisher.objects.aggregate(oldest_pubdate=Min('book__pubdate'))

(The resulting dictionary will have a key called 'oldest_pubdate'. If no such alias were specified, it would be
the rather long 'book__pubdate__min'.)

This doesn’t apply just to foreign keys. It also works with many-to-many relations. For example, we can ask for every
author, annotated with the total number of pages considering all the books the author has (co-)authored (note how we
use 'book' to specify the Author -> Book reverse many-to-many hop):

>>> Author.objects.annotate(total_pages=Sum('book__pages'))

126 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

(Every Author in the resulting QuerySet will have an extra attribute called total_pages. If no such alias were
specified, it would be the rather long book__pages__sum.)

Or ask for the average rating of all the books written by author(s) we have on file:

>>> Author.objects.aggregate(average_rating=Avg('book__rating'))

(The resulting dictionary will have a key called 'average_rating'. If no such alias were specified, it would be
the rather long 'book__rating__avg'.)

Aggregations and other QuerySet clauses

filter() and exclude()

Aggregates can also participate in filters. Any filter() (or exclude()) applied to normal model fields will have
the effect of constraining the objects that are considered for aggregation.

When used with an annotate() clause, a filter has the effect of constraining the objects for which an annotation is
calculated. For example, you can generate an annotated list of all books that have a title starting with “Django” using
the query:

>>> from django.db.models import Count, Avg
>>> Book.objects.filter(name__startswith="Django").annotate(num_authors=Count('authors
→˓'))

When used with an aggregate() clause, a filter has the effect of constraining the objects over which the aggregate
is calculated. For example, you can generate the average price of all books with a title that starts with “Django” using
the query:

>>> Book.objects.filter(name__startswith="Django").aggregate(Avg('price'))

Filtering on annotations

Annotated values can also be filtered. The alias for the annotation can be used in filter() and exclude() clauses
in the same way as any other model field.

For example, to generate a list of books that have more than one author, you can issue the query:

>>> Book.objects.annotate(num_authors=Count('authors')).filter(num_authors__gt=1)

This query generates an annotated result set, and then generates a filter based upon that annotation.

Order of annotate() and filter() clauses

When developing a complex query that involves both annotate() and filter() clauses, pay particular attention
to the order in which the clauses are applied to the QuerySet.

When an annotate() clause is applied to a query, the annotation is computed over the state of the query up to the
point where the annotation is requested. The practical implication of this is that filter() and annotate() are
not commutative operations.

Given:

• Publisher A has two books with ratings 4 and 5.

3.2. Models and databases 127

Django Documentation, Release 1.10.9.dev20171123183751

• Publisher B has two books with ratings 1 and 4.

• Publisher C has one book with rating 1.

Here’s an example with the Count aggregate:

>>> a, b = Publisher.objects.annotate(num_books=Count('book', distinct=True)).
→˓filter(book__rating__gt=3.0)
>>> a, a.num_books
(<Publisher: A>, 2)
>>> b, b.num_books
(<Publisher: B>, 2)

>>> a, b = Publisher.objects.filter(book__rating__gt=3.0).annotate(num_books=Count(
→˓'book'))
>>> a, a.num_books
(<Publisher: A>, 2)
>>> b, b.num_books
(<Publisher: B>, 1)

Both queries return a list of publishers that have at least one book with a rating exceeding 3.0, hence publisher C is
excluded.

In the first query, the annotation precedes the filter, so the filter has no effect on the annotation. distinct=True is
required to avoid a query bug.

The second query counts the number of books that have a rating exceeding 3.0 for each publisher. The filter precedes
the annotation, so the filter constrains the objects considered when calculating the annotation.

Here’s another example with the Avg aggregate:

>>> a, b = Publisher.objects.annotate(avg_rating=Avg('book__rating')).filter(book__
→˓rating__gt=3.0)
>>> a, a.avg_rating
(<Publisher: A>, 4.5) # (5+4)/2
>>> b, b.avg_rating
(<Publisher: B>, 2.5) # (1+4)/2

>>> a, b = Publisher.objects.filter(book__rating__gt=3.0).annotate(avg_rating=Avg(
→˓'book__rating'))
>>> a, a.avg_rating
(<Publisher: A>, 4.5) # (5+4)/2
>>> b, b.avg_rating
(<Publisher: B>, 4.0) # 4/1 (book with rating 1 excluded)

The first query asks for the average rating of all a publisher’s books for publisher’s that have at least one book with
a rating exceeding 3.0. The second query asks for the average of a publisher’s book’s ratings for only those ratings
exceeding 3.0.

It’s difficult to intuit how the ORM will translate complex querysets into SQL queries so when in doubt, inspect the
SQL with str(queryset.query) and write plenty of tests.

order_by()

Annotations can be used as a basis for ordering. When you define an order_by() clause, the aggregates you provide
can reference any alias defined as part of an annotate() clause in the query.

For example, to order a QuerySet of books by the number of authors that have contributed to the book, you could
use the following query:

128 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

>>> Book.objects.annotate(num_authors=Count('authors')).order_by('num_authors')

values()

Ordinarily, annotations are generated on a per-object basis - an annotated QuerySet will return one result for each
object in the original QuerySet. However, when a values() clause is used to constrain the columns that are
returned in the result set, the method for evaluating annotations is slightly different. Instead of returning an annotated
result for each result in the original QuerySet, the original results are grouped according to the unique combinations
of the fields specified in the values() clause. An annotation is then provided for each unique group; the annotation
is computed over all members of the group.

For example, consider an author query that attempts to find out the average rating of books written by each author:

>>> Author.objects.annotate(average_rating=Avg('book__rating'))

This will return one result for each author in the database, annotated with their average book rating.

However, the result will be slightly different if you use a values() clause:

>>> Author.objects.values('name').annotate(average_rating=Avg('book__rating'))

In this example, the authors will be grouped by name, so you will only get an annotated result for each unique author
name. This means if you have two authors with the same name, their results will be merged into a single result in the
output of the query; the average will be computed as the average over the books written by both authors.

Order of annotate() and values() clauses

As with the filter() clause, the order in which annotate() and values() clauses are applied to a query is
significant. If the values() clause precedes the annotate(), the annotation will be computed using the grouping
described by the values() clause.

However, if the annotate() clause precedes the values() clause, the annotations will be generated over the
entire query set. In this case, the values() clause only constrains the fields that are generated on output.

For example, if we reverse the order of the values() and annotate() clause from our previous example:

>>> Author.objects.annotate(average_rating=Avg('book__rating')).values('name',
→˓'average_rating')

This will now yield one unique result for each author; however, only the author’s name and the average_rating
annotation will be returned in the output data.

You should also note that average_rating has been explicitly included in the list of values to be returned. This is
required because of the ordering of the values() and annotate() clause.

If the values() clause precedes the annotate() clause, any annotations will be automatically added to the result
set. However, if the values() clause is applied after the annotate() clause, you need to explicitly include the
aggregate column.

Interaction with default ordering or order_by()

Fields that are mentioned in the order_by() part of a queryset (or which are used in the default ordering on a
model) are used when selecting the output data, even if they are not otherwise specified in the values() call. These

3.2. Models and databases 129

Django Documentation, Release 1.10.9.dev20171123183751

extra fields are used to group “like” results together and they can make otherwise identical result rows appear to be
separate. This shows up, particularly, when counting things.

By way of example, suppose you have a model like this:

from django.db import models

class Item(models.Model):
name = models.CharField(max_length=10)
data = models.IntegerField()

class Meta:
ordering = ["name"]

The important part here is the default ordering on the name field. If you want to count how many times each distinct
data value appears, you might try this:

Warning: not quite correct!
Item.objects.values("data").annotate(Count("id"))

...which will group the Item objects by their common data values and then count the number of id values in each
group. Except that it won’t quite work. The default ordering by name will also play a part in the grouping, so this
query will group by distinct (data, name) pairs, which isn’t what you want. Instead, you should construct this
queryset:

Item.objects.values("data").annotate(Count("id")).order_by()

...clearing any ordering in the query. You could also order by, say, data without any harmful effects, since that is
already playing a role in the query.

This behavior is the same as that noted in the queryset documentation for distinct() and the general rule is the
same: normally you won’t want extra columns playing a part in the result, so clear out the ordering, or at least make
sure it’s restricted only to those fields you also select in a values() call.

Note: You might reasonably ask why Django doesn’t remove the extraneous columns for you. The main reason is
consistency with distinct() and other places: Django never removes ordering constraints that you have specified
(and we can’t change those other methods’ behavior, as that would violate our API stability policy).

Aggregating annotations

You can also generate an aggregate on the result of an annotation. When you define an aggregate() clause, the
aggregates you provide can reference any alias defined as part of an annotate() clause in the query.

For example, if you wanted to calculate the average number of authors per book you first annotate the set of books
with the author count, then aggregate that author count, referencing the annotation field:

>>> from django.db.models import Count, Avg
>>> Book.objects.annotate(num_authors=Count('authors')).aggregate(Avg('num_authors'))
{'num_authors__avg': 1.66}

3.2.4 Search

A common task for web applications is to search some data in the database with user input. In a simple case, this
could be filtering a list of objects by a category. A more complex use case might require searching with weighting,

130 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

categorization, highlighting, multiple languages, and so on. This document explains some of the possible use cases
and the tools you can use.

We’ll refer to the same models used in Making queries.

Use Cases

Standard textual queries

Text-based fields have a selection of simple matching operations. For example, you may wish to allow lookup up an
author like so:

>>> Author.objects.filter(name__contains='Terry')
[<Author: Terry Gilliam>, <Author: Terry Jones>]

This is a very fragile solution as it requires the user to know an exact substring of the author’s name. A better approach
could be a case-insensitive match (icontains), but this is only marginally better.

A database’s more advanced comparison functions

If you’re using PostgreSQL, Django provides a selection of database specific tools to allow you to leverage more
complex querying options. Other databases have different selections of tools, possibly via plugins or user-defined
functions. Django doesn’t include any support for them at this time. We’ll use some examples from PostgreSQL to
demonstrate the kind of functionality databases may have.

Searching in other databases

All of the searching tools provided by django.contrib.postgres are constructed entirely on public APIs such
as custom lookups and database functions. Depending on your database, you should be able to construct queries to
allow similar APIs. If there are specific things which cannot be achieved this way, please open a ticket.

In the above example, we determined that a case insensitive lookup would be more useful. When dealing with non-
English names, a further improvement is to use unaccented comparison:

>>> Author.objects.filter(name__unaccent__icontains='Helen')
[<Author: Helen Mirren>, <Author: Helena Bonham Carter>, <Author: Hélène Joy>]

This shows another issue, where we are matching against a different spelling of the name. In this case we have an
asymmetry though - a search for Helen will pick up Helena or Hélène, but not the reverse. Another option would
be to use a trigram_similar comparison, which compares sequences of letters.

For example:

>>> Author.objects.filter(name__unaccent__lower__trigram_similar='Hélène')
[<Author: Helen Mirren>, <Author: Hélène Joy>]

Now we have a different problem - the longer name of “Helena Bonham Carter” doesn’t show up as it is much
longer. Trigram searches consider all combinations of three letters, and compares how many appear in both search and
source strings. For the longer name, there are more combinations which appear in the source string so it is no longer
considered a close match.

The correct choice of comparison functions here depends on your particular data set, for example the language(s) used
and the type of text being searched. All of the examples we’ve seen are on short strings where the user is likely to
enter something close (by varying definitions) to the source data.

3.2. Models and databases 131

Django Documentation, Release 1.10.9.dev20171123183751

Document-based search

Simple database operations are too simple an approach when you start considering large blocks of text. Whereas the
examples above can be thought of as operations on a string of characters, full text search looks at the actual words.
Depending on the system used, it’s likely to use some of the following ideas:

• Ignoring “stop words” such as “a”, “the”, “and”.

• Stemming words, so that “pony” and “ponies” are considered similar.

• Weighting words based on different criteria such as how frequently they appear in the text, or the importance of
the fields, such as the title or keywords, that they appear in.

There are many alternatives for using searching software, some of the most prominent are Elastic and Solr. These are
full document-based search solutions. To use them with data from Django models, you’ll need a layer which translates
your data into a textual document, including back-references to the database ids. When a search using the engine
returns a certain document, you can then look it up in the database. There are a variety of third-party libraries which
are designed to help with this process.

PostgreSQL support

PostgreSQL has its own full text search implementation built-in. While not as powerful as some other search engines,
it has the advantage of being inside your database and so can easily be combined with other relational queries such as
categorization.

The django.contrib.postgres module provides some helpers to make these queries. For example, a simple
query might be to select all the blog entries which mention “cheese”:

>>> Entry.objects.filter(body_text__search='cheese')
[<Entry: Cheese on Toast recipes>, <Entry: Pizza recipes>]

You can also filter on a combination of fields and on related models:

>>> Entry.objects.annotate(
... search=SearchVector('blog__tagline', 'body_text'),
...).filter(search='cheese')
[

<Entry: Cheese on Toast recipes>,
<Entry: Pizza Recipes>,
<Entry: Dairy farming in Argentina>,

]

See the contrib.postgres Full text search document for complete details.

3.2.5 Managers

class Manager

A Manager is the interface through which database query operations are provided to Django models. At least one
Manager exists for every model in a Django application.

The way Manager classes work is documented in Making queries; this document specifically touches on model
options that customize Manager behavior.

132 Chapter 3. Using Django

https://www.elastic.co/
http://lucene.apache.org/solr/

Django Documentation, Release 1.10.9.dev20171123183751

Manager names

By default, Django adds a Manager with the name objects to every Django model class. However, if you want
to use objects as a field name, or if you want to use a name other than objects for the Manager, you can
rename it on a per-model basis. To rename the Manager for a given class, define a class attribute of type models.
Manager() on that model. For example:

from django.db import models

class Person(models.Model):
#...
people = models.Manager()

Using this example model, Person.objects will generate an AttributeError exception, but Person.
people.all() will provide a list of all Person objects.

Custom managers

You can use a custom Manager in a particular model by extending the base Manager class and instantiating your
custom Manager in your model.

There are two reasons you might want to customize a Manager: to add extra Manager methods, and/or to modify
the initial QuerySet the Manager returns.

Adding extra manager methods

Adding extra Manager methods is the preferred way to add “table-level” functionality to your models. (For “row-
level” functionality – i.e., functions that act on a single instance of a model object – use Model methods, not custom
Manager methods.)

A custom Manager method can return anything you want. It doesn’t have to return a QuerySet.

For example, this custom Manager offers a method with_counts(), which returns a list of all OpinionPoll
objects, each with an extra num_responses attribute that is the result of an aggregate query:

from django.db import models

class PollManager(models.Manager):
def with_counts(self):

from django.db import connection
with connection.cursor() as cursor:

cursor.execute("""
SELECT p.id, p.question, p.poll_date, COUNT(*)
FROM polls_opinionpoll p, polls_response r
WHERE p.id = r.poll_id
GROUP BY p.id, p.question, p.poll_date
ORDER BY p.poll_date DESC""")

result_list = []
for row in cursor.fetchall():

p = self.model(id=row[0], question=row[1], poll_date=row[2])
p.num_responses = row[3]
result_list.append(p)

return result_list

class OpinionPoll(models.Model):
question = models.CharField(max_length=200)

3.2. Models and databases 133

Django Documentation, Release 1.10.9.dev20171123183751

poll_date = models.DateField()
objects = PollManager()

class Response(models.Model):
poll = models.ForeignKey(OpinionPoll, on_delete=models.CASCADE)
person_name = models.CharField(max_length=50)
response = models.TextField()

With this example, you’d use OpinionPoll.objects.with_counts() to return that list of OpinionPoll
objects with num_responses attributes.

Another thing to note about this example is that Manager methods can access self.model to get the model class
to which they’re attached.

Modifying a manager’s initial QuerySet

A Manager’s base QuerySet returns all objects in the system. For example, using this model:

from django.db import models

class Book(models.Model):
title = models.CharField(max_length=100)
author = models.CharField(max_length=50)

...the statement Book.objects.all() will return all books in the database.

You can override a Manager’s base QuerySet by overriding the Manager.get_queryset() method.
get_queryset() should return a QuerySet with the properties you require.

For example, the following model has two Managers – one that returns all objects, and one that returns only the
books by Roald Dahl:

First, define the Manager subclass.
class DahlBookManager(models.Manager):

def get_queryset(self):
return super(DahlBookManager, self).get_queryset().filter(author='Roald Dahl')

Then hook it into the Book model explicitly.
class Book(models.Model):

title = models.CharField(max_length=100)
author = models.CharField(max_length=50)

objects = models.Manager() # The default manager.
dahl_objects = DahlBookManager() # The Dahl-specific manager.

With this sample model, Book.objects.all() will return all books in the database, but Book.
dahl_objects.all() will only return the ones written by Roald Dahl.

Of course, because get_queryset() returns a QuerySet object, you can use filter(), exclude() and all
the other QuerySet methods on it. So these statements are all legal:

Book.dahl_objects.all()
Book.dahl_objects.filter(title='Matilda')
Book.dahl_objects.count()

This example also pointed out another interesting technique: using multiple managers on the same model. You can
attach as many Manager() instances to a model as you’d like. This is an easy way to define common “filters” for

134 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

your models.

For example:

class AuthorManager(models.Manager):
def get_queryset(self):

return super(AuthorManager, self).get_queryset().filter(role='A')

class EditorManager(models.Manager):
def get_queryset(self):

return super(EditorManager, self).get_queryset().filter(role='E')

class Person(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)
role = models.CharField(max_length=1, choices=(('A', _('Author')), ('E', _('Editor

→˓'))))
people = models.Manager()
authors = AuthorManager()
editors = EditorManager()

This example allows you to request Person.authors.all(), Person.editors.all(), and Person.
people.all(), yielding predictable results.

Default managers

Model._default_manager

If you use custom Manager objects, take note that the first Manager Django encounters (in the order in which
they’re defined in the model) has a special status. Django interprets the first Manager defined in a class as the
“default” Manager, and several parts of Django (including dumpdata) will use that Manager exclusively for that
model. As a result, it’s a good idea to be careful in your choice of default manager in order to avoid a situation where
overriding get_queryset() results in an inability to retrieve objects you’d like to work with.

You can specify a custom default manager using Meta.default_manager_name.

If you’re writing some code that must handle an unknown model, for example, in a third-party app that implements a
generic view, use this manager (or _base_manager) rather than assuming the model has an objects manager.

Base managers

Model._base_manager

Using managers for related object access

By default, Django uses an instance of the Model._base_manager manager class when accessing related objects
(i.e. choice.question), not the _default_manager on the related object. This is because Django needs to be
able to retrieve the related object, even if it would otherwise be filtered out (and hence be inaccessible) by the default
manager.

If the normal base manager class (django.db.models.Manager) isn’t appropriate for your circumstances, you
can tell Django which class to use by setting Meta.base_manager_name.

Manager’s aren’t used when querying on related models. For example, if the Question model from the tuto-
rial had a deleted field and a base manager that filters out instances with deleted=True, a queryset like

3.2. Models and databases 135

Django Documentation, Release 1.10.9.dev20171123183751

Choice.objects.filter(question__name__startswith='What') would include choices related to
deleted questions.

Don’t filter away any results in this type of manager subclass

This manager is used to access objects that are related to from some other model. In those situations, Django has to be
able to see all the objects for the model it is fetching, so that anything which is referred to can be retrieved.

If you override the get_queryset() method and filter out any rows, Django will return incorrect results. Don’t do
that. A manager that filters results in get_queryset() is not appropriate for use as a base manager.

Calling custom QuerySet methods from the manager

While most methods from the standard QuerySet are accessible directly from the Manager, this is only the case
for the extra methods defined on a custom QuerySet if you also implement them on the Manager:

class PersonQuerySet(models.QuerySet):
def authors(self):

return self.filter(role='A')

def editors(self):
return self.filter(role='E')

class PersonManager(models.Manager):
def get_queryset(self):

return PersonQuerySet(self.model, using=self._db)

def authors(self):
return self.get_queryset().authors()

def editors(self):
return self.get_queryset().editors()

class Person(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)
role = models.CharField(max_length=1, choices=(('A', _('Author')), ('E', _('Editor

→˓'))))
people = PersonManager()

This example allows you to call both authors() and editors() directly from the manager Person.people.

Creating a manager with QuerySet methods

In lieu of the above approach which requires duplicating methods on both the QuerySet and the Manager,
QuerySet.as_manager() can be used to create an instance of Manager with a copy of a custom QuerySet’s
methods:

class Person(models.Model):
...
people = PersonQuerySet.as_manager()

The Manager instance created by QuerySet.as_manager()will be virtually identical to the PersonManager
from the previous example.

136 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Not every QuerySet method makes sense at the Manager level; for instance we intentionally prevent the
QuerySet.delete() method from being copied onto the Manager class.

Methods are copied according to the following rules:

• Public methods are copied by default.

• Private methods (starting with an underscore) are not copied by default.

• Methods with a queryset_only attribute set to False are always copied.

• Methods with a queryset_only attribute set to True are never copied.

For example:

class CustomQuerySet(models.QuerySet):
Available on both Manager and QuerySet.
def public_method(self):

return

Available only on QuerySet.
def _private_method(self):

return

Available only on QuerySet.
def opted_out_public_method(self):

return
opted_out_public_method.queryset_only = True

Available on both Manager and QuerySet.
def _opted_in_private_method(self):

return
_opted_in_private_method.queryset_only = False

from_queryset()

classmethod from_queryset(queryset_class)

For advanced usage you might want both a custom Manager and a custom QuerySet. You can do that by call-
ing Manager.from_queryset() which returns a subclass of your base Manager with a copy of the custom
QuerySet methods:

class BaseManager(models.Manager):
def manager_only_method(self):

return

class CustomQuerySet(models.QuerySet):
def manager_and_queryset_method(self):

return

class MyModel(models.Model):
objects = BaseManager.from_queryset(CustomQuerySet)()

You may also store the generated class into a variable:

CustomManager = BaseManager.from_queryset(CustomQuerySet)

class MyModel(models.Model):
objects = CustomManager()

3.2. Models and databases 137

Django Documentation, Release 1.10.9.dev20171123183751

Custom managers and model inheritance

Here’s how Django handles custom managers and model inheritance:

1. Managers from base classes are always inherited by the child class, using Python’s normal name resolution order
(names on the child class override all others; then come names on the first parent class, and so on).

2. If no managers are declared on a model and/or its parents, Django automatically creates the objects manager.

3. The default manager on a class is either the one chosen with Meta.default_manager_name, or the first
manager declared on the model, or the default manager of the first parent model.

Some inheritance behaviors described above don’t apply unless you set manager_inheritance_from_future
= True on the model’s Meta class. In older versions and if you don’t set that attribute, manager inheritance varies
depending on the type of model inheritance (Abstract base classes, Multi-table inheritance, or Proxy models), espe-
cially with regards to electing the default manager.

These rules provide the necessary flexibility if you want to install a collection of custom managers on a group of
models, via an abstract base class, but still customize the default manager. For example, suppose you have this base
class:

class AbstractBase(models.Model):
...
objects = CustomManager()

class Meta:
abstract = True

If you use this directly in a subclass, objects will be the default manager if you declare no managers in the base
class:

class ChildA(AbstractBase):
...
This class has CustomManager as the default manager.
pass

If you want to inherit from AbstractBase, but provide a different default manager, you can provide the default
manager on the child class:

class ChildB(AbstractBase):
...
An explicit default manager.
default_manager = OtherManager()

Here, default_manager is the default. The objects manager is still available, since it’s inherited. It just isn’t
used as the default.

Finally for this example, suppose you want to add extra managers to the child class, but still use the default from
AbstractBase. You can’t add the new manager directly in the child class, as that would override the default and
you would have to also explicitly include all the managers from the abstract base class. The solution is to put the extra
managers in another base class and introduce it into the inheritance hierarchy after the defaults:

class ExtraManager(models.Model):
extra_manager = OtherManager()

class Meta:
abstract = True

class ChildC(AbstractBase, ExtraManager):

138 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

...
Default manager is CustomManager, but OtherManager is
also available via the "extra_manager" attribute.
pass

Note that while you can define a custom manager on the abstract model, you can’t invoke any methods using the
abstract model. That is:

ClassA.objects.do_something()

is legal, but:

AbstractBase.objects.do_something()

will raise an exception. This is because managers are intended to encapsulate logic for managing collections of objects.
Since you can’t have a collection of abstract objects, it doesn’t make sense to be managing them. If you have function-
ality that applies to the abstract model, you should put that functionality in a staticmethod or classmethod on
the abstract model.

Implementation concerns

Whatever features you add to your custom Manager, it must be possible to make a shallow copy of a Manager
instance; i.e., the following code must work:

>>> import copy
>>> manager = MyManager()
>>> my_copy = copy.copy(manager)

Django makes shallow copies of manager objects during certain queries; if your Manager cannot be copied, those
queries will fail.

This won’t be an issue for most custom managers. If you are just adding simple methods to your Manager, it is
unlikely that you will inadvertently make instances of your Manager uncopyable. However, if you’re overriding
__getattr__ or some other private method of your Manager object that controls object state, you should ensure
that you don’t affect the ability of your Manager to be copied.

3.2.6 Performing raw SQL queries

When the model query APIs don’t go far enough, you can fall back to writing raw SQL. Django gives you two ways
of performing raw SQL queries: you can use Manager.raw() to perform raw queries and return model instances,
or you can avoid the model layer entirely and execute custom SQL directly.

Warning: You should be very careful whenever you write raw SQL. Every time you use it, you should properly
escape any parameters that the user can control by using params in order to protect against SQL injection attacks.
Please read more about SQL injection protection.

Performing raw queries

The raw() manager method can be used to perform raw SQL queries that return model instances:

Manager.raw(raw_query, params=None, translations=None)

3.2. Models and databases 139

Django Documentation, Release 1.10.9.dev20171123183751

This method takes a raw SQL query, executes it, and returns a django.db.models.query.RawQuerySet
instance. This RawQuerySet instance can be iterated over just like a normal QuerySet to provide object instances.

This is best illustrated with an example. Suppose you have the following model:

class Person(models.Model):
first_name = models.CharField(...)
last_name = models.CharField(...)
birth_date = models.DateField(...)

You could then execute custom SQL like so:

>>> for p in Person.objects.raw('SELECT * FROM myapp_person'):
... print(p)
John Smith
Jane Jones

Of course, this example isn’t very exciting – it’s exactly the same as running Person.objects.all(). However,
raw() has a bunch of other options that make it very powerful.

Model table names

Where did the name of the Person table come from in that example?

By default, Django figures out a database table name by joining the model’s “app label” – the name you used in
manage.py startapp – to the model’s class name, with an underscore between them. In the example we’ve
assumed that the Person model lives in an app named myapp, so its table would be myapp_person.

For more details check out the documentation for the db_table option, which also lets you manually set the database
table name.

Warning: No checking is done on the SQL statement that is passed in to .raw(). Django expects that the
statement will return a set of rows from the database, but does nothing to enforce that. If the query does not return
rows, a (possibly cryptic) error will result.

Warning: If you are performing queries on MySQL, note that MySQL’s silent type coercion may cause unex-
pected results when mixing types. If you query on a string type column, but with an integer value, MySQL will
coerce the types of all values in the table to an integer before performing the comparison. For example, if your
table contains the values 'abc', 'def' and you query for WHERE mycolumn=0, both rows will match. To
prevent this, perform the correct typecasting before using the value in a query.

Warning: While a RawQuerySet instance can be iterated over like a normal QuerySet, RawQuerySet
doesn’t implement all methods you can use with QuerySet. For example, __bool__() and __len__() are
not defined in RawQuerySet, and thus all RawQuerySet instances are considered True. The reason these
methods are not implemented in RawQuerySet is that implementing them without internal caching would be a
performance drawback and adding such caching would be backward incompatible.

140 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Mapping query fields to model fields

raw() automatically maps fields in the query to fields on the model.

The order of fields in your query doesn’t matter. In other words, both of the following queries work identically:

>>> Person.objects.raw('SELECT id, first_name, last_name, birth_date FROM myapp_person
→˓')
...
>>> Person.objects.raw('SELECT last_name, birth_date, first_name, id FROM myapp_person
→˓')
...

Matching is done by name. This means that you can use SQL’s AS clauses to map fields in the query to model fields.
So if you had some other table that had Person data in it, you could easily map it into Person instances:

>>> Person.objects.raw('''SELECT first AS first_name,
... last AS last_name,
... bd AS birth_date,
... pk AS id,
... FROM some_other_table''')

As long as the names match, the model instances will be created correctly.

Alternatively, you can map fields in the query to model fields using the translations argument to raw(). This
is a dictionary mapping names of fields in the query to names of fields on the model. For example, the above query
could also be written:

>>> name_map = {'first': 'first_name', 'last': 'last_name', 'bd': 'birth_date', 'pk':
→˓'id'}
>>> Person.objects.raw('SELECT * FROM some_other_table', translations=name_map)

Index lookups

raw() supports indexing, so if you need only the first result you can write:

>>> first_person = Person.objects.raw('SELECT * FROM myapp_person')[0]

However, the indexing and slicing are not performed at the database level. If you have a large number of Person
objects in your database, it is more efficient to limit the query at the SQL level:

>>> first_person = Person.objects.raw('SELECT * FROM myapp_person LIMIT 1')[0]

Deferring model fields

Fields may also be left out:

>>> people = Person.objects.raw('SELECT id, first_name FROM myapp_person')

The Person objects returned by this query will be deferred model instances (see defer()). This means that the
fields that are omitted from the query will be loaded on demand. For example:

>>> for p in Person.objects.raw('SELECT id, first_name FROM myapp_person'):
... print(p.first_name, # This will be retrieved by the original query

3.2. Models and databases 141

Django Documentation, Release 1.10.9.dev20171123183751

... p.last_name) # This will be retrieved on demand

...
John Smith
Jane Jones

From outward appearances, this looks like the query has retrieved both the first name and last name. However, this
example actually issued 3 queries. Only the first names were retrieved by the raw() query – the last names were both
retrieved on demand when they were printed.

There is only one field that you can’t leave out - the primary key field. Django uses the primary key to identify model
instances, so it must always be included in a raw query. An InvalidQuery exception will be raised if you forget to
include the primary key.

Adding annotations

You can also execute queries containing fields that aren’t defined on the model. For example, we could use Post-
greSQL’s age() function to get a list of people with their ages calculated by the database:

>>> people = Person.objects.raw('SELECT *, age(birth_date) AS age FROM myapp_person')
>>> for p in people:
... print("%s is %s." % (p.first_name, p.age))
John is 37.
Jane is 42.
...

Passing parameters into raw()

If you need to perform parameterized queries, you can use the params argument to raw():

>>> lname = 'Doe'
>>> Person.objects.raw('SELECT * FROM myapp_person WHERE last_name = %s', [lname])

params is a list or dictionary of parameters. You’ll use %s placeholders in the query string for a list, or %(key)s
placeholders for a dictionary (where key is replaced by a dictionary key, of course), regardless of your database
engine. Such placeholders will be replaced with parameters from the params argument.

Note: Dictionary params are not supported with the SQLite backend; with this backend, you must pass parameters as
a list.

Warning: Do not use string formatting on raw queries!

It’s tempting to write the above query as:

>>> query = 'SELECT * FROM myapp_person WHERE last_name = %s' % lname
>>> Person.objects.raw(query)

Don’t.

Using the params argument completely protects you from SQL injection attacks, a common exploit where at-
tackers inject arbitrary SQL into your database. If you use string interpolation, sooner or later you’ll fall victim to
SQL injection. As long as you remember to always use the params argument you’ll be protected.

142 Chapter 3. Using Django

https://www.postgresql.org/docs/current/static/functions-datetime.html
https://www.postgresql.org/docs/current/static/functions-datetime.html
https://en.wikipedia.org/wiki/SQL_injection

Django Documentation, Release 1.10.9.dev20171123183751

Executing custom SQL directly

Sometimes even Manager.raw() isn’t quite enough: you might need to perform queries that don’t map cleanly to
models, or directly execute UPDATE, INSERT, or DELETE queries.

In these cases, you can always access the database directly, routing around the model layer entirely.

The object django.db.connection represents the default database connection. To use the database connec-
tion, call connection.cursor() to get a cursor object. Then, call cursor.execute(sql, [params]) to
execute the SQL and cursor.fetchone() or cursor.fetchall() to return the resulting rows.

For example:

from django.db import connection

def my_custom_sql(self):
with connection.cursor() as cursor:

cursor.execute("UPDATE bar SET foo = 1 WHERE baz = %s", [self.baz])
cursor.execute("SELECT foo FROM bar WHERE baz = %s", [self.baz])
row = cursor.fetchone()

return row

Note that if you want to include literal percent signs in the query, you have to double them in the case you are passing
parameters:

cursor.execute("SELECT foo FROM bar WHERE baz = '30%'")
cursor.execute("SELECT foo FROM bar WHERE baz = '30%%' AND id = %s", [self.id])

If you are using more than one database, you can use django.db.connections to obtain the connection (and
cursor) for a specific database. django.db.connections is a dictionary-like object that allows you to retrieve a
specific connection using its alias:

from django.db import connections
cursor = connections['my_db_alias'].cursor()
Your code here...

By default, the Python DB API will return results without their field names, which means you end up with a list
of values, rather than a dict. At a small performance and memory cost, you can return results as a dict by using
something like this:

def dictfetchall(cursor):
"Return all rows from a cursor as a dict"
columns = [col[0] for col in cursor.description]
return [

dict(zip(columns, row))
for row in cursor.fetchall()

]

Another option is to use collections.namedtuple() from the Python standard library. A namedtuple is a
tuple-like object that has fields accessible by attribute lookup; it’s also indexable and iterable. Results are immutable
and accessible by field names or indices, which might be useful:

from collections import namedtuple

def namedtuplefetchall(cursor):
"Return all rows from a cursor as a namedtuple"
desc = cursor.description

3.2. Models and databases 143

https://docs.python.org/3/library/collections.html#collections.namedtuple

Django Documentation, Release 1.10.9.dev20171123183751

nt_result = namedtuple('Result', [col[0] for col in desc])
return [nt_result(*row) for row in cursor.fetchall()]

Here is an example of the difference between the three:

>>> cursor.execute("SELECT id, parent_id FROM test LIMIT 2");
>>> cursor.fetchall()
((54360982, None), (54360880, None))

>>> cursor.execute("SELECT id, parent_id FROM test LIMIT 2");
>>> dictfetchall(cursor)
[{'parent_id': None, 'id': 54360982}, {'parent_id': None, 'id': 54360880}]

>>> cursor.execute("SELECT id, parent_id FROM test LIMIT 2");
>>> results = namedtuplefetchall(cursor)
>>> results
[Result(id=54360982, parent_id=None), Result(id=54360880, parent_id=None)]
>>> results[0].id
54360982
>>> results[0][0]
54360982

Connections and cursors

connection and cursor mostly implement the standard Python DB-API described in PEP 249 — except when it
comes to transaction handling.

If you’re not familiar with the Python DB-API, note that the SQL statement in cursor.execute() uses placehold-
ers, "%s", rather than adding parameters directly within the SQL. If you use this technique, the underlying database
library will automatically escape your parameters as necessary.

Also note that Django expects the "%s" placeholder, not the "?" placeholder, which is used by the SQLite Python
bindings. This is for the sake of consistency and sanity.

Using a cursor as a context manager:

with connection.cursor() as c:
c.execute(...)

is equivalent to:

c = connection.cursor()
try:

c.execute(...)
finally:

c.close()

3.2.7 Database transactions

Django gives you a few ways to control how database transactions are managed.

144 Chapter 3. Using Django

https://www.python.org/dev/peps/pep-0249

Django Documentation, Release 1.10.9.dev20171123183751

Managing database transactions

Django’s default transaction behavior

Django’s default behavior is to run in autocommit mode. Each query is immediately committed to the database, unless
a transaction is active. See below for details.

Django uses transactions or savepoints automatically to guarantee the integrity of ORM operations that require multiple
queries, especially delete() and update() queries.

Django’s TestCase class also wraps each test in a transaction for performance reasons.

Tying transactions to HTTP requests

A common way to handle transactions on the web is to wrap each request in a transaction. Set ATOMIC_REQUESTS
to True in the configuration of each database for which you want to enable this behavior.

It works like this. Before calling a view function, Django starts a transaction. If the response is produced without
problems, Django commits the transaction. If the view produces an exception, Django rolls back the transaction.

You may perform subtransactions using savepoints in your view code, typically with the atomic() context manager.
However, at the end of the view, either all or none of the changes will be committed.

Warning: While the simplicity of this transaction model is appealing, it also makes it inefficient when traffic
increases. Opening a transaction for every view has some overhead. The impact on performance depends on the
query patterns of your application and on how well your database handles locking.

Per-request transactions and streaming responses

When a view returns a StreamingHttpResponse, reading the contents of the response will often execute code to
generate the content. Since the view has already returned, such code runs outside of the transaction.

Generally speaking, it isn’t advisable to write to the database while generating a streaming response, since there’s no
sensible way to handle errors after starting to send the response.

In practice, this feature simply wraps every view function in the atomic() decorator described below.

Note that only the execution of your view is enclosed in the transactions. Middleware runs outside of the transaction,
and so does the rendering of template responses.

When ATOMIC_REQUESTS is enabled, it’s still possible to prevent views from running in a transaction.

non_atomic_requests(using=None)
This decorator will negate the effect of ATOMIC_REQUESTS for a given view:

from django.db import transaction

@transaction.non_atomic_requests
def my_view(request):

do_stuff()

@transaction.non_atomic_requests(using='other')
def my_other_view(request):

do_stuff_on_the_other_database()

3.2. Models and databases 145

Django Documentation, Release 1.10.9.dev20171123183751

It only works if it’s applied to the view itself.

Controlling transactions explicitly

Django provides a single API to control database transactions.

atomic(using=None, savepoint=True)
Atomicity is the defining property of database transactions. atomic allows us to create a block of code within
which the atomicity on the database is guaranteed. If the block of code is successfully completed, the changes
are committed to the database. If there is an exception, the changes are rolled back.

atomic blocks can be nested. In this case, when an inner block completes successfully, its effects can still be
rolled back if an exception is raised in the outer block at a later point.

atomic is usable both as a decorator:

from django.db import transaction

@transaction.atomic
def viewfunc(request):

This code executes inside a transaction.
do_stuff()

and as a context manager:

from django.db import transaction

def viewfunc(request):
This code executes in autocommit mode (Django's default).
do_stuff()

with transaction.atomic():
This code executes inside a transaction.
do_more_stuff()

Wrapping atomic in a try/except block allows for natural handling of integrity errors:

from django.db import IntegrityError, transaction

@transaction.atomic
def viewfunc(request):

create_parent()

try:
with transaction.atomic():

generate_relationships()
except IntegrityError:

handle_exception()

add_children()

In this example, even if generate_relationships() causes a database error by breaking an integrity
constraint, you can execute queries in add_children(), and the changes from create_parent() are
still there. Note that any operations attempted in generate_relationships() will already have been
rolled back safely when handle_exception() is called, so the exception handler can also operate on the
database if necessary.

146 Chapter 3. Using Django

https://docs.python.org/3/glossary.html#term-decorator
https://docs.python.org/3/glossary.html#term-context-manager

Django Documentation, Release 1.10.9.dev20171123183751

Avoid catching exceptions inside atomic!

When exiting an atomic block, Django looks at whether it’s exited normally or with an exception to determine
whether to commit or roll back. If you catch and handle exceptions inside an atomic block, you may hide
from Django the fact that a problem has happened. This can result in unexpected behavior.

This is mostly a concern for DatabaseError and its subclasses such as IntegrityError. Af-
ter such an error, the transaction is broken and Django will perform a rollback at the end of the
atomic block. If you attempt to run database queries before the rollback happens, Django will raise a
TransactionManagementError. You may also encounter this behavior when an ORM-related signal
handler raises an exception.

The correct way to catch database errors is around an atomic block as shown above. If necessary, add an extra
atomic block for this purpose. This pattern has another advantage: it delimits explicitly which operations will
be rolled back if an exception occurs.

If you catch exceptions raised by raw SQL queries, Django’s behavior is unspecified and database-dependent.

In order to guarantee atomicity, atomic disables some APIs. Attempting to commit, roll back, or change the
autocommit state of the database connection within an atomic block will raise an exception.

atomic takes a using argument which should be the name of a database. If this argument isn’t provided,
Django uses the "default" database.

Under the hood, Django’s transaction management code:

• opens a transaction when entering the outermost atomic block;

• creates a savepoint when entering an inner atomic block;

• releases or rolls back to the savepoint when exiting an inner block;

• commits or rolls back the transaction when exiting the outermost block.

You can disable the creation of savepoints for inner blocks by setting the savepoint argument to False.
If an exception occurs, Django will perform the rollback when exiting the first parent block with a savepoint
if there is one, and the outermost block otherwise. Atomicity is still guaranteed by the outer transaction. This
option should only be used if the overhead of savepoints is noticeable. It has the drawback of breaking the error
handling described above.

You may use atomic when autocommit is turned off. It will only use savepoints, even for the outermost block.

Performance considerations

Open transactions have a performance cost for your database server. To minimize this overhead, keep your transactions
as short as possible. This is especially important if you’re using atomic() in long-running processes, outside of
Django’s request / response cycle.

Autocommit

Why Django uses autocommit

In the SQL standards, each SQL query starts a transaction, unless one is already active. Such transactions must then
be explicitly committed or rolled back.

This isn’t always convenient for application developers. To alleviate this problem, most databases provide an auto-
commit mode. When autocommit is turned on and no transaction is active, each SQL query gets wrapped in its own

3.2. Models and databases 147

Django Documentation, Release 1.10.9.dev20171123183751

transaction. In other words, not only does each such query start a transaction, but the transaction also gets automati-
cally committed or rolled back, depending on whether the query succeeded.

PEP 249, the Python Database API Specification v2.0, requires autocommit to be initially turned off. Django overrides
this default and turns autocommit on.

To avoid this, you can deactivate the transaction management, but it isn’t recommended.

Deactivating transaction management

You can totally disable Django’s transaction management for a given database by setting AUTOCOMMIT to False in
its configuration. If you do this, Django won’t enable autocommit, and won’t perform any commits. You’ll get the
regular behavior of the underlying database library.

This requires you to commit explicitly every transaction, even those started by Django or by third-party libraries. Thus,
this is best used in situations where you want to run your own transaction-controlling middleware or do something
really strange.

Performing actions after commit

Sometimes you need to perform an action related to the current database transaction, but only if the transaction suc-
cessfully commits. Examples might include a Celery task, an email notification, or a cache invalidation.

Django provides the on_commit() function to register callback functions that should be executed after a transaction
is successfully committed:

on_commit(func, using=None)

Pass any function (that takes no arguments) to on_commit():

from django.db import transaction

def do_something():
pass # send a mail, invalidate a cache, fire off a Celery task, etc.

transaction.on_commit(do_something)

You can also wrap your function in a lambda:

transaction.on_commit(lambda: some_celery_task.delay('arg1'))

The function you pass in will be called immediately after a hypothetical database write made where on_commit()
is called would be successfully committed.

If you call on_commit() while there isn’t an active transaction, the callback will be executed immediately.

If that hypothetical database write is instead rolled back (typically when an unhandled exception is raised in an
atomic() block), your function will be discarded and never called.

Savepoints

Savepoints (i.e. nested atomic() blocks) are handled correctly. That is, an on_commit() callable registered after
a savepoint (in a nested atomic() block) will be called after the outer transaction is committed, but not if a rollback
to that savepoint or any previous savepoint occurred during the transaction:

148 Chapter 3. Using Django

https://www.python.org/dev/peps/pep-0249
http://www.celeryproject.org/

Django Documentation, Release 1.10.9.dev20171123183751

with transaction.atomic(): # Outer atomic, start a new transaction
transaction.on_commit(foo)

with transaction.atomic(): # Inner atomic block, create a savepoint
transaction.on_commit(bar)

foo() and then bar() will be called when leaving the outermost block

On the other hand, when a savepoint is rolled back (due to an exception being raised), the inner callable will not be
called:

with transaction.atomic(): # Outer atomic, start a new transaction
transaction.on_commit(foo)

try:
with transaction.atomic(): # Inner atomic block, create a savepoint

transaction.on_commit(bar)
raise SomeError() # Raising an exception - abort the savepoint

except SomeError:
pass

foo() will be called, but not bar()

Order of execution

On-commit functions for a given transaction are executed in the order they were registered.

Exception handling

If one on-commit function within a given transaction raises an uncaught exception, no later registered functions in
that same transaction will run. This is, of course, the same behavior as if you’d executed the functions sequentially
yourself without on_commit().

Timing of execution

Your callbacks are executed after a successful commit, so a failure in a callback will not cause the transaction to roll
back. They are executed conditionally upon the success of the transaction, but they are not part of the transaction.
For the intended use cases (mail notifications, Celery tasks, etc.), this should be fine. If it’s not (if your follow-up
action is so critical that its failure should mean the failure of the transaction itself), then you don’t want to use the
on_commit() hook. Instead, you may want two-phase commit such as the psycopg Two-Phase Commit protocol
support and the optional Two-Phase Commit Extensions in the Python DB-API specification.

Callbacks are not run until autocommit is restored on the connection following the commit (because otherwise any
queries done in a callback would open an implicit transaction, preventing the connection from going back into auto-
commit mode).

When in autocommit mode and outside of an atomic() block, the function will run immediately, not on commit.

On-commit functions only work with autocommit mode and the atomic() (or ATOMIC_REQUESTS) transaction
API. Calling on_commit() when autocommit is disabled and you are not within an atomic block will result in an
error.

3.2. Models and databases 149

https://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://initd.org/psycopg/docs/usage.html#tpc
http://initd.org/psycopg/docs/usage.html#tpc
https://www.python.org/dev/peps/pep-0249/#optional-two-phase-commit-extensions

Django Documentation, Release 1.10.9.dev20171123183751

Use in tests

Django’s TestCase class wraps each test in a transaction and rolls back that transaction after each test, in order to
provide test isolation. This means that no transaction is ever actually committed, thus your on_commit() callbacks
will never be run. If you need to test the results of an on_commit() callback, use a TransactionTestCase
instead.

Why no rollback hook?

A rollback hook is harder to implement robustly than a commit hook, since a variety of things can cause an implicit
rollback.

For instance, if your database connection is dropped because your process was killed without a chance to shut down
gracefully, your rollback hook will never run.

The solution is simple: instead of doing something during the atomic block (transaction) and then undoing it if the
transaction fails, use on_commit() to delay doing it in the first place until after the transaction succeeds. It’s a lot
easier to undo something you never did in the first place!

Low-level APIs

Warning: Always prefer atomic() if possible at all. It accounts for the idiosyncrasies of each database and
prevents invalid operations.

The low level APIs are only useful if you’re implementing your own transaction management.

Autocommit

Django provides a straightforward API in the django.db.transaction module to manage the autocommit state
of each database connection.

get_autocommit(using=None)

set_autocommit(autocommit, using=None)

These functions take a using argument which should be the name of a database. If it isn’t provided, Django uses the
"default" database.

Autocommit is initially turned on. If you turn it off, it’s your responsibility to restore it.

Once you turn autocommit off, you get the default behavior of your database adapter, and Django won’t help you.
Although that behavior is specified in PEP 249, implementations of adapters aren’t always consistent with one another.
Review the documentation of the adapter you’re using carefully.

You must ensure that no transaction is active, usually by issuing a commit() or a rollback(), before turning
autocommit back on.

Django will refuse to turn autocommit off when an atomic() block is active, because that would break atomicity.

Transactions

A transaction is an atomic set of database queries. Even if your program crashes, the database guarantees that either
all the changes will be applied, or none of them.

150 Chapter 3. Using Django

https://www.python.org/dev/peps/pep-0249

Django Documentation, Release 1.10.9.dev20171123183751

Django doesn’t provide an API to start a transaction. The expected way to start a transaction is to disable autocommit
with set_autocommit().

Once you’re in a transaction, you can choose either to apply the changes you’ve performed until this point with
commit(), or to cancel them with rollback(). These functions are defined in django.db.transaction.

commit(using=None)

rollback(using=None)

These functions take a using argument which should be the name of a database. If it isn’t provided, Django uses the
"default" database.

Django will refuse to commit or to rollback when an atomic() block is active, because that would break atomicity.

Savepoints

A savepoint is a marker within a transaction that enables you to roll back part of a transaction, rather than the full
transaction. Savepoints are available with the SQLite (≥ 3.6.8), PostgreSQL, Oracle and MySQL (when using the
InnoDB storage engine) backends. Other backends provide the savepoint functions, but they’re empty operations –
they don’t actually do anything.

Savepoints aren’t especially useful if you are using autocommit, the default behavior of Django. However, once you
open a transaction with atomic(), you build up a series of database operations awaiting a commit or rollback. If you
issue a rollback, the entire transaction is rolled back. Savepoints provide the ability to perform a fine-grained rollback,
rather than the full rollback that would be performed by transaction.rollback().

When the atomic() decorator is nested, it creates a savepoint to allow partial commit or rollback. You’re strongly
encouraged to use atomic() rather than the functions described below, but they’re still part of the public API, and
there’s no plan to deprecate them.

Each of these functions takes a using argument which should be the name of a database for which the behavior
applies. If no using argument is provided then the "default" database is used.

Savepoints are controlled by three functions in django.db.transaction:

savepoint(using=None)
Creates a new savepoint. This marks a point in the transaction that is known to be in a “good” state. Returns the
savepoint ID (sid).

savepoint_commit(sid, using=None)
Releases savepoint sid. The changes performed since the savepoint was created become part of the transaction.

savepoint_rollback(sid, using=None)
Rolls back the transaction to savepoint sid.

These functions do nothing if savepoints aren’t supported or if the database is in autocommit mode.

In addition, there’s a utility function:

clean_savepoints(using=None)
Resets the counter used to generate unique savepoint IDs.

The following example demonstrates the use of savepoints:

from django.db import transaction

open a transaction
@transaction.atomic
def viewfunc(request):

3.2. Models and databases 151

Django Documentation, Release 1.10.9.dev20171123183751

a.save()
transaction now contains a.save()

sid = transaction.savepoint()

b.save()
transaction now contains a.save() and b.save()

if want_to_keep_b:
transaction.savepoint_commit(sid)
open transaction still contains a.save() and b.save()

else:
transaction.savepoint_rollback(sid)
open transaction now contains only a.save()

Savepoints may be used to recover from a database error by performing a partial rollback. If you’re doing this inside
an atomic() block, the entire block will still be rolled back, because it doesn’t know you’ve handled the situation
at a lower level! To prevent this, you can control the rollback behavior with the following functions.

get_rollback(using=None)

set_rollback(rollback, using=None)

Setting the rollback flag to True forces a rollback when exiting the innermost atomic block. This may be useful to
trigger a rollback without raising an exception.

Setting it to False prevents such a rollback. Before doing that, make sure you’ve rolled back the transaction to a
known-good savepoint within the current atomic block! Otherwise you’re breaking atomicity and data corruption may
occur.

Database-specific notes

Savepoints in SQLite

While SQLite ≥ 3.6.8 supports savepoints, a flaw in the design of the sqlite3 module makes them hardly usable.

When autocommit is enabled, savepoints don’t make sense. When it’s disabled, sqlite3 commits implicitly before
savepoint statements. (In fact, it commits before any statement other than SELECT, INSERT, UPDATE, DELETE and
REPLACE.) This bug has two consequences:

• The low level APIs for savepoints are only usable inside a transaction ie. inside an atomic() block.

• It’s impossible to use atomic() when autocommit is turned off.

Transactions in MySQL

If you’re using MySQL, your tables may or may not support transactions; it depends on your MySQL version and the
table types you’re using. (By “table types,” we mean something like “InnoDB” or “MyISAM”.) MySQL transaction
peculiarities are outside the scope of this article, but the MySQL site has information on MySQL transactions.

If your MySQL setup does not support transactions, then Django will always function in autocommit mode: statements
will be executed and committed as soon as they’re called. If your MySQL setup does support transactions, Django
will handle transactions as explained in this document.

152 Chapter 3. Using Django

https://docs.python.org/3/library/sqlite3.html#module-sqlite3
https://docs.python.org/3/library/sqlite3.html#module-sqlite3
https://dev.mysql.com/doc/refman/en/sql-syntax-transactions.html

Django Documentation, Release 1.10.9.dev20171123183751

Handling exceptions within PostgreSQL transactions

Note: This section is relevant only if you’re implementing your own transaction management. This problem cannot
occur in Django’s default mode and atomic() handles it automatically.

Inside a transaction, when a call to a PostgreSQL cursor raises an exception (typically IntegrityError), all
subsequent SQL in the same transaction will fail with the error “current transaction is aborted, queries ignored
until end of transaction block”. While simple use of save() is unlikely to raise an exception in PostgreSQL,
there are more advanced usage patterns which might, such as saving objects with unique fields, saving using the
force_insert/force_update flag, or invoking custom SQL.

There are several ways to recover from this sort of error.

Transaction rollback

The first option is to roll back the entire transaction. For example:

a.save() # Succeeds, but may be undone by transaction rollback
try:

b.save() # Could throw exception
except IntegrityError:

transaction.rollback()
c.save() # Succeeds, but a.save() may have been undone

Calling transaction.rollback() rolls back the entire transaction. Any uncommitted database operations will
be lost. In this example, the changes made by a.save() would be lost, even though that operation raised no error
itself.

Savepoint rollback

You can use savepoints to control the extent of a rollback. Before performing a database operation that could fail, you
can set or update the savepoint; that way, if the operation fails, you can roll back the single offending operation, rather
than the entire transaction. For example:

a.save() # Succeeds, and never undone by savepoint rollback
sid = transaction.savepoint()
try:

b.save() # Could throw exception
transaction.savepoint_commit(sid)

except IntegrityError:
transaction.savepoint_rollback(sid)

c.save() # Succeeds, and a.save() is never undone

In this example, a.save() will not be undone in the case where b.save() raises an exception.

3.2.8 Multiple databases

This topic guide describes Django’s support for interacting with multiple databases. Most of the rest of Django’s
documentation assumes you are interacting with a single database. If you want to interact with multiple databases,
you’ll need to take some additional steps.

3.2. Models and databases 153

Django Documentation, Release 1.10.9.dev20171123183751

Defining your databases

The first step to using more than one database with Django is to tell Django about the database servers you’ll be
using. This is done using the DATABASES setting. This setting maps database aliases, which are a way to refer to a
specific database throughout Django, to a dictionary of settings for that specific connection. The settings in the inner
dictionaries are described fully in the DATABASES documentation.

Databases can have any alias you choose. However, the alias default has special significance. Django uses the
database with the alias of default when no other database has been selected.

The following is an example settings.py snippet defining two databases – a default PostgreSQL database and a
MySQL database called users:

DATABASES = {
'default': {

'NAME': 'app_data',
'ENGINE': 'django.db.backends.postgresql',
'USER': 'postgres_user',
'PASSWORD': 's3krit'

},
'users': {

'NAME': 'user_data',
'ENGINE': 'django.db.backends.mysql',
'USER': 'mysql_user',
'PASSWORD': 'priv4te'

}
}

If the concept of a default database doesn’t make sense in the context of your project, you need to be careful to
always specify the database that you want to use. Django requires that a default database entry be defined, but the
parameters dictionary can be left blank if it will not be used. To do this, you must set up DATABASE_ROUTERS for
all of your apps’ models, including those in any contrib and third-party apps you’re using, so that no queries are routed
to the default database. The following is an example settings.py snippet defining two non-default databases, with
the default entry intentionally left empty:

DATABASES = {
'default': {},
'users': {

'NAME': 'user_data',
'ENGINE': 'django.db.backends.mysql',
'USER': 'mysql_user',
'PASSWORD': 'superS3cret'

},
'customers': {

'NAME': 'customer_data',
'ENGINE': 'django.db.backends.mysql',
'USER': 'mysql_cust',
'PASSWORD': 'veryPriv@ate'

}
}

If you attempt to access a database that you haven’t defined in your DATABASES setting, Django will raise a django.
db.utils.ConnectionDoesNotExist exception.

154 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Synchronizing your databases

The migrate management command operates on one database at a time. By default, it operates on the default
database, but by providing the --database option, you can tell it to synchronize a different database. So, to
synchronize all models onto all databases in the first example above, you would need to call:

$./manage.py migrate
$./manage.py migrate --database=users

If you don’t want every application to be synchronized onto a particular database, you can define a database router
that implements a policy constraining the availability of particular models.

If, as in the second example above, you’ve left the default database empty, you must provide a database name each
time you run migrate. Omitting the database name would raise an error. For the second example:

$./manage.py migrate --database=users
$./manage.py migrate --database=customers

Using other management commands

Most other django-admin commands that interact with the database operate in the same way as migrate – they
only ever operate on one database at a time, using --database to control the database used.

An exception to this rule is the makemigrations command. It validates the migration history in the databases
to catch problems with the existing migration files (which could be caused by editing them) before creating new
migrations. By default, it checks only the default database, but it consults the allow_migrate() method of
routers if any are installed.

Migration consistency checks were added. Checks based on database routers were added in 1.10.1.

Automatic database routing

The easiest way to use multiple databases is to set up a database routing scheme. The default routing scheme ensures
that objects remain ‘sticky’ to their original database (i.e., an object retrieved from the foo database will be saved on
the same database). The default routing scheme ensures that if a database isn’t specified, all queries fall back to the
default database.

You don’t have to do anything to activate the default routing scheme – it is provided ‘out of the box’ on every Django
project. However, if you want to implement more interesting database allocation behaviors, you can define and install
your own database routers.

Database routers

A database Router is a class that provides up to four methods:

db_for_read(model, **hints)
Suggest the database that should be used for read operations for objects of type model.

If a database operation is able to provide any additional information that might assist in selecting a database, it
will be provided in the hints dictionary. Details on valid hints are provided below.

Returns None if there is no suggestion.

db_for_write(model, **hints)
Suggest the database that should be used for writes of objects of type Model.

3.2. Models and databases 155

Django Documentation, Release 1.10.9.dev20171123183751

If a database operation is able to provide any additional information that might assist in selecting a database, it
will be provided in the hints dictionary. Details on valid hints are provided below.

Returns None if there is no suggestion.

allow_relation(obj1, obj2, **hints)
Return True if a relation between obj1 and obj2 should be allowed, False if the relation should be pre-
vented, or None if the router has no opinion. This is purely a validation operation, used by foreign key and
many to many operations to determine if a relation should be allowed between two objects.

allow_migrate(db, app_label, model_name=None, **hints)
Determine if the migration operation is allowed to run on the database with alias db. Return True if the
operation should run, False if it shouldn’t run, or None if the router has no opinion.

The app_label positional argument is the label of the application being migrated.

model_name is set by most migration operations to the value of model._meta.model_name (the lower-
cased version of the model __name__) of the model being migrated. Its value is None for the RunPython
and RunSQL operations unless they provide it using hints.

hints are used by certain operations to communicate additional information to the router.

When model_name is set, hints normally contains the model class under the key 'model'. Note that it
may be a historical model, and thus not have any custom attributes, methods, or managers. You should only rely
on _meta.

This method can also be used to determine the availability of a model on a given database.

makemigrations always creates migrations for model changes, but if allow_migrate() returns False,
any migration operations for the model_name will be silently skipped when running migrate on the db.
Changing the behavior of allow_migrate() for models that already have migrations may result in broken
foreign keys, extra tables, or missing tables. When makemigrations verifies the migration history, it skips
databases where no app is allowed to migrate.

A router doesn’t have to provide all these methods – it may omit one or more of them. If one of the methods is omitted,
Django will skip that router when performing the relevant check.

Hints

The hints received by the database router can be used to decide which database should receive a given request.

At present, the only hint that will be provided is instance, an object instance that is related to the read or write
operation that is underway. This might be the instance that is being saved, or it might be an instance that is being
added in a many-to-many relation. In some cases, no instance hint will be provided at all. The router checks for the
existence of an instance hint, and determine if that hint should be used to alter routing behavior.

Using routers

Database routers are installed using the DATABASE_ROUTERS setting. This setting defines a list of class names, each
specifying a router that should be used by the master router (django.db.router).

The master router is used by Django’s database operations to allocate database usage. Whenever a query needs to know
which database to use, it calls the master router, providing a model and a hint (if available). Django then tries each
router in turn until a database suggestion can be found. If no suggestion can be found, it tries the current _state.db
of the hint instance. If a hint instance wasn’t provided, or the instance doesn’t currently have database state, the master
router will allocate the default database.

156 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

An example

Example purposes only!

This example is intended as a demonstration of how the router infrastructure can be used to alter database usage. It
intentionally ignores some complex issues in order to demonstrate how routers are used.

This example won’t work if any of the models in myapp contain relationships to models outside of the other
database. Cross-database relationships introduce referential integrity problems that Django can’t currently handle.

The primary/replica (referred to as master/slave by some databases) configuration described is also flawed – it doesn’t
provide any solution for handling replication lag (i.e., query inconsistencies introduced because of the time taken for a
write to propagate to the replicas). It also doesn’t consider the interaction of transactions with the database utilization
strategy.

So - what does this mean in practice? Let’s consider another sample configuration. This one will have several
databases: one for the auth application, and all other apps using a primary/replica setup with two read replicas.
Here are the settings specifying these databases:

DATABASES = {
'default': {},
'auth_db': {

'NAME': 'auth_db',
'ENGINE': 'django.db.backends.mysql',
'USER': 'mysql_user',
'PASSWORD': 'swordfish',

},
'primary': {

'NAME': 'primary',
'ENGINE': 'django.db.backends.mysql',
'USER': 'mysql_user',
'PASSWORD': 'spam',

},
'replica1': {

'NAME': 'replica1',
'ENGINE': 'django.db.backends.mysql',
'USER': 'mysql_user',
'PASSWORD': 'eggs',

},
'replica2': {

'NAME': 'replica2',
'ENGINE': 'django.db.backends.mysql',
'USER': 'mysql_user',
'PASSWORD': 'bacon',

},
}

Now we’ll need to handle routing. First we want a router that knows to send queries for the auth app to auth_db:

class AuthRouter(object):
"""
A router to control all database operations on models in the
auth application.
"""
def db_for_read(self, model, **hints):

"""
Attempts to read auth models go to auth_db.

3.2. Models and databases 157

Django Documentation, Release 1.10.9.dev20171123183751

"""
if model._meta.app_label == 'auth':

return 'auth_db'
return None

def db_for_write(self, model, **hints):
"""
Attempts to write auth models go to auth_db.
"""
if model._meta.app_label == 'auth':

return 'auth_db'
return None

def allow_relation(self, obj1, obj2, **hints):
"""
Allow relations if a model in the auth app is involved.
"""
if obj1._meta.app_label == 'auth' or \

obj2._meta.app_label == 'auth':
return True

return None

def allow_migrate(self, db, app_label, model_name=None, **hints):
"""
Make sure the auth app only appears in the 'auth_db'
database.
"""
if app_label == 'auth':

return db == 'auth_db'
return None

And we also want a router that sends all other apps to the primary/replica configuration, and randomly chooses a
replica to read from:

import random

class PrimaryReplicaRouter(object):
def db_for_read(self, model, **hints):

"""
Reads go to a randomly-chosen replica.
"""
return random.choice(['replica1', 'replica2'])

def db_for_write(self, model, **hints):
"""
Writes always go to primary.
"""
return 'primary'

def allow_relation(self, obj1, obj2, **hints):
"""
Relations between objects are allowed if both objects are
in the primary/replica pool.
"""
db_list = ('primary', 'replica1', 'replica2')
if obj1._state.db in db_list and obj2._state.db in db_list:

return True
return None

158 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

def allow_migrate(self, db, app_label, model_name=None, **hints):
"""
All non-auth models end up in this pool.
"""
return True

Finally, in the settings file, we add the following (substituting path.to. with the actual Python path to the module(s)
where the routers are defined):

DATABASE_ROUTERS = ['path.to.AuthRouter', 'path.to.PrimaryReplicaRouter']

The order in which routers are processed is significant. Routers will be queried in the order they are
listed in the DATABASE_ROUTERS setting. In this example, the AuthRouter is processed before the
PrimaryReplicaRouter, and as a result, decisions concerning the models in auth are processed before
any other decision is made. If the DATABASE_ROUTERS setting listed the two routers in the other order,
PrimaryReplicaRouter.allow_migrate() would be processed first. The catch-all nature of the Prima-
ryReplicaRouter implementation would mean that all models would be available on all databases.

With this setup installed, lets run some Django code:

>>> # This retrieval will be performed on the 'auth_db' database
>>> fred = User.objects.get(username='fred')
>>> fred.first_name = 'Frederick'

>>> # This save will also be directed to 'auth_db'
>>> fred.save()

>>> # These retrieval will be randomly allocated to a replica database
>>> dna = Person.objects.get(name='Douglas Adams')

>>> # A new object has no database allocation when created
>>> mh = Book(title='Mostly Harmless')

>>> # This assignment will consult the router, and set mh onto
>>> # the same database as the author object
>>> mh.author = dna

>>> # This save will force the 'mh' instance onto the primary database...
>>> mh.save()

>>> # ... but if we re-retrieve the object, it will come back on a replica
>>> mh = Book.objects.get(title='Mostly Harmless')

This example defined a router to handle interaction with models from the auth app, and other routers to handle
interaction with all other apps. If you left your default database empty and don’t want to define a catch-all database
router to handle all apps not otherwise specified, your routers must handle the names of all apps in INSTALLED_APPS
before you migrate. See Behavior of contrib apps for information about contrib apps that must be together in one
database.

Manually selecting a database

Django also provides an API that allows you to maintain complete control over database usage in your code. A
manually specified database allocation will take priority over a database allocated by a router.

3.2. Models and databases 159

Django Documentation, Release 1.10.9.dev20171123183751

Manually selecting a database for a QuerySet

You can select the database for a QuerySet at any point in the QuerySet “chain.” Just call using() on the
QuerySet to get another QuerySet that uses the specified database.

using() takes a single argument: the alias of the database on which you want to run the query. For example:

>>> # This will run on the 'default' database.
>>> Author.objects.all()

>>> # So will this.
>>> Author.objects.using('default').all()

>>> # This will run on the 'other' database.
>>> Author.objects.using('other').all()

Selecting a database for save()

Use the using keyword to Model.save() to specify to which database the data should be saved.

For example, to save an object to the legacy_users database, you’d use this:

>>> my_object.save(using='legacy_users')

If you don’t specify using, the save() method will save into the default database allocated by the routers.

Moving an object from one database to another

If you’ve saved an instance to one database, it might be tempting to use save(using=...) as a way to migrate
the instance to a new database. However, if you don’t take appropriate steps, this could have some unexpected conse-
quences.

Consider the following example:

>>> p = Person(name='Fred')
>>> p.save(using='first') # (statement 1)
>>> p.save(using='second') # (statement 2)

In statement 1, a new Person object is saved to the first database. At this time, p doesn’t have a primary key, so
Django issues an SQL INSERT statement. This creates a primary key, and Django assigns that primary key to p.

When the save occurs in statement 2, p already has a primary key value, and Django will attempt to use that primary
key on the new database. If the primary key value isn’t in use in the second database, then you won’t have any
problems – the object will be copied to the new database.

However, if the primary key of p is already in use on the second database, the existing object in the second database
will be overridden when p is saved.

You can avoid this in two ways. First, you can clear the primary key of the instance. If an object has no primary key,
Django will treat it as a new object, avoiding any loss of data on the second database:

>>> p = Person(name='Fred')
>>> p.save(using='first')
>>> p.pk = None # Clear the primary key.
>>> p.save(using='second') # Write a completely new object.

160 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

The second option is to use the force_insert option to save() to ensure that Django does an SQL INSERT:

>>> p = Person(name='Fred')
>>> p.save(using='first')
>>> p.save(using='second', force_insert=True)

This will ensure that the person named Fred will have the same primary key on both databases. If that primary key is
already in use when you try to save onto the second database, an error will be raised.

Selecting a database to delete from

By default, a call to delete an existing object will be executed on the same database that was used to retrieve the object
in the first place:

>>> u = User.objects.using('legacy_users').get(username='fred')
>>> u.delete() # will delete from the `legacy_users` database

To specify the database from which a model will be deleted, pass a using keyword argument to the Model.
delete() method. This argument works just like the using keyword argument to save().

For example, if you’re migrating a user from the legacy_users database to the new_users database, you might
use these commands:

>>> user_obj.save(using='new_users')
>>> user_obj.delete(using='legacy_users')

Using managers with multiple databases

Use the db_manager() method on managers to give managers access to a non-default database.

For example, say you have a custom manager method that touches the database – User.objects.
create_user(). Because create_user() is a manager method, not a QuerySet method, you can’t do
User.objects.using('new_users').create_user(). (The create_user() method is only avail-
able on User.objects, the manager, not on QuerySet objects derived from the manager.) The solution is to use
db_manager(), like this:

User.objects.db_manager('new_users').create_user(...)

db_manager() returns a copy of the manager bound to the database you specify.

Using get_queryset() with multiple databases

If you’re overriding get_queryset() on your manager, be sure to either call the method on the parent (using
super()) or do the appropriate handling of the _db attribute on the manager (a string containing the name of the
database to use).

For example, if you want to return a custom QuerySet class from the get_queryset method, you could do this:

class MyManager(models.Manager):
def get_queryset(self):

qs = CustomQuerySet(self.model)
if self._db is not None:

qs = qs.using(self._db)
return qs

3.2. Models and databases 161

Django Documentation, Release 1.10.9.dev20171123183751

Exposing multiple databases in Django’s admin interface

Django’s admin doesn’t have any explicit support for multiple databases. If you want to provide an admin interface
for a model on a database other than that specified by your router chain, you’ll need to write custom ModelAdmin
classes that will direct the admin to use a specific database for content.

ModelAdmin objects have five methods that require customization for multiple-database support:

class MultiDBModelAdmin(admin.ModelAdmin):
A handy constant for the name of the alternate database.
using = 'other'

def save_model(self, request, obj, form, change):
Tell Django to save objects to the 'other' database.
obj.save(using=self.using)

def delete_model(self, request, obj):
Tell Django to delete objects from the 'other' database
obj.delete(using=self.using)

def get_queryset(self, request):
Tell Django to look for objects on the 'other' database.
return super(MultiDBModelAdmin, self).get_queryset(request).using(self.using)

def formfield_for_foreignkey(self, db_field, request, **kwargs):
Tell Django to populate ForeignKey widgets using a query
on the 'other' database.
return super(MultiDBModelAdmin, self).formfield_for_foreignkey(db_field,

→˓request, using=self.using, **kwargs)

def formfield_for_manytomany(self, db_field, request, **kwargs):
Tell Django to populate ManyToMany widgets using a query
on the 'other' database.
return super(MultiDBModelAdmin, self).formfield_for_manytomany(db_field,

→˓request, using=self.using, **kwargs)

The implementation provided here implements a multi-database strategy where all objects of a given type are stored
on a specific database (e.g., all User objects are in the other database). If your usage of multiple databases is more
complex, your ModelAdmin will need to reflect that strategy.

InlineModelAdmin objects can be handled in a similar fashion. They require three customized methods:

class MultiDBTabularInline(admin.TabularInline):
using = 'other'

def get_queryset(self, request):
Tell Django to look for inline objects on the 'other' database.
return super(MultiDBTabularInline, self).get_queryset(request).using(self.

→˓using)

def formfield_for_foreignkey(self, db_field, request, **kwargs):
Tell Django to populate ForeignKey widgets using a query
on the 'other' database.
return super(MultiDBTabularInline, self).formfield_for_foreignkey(db_field,

→˓request, using=self.using, **kwargs)

def formfield_for_manytomany(self, db_field, request, **kwargs):
Tell Django to populate ManyToMany widgets using a query
on the 'other' database.

162 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

return super(MultiDBTabularInline, self).formfield_for_manytomany(db_field,
→˓request, using=self.using, **kwargs)

Once you’ve written your model admin definitions, they can be registered with any Admin instance:

from django.contrib import admin

Specialize the multi-db admin objects for use with specific models.
class BookInline(MultiDBTabularInline):

model = Book

class PublisherAdmin(MultiDBModelAdmin):
inlines = [BookInline]

admin.site.register(Author, MultiDBModelAdmin)
admin.site.register(Publisher, PublisherAdmin)

othersite = admin.AdminSite('othersite')
othersite.register(Publisher, MultiDBModelAdmin)

This example sets up two admin sites. On the first site, the Author and Publisher objects are exposed;
Publisher objects have an tabular inline showing books published by that publisher. The second site exposes
just publishers, without the inlines.

Using raw cursors with multiple databases

If you are using more than one database you can use django.db.connections to obtain the connection (and
cursor) for a specific database. django.db.connections is a dictionary-like object that allows you to retrieve a
specific connection using its alias:

from django.db import connections
cursor = connections['my_db_alias'].cursor()

Limitations of multiple databases

Cross-database relations

Django doesn’t currently provide any support for foreign key or many-to-many relationships spanning multiple
databases. If you have used a router to partition models to different databases, any foreign key and many-to-many
relationships defined by those models must be internal to a single database.

This is because of referential integrity. In order to maintain a relationship between two objects, Django needs to know
that the primary key of the related object is valid. If the primary key is stored on a separate database, it’s not possible
to easily evaluate the validity of a primary key.

If you’re using Postgres, Oracle, or MySQL with InnoDB, this is enforced at the database integrity level – database
level key constraints prevent the creation of relations that can’t be validated.

However, if you’re using SQLite or MySQL with MyISAM tables, there is no enforced referential integrity; as a
result, you may be able to ‘fake’ cross database foreign keys. However, this configuration is not officially supported
by Django.

3.2. Models and databases 163

Django Documentation, Release 1.10.9.dev20171123183751

Behavior of contrib apps

Several contrib apps include models, and some apps depend on others. Since cross-database relationships are impos-
sible, this creates some restrictions on how you can split these models across databases:

• each one of contenttypes.ContentType, sessions.Session and sites.Site can be stored in
any database, given a suitable router.

• auth models — User, Group and Permission — are linked together and linked to ContentType, so
they must be stored in the same database as ContentType.

• admin depends on auth, so its models must be in the same database as auth.

• flatpages and redirects depend on sites, so their models must be in the same database as sites.

In addition, some objects are automatically created just after migrate creates a table to hold them in a database:

• a default Site,

• a ContentType for each model (including those not stored in that database),

• three Permission for each model (including those not stored in that database).

For common setups with multiple databases, it isn’t useful to have these objects in more than one database. Common
setups include primary/replica and connecting to external databases. Therefore, it’s recommended to write a database
router that allows synchronizing these three models to only one database. Use the same approach for contrib and
third-party apps that don’t need their tables in multiple databases.

Warning: If you’re synchronizing content types to more than one database, be aware that their primary keys may
not match across databases. This may result in data corruption or data loss.

3.2.9 Tablespaces

A common paradigm for optimizing performance in database systems is the use of tablespaces to organize disk layout.

Warning: Django does not create the tablespaces for you. Please refer to your database engine’s documentation
for details on creating and managing tablespaces.

Declaring tablespaces for tables

A tablespace can be specified for the table generated by a model by supplying the db_tablespace option inside
the model’s class Meta. This option also affects tables automatically created for ManyToManyFields in the
model.

You can use the DEFAULT_TABLESPACE setting to specify a default value for db_tablespace. This is useful
for setting a tablespace for the built-in Django apps and other applications whose code you cannot control.

Declaring tablespaces for indexes

You can pass the db_tablespace option to a Field constructor to specify an alternate tablespace for the Field’s
column index. If no index would be created for the column, the option is ignored.

You can use the DEFAULT_INDEX_TABLESPACE setting to specify a default value for db_tablespace.

164 Chapter 3. Using Django

https://en.wikipedia.org/wiki/Tablespace

Django Documentation, Release 1.10.9.dev20171123183751

If db_tablespace isn’t specified and you didn’t set DEFAULT_INDEX_TABLESPACE, the index is created in the
same tablespace as the tables.

An example

class TablespaceExample(models.Model):
name = models.CharField(max_length=30, db_index=True, db_tablespace="indexes")
data = models.CharField(max_length=255, db_index=True)
edges = models.ManyToManyField(to="self", db_tablespace="indexes")

class Meta:
db_tablespace = "tables"

In this example, the tables generated by the TablespaceExample model (i.e. the model table and the many-
to-many table) would be stored in the tables tablespace. The index for the name field and the indexes on the
many-to-many table would be stored in the indexes tablespace. The data field would also generate an index, but
no tablespace for it is specified, so it would be stored in the model tablespace tables by default.

Database support

PostgreSQL and Oracle support tablespaces. SQLite and MySQL don’t.

When you use a backend that lacks support for tablespaces, Django ignores all tablespace-related options.

3.2.10 Database access optimization

Django’s database layer provides various ways to help developers get the most out of their databases. This document
gathers together links to the relevant documentation, and adds various tips, organized under a number of headings that
outline the steps to take when attempting to optimize your database usage.

Profile first

As general programming practice, this goes without saying. Find out what queries you are doing and what they are
costing you. You may also want to use an external project like django-debug-toolbar, or a tool that monitors your
database directly.

Remember that you may be optimizing for speed or memory or both, depending on your requirements. Sometimes
optimizing for one will be detrimental to the other, but sometimes they will help each other. Also, work that is done by
the database process might not have the same cost (to you) as the same amount of work done in your Python process.
It is up to you to decide what your priorities are, where the balance must lie, and profile all of these as required since
this will depend on your application and server.

With everything that follows, remember to profile after every change to ensure that the change is a benefit, and a big
enough benefit given the decrease in readability of your code. All of the suggestions below come with the caveat that
in your circumstances the general principle might not apply, or might even be reversed.

Use standard DB optimization techniques

...including:

3.2. Models and databases 165

https://github.com/django-debug-toolbar/django-debug-toolbar/

Django Documentation, Release 1.10.9.dev20171123183751

• Indexes. This is a number one priority, after you have determined from profiling what indexes should be added.
Use Field.db_index or Meta.index_together to add these from Django. Consider adding indexes
to fields that you frequently query using filter(), exclude(), order_by(), etc. as indexes may help
to speed up lookups. Note that determining the best indexes is a complex database-dependent topic that will
depend on your particular application. The overhead of maintaining an index may outweigh any gains in query
speed.

• Appropriate use of field types.

We will assume you have done the obvious things above. The rest of this document focuses on how to use Django
in such a way that you are not doing unnecessary work. This document also does not address other optimization
techniques that apply to all expensive operations, such as general purpose caching.

Understand QuerySets

Understanding QuerySets is vital to getting good performance with simple code. In particular:

Understand QuerySet evaluation

To avoid performance problems, it is important to understand:

• that QuerySets are lazy.

• when they are evaluated.

• how the data is held in memory.

Understand cached attributes

As well as caching of the whole QuerySet, there is caching of the result of attributes on ORM objects. In general,
attributes that are not callable will be cached. For example, assuming the example Weblog models:

>>> entry = Entry.objects.get(id=1)
>>> entry.blog # Blog object is retrieved at this point
>>> entry.blog # cached version, no DB access

But in general, callable attributes cause DB lookups every time:

>>> entry = Entry.objects.get(id=1)
>>> entry.authors.all() # query performed
>>> entry.authors.all() # query performed again

Be careful when reading template code - the template system does not allow use of parentheses, but will call callables
automatically, hiding the above distinction.

Be careful with your own custom properties - it is up to you to implement caching when required, for example using
the cached_property decorator.

Use the with template tag

To make use of the caching behavior of QuerySet, you may need to use the with template tag.

166 Chapter 3. Using Django

https://en.wikipedia.org/wiki/Database_index

Django Documentation, Release 1.10.9.dev20171123183751

Use iterator()

When you have a lot of objects, the caching behavior of the QuerySet can cause a large amount of memory to be
used. In this case, iterator() may help.

Do database work in the database rather than in Python

For instance:

• At the most basic level, use filter and exclude to do filtering in the database.

• Use F expressions to filter based on other fields within the same model.

• Use annotate to do aggregation in the database.

If these aren’t enough to generate the SQL you need:

Use RawSQL

A less portable but more powerful method is the RawSQL expression, which allows some SQL to be explicitly added
to the query. If that still isn’t powerful enough:

Use raw SQL

Write your own custom SQL to retrieve data or populate models. Use django.db.connection.queries to
find out what Django is writing for you and start from there.

Retrieve individual objects using a unique, indexed column

There are two reasons to use a column with unique or db_index when using get() to retrieve individual objects.
First, the query will be quicker because of the underlying database index. Also, the query could run much slower if
multiple objects match the lookup; having a unique constraint on the column guarantees this will never happen.

So using the example Weblog models:

>>> entry = Entry.objects.get(id=10)

will be quicker than:

>>> entry = Entry.objects.get(headline="News Item Title")

because id is indexed by the database and is guaranteed to be unique.

Doing the following is potentially quite slow:

>>> entry = Entry.objects.get(headline__startswith="News")

First of all, headline is not indexed, which will make the underlying database fetch slower.

Second, the lookup doesn’t guarantee that only one object will be returned. If the query matches more than one object,
it will retrieve and transfer all of them from the database. This penalty could be substantial if hundreds or thousands
of records are returned. The penalty will be compounded if the database lives on a separate server, where network
overhead and latency also play a factor.

3.2. Models and databases 167

Django Documentation, Release 1.10.9.dev20171123183751

Retrieve everything at once if you know you will need it

Hitting the database multiple times for different parts of a single ‘set’ of data that you will need all parts of is, in
general, less efficient than retrieving it all in one query. This is particularly important if you have a query that is
executed in a loop, and could therefore end up doing many database queries, when only one was needed. So:

Use QuerySet.select_related() and prefetch_related()

Understand select_related() and prefetch_related() thoroughly, and use them:

• in managers and default managers where appropriate. Be aware when your manager is and is not used; some-
times this is tricky so don’t make assumptions.

• in view code or other layers, possibly making use of prefetch_related_objects() where needed.

Don’t retrieve things you don’t need

Use QuerySet.values() and values_list()

When you just want a dict or list of values, and don’t need ORM model objects, make appropriate usage of
values(). These can be useful for replacing model objects in template code - as long as the dicts you supply have
the same attributes as those used in the template, you are fine.

Use QuerySet.defer() and only()

Use defer() and only() if there are database columns you know that you won’t need (or won’t need in most
cases) to avoid loading them. Note that if you do use them, the ORM will have to go and get them in a separate query,
making this a pessimization if you use it inappropriately.

Also, be aware that there is some (small extra) overhead incurred inside Django when constructing a model with
deferred fields. Don’t be too aggressive in deferring fields without profiling as the database has to read most of the
non-text, non-VARCHAR data from the disk for a single row in the results, even if it ends up only using a few columns.
The defer() and only() methods are most useful when you can avoid loading a lot of text data or for fields that
might take a lot of processing to convert back to Python. As always, profile first, then optimize.

Use QuerySet.count()

...if you only want the count, rather than doing len(queryset).

Use QuerySet.exists()

...if you only want to find out if at least one result exists, rather than if queryset.

But:

Don’t overuse count() and exists()

If you are going to need other data from the QuerySet, just evaluate it.

168 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

For example, assuming an Email model that has a body attribute and a many-to-many relation to User, the following
template code is optimal:

{% if display_inbox %}
{% with emails=user.emails.all %}
{% if emails %}
<p>You have {{ emails|length }} email(s)</p>
{% for email in emails %}

<p>{{ email.body }}</p>
{% endfor %}

{% else %}
<p>No messages today.</p>

{% endif %}
{% endwith %}

{% endif %}

It is optimal because:

1. Since QuerySets are lazy, this does no database queries if ‘display_inbox’ is False.

2. Use of with means that we store user.emails.all in a variable for later use, allowing its cache to be
re-used.

3. The line {% if emails %} causes QuerySet.__bool__() to be called, which causes the user.
emails.all() query to be run on the database, and at the least the first line to be turned into an ORM
object. If there aren’t any results, it will return False, otherwise True.

4. The use of {{ emails|length }} calls QuerySet.__len__(), filling out the rest of the cache without
doing another query.

5. The for loop iterates over the already filled cache.

In total, this code does either one or zero database queries. The only deliberate optimization performed is the use of the
with tag. Using QuerySet.exists() or QuerySet.count() at any point would cause additional queries.

Use QuerySet.update() and delete()

Rather than retrieve a load of objects, set some values, and save them individual, use a bulk SQL UPDATE statement,
via QuerySet.update(). Similarly, do bulk deletes where possible.

Note, however, that these bulk update methods cannot call the save() or delete()methods of individual instances,
which means that any custom behavior you have added for these methods will not be executed, including anything
driven from the normal database object signals.

Use foreign key values directly

If you only need a foreign key value, use the foreign key value that is already on the object you’ve got, rather than
getting the whole related object and taking its primary key. i.e. do:

entry.blog_id

instead of:

entry.blog.id

3.2. Models and databases 169

Django Documentation, Release 1.10.9.dev20171123183751

Don’t order results if you don’t care

Ordering is not free; each field to order by is an operation the database must perform. If a model has a default ordering
(Meta.ordering) and you don’t need it, remove it on a QuerySet by calling order_by() with no parameters.

Adding an index to your database may help to improve ordering performance.

Insert in bulk

When creating objects, where possible, use the bulk_create() method to reduce the number of SQL queries. For
example:

Entry.objects.bulk_create([
Entry(headline='This is a test'),
Entry(headline='This is only a test'),

])

...is preferable to:

Entry.objects.create(headline='This is a test')
Entry.objects.create(headline='This is only a test')

Note that there are a number of caveats to this method, so make sure it’s appropriate for your use case.

This also applies to ManyToManyFields, so doing:

my_band.members.add(me, my_friend)

...is preferable to:

my_band.members.add(me)
my_band.members.add(my_friend)

...where Bands and Artists have a many-to-many relationship.

3.2.11 Examples of model relationship API usage

Many-to-many relationships

To define a many-to-many relationship, use ManyToManyField.

In this example, an Article can be published in multiple Publication objects, and a Publication has mul-
tiple Article objects:

from django.db import models

class Publication(models.Model):
title = models.CharField(max_length=30)

def __str__(self): # __unicode__ on Python 2
return self.title

class Meta:
ordering = ('title',)

class Article(models.Model):

170 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

headline = models.CharField(max_length=100)
publications = models.ManyToManyField(Publication)

def __str__(self): # __unicode__ on Python 2
return self.headline

class Meta:
ordering = ('headline',)

What follows are examples of operations that can be performed using the Python API facilities. Note that if you are
using an intermediate model for a many-to-many relationship, some of the related manager’s methods are disabled, so
some of these examples won’t work with such models.

Create a couple of Publications:

>>> p1 = Publication(title='The Python Journal')
>>> p1.save()
>>> p2 = Publication(title='Science News')
>>> p2.save()
>>> p3 = Publication(title='Science Weekly')
>>> p3.save()

Create an Article:

>>> a1 = Article(headline='Django lets you build Web apps easily')

You can’t associate it with a Publication until it’s been saved:

>>> a1.publications.add(p1)
Traceback (most recent call last):
...
ValueError: 'Article' instance needs to have a primary key value before a many-to-
→˓many relationship can be used.

Save it!

>>> a1.save()

Associate the Article with a Publication:

>>> a1.publications.add(p1)

Create another Article, and set it to appear in both Publications:

>>> a2 = Article(headline='NASA uses Python')
>>> a2.save()
>>> a2.publications.add(p1, p2)
>>> a2.publications.add(p3)

Adding a second time is OK:

>>> a2.publications.add(p3)

Adding an object of the wrong type raises TypeError:

>>> a2.publications.add(a1)
Traceback (most recent call last):

3.2. Models and databases 171

https://docs.python.org/3/library/exceptions.html#TypeError

Django Documentation, Release 1.10.9.dev20171123183751

...
TypeError: 'Publication' instance expected

Create and add a Publication to an Article in one step using create():

>>> new_publication = a2.publications.create(title='Highlights for Children')

Article objects have access to their related Publication objects:

>>> a1.publications.all()
<QuerySet [<Publication: The Python Journal>]>
>>> a2.publications.all()
<QuerySet [<Publication: Highlights for Children>, <Publication: Science News>,
→˓<Publication: Science Weekly>, <Publication: The Python Journal>]>

Publication objects have access to their related Article objects:

>>> p2.article_set.all()
<QuerySet [<Article: NASA uses Python>]>
>>> p1.article_set.all()
<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses
→˓Python>]>
>>> Publication.objects.get(id=4).article_set.all()
<QuerySet [<Article: NASA uses Python>]>

Many-to-many relationships can be queried using lookups across relationships:

>>> Article.objects.filter(publications__id=1)
<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses
→˓Python>]>
>>> Article.objects.filter(publications__pk=1)
<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses
→˓Python>]>
>>> Article.objects.filter(publications=1)
<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses
→˓Python>]>
>>> Article.objects.filter(publications=p1)
<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses
→˓Python>]>

>>> Article.objects.filter(publications__title__startswith="Science")
<QuerySet [<Article: NASA uses Python>, <Article: NASA uses Python>]>

>>> Article.objects.filter(publications__title__startswith="Science").distinct()
<QuerySet [<Article: NASA uses Python>]>

The count() function respects distinct() as well:

>>> Article.objects.filter(publications__title__startswith="Science").count()
2

>>> Article.objects.filter(publications__title__startswith="Science").distinct().
→˓count()
1

>>> Article.objects.filter(publications__in=[1,2]).distinct()
<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses
→˓Python>]>

172 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

>>> Article.objects.filter(publications__in=[p1,p2]).distinct()
<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses
→˓Python>]>

Reverse m2m queries are supported (i.e., starting at the table that doesn’t have a ManyToManyField):

>>> Publication.objects.filter(id=1)
<QuerySet [<Publication: The Python Journal>]>
>>> Publication.objects.filter(pk=1)
<QuerySet [<Publication: The Python Journal>]>

>>> Publication.objects.filter(article__headline__startswith="NASA")
<QuerySet [<Publication: Highlights for Children>, <Publication: Science News>,
→˓<Publication: Science Weekly>, <Publication: The Python Journal>]>

>>> Publication.objects.filter(article__id=1)
<QuerySet [<Publication: The Python Journal>]>
>>> Publication.objects.filter(article__pk=1)
<QuerySet [<Publication: The Python Journal>]>
>>> Publication.objects.filter(article=1)
<QuerySet [<Publication: The Python Journal>]>
>>> Publication.objects.filter(article=a1)
<QuerySet [<Publication: The Python Journal>]>

>>> Publication.objects.filter(article__in=[1,2]).distinct()
<QuerySet [<Publication: Highlights for Children>, <Publication: Science News>,
→˓<Publication: Science Weekly>, <Publication: The Python Journal>]>
>>> Publication.objects.filter(article__in=[a1,a2]).distinct()
<QuerySet [<Publication: Highlights for Children>, <Publication: Science News>,
→˓<Publication: Science Weekly>, <Publication: The Python Journal>]>

Excluding a related item works as you would expect, too (although the SQL involved is a little complex):

>>> Article.objects.exclude(publications=p2)
<QuerySet [<Article: Django lets you build Web apps easily>]>

If we delete a Publication, its Articles won’t be able to access it:

>>> p1.delete()
>>> Publication.objects.all()
<QuerySet [<Publication: Highlights for Children>, <Publication: Science News>,
→˓<Publication: Science Weekly>]>
>>> a1 = Article.objects.get(pk=1)
>>> a1.publications.all()
<QuerySet []>

If we delete an Article, its Publications won’t be able to access it:

>>> a2.delete()
>>> Article.objects.all()
<QuerySet [<Article: Django lets you build Web apps easily>]>
>>> p2.article_set.all()
<QuerySet []>

Adding via the ‘other’ end of an m2m:

>>> a4 = Article(headline='NASA finds intelligent life on Earth')
>>> a4.save()

3.2. Models and databases 173

Django Documentation, Release 1.10.9.dev20171123183751

>>> p2.article_set.add(a4)
>>> p2.article_set.all()
<QuerySet [<Article: NASA finds intelligent life on Earth>]>
>>> a4.publications.all()
<QuerySet [<Publication: Science News>]>

Adding via the other end using keywords:

>>> new_article = p2.article_set.create(headline='Oxygen-free diet works wonders')
>>> p2.article_set.all()
<QuerySet [<Article: NASA finds intelligent life on Earth>, <Article: Oxygen-free
→˓diet works wonders>]>
>>> a5 = p2.article_set.all()[1]
>>> a5.publications.all()
<QuerySet [<Publication: Science News>]>

Removing Publication from an Article:

>>> a4.publications.remove(p2)
>>> p2.article_set.all()
<QuerySet [<Article: Oxygen-free diet works wonders>]>
>>> a4.publications.all()
<QuerySet []>

And from the other end:

>>> p2.article_set.remove(a5)
>>> p2.article_set.all()
<QuerySet []>
>>> a5.publications.all()
<QuerySet []>

Relation sets can be set:

>>> a4.publications.all()
<QuerySet [<Publication: Science News>]>
>>> a4.publications.set([p3])
>>> a4.publications.all()
<QuerySet [<Publication: Science Weekly>]>

Relation sets can be cleared:

>>> p2.article_set.clear()
>>> p2.article_set.all()
<QuerySet []>

And you can clear from the other end:

>>> p2.article_set.add(a4, a5)
>>> p2.article_set.all()
<QuerySet [<Article: NASA finds intelligent life on Earth>, <Article: Oxygen-free
→˓diet works wonders>]>
>>> a4.publications.all()
<QuerySet [<Publication: Science News>, <Publication: Science Weekly>]>
>>> a4.publications.clear()
>>> a4.publications.all()
<QuerySet []>

174 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

>>> p2.article_set.all()
<QuerySet [<Article: Oxygen-free diet works wonders>]>

Recreate the Article and Publication we have deleted:

>>> p1 = Publication(title='The Python Journal')
>>> p1.save()
>>> a2 = Article(headline='NASA uses Python')
>>> a2.save()
>>> a2.publications.add(p1, p2, p3)

Bulk delete some Publications - references to deleted publications should go:

>>> Publication.objects.filter(title__startswith='Science').delete()
>>> Publication.objects.all()
<QuerySet [<Publication: Highlights for Children>, <Publication: The Python Journal>]>
>>> Article.objects.all()
<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA finds
→˓intelligent life on Earth>, <Article: NASA uses Python>, <Article: Oxygen-free diet
→˓works wonders>]>
>>> a2.publications.all()
<QuerySet [<Publication: The Python Journal>]>

Bulk delete some articles - references to deleted objects should go:

>>> q = Article.objects.filter(headline__startswith='Django')
>>> print(q)
<QuerySet [<Article: Django lets you build Web apps easily>]>
>>> q.delete()

After the delete(), the QuerySet cache needs to be cleared, and the referenced objects should be gone:

>>> print(q)
<QuerySet []>
>>> p1.article_set.all()
<QuerySet [<Article: NASA uses Python>]>

Many-to-one relationships

To define a many-to-one relationship, use ForeignKey:

from django.db import models

class Reporter(models.Model):
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=30)
email = models.EmailField()

def __str__(self): # __unicode__ on Python 2
return "%s %s" % (self.first_name, self.last_name)

class Article(models.Model):
headline = models.CharField(max_length=100)
pub_date = models.DateField()
reporter = models.ForeignKey(Reporter, on_delete=models.CASCADE)

3.2. Models and databases 175

Django Documentation, Release 1.10.9.dev20171123183751

def __str__(self): # __unicode__ on Python 2
return self.headline

class Meta:
ordering = ('headline',)

What follows are examples of operations that can be performed using the Python API facilities.

Create a few Reporters:

>>> r = Reporter(first_name='John', last_name='Smith', email='john@example.com')
>>> r.save()

>>> r2 = Reporter(first_name='Paul', last_name='Jones', email='paul@example.com')
>>> r2.save()

Create an Article:

>>> from datetime import date
>>> a = Article(id=None, headline="This is a test", pub_date=date(2005, 7, 27),
→˓reporter=r)
>>> a.save()

>>> a.reporter.id
1

>>> a.reporter
<Reporter: John Smith>

Note that you must save an object before it can be assigned to a foreign key relationship. For example, creating an
Article with unsaved Reporter raises ValueError:

>>> r3 = Reporter(first_name='John', last_name='Smith', email='john@example.com')
>>> Article.objects.create(headline="This is a test", pub_date=date(2005, 7, 27),
→˓reporter=r3)
Traceback (most recent call last):
...
ValueError: save() prohibited to prevent data loss due to unsaved related object
→˓'reporter'.

Article objects have access to their related Reporter objects:

>>> r = a.reporter

On Python 2, these are strings of type str instead of unicode strings because that’s what was used in the creation of
this reporter (and we haven’t refreshed the data from the database, which always returns unicode strings):

>>> r.first_name, r.last_name
('John', 'Smith')

Create an Article via the Reporter object:

>>> new_article = r.article_set.create(headline="John's second story", pub_
→˓date=date(2005, 7, 29))
>>> new_article
<Article: John's second story>
>>> new_article.reporter
<Reporter: John Smith>

176 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

>>> new_article.reporter.id
1

Create a new article, and add it to the article set:

>>> new_article2 = Article(headline="Paul's story", pub_date=date(2006, 1, 17))
>>> r.article_set.add(new_article2)
>>> new_article2.reporter
<Reporter: John Smith>
>>> new_article2.reporter.id
1
>>> r.article_set.all()
<QuerySet [<Article: John's second story>, <Article: Paul's story>, <Article: This is
→˓a test>]>

Add the same article to a different article set - check that it moves:

>>> r2.article_set.add(new_article2)
>>> new_article2.reporter.id
2
>>> new_article2.reporter
<Reporter: Paul Jones>

Adding an object of the wrong type raises TypeError:

>>> r.article_set.add(r2)
Traceback (most recent call last):
...
TypeError: 'Article' instance expected

>>> r.article_set.all()
<QuerySet [<Article: John's second story>, <Article: This is a test>]>
>>> r2.article_set.all()
<QuerySet [<Article: Paul's story>]>

>>> r.article_set.count()
2

>>> r2.article_set.count()
1

Note that in the last example the article has moved from John to Paul.

Related managers support field lookups as well. The API automatically follows relationships as far as you need. Use
double underscores to separate relationships. This works as many levels deep as you want. There’s no limit. For
example:

>>> r.article_set.filter(headline__startswith='This')
<QuerySet [<Article: This is a test>]>

Find all Articles for any Reporter whose first name is "John".
>>> Article.objects.filter(reporter__first_name='John')
<QuerySet [<Article: John's second story>, <Article: This is a test>]>

Exact match is implied here:

>>> Article.objects.filter(reporter__first_name='John')
<QuerySet [<Article: John's second story>, <Article: This is a test>]>

3.2. Models and databases 177

Django Documentation, Release 1.10.9.dev20171123183751

Query twice over the related field. This translates to an AND condition in the WHERE clause:

>>> Article.objects.filter(reporter__first_name='John', reporter__last_name='Smith')
<QuerySet [<Article: John's second story>, <Article: This is a test>]>

For the related lookup you can supply a primary key value or pass the related object explicitly:

>>> Article.objects.filter(reporter__pk=1)
<QuerySet [<Article: John's second story>, <Article: This is a test>]>
>>> Article.objects.filter(reporter=1)
<QuerySet [<Article: John's second story>, <Article: This is a test>]>
>>> Article.objects.filter(reporter=r)
<QuerySet [<Article: John's second story>, <Article: This is a test>]>

>>> Article.objects.filter(reporter__in=[1,2]).distinct()
<QuerySet [<Article: John's second story>, <Article: Paul's story>, <Article: This is
→˓a test>]>
>>> Article.objects.filter(reporter__in=[r,r2]).distinct()
<QuerySet [<Article: John's second story>, <Article: Paul's story>, <Article: This is
→˓a test>]>

You can also use a queryset instead of a literal list of instances:

>>> Article.objects.filter(reporter__in=Reporter.objects.filter(first_name='John')).
→˓distinct()
<QuerySet [<Article: John's second story>, <Article: This is a test>]>

Querying in the opposite direction:

>>> Reporter.objects.filter(article__pk=1)
<QuerySet [<Reporter: John Smith>]>
>>> Reporter.objects.filter(article=1)
<QuerySet [<Reporter: John Smith>]>
>>> Reporter.objects.filter(article=a)
<QuerySet [<Reporter: John Smith>]>

>>> Reporter.objects.filter(article__headline__startswith='This')
<QuerySet [<Reporter: John Smith>, <Reporter: John Smith>, <Reporter: John Smith>]>
>>> Reporter.objects.filter(article__headline__startswith='This').distinct()
<QuerySet [<Reporter: John Smith>]>

Counting in the opposite direction works in conjunction with distinct():

>>> Reporter.objects.filter(article__headline__startswith='This').count()
3
>>> Reporter.objects.filter(article__headline__startswith='This').distinct().count()
1

Queries can go round in circles:

>>> Reporter.objects.filter(article__reporter__first_name__startswith='John')
<QuerySet [<Reporter: John Smith>, <Reporter: John Smith>, <Reporter: John Smith>,
→˓<Reporter: John Smith>]>
>>> Reporter.objects.filter(article__reporter__first_name__startswith='John').
→˓distinct()
<QuerySet [<Reporter: John Smith>]>
>>> Reporter.objects.filter(article__reporter=r).distinct()
<QuerySet [<Reporter: John Smith>]>

178 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

If you delete a reporter, his articles will be deleted (assuming that the ForeignKey was defined with django.db.
models.ForeignKey.on_delete set to CASCADE, which is the default):

>>> Article.objects.all()
<QuerySet [<Article: John's second story>, <Article: Paul's story>, <Article: This is
→˓a test>]>
>>> Reporter.objects.order_by('first_name')
<QuerySet [<Reporter: John Smith>, <Reporter: Paul Jones>]>
>>> r2.delete()
>>> Article.objects.all()
<QuerySet [<Article: John's second story>, <Article: This is a test>]>
>>> Reporter.objects.order_by('first_name')
<QuerySet [<Reporter: John Smith>]>

You can delete using a JOIN in the query:

>>> Reporter.objects.filter(article__headline__startswith='This').delete()
>>> Reporter.objects.all()
<QuerySet []>
>>> Article.objects.all()
<QuerySet []>

One-to-one relationships

To define a one-to-one relationship, use OneToOneField.

In this example, a Place optionally can be a Restaurant:

from django.db import models

class Place(models.Model):
name = models.CharField(max_length=50)
address = models.CharField(max_length=80)

def __str__(self): # __unicode__ on Python 2
return "%s the place" % self.name

class Restaurant(models.Model):
place = models.OneToOneField(

Place,
on_delete=models.CASCADE,
primary_key=True,

)
serves_hot_dogs = models.BooleanField(default=False)
serves_pizza = models.BooleanField(default=False)

def __str__(self): # __unicode__ on Python 2
return "%s the restaurant" % self.place.name

class Waiter(models.Model):
restaurant = models.ForeignKey(Restaurant, on_delete=models.CASCADE)
name = models.CharField(max_length=50)

def __str__(self): # __unicode__ on Python 2
return "%s the waiter at %s" % (self.name, self.restaurant)

What follows are examples of operations that can be performed using the Python API facilities.

3.2. Models and databases 179

Django Documentation, Release 1.10.9.dev20171123183751

Create a couple of Places:

>>> p1 = Place(name='Demon Dogs', address='944 W. Fullerton')
>>> p1.save()
>>> p2 = Place(name='Ace Hardware', address='1013 N. Ashland')
>>> p2.save()

Create a Restaurant. Pass the ID of the “parent” object as this object’s ID:

>>> r = Restaurant(place=p1, serves_hot_dogs=True, serves_pizza=False)
>>> r.save()

A Restaurant can access its place:

>>> r.place
<Place: Demon Dogs the place>

A Place can access its restaurant, if available:

>>> p1.restaurant
<Restaurant: Demon Dogs the restaurant>

p2 doesn’t have an associated restaurant:

>>> from django.core.exceptions import ObjectDoesNotExist
>>> try:
>>> p2.restaurant
>>> except ObjectDoesNotExist:
>>> print("There is no restaurant here.")
There is no restaurant here.

You can also use hasattr to avoid the need for exception catching:

>>> hasattr(p2, 'restaurant')
False

Set the place using assignment notation. Because place is the primary key on Restaurant, the save will create a new
restaurant:

>>> r.place = p2
>>> r.save()
>>> p2.restaurant
<Restaurant: Ace Hardware the restaurant>
>>> r.place
<Place: Ace Hardware the place>

Set the place back again, using assignment in the reverse direction:

>>> p1.restaurant = r
>>> p1.restaurant
<Restaurant: Demon Dogs the restaurant>

Note that you must save an object before it can be assigned to a one-to-one relationship. For example, creating a
Restaurant with unsaved Place raises ValueError:

>>> p3 = Place(name='Demon Dogs', address='944 W. Fullerton')
>>> Restaurant.objects.create(place=p3, serves_hot_dogs=True, serves_pizza=False)
Traceback (most recent call last):

180 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

...
ValueError: save() prohibited to prevent data loss due to unsaved related object
→˓'place'.

Restaurant.objects.all() just returns the Restaurants, not the Places. Note that there are two restaurants - Ace Hardware
the Restaurant was created in the call to r.place = p2:

>>> Restaurant.objects.all()
<QuerySet [<Restaurant: Demon Dogs the restaurant>, <Restaurant: Ace Hardware the
→˓restaurant>]>

Place.objects.all() returns all Places, regardless of whether they have Restaurants:

>>> Place.objects.order_by('name')
<QuerySet [<Place: Ace Hardware the place>, <Place: Demon Dogs the place>]>

You can query the models using lookups across relationships:

>>> Restaurant.objects.get(place=p1)
<Restaurant: Demon Dogs the restaurant>
>>> Restaurant.objects.get(place__pk=1)
<Restaurant: Demon Dogs the restaurant>
>>> Restaurant.objects.filter(place__name__startswith="Demon")
<QuerySet [<Restaurant: Demon Dogs the restaurant>]>
>>> Restaurant.objects.exclude(place__address__contains="Ashland")
<QuerySet [<Restaurant: Demon Dogs the restaurant>]>

This of course works in reverse:

>>> Place.objects.get(pk=1)
<Place: Demon Dogs the place>
>>> Place.objects.get(restaurant__place=p1)
<Place: Demon Dogs the place>
>>> Place.objects.get(restaurant=r)
<Place: Demon Dogs the place>
>>> Place.objects.get(restaurant__place__name__startswith="Demon")
<Place: Demon Dogs the place>

Add a Waiter to the Restaurant:

>>> w = r.waiter_set.create(name='Joe')
>>> w
<Waiter: Joe the waiter at Demon Dogs the restaurant>

Query the waiters:

>>> Waiter.objects.filter(restaurant__place=p1)
<QuerySet [<Waiter: Joe the waiter at Demon Dogs the restaurant>]>
>>> Waiter.objects.filter(restaurant__place__name__startswith="Demon")
<QuerySet [<Waiter: Joe the waiter at Demon Dogs the restaurant>]>

3.3 Handling HTTP requests

Information on handling HTTP requests in Django:

3.3. Handling HTTP requests 181

Django Documentation, Release 1.10.9.dev20171123183751

3.3.1 URL dispatcher

A clean, elegant URL scheme is an important detail in a high-quality Web application. Django lets you design URLs
however you want, with no framework limitations.

There’s no .php or .cgi required, and certainly none of that 0,2097,1-1-1928,00 nonsense.

See Cool URIs don’t change, by World Wide Web creator Tim Berners-Lee, for excellent arguments on why URLs
should be clean and usable.

Overview

To design URLs for an app, you create a Python module informally called a URLconf (URL configuration). This
module is pure Python code and is a simple mapping between URL patterns (simple regular expressions) to Python
functions (your views).

This mapping can be as short or as long as needed. It can reference other mappings. And, because it’s pure Python
code, it can be constructed dynamically.

Django also provides a way to translate URLs according to the active language. See the internationalization documen-
tation for more information.

How Django processes a request

When a user requests a page from your Django-powered site, this is the algorithm the system follows to determine
which Python code to execute:

1. Django determines the root URLconf module to use. Ordinarily, this is the value of the ROOT_URLCONF
setting, but if the incoming HttpRequest object has a urlconf attribute (set by middleware), its value will
be used in place of the ROOT_URLCONF setting.

2. Django loads that Python module and looks for the variable urlpatterns. This should be a Python list of
django.conf.urls.url() instances.

3. Django runs through each URL pattern, in order, and stops at the first one that matches the requested URL.

4. Once one of the regexes matches, Django imports and calls the given view, which is a simple Python function
(or a class-based view). The view gets passed the following arguments:

• An instance of HttpRequest.

• If the matched regular expression returned no named groups, then the matches from the regular expression
are provided as positional arguments.

• The keyword arguments are made up of any named groups matched by the regular expression, overridden
by any arguments specified in the optional kwargs argument to django.conf.urls.url().

5. If no regex matches, or if an exception is raised during any point in this process, Django invokes an appropriate
error-handling view. See Error handling below.

Example

Here’s a sample URLconf:

from django.conf.urls import url

from . import views

182 Chapter 3. Using Django

http://www.w3.org/Provider/Style/URI

Django Documentation, Release 1.10.9.dev20171123183751

urlpatterns = [
url(r'^articles/2003/$', views.special_case_2003),
url(r'^articles/([0-9]{4})/$', views.year_archive),
url(r'^articles/([0-9]{4})/([0-9]{2})/$', views.month_archive),
url(r'^articles/([0-9]{4})/([0-9]{2})/([0-9]+)/$', views.article_detail),

]

Notes:

• To capture a value from the URL, just put parenthesis around it.

• There’s no need to add a leading slash, because every URL has that. For example, it’s ^articles, not ^/
articles.

• The 'r' in front of each regular expression string is optional but recommended. It tells Python that a string is
“raw” – that nothing in the string should be escaped. See Dive Into Python’s explanation.

Example requests:

• A request to /articles/2005/03/ would match the third entry in the list. Django would call the function
views.month_archive(request, '2005', '03').

• /articles/2005/3/ would not match any URL patterns, because the third entry in the list requires two
digits for the month.

• /articles/2003/ would match the first pattern in the list, not the second one, because the patterns are
tested in order, and the first one is the first test to pass. Feel free to exploit the ordering to insert special cases
like this. Here, Django would call the function views.special_case_2003(request)

• /articles/2003 would not match any of these patterns, because each pattern requires that the URL end
with a slash.

• /articles/2003/03/03/ would match the final pattern. Django would call the function views.
article_detail(request, '2003', '03', '03').

Named groups

The above example used simple, non-named regular-expression groups (via parenthesis) to capture bits of the URL and
pass them as positional arguments to a view. In more advanced usage, it’s possible to use named regular-expression
groups to capture URL bits and pass them as keyword arguments to a view.

In Python regular expressions, the syntax for named regular-expression groups is (?P<name>pattern), where
name is the name of the group and pattern is some pattern to match.

Here’s the above example URLconf, rewritten to use named groups:

from django.conf.urls import url

from . import views

urlpatterns = [
url(r'^articles/2003/$', views.special_case_2003),
url(r'^articles/(?P<year>[0-9]{4})/$', views.year_archive),
url(r'^articles/(?P<year>[0-9]{4})/(?P<month>[0-9]{2})/$', views.month_archive),
url(r'^articles/(?P<year>[0-9]{4})/(?P<month>[0-9]{2})/(?P<day>[0-9]{2})/$',

→˓views.article_detail),
]

This accomplishes exactly the same thing as the previous example, with one subtle difference: The captured values
are passed to view functions as keyword arguments rather than positional arguments. For example:

3.3. Handling HTTP requests 183

http://www.diveintopython.net/regular_expressions/street_addresses.html#re.matching.2.3

Django Documentation, Release 1.10.9.dev20171123183751

• A request to /articles/2005/03/ would call the function views.month_archive(request,
year='2005', month='03'), instead of views.month_archive(request, '2005', '03').

• A request to /articles/2003/03/03/would call the function views.article_detail(request,
year='2003', month='03', day='03').

In practice, this means your URLconfs are slightly more explicit and less prone to argument-order bugs – and you can
reorder the arguments in your views’ function definitions. Of course, these benefits come at the cost of brevity; some
developers find the named-group syntax ugly and too verbose.

The matching/grouping algorithm

Here’s the algorithm the URLconf parser follows, with respect to named groups vs. non-named groups in a regular
expression:

1. If there are any named arguments, it will use those, ignoring non-named arguments.

2. Otherwise, it will pass all non-named arguments as positional arguments.

In both cases, any extra keyword arguments that have been given as per Passing extra options to view functions (below)
will also be passed to the view.

What the URLconf searches against

The URLconf searches against the requested URL, as a normal Python string. This does not include GET or POST
parameters, or the domain name.

For example, in a request to https://www.example.com/myapp/, the URLconf will look for myapp/.

In a request to https://www.example.com/myapp/?page=3, the URLconf will look for myapp/.

The URLconf doesn’t look at the request method. In other words, all request methods – POST, GET, HEAD, etc. – will
be routed to the same function for the same URL.

Captured arguments are always strings

Each captured argument is sent to the view as a plain Python string, regardless of what sort of match the regular
expression makes. For example, in this URLconf line:

url(r'^articles/(?P<year>[0-9]{4})/$', views.year_archive),

...the year argument passed to views.year_archive() will be a string, not an integer, even though the
[0-9]{4} will only match integer strings.

Specifying defaults for view arguments

A convenient trick is to specify default parameters for your views’ arguments. Here’s an example URLconf and view:

URLconf
from django.conf.urls import url

from . import views

urlpatterns = [
url(r'^blog/$', views.page),
url(r'^blog/page(?P<num>[0-9]+)/$', views.page),

184 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

]

View (in blog/views.py)
def page(request, num="1"):

Output the appropriate page of blog entries, according to num.
...

In the above example, both URL patterns point to the same view – views.page – but the first pattern doesn’t capture
anything from the URL. If the first pattern matches, the page() function will use its default argument for num, "1".
If the second pattern matches, page() will use whatever num value was captured by the regex.

Performance

Each regular expression in a urlpatterns is compiled the first time it’s accessed. This makes the system blazingly
fast.

Syntax of the urlpatterns variable

urlpatterns should be a Python list of url() instances.

Error handling

When Django can’t find a regex matching the requested URL, or when an exception is raised, Django will invoke an
error-handling view.

The views to use for these cases are specified by four variables. Their default values should suffice for most projects,
but further customization is possible by overriding their default values.

See the documentation on customizing error views for the full details.

Such values can be set in your root URLconf. Setting these variables in any other URLconf will have no effect.

Values must be callables, or strings representing the full Python import path to the view that should be called to handle
the error condition at hand.

The variables are:

• handler400 – See django.conf.urls.handler400.

• handler403 – See django.conf.urls.handler403.

• handler404 – See django.conf.urls.handler404.

• handler500 – See django.conf.urls.handler500.

Including other URLconfs

At any point, your urlpatterns can “include” other URLconf modules. This essentially “roots” a set of URLs
below other ones.

For example, here’s an excerpt of the URLconf for the Django website itself. It includes a number of other URLconfs:

from django.conf.urls import include, url

urlpatterns = [
... snip ...

3.3. Handling HTTP requests 185

https://www.djangoproject.com/

Django Documentation, Release 1.10.9.dev20171123183751

url(r'^community/', include('django_website.aggregator.urls')),
url(r'^contact/', include('django_website.contact.urls')),
... snip ...

]

Note that the regular expressions in this example don’t have a $ (end-of-string match character) but do include a trailing
slash. Whenever Django encounters include() (django.conf.urls.include()), it chops off whatever part
of the URL matched up to that point and sends the remaining string to the included URLconf for further processing.

Another possibility is to include additional URL patterns by using a list of url() instances. For example, consider
this URLconf:

from django.conf.urls import include, url

from apps.main import views as main_views
from credit import views as credit_views

extra_patterns = [
url(r'^reports/$', credit_views.report),
url(r'^reports/(?P<id>[0-9]+)/$', credit_views.report),
url(r'^charge/$', credit_views.charge),

]

urlpatterns = [
url(r'^$', main_views.homepage),
url(r'^help/', include('apps.help.urls')),
url(r'^credit/', include(extra_patterns)),

]

In this example, the /credit/reports/URL will be handled by the credit_views.report()Django view.

This can be used to remove redundancy from URLconfs where a single pattern prefix is used repeatedly. For example,
consider this URLconf:

from django.conf.urls import url
from . import views

urlpatterns = [
url(r'^(?P<page_slug>[\w-]+)-(?P<page_id>\w+)/history/$', views.history),
url(r'^(?P<page_slug>[\w-]+)-(?P<page_id>\w+)/edit/$', views.edit),
url(r'^(?P<page_slug>[\w-]+)-(?P<page_id>\w+)/discuss/$', views.discuss),
url(r'^(?P<page_slug>[\w-]+)-(?P<page_id>\w+)/permissions/$', views.permissions),

]

We can improve this by stating the common path prefix only once and grouping the suffixes that differ:

from django.conf.urls import include, url
from . import views

urlpatterns = [
url(r'^(?P<page_slug>[\w-]+)-(?P<page_id>\w+)/', include([

url(r'^history/$', views.history),
url(r'^edit/$', views.edit),
url(r'^discuss/$', views.discuss),
url(r'^permissions/$', views.permissions),

])),
]

186 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Captured parameters

An included URLconf receives any captured parameters from parent URLconfs, so the following example is valid:

In settings/urls/main.py
from django.conf.urls import include, url

urlpatterns = [
url(r'^(?P<username>\w+)/blog/', include('foo.urls.blog')),

]

In foo/urls/blog.py
from django.conf.urls import url
from . import views

urlpatterns = [
url(r'^$', views.blog.index),
url(r'^archive/$', views.blog.archive),

]

In the above example, the captured "username" variable is passed to the included URLconf, as expected.

Nested arguments

Regular expressions allow nested arguments, and Django will resolve them and pass them to the view. When reversing,
Django will try to fill in all outer captured arguments, ignoring any nested captured arguments. Consider the following
URL patterns which optionally take a page argument:

from django.conf.urls import url

urlpatterns = [
url(r'blog/(page-(\d+)/)?$', blog_articles), # bad
url(r'comments/(?:page-(?P<page_number>\d+)/)?$', comments), # good

]

Both patterns use nested arguments and will resolve: for example, blog/page-2/ will result in a match to
blog_articles with two positional arguments: page-2/ and 2. The second pattern for comments will match
comments/page-2/ with keyword argument page_number set to 2. The outer argument in this case is a non-
capturing argument (?:...).

The blog_articles view needs the outermost captured argument to be reversed, page-2/ or no arguments in
this case, while comments can be reversed with either no arguments or a value for page_number.

Nested captured arguments create a strong coupling between the view arguments and the URL as illustrated by
blog_articles: the view receives part of the URL (page-2/) instead of only the value the view is interested in.
This coupling is even more pronounced when reversing, since to reverse the view we need to pass the piece of URL
instead of the page number.

As a rule of thumb, only capture the values the view needs to work with and use non-capturing arguments when the
regular expression needs an argument but the view ignores it.

Passing extra options to view functions

URLconfs have a hook that lets you pass extra arguments to your view functions, as a Python dictionary.

The django.conf.urls.url() function can take an optional third argument which should be a dictionary of
extra keyword arguments to pass to the view function.

3.3. Handling HTTP requests 187

Django Documentation, Release 1.10.9.dev20171123183751

For example:

from django.conf.urls import url
from . import views

urlpatterns = [
url(r'^blog/(?P<year>[0-9]{4})/$', views.year_archive, {'foo': 'bar'}),

]

In this example, for a request to /blog/2005/, Django will call views.year_archive(request,
year='2005', foo='bar').

This technique is used in the syndication framework to pass metadata and options to views.

Dealing with conflicts

It’s possible to have a URL pattern which captures named keyword arguments, and also passes arguments with the
same names in its dictionary of extra arguments. When this happens, the arguments in the dictionary will be used
instead of the arguments captured in the URL.

Passing extra options to include()

Similarly, you can pass extra options to include(). When you pass extra options to include(), each line in the
included URLconf will be passed the extra options.

For example, these two URLconf sets are functionally identical:

Set one:

main.py
from django.conf.urls import include, url

urlpatterns = [
url(r'^blog/', include('inner'), {'blogid': 3}),

]

inner.py
from django.conf.urls import url
from mysite import views

urlpatterns = [
url(r'^archive/$', views.archive),
url(r'^about/$', views.about),

]

Set two:

main.py
from django.conf.urls import include, url
from mysite import views

urlpatterns = [
url(r'^blog/', include('inner')),

]

inner.py

188 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

from django.conf.urls import url

urlpatterns = [
url(r'^archive/$', views.archive, {'blogid': 3}),
url(r'^about/$', views.about, {'blogid': 3}),

]

Note that extra options will always be passed to every line in the included URLconf, regardless of whether the line’s
view actually accepts those options as valid. For this reason, this technique is only useful if you’re certain that every
view in the included URLconf accepts the extra options you’re passing.

Reverse resolution of URLs

A common need when working on a Django project is the possibility to obtain URLs in their final forms either
for embedding in generated content (views and assets URLs, URLs shown to the user, etc.) or for handling of the
navigation flow on the server side (redirections, etc.)

It is strongly desirable to avoid hard-coding these URLs (a laborious, non-scalable and error-prone strategy). Equally
dangerous is devising ad-hoc mechanisms to generate URLs that are parallel to the design described by the URLconf,
which can result in the production of URLs that become stale over time.

In other words, what’s needed is a DRY mechanism. Among other advantages it would allow evolution of the URL
design without having to go over all the project source code to search and replace outdated URLs.

The primary piece of information we have available to get a URL is an identification (e.g. the name) of the view in
charge of handling it. Other pieces of information that necessarily must participate in the lookup of the right URL are
the types (positional, keyword) and values of the view arguments.

Django provides a solution such that the URL mapper is the only repository of the URL design. You feed it with your
URLconf and then it can be used in both directions:

• Starting with a URL requested by the user/browser, it calls the right Django view providing any arguments it
might need with their values as extracted from the URL.

• Starting with the identification of the corresponding Django view plus the values of arguments that would be
passed to it, obtain the associated URL.

The first one is the usage we’ve been discussing in the previous sections. The second one is what is known as reverse
resolution of URLs, reverse URL matching, reverse URL lookup, or simply URL reversing.

Django provides tools for performing URL reversing that match the different layers where URLs are needed:

• In templates: Using the url template tag.

• In Python code: Using the reverse() function.

• In higher level code related to handling of URLs of Django model instances: The get_absolute_url()
method.

Examples

Consider again this URLconf entry:

from django.conf.urls import url

from . import views

urlpatterns = [

3.3. Handling HTTP requests 189

Django Documentation, Release 1.10.9.dev20171123183751

#...
url(r'^articles/([0-9]{4})/$', views.year_archive, name='news-year-archive'),
#...

]

According to this design, the URL for the archive corresponding to year nnnn is /articles/nnnn/.

You can obtain these in template code by using:

2012 Archive
{# Or with the year in a template context variable: #}

{% for yearvar in year_list %}
{{ yearvar }} Archive
{% endfor %}

Or in Python code:

from django.urls import reverse
from django.http import HttpResponseRedirect

def redirect_to_year(request):
...
year = 2006
...
return HttpResponseRedirect(reverse('news-year-archive', args=(year,)))

If, for some reason, it was decided that the URLs where content for yearly article archives are published at should be
changed then you would only need to change the entry in the URLconf.

In some scenarios where views are of a generic nature, a many-to-one relationship might exist between URLs and
views. For these cases the view name isn’t a good enough identifier for it when comes the time of reversing URLs.
Read the next section to know about the solution Django provides for this.

Naming URL patterns

In order to perform URL reversing, you’ll need to use named URL patterns as done in the examples above. The
string used for the URL name can contain any characters you like. You are not restricted to valid Python names.

When you name your URL patterns, make sure you use names that are unlikely to clash with any other application’s
choice of names. If you call your URL pattern comment, and another application does the same thing, there’s no
guarantee which URL will be inserted into your template when you use this name.

Putting a prefix on your URL names, perhaps derived from the application name, will decrease the chances of collision.
We recommend something like myapp-comment instead of comment.

URL namespaces

Introduction

URL namespaces allow you to uniquely reverse named URL patterns even if different applications use the same URL
names. It’s a good practice for third-party apps to always use namespaced URLs (as we did in the tutorial). Similarly,
it also allows you to reverse URLs if multiple instances of an application are deployed. In other words, since multiple
instances of a single application will share named URLs, namespaces provide a way to tell these named URLs apart.

190 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Django applications that make proper use of URL namespacing can be deployed more than once for a particular site.
For example django.contrib.admin has an AdminSite class which allows you to easily deploy more than
one instance of the admin. In a later example, we’ll discuss the idea of deploying the polls application from the tutorial
in two different locations so we can serve the same functionality to two different audiences (authors and publishers).

A URL namespace comes in two parts, both of which are strings:

application namespace This describes the name of the application that is being deployed. Every instance of a
single application will have the same application namespace. For example, Django’s admin application has the
somewhat predictable application namespace of 'admin'.

instance namespace This identifies a specific instance of an application. Instance namespaces should be unique
across your entire project. However, an instance namespace can be the same as the application namespace. This
is used to specify a default instance of an application. For example, the default Django admin instance has an
instance namespace of 'admin'.

Namespaced URLs are specified using the ':' operator. For example, the main index page of the admin application
is referenced using 'admin:index'. This indicates a namespace of 'admin', and a named URL of 'index'.

Namespaces can also be nested. The named URL 'sports:polls:index' would look for a pattern named
'index' in the namespace 'polls' that is itself defined within the top-level namespace 'sports'.

Reversing namespaced URLs

When given a namespaced URL (e.g. 'polls:index') to resolve, Django splits the fully qualified name into parts
and then tries the following lookup:

1. First, Django looks for a matching application namespace (in this example, 'polls'). This will yield a list of
instances of that application.

2. If there is a current application defined, Django finds and returns the URL resolver for that instance. The current
application can be specified with the current_app argument to the reverse() function.

The url template tag uses the namespace of the currently resolved view as the current application in a
RequestContext. You can override this default by setting the current application on the request.
current_app attribute.

Previously, the url template tag did not use the namespace of the currently resolved view and you had to set
the current_app attribute on the request.

3. If there is no current application. Django looks for a default application instance. The default application
instance is the instance that has an instance namespace matching the application namespace (in this example,
an instance of polls called 'polls').

4. If there is no default application instance, Django will pick the last deployed instance of the application, whatever
its instance name may be.

5. If the provided namespace doesn’t match an application namespace in step 1, Django will attempt a direct
lookup of the namespace as an instance namespace.

If there are nested namespaces, these steps are repeated for each part of the namespace until only the view name is
unresolved. The view name will then be resolved into a URL in the namespace that has been found.

Example

To show this resolution strategy in action, consider an example of two instances of the polls application from the
tutorial: one called 'author-polls' and one called 'publisher-polls'. Assume we have enhanced that
application so that it takes the instance namespace into consideration when creating and displaying polls.

3.3. Handling HTTP requests 191

Django Documentation, Release 1.10.9.dev20171123183751

urls.py

from django.conf.urls import include, url

urlpatterns = [
url(r'^author-polls/', include('polls.urls', namespace='author-polls')),
url(r'^publisher-polls/', include('polls.urls', namespace='publisher-polls')),

]

polls/urls.py

from django.conf.urls import url

from . import views

app_name = 'polls'
urlpatterns = [

url(r'^$', views.IndexView.as_view(), name='index'),
url(r'^(?P<pk>\d+)/$', views.DetailView.as_view(), name='detail'),
...

]

Using this setup, the following lookups are possible:

• If one of the instances is current - say, if we were rendering the detail page in the instance 'author-polls' -
'polls:index'will resolve to the index page of the 'author-polls' instance; i.e. both of the following
will result in "/author-polls/".

In the method of a class-based view:

reverse('polls:index', current_app=self.request.resolver_match.namespace)

and in the template:

{% url 'polls:index' %}

• If there is no current instance - say, if we were rendering a page somewhere else on the site - 'polls:index'
will resolve to the last registered instance of polls. Since there is no default instance (instance namespace of
'polls'), the last instance of polls that is registered will be used. This would be 'publisher-polls'
since it’s declared last in the urlpatterns.

• 'author-polls:index' will always resolve to the index page of the instance 'author-polls' (and
likewise for 'publisher-polls') .

If there were also a default instance - i.e., an instance named 'polls' - the only change from above would be in
the case where there is no current instance (the second item in the list above). In this case 'polls:index' would
resolve to the index page of the default instance instead of the instance declared last in urlpatterns.

URL namespaces and included URLconfs

Application namespaces of included URLconfs can be specified in two ways.

Firstly, you can set an app_name attribute in the included URLconf module, at the same level as the urlpatterns
attribute. You have to pass the actual module, or a string reference to the module, to include(), not the list of
urlpatterns itself.

polls/urls.py

from django.conf.urls import url

from . import views

192 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

app_name = 'polls'
urlpatterns = [

url(r'^$', views.IndexView.as_view(), name='index'),
url(r'^(?P<pk>\d+)/$', views.DetailView.as_view(), name='detail'),
...

]

urls.py

from django.conf.urls import include, url

urlpatterns = [
url(r'^polls/', include('polls.urls')),

]

The URLs defined in polls.urls will have an application namespace polls.

Secondly, you can include an object that contains embedded namespace data. If you include() a list of url() in-
stances, the URLs contained in that object will be added to the global namespace. However, you can also include()
a 2-tuple containing:

(<list of url() instances>, <application namespace>)

For example:

from django.conf.urls import include, url

from . import views

polls_patterns = ([
url(r'^$', views.IndexView.as_view(), name='index'),
url(r'^(?P<pk>\d+)/$', views.DetailView.as_view(), name='detail'),

], 'polls')

urlpatterns = [
url(r'^polls/', include(polls_patterns)),

]

This will include the nominated URL patterns into the given application namespace.

The instance namespace can be specified using the namespace argument to include(). If the instance namespace
is not specified, it will default to the included URLconf’s application namespace. This means it will also be the default
instance for that namespace.

In previous versions, you had to specify both the application namespace and the instance namespace in a single place,
either by passing them as parameters to include() or by including a 3-tuple containing (<list of url()
instances>, <application namespace>, <instance namespace>).

3.3.2 Writing views

A view function, or view for short, is simply a Python function that takes a Web request and returns a Web response.
This response can be the HTML contents of a Web page, or a redirect, or a 404 error, or an XML document, or an
image . . . or anything, really. The view itself contains whatever arbitrary logic is necessary to return that response.
This code can live anywhere you want, as long as it’s on your Python path. There’s no other requirement–no “magic,”
so to speak. For the sake of putting the code somewhere, the convention is to put views in a file called views.py,
placed in your project or application directory.

3.3. Handling HTTP requests 193

Django Documentation, Release 1.10.9.dev20171123183751

A simple view

Here’s a view that returns the current date and time, as an HTML document:

from django.http import HttpResponse
import datetime

def current_datetime(request):
now = datetime.datetime.now()
html = "<html><body>It is now %s.</body></html>" % now
return HttpResponse(html)

Let’s step through this code one line at a time:

• First, we import the class HttpResponse from the django.http module, along with Python’s datetime
library.

• Next, we define a function called current_datetime. This is the view function. Each view function takes
an HttpRequest object as its first parameter, which is typically named request.

Note that the name of the view function doesn’t matter; it doesn’t have to be named in a certain way in order for
Django to recognize it. We’re calling it current_datetime here, because that name clearly indicates what
it does.

• The view returns an HttpResponse object that contains the generated response. Each view function is re-
sponsible for returning an HttpResponse object. (There are exceptions, but we’ll get to those later.)

Django’s Time Zone

Django includes a TIME_ZONE setting that defaults to America/Chicago. This probably isn’t where you live, so
you might want to change it in your settings file.

Mapping URLs to views

So, to recap, this view function returns an HTML page that includes the current date and time. To display this view at
a particular URL, you’ll need to create a URLconf ; see URL dispatcher for instructions.

Returning errors

Returning HTTP error codes in Django is easy. There are subclasses of HttpResponse for a number of common
HTTP status codes other than 200 (which means “OK”). You can find the full list of available subclasses in the re-
quest/response documentation. Just return an instance of one of those subclasses instead of a normal HttpResponse
in order to signify an error. For example:

from django.http import HttpResponse, HttpResponseNotFound

def my_view(request):
...
if foo:

return HttpResponseNotFound('<h1>Page not found</h1>')
else:

return HttpResponse('<h1>Page was found</h1>')

194 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

There isn’t a specialized subclass for every possible HTTP response code, since many of them aren’t going to be that
common. However, as documented in the HttpResponse documentation, you can also pass the HTTP status code
into the constructor for HttpResponse to create a return class for any status code you like. For example:

from django.http import HttpResponse

def my_view(request):
...

Return a "created" (201) response code.
return HttpResponse(status=201)

Because 404 errors are by far the most common HTTP error, there’s an easier way to handle those errors.

The Http404 exception

class django.http.Http404

When you return an error such as HttpResponseNotFound, you’re responsible for defining the HTML of the
resulting error page:

return HttpResponseNotFound('<h1>Page not found</h1>')

For convenience, and because it’s a good idea to have a consistent 404 error page across your site, Django provides
an Http404 exception. If you raise Http404 at any point in a view function, Django will catch it and return the
standard error page for your application, along with an HTTP error code 404.

Example usage:

from django.http import Http404
from django.shortcuts import render
from polls.models import Poll

def detail(request, poll_id):
try:

p = Poll.objects.get(pk=poll_id)
except Poll.DoesNotExist:

raise Http404("Poll does not exist")
return render(request, 'polls/detail.html', {'poll': p})

In order to show customized HTML when Django returns a 404, you can create an HTML template named 404.html
and place it in the top level of your template tree. This template will then be served when DEBUG is set to False.

When DEBUG is True, you can provide a message to Http404 and it will appear in the standard 404 debug template.
Use these messages for debugging purposes; they generally aren’t suitable for use in a production 404 template.

Customizing error views

The default error views in Django should suffice for most Web applications, but can easily be overridden if you need
any custom behavior. Simply specify the handlers as seen below in your URLconf (setting them anywhere else will
have no effect).

The page_not_found() view is overridden by handler404:

handler404 = 'mysite.views.my_custom_page_not_found_view'

3.3. Handling HTTP requests 195

Django Documentation, Release 1.10.9.dev20171123183751

The server_error() view is overridden by handler500:

handler500 = 'mysite.views.my_custom_error_view'

The permission_denied() view is overridden by handler403:

handler403 = 'mysite.views.my_custom_permission_denied_view'

The bad_request() view is overridden by handler400:

handler400 = 'mysite.views.my_custom_bad_request_view'

See also:

Use the CSRF_FAILURE_VIEW setting to override the CSRF error view.

3.3.3 View decorators

Django provides several decorators that can be applied to views to support various HTTP features.

Allowed HTTP methods

The decorators in django.views.decorators.http can be used to restrict access to views based on the request
method. These decorators will return a django.http.HttpResponseNotAllowed if the conditions are not
met.

require_http_methods(request_method_list)
Decorator to require that a view only accepts particular request methods. Usage:

from django.views.decorators.http import require_http_methods

@require_http_methods(["GET", "POST"])
def my_view(request):

I can assume now that only GET or POST requests make it this far
...
pass

Note that request methods should be in uppercase.

require_GET()
Decorator to require that a view only accepts the GET method.

require_POST()
Decorator to require that a view only accepts the POST method.

require_safe()
Decorator to require that a view only accepts the GET and HEAD methods. These methods are commonly
considered “safe” because they should not have the significance of taking an action other than retrieving the
requested resource.

Note: Web servers should automatically strip the content of responses to HEAD requests while leaving the
headers unchanged, so you may handle HEAD requests exactly like GET requests in your views. Since some
software, such as link checkers, rely on HEAD requests, you might prefer using require_safe instead of
require_GET.

196 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Conditional view processing

The following decorators in django.views.decorators.http can be used to control caching behavior on
particular views.

condition(etag_func=None, last_modified_func=None)

etag(etag_func)

last_modified(last_modified_func)
These decorators can be used to generate ETag and Last-Modified headers; see conditional view process-
ing.

GZip compression

The decorators in django.views.decorators.gzip control content compression on a per-view basis.

gzip_page()
This decorator compresses content if the browser allows gzip compression. It sets the Vary header accordingly,
so that caches will base their storage on the Accept-Encoding header.

Vary headers

The decorators in django.views.decorators.vary can be used to control caching based on specific request
headers.

vary_on_cookie(func)

vary_on_headers(*headers)
The Vary header defines which request headers a cache mechanism should take into account when building its
cache key.

See using vary headers.

Caching

The decorators in django.views.decorators.cache control server and client-side caching.

cache_control(**kwargs)
This decorator patches the response’s Cache-Control header by adding all of the keyword arguments to it.
See patch_cache_control() for the details of the transformation.

never_cache(view_func)
This decorator adds a Cache-Control: max-age=0, no-cache, no-store,
must-revalidate header to a response to indicate that a page should never be cached.

Before Django 1.9, Cache-Control: max-age=0 was sent. This didn’t reliably prevent caching in all
browsers.

3.3.4 File Uploads

When Django handles a file upload, the file data ends up placed in request.FILES (for more on the request
object see the documentation for request and response objects). This document explains how files are stored on disk
and in memory, and how to customize the default behavior.

3.3. Handling HTTP requests 197

Django Documentation, Release 1.10.9.dev20171123183751

Warning: There are security risks if you are accepting uploaded content from untrusted users! See the security
guide’s topic on User-uploaded content for mitigation details.

Basic file uploads

Consider a simple form containing a FileField:

forms.py

from django import forms

class UploadFileForm(forms.Form):
title = forms.CharField(max_length=50)
file = forms.FileField()

A view handling this form will receive the file data in request.FILES, which is a dictionary containing a key for
each FileField (or ImageField, or other FileField subclass) in the form. So the data from the above form
would be accessible as request.FILES['file'].

Note that request.FILES will only contain data if the request method was POST and the <form> that posted the
request has the attribute enctype="multipart/form-data". Otherwise, request.FILES will be empty.

Most of the time, you’ll simply pass the file data from request into the form as described in Binding uploaded files
to a form. This would look something like:

views.py

from django.http import HttpResponseRedirect
from django.shortcuts import render
from .forms import UploadFileForm

Imaginary function to handle an uploaded file.
from somewhere import handle_uploaded_file

def upload_file(request):
if request.method == 'POST':

form = UploadFileForm(request.POST, request.FILES)
if form.is_valid():

handle_uploaded_file(request.FILES['file'])
return HttpResponseRedirect('/success/url/')

else:
form = UploadFileForm()

return render(request, 'upload.html', {'form': form})

Notice that we have to pass request.FILES into the form’s constructor; this is how file data gets bound into a
form.

Here’s a common way you might handle an uploaded file:

def handle_uploaded_file(f):
with open('some/file/name.txt', 'wb+') as destination:

for chunk in f.chunks():
destination.write(chunk)

Looping over UploadedFile.chunks() instead of using read() ensures that large files don’t overwhelm your
system’s memory.

There are a few other methods and attributes available on UploadedFile objects; see UploadedFile for a
complete reference.

198 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Handling uploaded files with a model

If you’re saving a file on a Model with a FileField, using a ModelForm makes this process much easier. The
file object will be saved to the location specified by the upload_to argument of the corresponding FileField
when calling form.save():

from django.http import HttpResponseRedirect
from django.shortcuts import render
from .forms import ModelFormWithFileField

def upload_file(request):
if request.method == 'POST':

form = ModelFormWithFileField(request.POST, request.FILES)
if form.is_valid():

file is saved
form.save()
return HttpResponseRedirect('/success/url/')

else:
form = ModelFormWithFileField()

return render(request, 'upload.html', {'form': form})

If you are constructing an object manually, you can simply assign the file object from request.FILES to the file
field in the model:

from django.http import HttpResponseRedirect
from django.shortcuts import render
from .forms import UploadFileForm
from .models import ModelWithFileField

def upload_file(request):
if request.method == 'POST':

form = UploadFileForm(request.POST, request.FILES)
if form.is_valid():

instance = ModelWithFileField(file_field=request.FILES['file'])
instance.save()
return HttpResponseRedirect('/success/url/')

else:
form = UploadFileForm()

return render(request, 'upload.html', {'form': form})

Uploading multiple files

If you want to upload multiple files using one form field, set the multiple HTML attribute of field’s widget:

forms.py

from django import forms

class FileFieldForm(forms.Form):
file_field = forms.FileField(widget=forms.ClearableFileInput(attrs={'multiple': True}))

Then override the post method of your FormView subclass to handle multiple file uploads:

views.py

from django.views.generic.edit import FormView
from .forms import FileFieldForm

3.3. Handling HTTP requests 199

Django Documentation, Release 1.10.9.dev20171123183751

class FileFieldView(FormView):
form_class = FileFieldForm
template_name = 'upload.html' # Replace with your template.
success_url = '...' # Replace with your URL or reverse().

def post(self, request, *args, **kwargs):
form_class = self.get_form_class()
form = self.get_form(form_class)
files = request.FILES.getlist('file_field')
if form.is_valid():

for f in files:
... # Do something with each file.

return self.form_valid(form)
else:

return self.form_invalid(form)

Upload Handlers

When a user uploads a file, Django passes off the file data to an upload handler – a small class that handles file data as
it gets uploaded. Upload handlers are initially defined in the FILE_UPLOAD_HANDLERS setting, which defaults to:

["django.core.files.uploadhandler.MemoryFileUploadHandler",
"django.core.files.uploadhandler.TemporaryFileUploadHandler"]

Together MemoryFileUploadHandler and TemporaryFileUploadHandler provide Django’s default file
upload behavior of reading small files into memory and large ones onto disk.

You can write custom handlers that customize how Django handles files. You could, for example, use custom handlers
to enforce user-level quotas, compress data on the fly, render progress bars, and even send data to another storage
location directly without storing it locally. See Writing custom upload handlers for details on how you can customize
or completely replace upload behavior.

Where uploaded data is stored

Before you save uploaded files, the data needs to be stored somewhere.

By default, if an uploaded file is smaller than 2.5 megabytes, Django will hold the entire contents of the upload in
memory. This means that saving the file involves only a read from memory and a write to disk and thus is very fast.

However, if an uploaded file is too large, Django will write the uploaded file to a temporary file stored in your system’s
temporary directory. On a Unix-like platform this means you can expect Django to generate a file called something
like /tmp/tmpzfp6I6.upload. If an upload is large enough, you can watch this file grow in size as Django
streams the data onto disk.

These specifics – 2.5 megabytes; /tmp; etc. – are simply “reasonable defaults” which can be customized as described
in the next section.

Changing upload handler behavior

There are a few settings which control Django’s file upload behavior. See File Upload Settings for details.

200 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Modifying upload handlers on the fly

Sometimes particular views require different upload behavior. In these cases, you can override upload handlers on a
per-request basis by modifying request.upload_handlers. By default, this list will contain the upload handlers
given by FILE_UPLOAD_HANDLERS, but you can modify the list as you would any other list.

For instance, suppose you’ve written a ProgressBarUploadHandler that provides feedback on upload progress
to some sort of AJAX widget. You’d add this handler to your upload handlers like this:

request.upload_handlers.insert(0, ProgressBarUploadHandler(request))

You’d probably want to use list.insert() in this case (instead of append()) because a progress bar handler
would need to run before any other handlers. Remember, the upload handlers are processed in order.

If you want to replace the upload handlers completely, you can just assign a new list:

request.upload_handlers = [ProgressBarUploadHandler(request)]

Note: You can only modify upload handlers before accessing request.POST or request.FILES – it doesn’t
make sense to change upload handlers after upload handling has already started. If you try to modify request.
upload_handlers after reading from request.POST or request.FILES Django will throw an error.

Thus, you should always modify uploading handlers as early in your view as possible.

Also, request.POST is accessed by CsrfViewMiddleware which is enabled by default. This means you will
need to use csrf_exempt() on your view to allow you to change the upload handlers. You will then need to use
csrf_protect() on the function that actually processes the request. Note that this means that the handlers may
start receiving the file upload before the CSRF checks have been done. Example code:

from django.views.decorators.csrf import csrf_exempt, csrf_protect

@csrf_exempt
def upload_file_view(request):

request.upload_handlers.insert(0, ProgressBarUploadHandler(request))
return _upload_file_view(request)

@csrf_protect
def _upload_file_view(request):

... # Process request

3.3.5 Django shortcut functions

The package django.shortcuts collects helper functions and classes that “span” multiple levels of MVC. In
other words, these functions/classes introduce controlled coupling for convenience’s sake.

render()

render(request, template_name, context=None, content_type=None, status=None, using=None)
Combines a given template with a given context dictionary and returns an HttpResponse object with that
rendered text.

Django does not provide a shortcut function which returns a TemplateResponse because the constructor of
TemplateResponse offers the same level of convenience as render().

3.3. Handling HTTP requests 201

Django Documentation, Release 1.10.9.dev20171123183751

Required arguments

request The request object used to generate this response.

template_name The full name of a template to use or sequence of template names. If a sequence is given, the
first template that exists will be used. See the template loading documentation for more information on how
templates are found.

Optional arguments

context A dictionary of values to add to the template context. By default, this is an empty dictionary. If a value in
the dictionary is callable, the view will call it just before rendering the template.

content_type The MIME type to use for the resulting document. Defaults to the value of the
DEFAULT_CONTENT_TYPE setting.

status The status code for the response. Defaults to 200.

using The NAME of a template engine to use for loading the template.

Example

The following example renders the template myapp/index.html with the MIME type application/
xhtml+xml:

from django.shortcuts import render

def my_view(request):
View code here...
return render(request, 'myapp/index.html', {

'foo': 'bar',
}, content_type='application/xhtml+xml')

This example is equivalent to:

from django.http import HttpResponse
from django.template import loader

def my_view(request):
View code here...
t = loader.get_template('myapp/index.html')
c = {'foo': 'bar'}
return HttpResponse(t.render(c, request), content_type='application/xhtml+xml')

render_to_response()

render_to_response(template_name, context=None, content_type=None, status=None, using=None)
This function preceded the introduction of render() and works similarly except that it doesn’t make the
request available in the response. It’s not recommended and is likely to be deprecated in the future.

redirect()

redirect(to, permanent=False, *args, **kwargs)
Returns an HttpResponseRedirect to the appropriate URL for the arguments passed.

202 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

The arguments could be:

• A model: the model’s get_absolute_url() function will be called.

• A view name, possibly with arguments: reverse() will be used to reverse-resolve the name.

• An absolute or relative URL, which will be used as-is for the redirect location.

By default issues a temporary redirect; pass permanent=True to issue a permanent redirect.

Examples

You can use the redirect() function in a number of ways.

1. By passing some object; that object’s get_absolute_url() method will be called to figure out the redirect
URL:

from django.shortcuts import redirect

def my_view(request):
...
object = MyModel.objects.get(...)
return redirect(object)

2. By passing the name of a view and optionally some positional or keyword arguments; the URL will be reverse
resolved using the reverse() method:

def my_view(request):
...
return redirect('some-view-name', foo='bar')

3. By passing a hardcoded URL to redirect to:

def my_view(request):
...
return redirect('/some/url/')

This also works with full URLs:

def my_view(request):
...
return redirect('https://example.com/')

By default, redirect() returns a temporary redirect. All of the above forms accept a permanent argument; if set
to True a permanent redirect will be returned:

def my_view(request):
...
object = MyModel.objects.get(...)
return redirect(object, permanent=True)

get_object_or_404()

get_object_or_404(klass, *args, **kwargs)
Calls get() on a given model manager, but it raises Http404 instead of the model’s DoesNotExist ex-
ception.

3.3. Handling HTTP requests 203

Django Documentation, Release 1.10.9.dev20171123183751

Required arguments

klass A Model class, a Manager, or a QuerySet instance from which to get the object.

**kwargs Lookup parameters, which should be in the format accepted by get() and filter().

Example

The following example gets the object with the primary key of 1 from MyModel:

from django.shortcuts import get_object_or_404

def my_view(request):
my_object = get_object_or_404(MyModel, pk=1)

This example is equivalent to:

from django.http import Http404

def my_view(request):
try:

my_object = MyModel.objects.get(pk=1)
except MyModel.DoesNotExist:

raise Http404("No MyModel matches the given query.")

The most common use case is to pass a Model, as shown above. However, you can also pass a QuerySet instance:

queryset = Book.objects.filter(title__startswith='M')
get_object_or_404(queryset, pk=1)

The above example is a bit contrived since it’s equivalent to doing:

get_object_or_404(Book, title__startswith='M', pk=1)

but it can be useful if you are passed the queryset variable from somewhere else.

Finally, you can also use a Manager. This is useful for example if you have a custom manager:

get_object_or_404(Book.dahl_objects, title='Matilda')

You can also use related managers:

author = Author.objects.get(name='Roald Dahl')
get_object_or_404(author.book_set, title='Matilda')

Note: As with get(), a MultipleObjectsReturned exception will be raised if more than one object is found.

get_list_or_404()

get_list_or_404(klass, *args, **kwargs)
Returns the result of filter() on a given model manager cast to a list, raising Http404 if the resulting list
is empty.

204 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Required arguments

klass A Model, Manager or QuerySet instance from which to get the list.

**kwargs Lookup parameters, which should be in the format accepted by get() and filter().

Example

The following example gets all published objects from MyModel:

from django.shortcuts import get_list_or_404

def my_view(request):
my_objects = get_list_or_404(MyModel, published=True)

This example is equivalent to:

from django.http import Http404

def my_view(request):
my_objects = list(MyModel.objects.filter(published=True))
if not my_objects:

raise Http404("No MyModel matches the given query.")

3.3.6 Generic views

See Built-in class-based views API.

3.3.7 Middleware

Middleware is a framework of hooks into Django’s request/response processing. It’s a light, low-level “plugin” system
for globally altering Django’s input or output.

Each middleware component is responsible for doing some specific function. For example, Django includes a middle-
ware component, AuthenticationMiddleware, that associates users with requests using sessions.

This document explains how middleware works, how you activate middleware, and how to write your own middleware.
Django ships with some built-in middleware you can use right out of the box. They’re documented in the built-in
middleware reference.

A new style of middleware was introduced for use with the new MIDDLEWARE setting. If you’re using the old
MIDDLEWARE_CLASSES setting, you’ll need to adapt old, custom middleware before using the new setting. This
document describes new-style middleware. Refer to this page in older versions of the documentation for a description
of how old-style middleware works.

Writing your own middleware

A middleware factory is a callable that takes a get_response callable and returns a middleware. A middleware is
a callable that takes a request and returns a response, just like a view.

A middleware can be written as a function that looks like this:

3.3. Handling HTTP requests 205

Django Documentation, Release 1.10.9.dev20171123183751

def simple_middleware(get_response):
One-time configuration and initialization.

def middleware(request):
Code to be executed for each request before
the view (and later middleware) are called.

response = get_response(request)

Code to be executed for each request/response after
the view is called.

return response

return middleware

Or it can be written as a class whose instances are callable, like this:

class SimpleMiddleware(object):
def __init__(self, get_response):

self.get_response = get_response
One-time configuration and initialization.

def __call__(self, request):
Code to be executed for each request before
the view (and later middleware) are called.

response = self.get_response(request)

Code to be executed for each request/response after
the view is called.

return response

The get_response callable provided by Django might be the actual view (if this is the last listed middleware) or
it might be the next middleware in the chain. The current middleware doesn’t need to know or care what exactly it is,
just that it represents whatever comes next.

The above is a slight simplification – the get_response callable for the last middleware in the chain won’t be the
actual view but rather a wrapper method from the handler which takes care of applying view middleware, calling the
view with appropriate URL arguments, and applying template-response and exception middleware.

Middleware can live anywhere on your Python path.

__init__(get_response)

Middleware factories must accept a get_response argument. You can also initialize some global state for the
middleware. Keep in mind a couple of caveats:

• Django initializes your middleware with only the get_response argument, so you can’t define
__init__() as requiring any other arguments.

• Unlike the __call__() method which is called once per request, __init__() is called only once, when
the Web server starts.

In older versions, __init__() wasn’t called until the Web server responded to its first request.

206 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

In older versions, __init__() didn’t accept any arguments. To allow your middleware to be used in Django 1.9
and earlier, make get_response an optional argument (get_response=None).

Marking middleware as unused

It’s sometimes useful to determine at startup time whether a piece of middleware should be used. In these cases, your
middleware’s __init__() method may raise MiddlewareNotUsed. Django will then remove that middleware
from the middleware process and log a debug message to the django.request logger when DEBUG is True.

Activating middleware

To activate a middleware component, add it to the MIDDLEWARE list in your Django settings.

In MIDDLEWARE, each middleware component is represented by a string: the full Python path to the middleware fac-
tory’s class or function name. For example, here’s the default value created by django-admin startproject:

MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',

]

A Django installation doesn’t require any middleware — MIDDLEWARE can be empty, if you’d like — but it’s strongly
suggested that you at least use CommonMiddleware.

The order in MIDDLEWARE matters because a middleware can depend on other middleware. For instance,
AuthenticationMiddleware stores the authenticated user in the session; therefore, it must run after
SessionMiddleware. See Middleware ordering for some common hints about ordering of Django middleware
classes.

Middleware order and layering

During the request phase, before calling the view, Django applies middleware in the order it’s defined in
MIDDLEWARE, top-down.

You can think of it like an onion: each middleware class is a “layer” that wraps the view, which is in the core of the
onion. If the request passes through all the layers of the onion (each one calls get_response to pass the request in
to the next layer), all the way to the view at the core, the response will then pass through every layer (in reverse order)
on the way back out.

If one of the layers decides to short-circuit and return a response without ever calling its get_response, none of
the layers of the onion inside that layer (including the view) will see the request or the response. The response will
only return through the same layers that the request passed in through.

Other middleware hooks

Besides the basic request/response middleware pattern described earlier, you can add three other special methods to
class-based middleware:

3.3. Handling HTTP requests 207

Django Documentation, Release 1.10.9.dev20171123183751

process_view()

process_view(request, view_func, view_args, view_kwargs)

request is an HttpRequest object. view_func is the Python function that Django is about to use. (It’s the
actual function object, not the name of the function as a string.) view_args is a list of positional arguments that
will be passed to the view, and view_kwargs is a dictionary of keyword arguments that will be passed to the view.
Neither view_args nor view_kwargs include the first view argument (request).

process_view() is called just before Django calls the view.

It should return either None or an HttpResponse object. If it returns None, Django will continue processing
this request, executing any other process_view() middleware and, then, the appropriate view. If it returns an
HttpResponse object, Django won’t bother calling the appropriate view; it’ll apply response middleware to that
HttpResponse and return the result.

Note: Accessing request.POST inside middleware before the view runs or in process_view() will prevent
any view running after the middleware from being able to modify the upload handlers for the request, and should
normally be avoided.

The CsrfViewMiddleware class can be considered an exception, as it provides the csrf_exempt() and
csrf_protect() decorators which allow views to explicitly control at what point the CSRF validation should
occur.

process_exception()

process_exception(request, exception)

request is an HttpRequest object. exception is an Exception object raised by the view function.

Django calls process_exception() when a view raises an exception. process_exception() should return
either None or an HttpResponse object. If it returns an HttpResponse object, the template response and
response middleware will be applied and the resulting response returned to the browser. Otherwise, default exception
handling kicks in.

Again, middleware are run in reverse order during the response phase, which includes process_exception. If an
exception middleware returns a response, the process_exception methods of the middleware classes above that
middleware won’t be called at all.

process_template_response()

process_template_response(request, response)

request is an HttpRequest object. response is the TemplateResponse object (or equivalent) returned by
a Django view or by a middleware.

process_template_response() is called just after the view has finished executing, if the response instance
has a render() method, indicating that it is a TemplateResponse or equivalent.

It must return a response object that implements a render method. It could alter the given response by chang-
ing response.template_name and response.context_data, or it could create and return a brand-new
TemplateResponse or equivalent.

You don’t need to explicitly render responses – responses will be automatically rendered once all template response
middleware has been called.

208 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Middleware are run in reverse order during the response phase, which includes
process_template_response().

Dealing with streaming responses

Unlike HttpResponse, StreamingHttpResponse does not have a content attribute. As a result, middle-
ware can no longer assume that all responses will have a content attribute. If they need access to the content, they
must test for streaming responses and adjust their behavior accordingly:

if response.streaming:
response.streaming_content = wrap_streaming_content(response.streaming_content)

else:
response.content = alter_content(response.content)

Note: streaming_content should be assumed to be too large to hold in memory. Response middleware may
wrap it in a new generator, but must not consume it. Wrapping is typically implemented as follows:

def wrap_streaming_content(content):
for chunk in content:

yield alter_content(chunk)

Exception handling

Django automatically converts exceptions raised by the view or by middleware into an appropriate HTTP response with
an error status code. Certain exceptions are converted to 4xx status codes, while an unknown exception is converted
to a 500 status code.

This conversion takes place before and after each middleware (you can think of it as the thin film in between each
layer of the onion), so that every middleware can always rely on getting some kind of HTTP response back from
calling its get_response callable. Middleware don’t need to worry about wrapping their call to get_response
in a try/except and handling an exception that might have been raised by a later middleware or the view. Even
if the very next middleware in the chain raises an Http404 exception, for example, your middleware won’t see that
exception; instead it will get an HttpResponse object with a status_code of 404.

Upgrading pre-Django 1.10-style middleware

class django.utils.deprecation.MiddlewareMixin

Django provides django.utils.deprecation.MiddlewareMixin to ease creating middleware classes that
are compatible with both MIDDLEWARE and the old MIDDLEWARE_CLASSES. All middleware classes included with
Django are compatible with both settings.

The mixin provides an __init__() method that accepts an optional get_response argument and stores it in
self.get_response.

The __call__() method:

1. Calls self.process_request(request) (if defined).

2. Calls self.get_response(request) to get the response from later middleware and the view.

3. Calls self.process_response(request, response) (if defined).

4. Returns the response.

3.3. Handling HTTP requests 209

Django Documentation, Release 1.10.9.dev20171123183751

If used with MIDDLEWARE_CLASSES, the __call__() method will never be used; Django calls
process_request() and process_response() directly.

In most cases, inheriting from this mixin will be sufficient to make an old-style middleware compatible with the new
system with sufficient backwards-compatibility. The new short-circuiting semantics will be harmless or even beneficial
to the existing middleware. In a few cases, a middleware class may need some changes to adjust to the new semantics.

These are the behavioral differences between using MIDDLEWARE and MIDDLEWARE_CLASSES:

1. Under MIDDLEWARE_CLASSES, every middleware will always have its process_response method
called, even if an earlier middleware short-circuited by returning a response from its process_request
method. Under MIDDLEWARE, middleware behaves more like an onion: the layers that a response goes through
on the way out are the same layers that saw the request on the way in. If a middleware short-circuits, only that
middleware and the ones before it in MIDDLEWARE will see the response.

2. Under MIDDLEWARE_CLASSES, process_exception is applied to exceptions raised from a middleware
process_request method. Under MIDDLEWARE, process_exception applies only to exceptions
raised from the view (or from the render method of a TemplateResponse). Exceptions raised from a
middleware are converted to the appropriate HTTP response and then passed to the next middleware.

3. Under MIDDLEWARE_CLASSES, if a process_response method raises an exception, the
process_response methods of all earlier middleware are skipped and a 500 Internal Server
Error HTTP response is always returned (even if the exception raised was e.g. an Http404). Under
MIDDLEWARE, an exception raised from a middleware will immediately be converted to the appropriate HTTP
response, and then the next middleware in line will see that response. Middleware are never skipped due to a
middleware raising an exception.

3.3.8 How to use sessions

Django provides full support for anonymous sessions. The session framework lets you store and retrieve arbitrary data
on a per-site-visitor basis. It stores data on the server side and abstracts the sending and receiving of cookies. Cookies
contain a session ID – not the data itself (unless you’re using the cookie based backend).

Enabling sessions

Sessions are implemented via a piece of middleware.

To enable session functionality, do the following:

• Edit the MIDDLEWARE setting and make sure it contains 'django.contrib.sessions.middleware.
SessionMiddleware'. The default settings.py created by django-admin startproject has
SessionMiddleware activated.

If you don’t want to use sessions, you might as well remove the SessionMiddleware line from MIDDLEWARE
and 'django.contrib.sessions' from your INSTALLED_APPS. It’ll save you a small bit of overhead.

Configuring the session engine

By default, Django stores sessions in your database (using the model django.contrib.sessions.models.
Session). Though this is convenient, in some setups it’s faster to store session data elsewhere, so Django can be
configured to store session data on your filesystem or in your cache.

210 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Using database-backed sessions

If you want to use a database-backed session, you need to add 'django.contrib.sessions' to your
INSTALLED_APPS setting.

Once you have configured your installation, run manage.py migrate to install the single database table that stores
session data.

Using cached sessions

For better performance, you may want to use a cache-based session backend.

To store session data using Django’s cache system, you’ll first need to make sure you’ve configured your cache; see
the cache documentation for details.

Warning: You should only use cache-based sessions if you’re using the Memcached cache backend. The local-
memory cache backend doesn’t retain data long enough to be a good choice, and it’ll be faster to use file or
database sessions directly instead of sending everything through the file or database cache backends. Additionally,
the local-memory cache backend is NOT multi-process safe, therefore probably not a good choice for production
environments.

If you have multiple caches defined in CACHES, Django will use the default cache. To use another cache, set
SESSION_CACHE_ALIAS to the name of that cache.

Once your cache is configured, you’ve got two choices for how to store data in the cache:

• Set SESSION_ENGINE to "django.contrib.sessions.backends.cache" for a simple caching
session store. Session data will be stored directly in your cache. However, session data may not be persistent:
cached data can be evicted if the cache fills up or if the cache server is restarted.

• For persistent, cached data, set SESSION_ENGINE to "django.contrib.sessions.backends.
cached_db". This uses a write-through cache – every write to the cache will also be written to the database.
Session reads only use the database if the data is not already in the cache.

Both session stores are quite fast, but the simple cache is faster because it disregards persistence. In most cases, the
cached_db backend will be fast enough, but if you need that last bit of performance, and are willing to let session
data be expunged from time to time, the cache backend is for you.

If you use the cached_db session backend, you also need to follow the configuration instructions for the using
database-backed sessions.

Using file-based sessions

To use file-based sessions, set the SESSION_ENGINE setting to "django.contrib.sessions.backends.
file".

You might also want to set the SESSION_FILE_PATH setting (which defaults to output from tempfile.
gettempdir(), most likely /tmp) to control where Django stores session files. Be sure to check that your Web
server has permissions to read and write to this location.

Using cookie-based sessions

To use cookies-based sessions, set the SESSION_ENGINE setting to "django.contrib.sessions.
backends.signed_cookies". The session data will be stored using Django’s tools for cryptographic signing

3.3. Handling HTTP requests 211

Django Documentation, Release 1.10.9.dev20171123183751

and the SECRET_KEY setting.

Note: It’s recommended to leave the SESSION_COOKIE_HTTPONLY setting on True to prevent access to the
stored data from JavaScript.

Warning: If the SECRET_KEY is not kept secret and you are using the PickleSerializer, this can
lead to arbitrary remote code execution.

An attacker in possession of the SECRET_KEY can not only generate falsified session data, which your site will
trust, but also remotely execute arbitrary code, as the data is serialized using pickle.

If you use cookie-based sessions, pay extra care that your secret key is always kept completely secret, for any
system which might be remotely accessible.

The session data is signed but not encrypted

When using the cookies backend the session data can be read by the client.

A MAC (Message Authentication Code) is used to protect the data against changes by the client, so that the session
data will be invalidated when being tampered with. The same invalidation happens if the client storing the cookie
(e.g. your user’s browser) can’t store all of the session cookie and drops data. Even though Django compresses the
data, it’s still entirely possible to exceed the common limit of 4096 bytes per cookie.

No freshness guarantee

Note also that while the MAC can guarantee the authenticity of the data (that it was generated by your site, and
not someone else), and the integrity of the data (that it is all there and correct), it cannot guarantee freshness i.e.
that you are being sent back the last thing you sent to the client. This means that for some uses of session data,
the cookie backend might open you up to replay attacks. Unlike other session backends which keep a server-side
record of each session and invalidate it when a user logs out, cookie-based sessions are not invalidated when a user
logs out. Thus if an attacker steals a user’s cookie, they can use that cookie to login as that user even if the user
logs out. Cookies will only be detected as ‘stale’ if they are older than your SESSION_COOKIE_AGE.

Performance

Finally, the size of a cookie can have an impact on the speed of your site.

Using sessions in views

When SessionMiddleware is activated, each HttpRequest object – the first argument to any Django view
function – will have a session attribute, which is a dictionary-like object.

You can read it and write to request.session at any point in your view. You can edit it multiple times.

class backends.base.SessionBase
This is the base class for all session objects. It has the following standard dictionary methods:

__getitem__(key)
Example: fav_color = request.session['fav_color']

__setitem__(key, value)
Example: request.session['fav_color'] = 'blue'

__delitem__(key)
Example: del request.session['fav_color']. This raises KeyError if the given key isn’t
already in the session.

212 Chapter 3. Using Django

https://tools.ietf.org/html/rfc2965#section-5.3
https://en.wikipedia.org/wiki/Replay_attack
http://yuiblog.com/blog/2007/03/01/performance-research-part-3/

Django Documentation, Release 1.10.9.dev20171123183751

__contains__(key)
Example: 'fav_color' in request.session

get(key, default=None)
Example: fav_color = request.session.get('fav_color', 'red')

pop(key, default=__not_given)
Example: fav_color = request.session.pop('fav_color', 'blue')

keys()

items()

setdefault()

clear()

It also has these methods:

flush()
Deletes the current session data from the session and deletes the session cookie. This is used if you want
to ensure that the previous session data can’t be accessed again from the user’s browser (for example, the
django.contrib.auth.logout() function calls it).

set_test_cookie()
Sets a test cookie to determine whether the user’s browser supports cookies. Due to the way cookies work,
you won’t be able to test this until the user’s next page request. See Setting test cookies below for more
information.

test_cookie_worked()
Returns either True or False, depending on whether the user’s browser accepted the test cookie. Due to
the way cookies work, you’ll have to call set_test_cookie() on a previous, separate page request.
See Setting test cookies below for more information.

delete_test_cookie()
Deletes the test cookie. Use this to clean up after yourself.

set_expiry(value)
Sets the expiration time for the session. You can pass a number of different values:

• If value is an integer, the session will expire after that many seconds of inactivity. For example,
calling request.session.set_expiry(300) would make the session expire in 5 minutes.

• If value is a datetime or timedelta object, the session will expire at that specific
date/time. Note that datetime and timedelta values are only serializable if you are using the
PickleSerializer.

• If value is 0, the user’s session cookie will expire when the user’s Web browser is closed.

• If value is None, the session reverts to using the global session expiry policy.

Reading a session is not considered activity for expiration purposes. Session expiration is computed from
the last time the session was modified.

get_expiry_age()
Returns the number of seconds until this session expires. For sessions with no custom expiration (or those
set to expire at browser close), this will equal SESSION_COOKIE_AGE.

This function accepts two optional keyword arguments:

• modification: last modification of the session, as a datetime object. Defaults to the current
time.

3.3. Handling HTTP requests 213

https://docs.python.org/3/library/datetime.html#datetime.datetime

Django Documentation, Release 1.10.9.dev20171123183751

• expiry: expiry information for the session, as a datetime object, an int (in seconds), or None.
Defaults to the value stored in the session by set_expiry(), if there is one, or None.

get_expiry_date()
Returns the date this session will expire. For sessions with no custom expiration (or those set to expire at
browser close), this will equal the date SESSION_COOKIE_AGE seconds from now.

This function accepts the same keyword arguments as get_expiry_age().

get_expire_at_browser_close()
Returns either True or False, depending on whether the user’s session cookie will expire when the
user’s Web browser is closed.

clear_expired()
Removes expired sessions from the session store. This class method is called by clearsessions.

cycle_key()
Creates a new session key while retaining the current session data. django.contrib.auth.
login() calls this method to mitigate against session fixation.

Session serialization

By default, Django serializes session data using JSON. You can use the SESSION_SERIALIZER setting to customize
the session serialization format. Even with the caveats described in Write your own serializer, we highly recommend
sticking with JSON serialization especially if you are using the cookie backend.

For example, here’s an attack scenario if you use pickle to serialize session data. If you’re using the signed cookie
session backend and SECRET_KEY is known by an attacker (there isn’t an inherent vulnerability in Django that would
cause it to leak), the attacker could insert a string into their session which, when unpickled, executes arbitrary code
on the server. The technique for doing so is simple and easily available on the internet. Although the cookie session
storage signs the cookie-stored data to prevent tampering, a SECRET_KEY leak immediately escalates to a remote
code execution vulnerability.

Bundled serializers

class serializers.JSONSerializer
A wrapper around the JSON serializer from django.core.signing. Can only serialize basic data types.

In addition, as JSON supports only string keys, note that using non-string keys in request.session won’t
work as expected:

>>> # initial assignment
>>> request.session[0] = 'bar'
>>> # subsequent requests following serialization & deserialization
>>> # of session data
>>> request.session[0] # KeyError
>>> request.session['0']
'bar'

Similarly, data that can’t be encoded in JSON, such as non-UTF8 bytes like '\xd9' (which raises
UnicodeDecodeError), can’t be stored.

See the Write your own serializer section for more details on limitations of JSON serialization.

class serializers.PickleSerializer
Supports arbitrary Python objects, but, as described above, can lead to a remote code execution vulnerability if
SECRET_KEY becomes known by an attacker.

214 Chapter 3. Using Django

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/exceptions.html#UnicodeDecodeError

Django Documentation, Release 1.10.9.dev20171123183751

Write your own serializer

Note that unlike PickleSerializer, the JSONSerializer cannot handle arbitrary Python data types. As is
often the case, there is a trade-off between convenience and security. If you wish to store more advanced data types
including datetime and Decimal in JSON backed sessions, you will need to write a custom serializer (or convert
such values to a JSON serializable object before storing them in request.session). While serializing these values
is fairly straightforward (DjangoJSONEncoder may be helpful), writing a decoder that can reliably get back the
same thing that you put in is more fragile. For example, you run the risk of returning a datetime that was actually
a string that just happened to be in the same format chosen for datetimes).

Your serializer class must implement two methods, dumps(self, obj) and loads(self, data), to serialize
and deserialize the dictionary of session data, respectively.

Session object guidelines

• Use normal Python strings as dictionary keys on request.session. This is more of a convention than a
hard-and-fast rule.

• Session dictionary keys that begin with an underscore are reserved for internal use by Django.

• Don’t override request.session with a new object, and don’t access or set its attributes. Use it like a
Python dictionary.

Examples

This simplistic view sets a has_commented variable to True after a user posts a comment. It doesn’t let a user post
a comment more than once:

def post_comment(request, new_comment):
if request.session.get('has_commented', False):

return HttpResponse("You've already commented.")
c = comments.Comment(comment=new_comment)
c.save()
request.session['has_commented'] = True
return HttpResponse('Thanks for your comment!')

This simplistic view logs in a “member” of the site:

def login(request):
m = Member.objects.get(username=request.POST['username'])
if m.password == request.POST['password']:

request.session['member_id'] = m.id
return HttpResponse("You're logged in.")

else:
return HttpResponse("Your username and password didn't match.")

...And this one logs a member out, according to login() above:

def logout(request):
try:

del request.session['member_id']
except KeyError:

pass
return HttpResponse("You're logged out.")

3.3. Handling HTTP requests 215

Django Documentation, Release 1.10.9.dev20171123183751

The standard django.contrib.auth.logout() function actually does a bit more than this to prevent inadver-
tent data leakage. It calls the flush() method of request.session. We are using this example as a demonstra-
tion of how to work with session objects, not as a full logout() implementation.

Setting test cookies

As a convenience, Django provides an easy way to test whether the user’s browser accepts cookies. Just call the
set_test_cookie() method of request.session in a view, and call test_cookie_worked() in a sub-
sequent view – not in the same view call.

This awkward split between set_test_cookie() and test_cookie_worked() is necessary due to the way
cookies work. When you set a cookie, you can’t actually tell whether a browser accepted it until the browser’s next
request.

It’s good practice to use delete_test_cookie() to clean up after yourself. Do this after you’ve verified that the
test cookie worked.

Here’s a typical usage example:

from django.http import HttpResponse
from django.shortcuts import render

def login(request):
if request.method == 'POST':

if request.session.test_cookie_worked():
request.session.delete_test_cookie()
return HttpResponse("You're logged in.")

else:
return HttpResponse("Please enable cookies and try again.")

request.session.set_test_cookie()
return render(request, 'foo/login_form.html')

Using sessions out of views

Note: The examples in this section import the SessionStore object directly from the django.contrib.
sessions.backends.db backend. In your own code, you should consider importing SessionStore from the
session engine designated by SESSION_ENGINE, as below:

>>> from importlib import import_module
>>> from django.conf import settings
>>> SessionStore = import_module(settings.SESSION_ENGINE).SessionStore

An API is available to manipulate session data outside of a view:

>>> from django.contrib.sessions.backends.db import SessionStore
>>> s = SessionStore()
>>> # stored as seconds since epoch since datetimes are not serializable in JSON.
>>> s['last_login'] = 1376587691
>>> s.create()
>>> s.session_key
'2b1189a188b44ad18c35e113ac6ceead'
>>> s = SessionStore(session_key='2b1189a188b44ad18c35e113ac6ceead')
>>> s['last_login']
1376587691

216 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

SessionStore.create() is designed to create a new session (i.e. one not loaded from the session store and with
session_key=None). save() is designed to save an existing session (i.e. one loaded from the session store).
Calling save() on a new session may also work but has a small chance of generating a session_key that collides
with an existing one. create() calls save() and loops until an unused session_key is generated.

If you’re using the django.contrib.sessions.backends.db backend, each session is just a normal Django
model. The Session model is defined in django/contrib/sessions/models.py. Because it’s a normal
model, you can access sessions using the normal Django database API:

>>> from django.contrib.sessions.models import Session
>>> s = Session.objects.get(pk='2b1189a188b44ad18c35e113ac6ceead')
>>> s.expire_date
datetime.datetime(2005, 8, 20, 13, 35, 12)

Note that you’ll need to call get_decoded() to get the session dictionary. This is necessary because the dictionary
is stored in an encoded format:

>>> s.session_data
'KGRwMQpTJ19hdXRoX3VzZXJfaWQnCnAyCkkxCnMuMTExY2ZjODI2Yj...'
>>> s.get_decoded()
{'user_id': 42}

When sessions are saved

By default, Django only saves to the session database when the session has been modified – that is if any of its
dictionary values have been assigned or deleted:

Session is modified.
request.session['foo'] = 'bar'

Session is modified.
del request.session['foo']

Session is modified.
request.session['foo'] = {}

Gotcha: Session is NOT modified, because this alters
request.session['foo'] instead of request.session.
request.session['foo']['bar'] = 'baz'

In the last case of the above example, we can tell the session object explicitly that it has been modified by setting the
modified attribute on the session object:

request.session.modified = True

To change this default behavior, set the SESSION_SAVE_EVERY_REQUEST setting to True. When set to True,
Django will save the session to the database on every single request.

Note that the session cookie is only sent when a session has been created or modified. If
SESSION_SAVE_EVERY_REQUEST is True, the session cookie will be sent on every request.

Similarly, the expires part of a session cookie is updated each time the session cookie is sent.

The session is not saved if the response’s status code is 500.

3.3. Handling HTTP requests 217

Django Documentation, Release 1.10.9.dev20171123183751

Browser-length sessions vs. persistent sessions

You can control whether the session framework uses browser-length sessions vs. persistent sessions with the
SESSION_EXPIRE_AT_BROWSER_CLOSE setting.

By default, SESSION_EXPIRE_AT_BROWSER_CLOSE is set to False, which means session cookies will be
stored in users’ browsers for as long as SESSION_COOKIE_AGE. Use this if you don’t want people to have to
log in every time they open a browser.

If SESSION_EXPIRE_AT_BROWSER_CLOSE is set to True, Django will use browser-length cookies – cookies
that expire as soon as the user closes their browser. Use this if you want people to have to log in every time they open
a browser.

This setting is a global default and can be overwritten at a per-session level by explicitly calling the set_expiry()
method of request.session as described above in using sessions in views.

Note: Some browsers (Chrome, for example) provide settings that allow users to continue brows-
ing sessions after closing and re-opening the browser. In some cases, this can interfere with the
SESSION_EXPIRE_AT_BROWSER_CLOSE setting and prevent sessions from expiring on browser close. Please
be aware of this while testing Django applications which have the SESSION_EXPIRE_AT_BROWSER_CLOSE set-
ting enabled.

Clearing the session store

As users create new sessions on your website, session data can accumulate in your session store. If you’re using the
database backend, the django_session database table will grow. If you’re using the file backend, your temporary
directory will contain an increasing number of files.

To understand this problem, consider what happens with the database backend. When a user logs in, Django adds a
row to the django_session database table. Django updates this row each time the session data changes. If the
user logs out manually, Django deletes the row. But if the user does not log out, the row never gets deleted. A similar
process happens with the file backend.

Django does not provide automatic purging of expired sessions. Therefore, it’s your job to purge expired sessions
on a regular basis. Django provides a clean-up management command for this purpose: clearsessions. It’s
recommended to call this command on a regular basis, for example as a daily cron job.

Note that the cache backend isn’t vulnerable to this problem, because caches automatically delete stale data. Neither
is the cookie backend, because the session data is stored by the users’ browsers.

Settings

A few Django settings give you control over session behavior:

• SESSION_CACHE_ALIAS

• SESSION_COOKIE_AGE

• SESSION_COOKIE_DOMAIN

• SESSION_COOKIE_HTTPONLY

• SESSION_COOKIE_NAME

• SESSION_COOKIE_PATH

• SESSION_COOKIE_SECURE

218 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

• SESSION_ENGINE

• SESSION_EXPIRE_AT_BROWSER_CLOSE

• SESSION_FILE_PATH

• SESSION_SAVE_EVERY_REQUEST

• SESSION_SERIALIZER

Session security

Subdomains within a site are able to set cookies on the client for the whole domain. This makes session fixation
possible if cookies are permitted from subdomains not controlled by trusted users.

For example, an attacker could log into good.example.com and get a valid session for their account. If the attacker
has control over bad.example.com, they can use it to send their session key to you since a subdomain is permitted
to set cookies on *.example.com. When you visit good.example.com, you’ll be logged in as the attacker and
might inadvertently enter your sensitive personal data (e.g. credit card info) into the attackers account.

Another possible attack would be if good.example.com sets its SESSION_COOKIE_DOMAIN to ".example.
com" which would cause session cookies from that site to be sent to bad.example.com.

Technical details

• The session dictionary accepts any json serializable value when using JSONSerializer or any picklable
Python object when using PickleSerializer. See the pickle module for more information.

• Session data is stored in a database table named django_session .

• Django only sends a cookie if it needs to. If you don’t set any session data, it won’t send a session cookie.

The SessionStore object

When working with sessions internally, Django uses a session store object from the corresponding session engine.
By convention, the session store object class is named SessionStore and is located in the module designated by
SESSION_ENGINE.

All SessionStore classes available in Django inherit from SessionBase and implement data manipulation
methods, namely:

• exists()

• create()

• save()

• delete()

• load()

• clear_expired()

In order to build a custom session engine or to customize an existing one, you may create a new class inheriting from
SessionBase or any other existing SessionStore class.

Extending most of the session engines is quite straightforward, but doing so with database-backed session engines
generally requires some extra effort (see the next section for details).

3.3. Handling HTTP requests 219

https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/pickle.html#module-pickle

Django Documentation, Release 1.10.9.dev20171123183751

Extending database-backed session engines

Creating a custom database-backed session engine built upon those included in Django (namely db and cached_db)
may be done by inheriting AbstractBaseSession and either SessionStore class.

AbstractBaseSession and BaseSessionManager are importable from django.contrib.sessions.
base_session so that they can be imported without including django.contrib.sessions in
INSTALLED_APPS.

class base_session.AbstractBaseSession
The abstract base session model.

session_key
Primary key. The field itself may contain up to 40 characters. The current implementation generates a
32-character string (a random sequence of digits and lowercase ASCII letters).

session_data
A string containing an encoded and serialized session dictionary.

expire_date
A datetime designating when the session expires.

Expired sessions are not available to a user, however, they may still be stored in the database until the
clearsessions management command is run.

classmethod get_session_store_class()
Returns a session store class to be used with this session model.

get_decoded()
Returns decoded session data.

Decoding is performed by the session store class.

You can also customize the model manager by subclassing BaseSessionManager:

class base_session.BaseSessionManager

encode(session_dict)
Returns the given session dictionary serialized and encoded as a string.

Encoding is performed by the session store class tied to a model class.

save(session_key, session_dict, expire_date)
Saves session data for a provided session key, or deletes the session in case the data is empty.

Customization of SessionStore classes is achieved by overriding methods and properties described below:

class backends.db.SessionStore
Implements database-backed session store.

classmethod get_model_class()
Override this method to return a custom session model if you need one.

create_model_instance(data)
Returns a new instance of the session model object, which represents the current session state.

Overriding this method provides the ability to modify session model data before it’s saved to database.

class backends.cached_db.SessionStore
Implements cached database-backed session store.

cache_key_prefix
A prefix added to a session key to build a cache key string.

220 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Example

The example below shows a custom database-backed session engine that includes an additional database column to
store an account ID (thus providing an option to query the database for all active sessions for an account):

from django.contrib.sessions.backends.db import SessionStore as DBStore
from django.contrib.sessions.base_session import AbstractBaseSession
from django.db import models

class CustomSession(AbstractBaseSession):
account_id = models.IntegerField(null=True, db_index=True)

@classmethod
def get_session_store_class(cls):

return SessionStore

class SessionStore(DBStore):
@classmethod
def get_model_class(cls):

return CustomSession

def create_model_instance(self, data):
obj = super(SessionStore, self).create_model_instance(data)
try:

account_id = int(data.get('_auth_user_id'))
except (ValueError, TypeError):

account_id = None
obj.account_id = account_id
return obj

If you are migrating from the Django’s built-in cached_db session store to a custom one based on cached_db,
you should override the cache key prefix in order to prevent a namespace clash:

class SessionStore(CachedDBStore):
cache_key_prefix = 'mysessions.custom_cached_db_backend'

...

Session IDs in URLs

The Django sessions framework is entirely, and solely, cookie-based. It does not fall back to putting session IDs in
URLs as a last resort, as PHP does. This is an intentional design decision. Not only does that behavior make URLs
ugly, it makes your site vulnerable to session-ID theft via the “Referer” header.

3.4 Working with forms

About this document

This document provides an introduction to the basics of web forms and how they are handled in Django. For a more
detailed look at specific areas of the forms API, see The Forms API, Form fields, and Form and field validation.

Unless you’re planning to build websites and applications that do nothing but publish content, and don’t accept input
from your visitors, you’re going to need to understand and use forms.

3.4. Working with forms 221

Django Documentation, Release 1.10.9.dev20171123183751

Django provides a range of tools and libraries to help you build forms to accept input from site visitors, and then
process and respond to the input.

3.4.1 HTML forms

In HTML, a form is a collection of elements inside <form>...</form> that allow a visitor to do things like enter
text, select options, manipulate objects or controls, and so on, and then send that information back to the server.

Some of these form interface elements - text input or checkboxes - are fairly simple and are built into HTML itself.
Others are much more complex; an interface that pops up a date picker or allows you to move a slider or manipulate
controls will typically use JavaScript and CSS as well as HTML form <input> elements to achieve these effects.

As well as its <input> elements, a form must specify two things:

• where: the URL to which the data corresponding to the user’s input should be returned

• how: the HTTP method the data should be returned by

As an example, the login form for the Django admin contains several <input> elements: one of type="text" for
the username, one of type="password" for the password, and one of type="submit" for the “Log in” button.
It also contains some hidden text fields that the user doesn’t see, which Django uses to determine what to do next.

It also tells the browser that the form data should be sent to the URL specified in the <form>’s action attribute -
/admin/ - and that it should be sent using the HTTP mechanism specified by the method attribute - post.

When the <input type="submit" value="Log in"> element is triggered, the data is returned to /admin/
.

GET and POST

GET and POST are the only HTTP methods to use when dealing with forms.

Django’s login form is returned using the POST method, in which the browser bundles up the form data, encodes it
for transmission, sends it to the server, and then receives back its response.

GET, by contrast, bundles the submitted data into a string, and uses this to compose a URL. The URL contains the
address where the data must be sent, as well as the data keys and values. You can see this in action if you do a search
in the Django documentation, which will produce a URL of the form https://docs.djangoproject.com/
search/?q=forms&release=1.

GET and POST are typically used for different purposes.

Any request that could be used to change the state of the system - for example, a request that makes changes in the
database - should use POST. GET should be used only for requests that do not affect the state of the system.

GET would also be unsuitable for a password form, because the password would appear in the URL, and thus, also in
browser history and server logs, all in plain text. Neither would it be suitable for large quantities of data, or for binary
data, such as an image. A Web application that uses GET requests for admin forms is a security risk: it can be easy
for an attacker to mimic a form’s request to gain access to sensitive parts of the system. POST, coupled with other
protections like Django’s CSRF protection offers more control over access.

On the other hand, GET is suitable for things like a web search form, because the URLs that represent a GET request
can easily be bookmarked, shared, or resubmitted.

3.4.2 Django’s role in forms

Handling forms is a complex business. Consider Django’s admin, where numerous items of data of several different
types may need to be prepared for display in a form, rendered as HTML, edited using a convenient interface, returned

222 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

to the server, validated and cleaned up, and then saved or passed on for further processing.

Django’s form functionality can simplify and automate vast portions of this work, and can also do it more securely
than most programmers would be able to do in code they wrote themselves.

Django handles three distinct parts of the work involved in forms:

• preparing and restructuring data to make it ready for rendering

• creating HTML forms for the data

• receiving and processing submitted forms and data from the client

It is possible to write code that does all of this manually, but Django can take care of it all for you.

3.4.3 Forms in Django

We’ve described HTML forms briefly, but an HTML <form> is just one part of the machinery required.

In the context of a Web application, ‘form’ might refer to that HTML <form>, or to the Django Form that produces
it, or to the structured data returned when it is submitted, or to the end-to-end working collection of these parts.

The Django Form class

At the heart of this system of components is Django’s Form class. In much the same way that a Django model
describes the logical structure of an object, its behavior, and the way its parts are represented to us, a Form class
describes a form and determines how it works and appears.

In a similar way that a model class’s fields map to database fields, a form class’s fields map to HTML form <input>
elements. (A ModelForm maps a model class’s fields to HTML form <input> elements via a Form; this is what
the Django admin is based upon.)

A form’s fields are themselves classes; they manage form data and perform validation when a form is submitted. A
DateField and a FileField handle very different kinds of data and have to do different things with it.

A form field is represented to a user in the browser as an HTML “widget” - a piece of user interface machinery. Each
field type has an appropriate default Widget class, but these can be overridden as required.

Instantiating, processing, and rendering forms

When rendering an object in Django, we generally:

1. get hold of it in the view (fetch it from the database, for example)

2. pass it to the template context

3. expand it to HTML markup using template variables

Rendering a form in a template involves nearly the same work as rendering any other kind of object, but there are some
key differences.

In the case of a model instance that contained no data, it would rarely if ever be useful to do anything with it in a
template. On the other hand, it makes perfect sense to render an unpopulated form - that’s what we do when we want
the user to populate it.

So when we handle a model instance in a view, we typically retrieve it from the database. When we’re dealing with a
form we typically instantiate it in the view.

When we instantiate a form, we can opt to leave it empty or pre-populate it, for example with:

• data from a saved model instance (as in the case of admin forms for editing)

3.4. Working with forms 223

Django Documentation, Release 1.10.9.dev20171123183751

• data that we have collated from other sources

• data received from a previous HTML form submission

The last of these cases is the most interesting, because it’s what makes it possible for users not just to read a website,
but to send information back to it too.

3.4.4 Building a form

The work that needs to be done

Suppose you want to create a simple form on your website, in order to obtain the user’s name. You’d need something
like this in your template:

<form action="/your-name/" method="post">
<label for="your_name">Your name: </label>
<input id="your_name" type="text" name="your_name" value="{{ current_name }}">
<input type="submit" value="OK">

</form>

This tells the browser to return the form data to the URL /your-name/, using the POST method. It will display
a text field, labeled “Your name:”, and a button marked “OK”. If the template context contains a current_name
variable, that will be used to pre-fill the your_name field.

You’ll need a view that renders the template containing the HTML form, and that can supply the current_name
field as appropriate.

When the form is submitted, the POST request which is sent to the server will contain the form data.

Now you’ll also need a view corresponding to that /your-name/ URL which will find the appropriate key/value
pairs in the request, and then process them.

This is a very simple form. In practice, a form might contain dozens or hundreds of fields, many of which might
need to be pre-populated, and we might expect the user to work through the edit-submit cycle several times before
concluding the operation.

We might require some validation to occur in the browser, even before the form is submitted; we might want to use
much more complex fields, that allow the user to do things like pick dates from a calendar and so on.

At this point it’s much easier to get Django to do most of this work for us.

Building a form in Django

The Form class

We already know what we want our HTML form to look like. Our starting point for it in Django is this:

forms.py

from django import forms

class NameForm(forms.Form):
your_name = forms.CharField(label='Your name', max_length=100)

This defines a Form class with a single field (your_name). We’ve applied a human-friendly label to the field, which
will appear in the <label> when it’s rendered (although in this case, the label we specified is actually the same
one that would be generated automatically if we had omitted it).

224 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

The field’s maximum allowable length is defined by max_length. This does two things. It puts a
maxlength="100" on the HTML <input> (so the browser should prevent the user from entering more than
that number of characters in the first place). It also means that when Django receives the form back from the browser,
it will validate the length of the data.

A Form instance has an is_valid() method, which runs validation routines for all its fields. When this method is
called, if all fields contain valid data, it will:

• return True

• place the form’s data in its cleaned_data attribute.

The whole form, when rendered for the first time, will look like:

<label for="your_name">Your name: </label>
<input id="your_name" type="text" name="your_name" maxlength="100" required />

Note that it does not include the <form> tags, or a submit button. We’ll have to provide those ourselves in the
template.

The view

Form data sent back to a Django website is processed by a view, generally the same view which published the form.
This allows us to reuse some of the same logic.

To handle the form we need to instantiate it in the view for the URL where we want it to be published:

views.py

from django.shortcuts import render
from django.http import HttpResponseRedirect

from .forms import NameForm

def get_name(request):
if this is a POST request we need to process the form data
if request.method == 'POST':

create a form instance and populate it with data from the request:
form = NameForm(request.POST)
check whether it's valid:
if form.is_valid():

process the data in form.cleaned_data as required
...
redirect to a new URL:
return HttpResponseRedirect('/thanks/')

if a GET (or any other method) we'll create a blank form
else:

form = NameForm()

return render(request, 'name.html', {'form': form})

If we arrive at this view with a GET request, it will create an empty form instance and place it in the template context
to be rendered. This is what we can expect to happen the first time we visit the URL.

If the form is submitted using a POST request, the view will once again create a form instance and populate it with
data from the request: form = NameForm(request.POST) This is called “binding data to the form” (it is now
a bound form).

3.4. Working with forms 225

Django Documentation, Release 1.10.9.dev20171123183751

We call the form’s is_valid() method; if it’s not True, we go back to the template with the form. This time the
form is no longer empty (unbound) so the HTML form will be populated with the data previously submitted, where it
can be edited and corrected as required.

If is_valid() is True, we’ll now be able to find all the validated form data in its cleaned_data attribute. We
can use this data to update the database or do other processing before sending an HTTP redirect to the browser telling
it where to go next.

The template

We don’t need to do much in our name.html template. The simplest example is:

<form action="/your-name/" method="post">
{% csrf_token %}
{{ form }}
<input type="submit" value="Submit" />

</form>

All the form’s fields and their attributes will be unpacked into HTML markup from that {{ form }} by Django’s
template language.

Forms and Cross Site Request Forgery protection

Django ships with an easy-to-use protection against Cross Site Request Forgeries. When submitting a form via POST
with CSRF protection enabled you must use the csrf_token template tag as in the preceding example. However,
since CSRF protection is not directly tied to forms in templates, this tag is omitted from the following examples in this
document.

HTML5 input types and browser validation

If your form includes a URLField, an EmailField or any integer field type, Django will use the url, email
and number HTML5 input types. By default, browsers may apply their own validation on these fields, which may be
stricter than Django’s validation. If you would like to disable this behavior, set the novalidate attribute on the form
tag, or specify a different widget on the field, like TextInput.

We now have a working web form, described by a Django Form, processed by a view, and rendered as an HTML
<form>.

That’s all you need to get started, but the forms framework puts a lot more at your fingertips. Once you understand the
basics of the process described above, you should be prepared to understand other features of the forms system and
ready to learn a bit more about the underlying machinery.

3.4.5 More about Django Form classes

All form classes are created as subclasses of django.forms.Form, including the ModelForm, which you encounter
in Django’s admin.

Models and Forms

In fact if your form is going to be used to directly add or edit a Django model, a ModelForm can save you a great deal
of time, effort, and code, because it will build a form, along with the appropriate fields and their attributes, from a

226 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Model class.

Bound and unbound form instances

The distinction between Bound and unbound forms is important:

• An unbound form has no data associated with it. When rendered to the user, it will be empty or will contain
default values.

• A bound form has submitted data, and hence can be used to tell if that data is valid. If an invalid bound form is
rendered, it can include inline error messages telling the user what data to correct.

The form’s is_bound attribute will tell you whether a form has data bound to it or not.

More on fields

Consider a more useful form than our minimal example above, which we could use to implement “contact me” func-
tionality on a personal website:

forms.py

from django import forms

class ContactForm(forms.Form):
subject = forms.CharField(max_length=100)
message = forms.CharField(widget=forms.Textarea)
sender = forms.EmailField()
cc_myself = forms.BooleanField(required=False)

Our earlier form used a single field, your_name, a CharField. In this case, our form has four fields: subject,
message, sender and cc_myself. CharField, EmailField and BooleanField are just three of the
available field types; a full list can be found in Form fields.

Widgets

Each form field has a corresponding Widget class, which in turn corresponds to an HTML form widget such as
<input type="text">.

In most cases, the field will have a sensible default widget. For example, by default, a CharField will have a
TextInput widget, that produces an <input type="text"> in the HTML. If you needed <textarea> in-
stead, you’d specify the appropriate widget when defining your form field, as we have done for the message field.

Field data

Whatever the data submitted with a form, once it has been successfully validated by calling is_valid() (and
is_valid() has returned True), the validated form data will be in the form.cleaned_data dictionary. This
data will have been nicely converted into Python types for you.

Note: You can still access the unvalidated data directly from request.POST at this point, but the validated data is
better.

In the contact form example above, cc_myself will be a boolean value. Likewise, fields such as IntegerField
and FloatField convert values to a Python int and float respectively.

3.4. Working with forms 227

Django Documentation, Release 1.10.9.dev20171123183751

Here’s how the form data could be processed in the view that handles this form:

views.py

from django.core.mail import send_mail

if form.is_valid():
subject = form.cleaned_data['subject']
message = form.cleaned_data['message']
sender = form.cleaned_data['sender']
cc_myself = form.cleaned_data['cc_myself']

recipients = ['info@example.com']
if cc_myself:

recipients.append(sender)

send_mail(subject, message, sender, recipients)
return HttpResponseRedirect('/thanks/')

Tip: For more on sending email from Django, see Sending email.

Some field types need some extra handling. For example, files that are uploaded using a form need to be handled
differently (they can be retrieved from request.FILES, rather than request.POST). For details of how to handle
file uploads with your form, see Binding uploaded files to a form.

3.4.6 Working with form templates

All you need to do to get your form into a template is to place the form instance into the template context. So if your
form is called form in the context, {{ form }} will render its <label> and <input> elements appropriately.

Form rendering options

Additional form template furniture

Don’t forget that a form’s output does not include the surrounding <form> tags, or the form’s submit control. You
will have to provide these yourself.

There are other output options though for the <label>/<input> pairs:

• {{ form.as_table }} will render them as table cells wrapped in <tr> tags

• {{ form.as_p }} will render them wrapped in <p> tags

• {{ form.as_ul }} will render them wrapped in tags

Note that you’ll have to provide the surrounding <table> or elements yourself.

Here’s the output of {{ form.as_p }} for our ContactForm instance:

<p><label for="id_subject">Subject:</label>
<input id="id_subject" type="text" name="subject" maxlength="100" required /></p>

<p><label for="id_message">Message:</label>
<textarea name="message" id="id_message" required></textarea></p>

<p><label for="id_sender">Sender:</label>
<input type="email" name="sender" id="id_sender" required /></p>

228 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

<p><label for="id_cc_myself">Cc myself:</label>
<input type="checkbox" name="cc_myself" id="id_cc_myself" /></p>

Note that each form field has an ID attribute set to id_<field-name>, which is referenced by the accompanying
label tag. This is important in ensuring that forms are accessible to assistive technology such as screen reader software.
You can also customize the way in which labels and ids are generated.

See Outputting forms as HTML for more on this.

Rendering fields manually

We don’t have to let Django unpack the form’s fields; we can do it manually if we like (allowing us to reorder the
fields, for example). Each field is available as an attribute of the form using {{ form.name_of_field }}, and
in a Django template, will be rendered appropriately. For example:

{{ form.non_field_errors }}
<div class="fieldWrapper">

{{ form.subject.errors }}
<label for="{{ form.subject.id_for_label }}">Email subject:</label>
{{ form.subject }}

</div>
<div class="fieldWrapper">

{{ form.message.errors }}
<label for="{{ form.message.id_for_label }}">Your message:</label>
{{ form.message }}

</div>
<div class="fieldWrapper">

{{ form.sender.errors }}
<label for="{{ form.sender.id_for_label }}">Your email address:</label>
{{ form.sender }}

</div>
<div class="fieldWrapper">

{{ form.cc_myself.errors }}
<label for="{{ form.cc_myself.id_for_label }}">CC yourself?</label>
{{ form.cc_myself }}

</div>

Complete <label> elements can also be generated using the label_tag(). For example:

<div class="fieldWrapper">
{{ form.subject.errors }}
{{ form.subject.label_tag }}
{{ form.subject }}

</div>

Rendering form error messages

Of course, the price of this flexibility is more work. Until now we haven’t had to worry about how to display form
errors, because that’s taken care of for us. In this example we have had to make sure we take care of any errors for
each field and any errors for the form as a whole. Note {{ form.non_field_errors }} at the top of the form
and the template lookup for errors on each field.

Using {{ form.name_of_field.errors }} displays a list of form errors, rendered as an unordered list. This
might look like:

3.4. Working with forms 229

Django Documentation, Release 1.10.9.dev20171123183751

<ul class="errorlist">
Sender is required.

The list has a CSS class of errorlist to allow you to style its appearance. If you wish to further customize the
display of errors you can do so by looping over them:

{% if form.subject.errors %}

{% for error in form.subject.errors %}

{{ error|escape }}
{% endfor %}

{% endif %}

Non-field errors (and/or hidden field errors that are rendered at the top of the form when using helpers like form.
as_p()) will be rendered with an additional class of nonfield to help distinguish them from field-specific errors.
For example, {{ form.non_field_errors }} would look like:

<ul class="errorlist nonfield">
Generic validation error

See The Forms API for more on errors, styling, and working with form attributes in templates.

Looping over the form’s fields

If you’re using the same HTML for each of your form fields, you can reduce duplicate code by looping through each
field in turn using a {% for %} loop:

{% for field in form %}
<div class="fieldWrapper">

{{ field.errors }}
{{ field.label_tag }} {{ field }}
{% if field.help_text %}
<p class="help">{{ field.help_text|safe }}</p>
{% endif %}

</div>
{% endfor %}

Useful attributes on {{ field }} include:

{{ field.label }} The label of the field, e.g. Email address.

{{ field.label_tag }} The field’s label wrapped in the appropriate HTML <label> tag. This includes the
form’s label_suffix. For example, the default label_suffix is a colon:

<label for="id_email">Email address:</label>

{{ field.id_for_label }} The ID that will be used for this field (id_email in the example above). If
you are constructing the label manually, you may want to use this in lieu of label_tag. It’s also useful, for
example, if you have some inline JavaScript and want to avoid hardcoding the field’s ID.

{{ field.value }} The value of the field. e.g someone@example.com.

{{ field.html_name }} The name of the field that will be used in the input element’s name field. This takes
the form prefix into account, if it has been set.

230 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

{{ field.help_text }} Any help text that has been associated with the field.

{{ field.errors }} Outputs a <ul class="errorlist"> containing any validation errors correspond-
ing to this field. You can customize the presentation of the errors with a {% for error in field.
errors %} loop. In this case, each object in the loop is a simple string containing the error message.

{{ field.is_hidden }} This attribute is True if the form field is a hidden field and False otherwise. It’s
not particularly useful as a template variable, but could be useful in conditional tests such as:

{% if field.is_hidden %}
{# Do something special #}

{% endif %}

{{ field.field }} The Field instance from the form class that this BoundField wraps. You can use it to
access Field attributes, e.g. {{ char_field.field.max_length }}.

See also:

For a complete list of attributes and methods, see BoundField.

Looping over hidden and visible fields

If you’re manually laying out a form in a template, as opposed to relying on Django’s default form layout, you might
want to treat <input type="hidden"> fields differently from non-hidden fields. For example, because hidden
fields don’t display anything, putting error messages “next to” the field could cause confusion for your users – so errors
for those fields should be handled differently.

Django provides two methods on a form that allow you to loop over the hidden and visible fields independently:
hidden_fields() and visible_fields(). Here’s a modification of an earlier example that uses these two
methods:

{# Include the hidden fields #}
{% for hidden in form.hidden_fields %}
{{ hidden }}
{% endfor %}
{# Include the visible fields #}
{% for field in form.visible_fields %}

<div class="fieldWrapper">
{{ field.errors }}
{{ field.label_tag }} {{ field }}

</div>
{% endfor %}

This example does not handle any errors in the hidden fields. Usually, an error in a hidden field is a sign of form
tampering, since normal form interaction won’t alter them. However, you could easily insert some error displays for
those form errors, as well.

Reusable form templates

If your site uses the same rendering logic for forms in multiple places, you can reduce duplication by saving the form’s
loop in a standalone template and using the include tag to reuse it in other templates:

In your form template:
{% include "form_snippet.html" %}

In form_snippet.html:
{% for field in form %}

3.4. Working with forms 231

Django Documentation, Release 1.10.9.dev20171123183751

<div class="fieldWrapper">
{{ field.errors }}
{{ field.label_tag }} {{ field }}

</div>
{% endfor %}

If the form object passed to a template has a different name within the context, you can alias it using the with
argument of the include tag:

{% include "form_snippet.html" with form=comment_form %}

If you find yourself doing this often, you might consider creating a custom inclusion tag.

3.4.7 Further topics

This covers the basics, but forms can do a whole lot more:

Formsets

class BaseFormSet

A formset is a layer of abstraction to work with multiple forms on the same page. It can be best compared to a data
grid. Let’s say you have the following form:

>>> from django import forms
>>> class ArticleForm(forms.Form):
... title = forms.CharField()
... pub_date = forms.DateField()

You might want to allow the user to create several articles at once. To create a formset out of an ArticleForm you
would do:

>>> from django.forms import formset_factory
>>> ArticleFormSet = formset_factory(ArticleForm)

You now have created a formset named ArticleFormSet. The formset gives you the ability to iterate over the
forms in the formset and display them as you would with a regular form:

>>> formset = ArticleFormSet()
>>> for form in formset:
... print(form.as_table())
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name=
→˓"form-0-title" id="id_form-0-title" /></td></tr>
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text"
→˓name="form-0-pub_date" id="id_form-0-pub_date" /></td></tr>

As you can see it only displayed one empty form. The number of empty forms that is displayed is controlled by the
extra parameter. By default, formset_factory() defines one extra form; the following example will display
two blank forms:

>>> ArticleFormSet = formset_factory(ArticleForm, extra=2)

Iterating over the formset will render the forms in the order they were created. You can change this order by
providing an alternate implementation for the __iter__() method.

232 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Formsets can also be indexed into, which returns the corresponding form. If you override __iter__, you will need
to also override __getitem__ to have matching behavior.

Using initial data with a formset

Initial data is what drives the main usability of a formset. As shown above you can define the number of extra forms.
What this means is that you are telling the formset how many additional forms to show in addition to the number of
forms it generates from the initial data. Let’s take a look at an example:

>>> import datetime
>>> from django.forms import formset_factory
>>> from myapp.forms import ArticleForm
>>> ArticleFormSet = formset_factory(ArticleForm, extra=2)
>>> formset = ArticleFormSet(initial=[
... {'title': 'Django is now open source',
... 'pub_date': datetime.date.today(),}
...])

>>> for form in formset:
... print(form.as_table())
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name=
→˓"form-0-title" value="Django is now open source" id="id_form-0-title" /></td></tr>
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text"
→˓name="form-0-pub_date" value="2008-05-12" id="id_form-0-pub_date" /></td></tr>
<tr><th><label for="id_form-1-title">Title:</label></th><td><input type="text" name=
→˓"form-1-title" id="id_form-1-title" /></td></tr>
<tr><th><label for="id_form-1-pub_date">Pub date:</label></th><td><input type="text"
→˓name="form-1-pub_date" id="id_form-1-pub_date" /></td></tr>
<tr><th><label for="id_form-2-title">Title:</label></th><td><input type="text" name=
→˓"form-2-title" id="id_form-2-title" /></td></tr>
<tr><th><label for="id_form-2-pub_date">Pub date:</label></th><td><input type="text"
→˓name="form-2-pub_date" id="id_form-2-pub_date" /></td></tr>

There are now a total of three forms showing above. One for the initial data that was passed in and two extra forms.
Also note that we are passing in a list of dictionaries as the initial data.

If you use an initial for displaying a formset, you should pass the same initial when processing that formset’s
submission so that the formset can detect which forms were changed by the user. For example, you might have
something like: ArticleFormSet(request.POST, initial=[...]).

See also:

Creating formsets from models with model formsets.

Limiting the maximum number of forms

The max_num parameter to formset_factory() gives you the ability to limit the number of forms the formset
will display:

>>> from django.forms import formset_factory
>>> from myapp.forms import ArticleForm
>>> ArticleFormSet = formset_factory(ArticleForm, extra=2, max_num=1)
>>> formset = ArticleFormSet()
>>> for form in formset:
... print(form.as_table())

3.4. Working with forms 233

Django Documentation, Release 1.10.9.dev20171123183751

<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name=
→˓"form-0-title" id="id_form-0-title" /></td></tr>
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text"
→˓name="form-0-pub_date" id="id_form-0-pub_date" /></td></tr>

If the value of max_num is greater than the number of existing items in the initial data, up to extra additional blank
forms will be added to the formset, so long as the total number of forms does not exceed max_num. For example, if
extra=2 and max_num=2 and the formset is initialized with one initial item, a form for the initial item and one
blank form will be displayed.

If the number of items in the initial data exceeds max_num, all initial data forms will be displayed regardless of the
value of max_num and no extra forms will be displayed. For example, if extra=3 and max_num=1 and the formset
is initialized with two initial items, two forms with the initial data will be displayed.

A max_num value of None (the default) puts a high limit on the number of forms displayed (1000). In practice this
is equivalent to no limit.

By default, max_num only affects how many forms are displayed and does not affect validation. If
validate_max=True is passed to the formset_factory(), then max_num will affect validation. See vali-
date_max.

Formset validation

Validation with a formset is almost identical to a regular Form. There is an is_valid method on the formset to
provide a convenient way to validate all forms in the formset:

>>> from django.forms import formset_factory
>>> from myapp.forms import ArticleForm
>>> ArticleFormSet = formset_factory(ArticleForm)
>>> data = {
... 'form-TOTAL_FORMS': '1',
... 'form-INITIAL_FORMS': '0',
... 'form-MAX_NUM_FORMS': '',
... }
>>> formset = ArticleFormSet(data)
>>> formset.is_valid()
True

We passed in no data to the formset which is resulting in a valid form. The formset is smart enough to ignore extra
forms that were not changed. If we provide an invalid article:

>>> data = {
... 'form-TOTAL_FORMS': '2',
... 'form-INITIAL_FORMS': '0',
... 'form-MAX_NUM_FORMS': '',
... 'form-0-title': 'Test',
... 'form-0-pub_date': '1904-06-16',
... 'form-1-title': 'Test',
... 'form-1-pub_date': '', # <-- this date is missing but required
... }
>>> formset = ArticleFormSet(data)
>>> formset.is_valid()
False
>>> formset.errors
[{}, {'pub_date': ['This field is required.']}]

234 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

As we can see, formset.errors is a list whose entries correspond to the forms in the formset. Validation was
performed for each of the two forms, and the expected error message appears for the second item.

Just like when using a normal Form, each field in a formset’s forms may include HTML attributes such as
maxlength for browser validation. However, form fields of formsets won’t include the required attribute as
that validation may be incorrect when adding and deleting forms.

BaseFormSet.total_error_count()

To check how many errors there are in the formset, we can use the total_error_count method:

>>> # Using the previous example
>>> formset.errors
[{}, {'pub_date': ['This field is required.']}]
>>> len(formset.errors)
2
>>> formset.total_error_count()
1

We can also check if form data differs from the initial data (i.e. the form was sent without any data):

>>> data = {
... 'form-TOTAL_FORMS': '1',
... 'form-INITIAL_FORMS': '0',
... 'form-MAX_NUM_FORMS': '',
... 'form-0-title': '',
... 'form-0-pub_date': '',
... }
>>> formset = ArticleFormSet(data)
>>> formset.has_changed()
False

Understanding the ManagementForm

You may have noticed the additional data (form-TOTAL_FORMS, form-INITIAL_FORMS and
form-MAX_NUM_FORMS) that was required in the formset’s data above. This data is required for the
ManagementForm. This form is used by the formset to manage the collection of forms contained in the
formset. If you don’t provide this management data, an exception will be raised:

>>> data = {
... 'form-0-title': 'Test',
... 'form-0-pub_date': '',
... }
>>> formset = ArticleFormSet(data)
>>> formset.is_valid()
Traceback (most recent call last):
...
django.forms.utils.ValidationError: ['ManagementForm data is missing or has been
→˓tampered with']

It is used to keep track of how many form instances are being displayed. If you are adding new forms via JavaScript,
you should increment the count fields in this form as well. On the other hand, if you are using JavaScript to allow
deletion of existing objects, then you need to ensure the ones being removed are properly marked for deletion by
including form-#-DELETE in the POST data. It is expected that all forms are present in the POST data regardless.

The management form is available as an attribute of the formset itself. When rendering a formset in a template, you
can include all the management data by rendering {{ my_formset.management_form }} (substituting the

3.4. Working with forms 235

Django Documentation, Release 1.10.9.dev20171123183751

name of your formset as appropriate).

total_form_count and initial_form_count

BaseFormSet has a couple of methods that are closely related to the ManagementForm, total_form_count
and initial_form_count.

total_form_count returns the total number of forms in this formset. initial_form_count returns the
number of forms in the formset that were pre-filled, and is also used to determine how many forms are required. You
will probably never need to override either of these methods, so please be sure you understand what they do before
doing so.

empty_form

BaseFormSet provides an additional attribute empty_form which returns a form instance with a prefix of
__prefix__ for easier use in dynamic forms with JavaScript.

Custom formset validation

A formset has a clean method similar to the one on a Form class. This is where you define your own validation that
works at the formset level:

>>> from django.forms import BaseFormSet
>>> from django.forms import formset_factory
>>> from myapp.forms import ArticleForm

>>> class BaseArticleFormSet(BaseFormSet):
... def clean(self):
... """Checks that no two articles have the same title."""
... if any(self.errors):
... # Don't bother validating the formset unless each form is valid on
→˓its own
... return
... titles = []
... for form in self.forms:
... title = form.cleaned_data['title']
... if title in titles:
... raise forms.ValidationError("Articles in a set must have distinct
→˓titles.")
... titles.append(title)

>>> ArticleFormSet = formset_factory(ArticleForm, formset=BaseArticleFormSet)
>>> data = {
... 'form-TOTAL_FORMS': '2',
... 'form-INITIAL_FORMS': '0',
... 'form-MAX_NUM_FORMS': '',
... 'form-0-title': 'Test',
... 'form-0-pub_date': '1904-06-16',
... 'form-1-title': 'Test',
... 'form-1-pub_date': '1912-06-23',
... }
>>> formset = ArticleFormSet(data)
>>> formset.is_valid()
False

236 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

>>> formset.errors
[{}, {}]
>>> formset.non_form_errors()
['Articles in a set must have distinct titles.']

The formset clean method is called after all the Form.clean methods have been called. The errors will be found
using the non_form_errors() method on the formset.

Validating the number of forms in a formset

Django provides a couple ways to validate the minimum or maximum number of submitted forms. Applications which
need more customizable validation of the number of forms should use custom formset validation.

validate_max

If validate_max=True is passed to formset_factory(), validation will also check that the number of forms
in the data set, minus those marked for deletion, is less than or equal to max_num.

>>> from django.forms import formset_factory
>>> from myapp.forms import ArticleForm
>>> ArticleFormSet = formset_factory(ArticleForm, max_num=1, validate_max=True)
>>> data = {
... 'form-TOTAL_FORMS': '2',
... 'form-INITIAL_FORMS': '0',
... 'form-MIN_NUM_FORMS': '',
... 'form-MAX_NUM_FORMS': '',
... 'form-0-title': 'Test',
... 'form-0-pub_date': '1904-06-16',
... 'form-1-title': 'Test 2',
... 'form-1-pub_date': '1912-06-23',
... }
>>> formset = ArticleFormSet(data)
>>> formset.is_valid()
False
>>> formset.errors
[{}, {}]
>>> formset.non_form_errors()
['Please submit 1 or fewer forms.']

validate_max=True validates against max_num strictly even if max_num was exceeded because the amount of
initial data supplied was excessive.

Note: Regardless of validate_max, if the number of forms in a data set exceeds max_num by more than 1000,
then the form will fail to validate as if validate_max were set, and additionally only the first 1000 forms above
max_num will be validated. The remainder will be truncated entirely. This is to protect against memory exhaustion
attacks using forged POST requests.

validate_min

If validate_min=True is passed to formset_factory(), validation will also check that the number of forms
in the data set, minus those marked for deletion, is greater than or equal to min_num.

3.4. Working with forms 237

Django Documentation, Release 1.10.9.dev20171123183751

>>> from django.forms import formset_factory
>>> from myapp.forms import ArticleForm
>>> ArticleFormSet = formset_factory(ArticleForm, min_num=3, validate_min=True)
>>> data = {
... 'form-TOTAL_FORMS': '2',
... 'form-INITIAL_FORMS': '0',
... 'form-MIN_NUM_FORMS': '',
... 'form-MAX_NUM_FORMS': '',
... 'form-0-title': 'Test',
... 'form-0-pub_date': '1904-06-16',
... 'form-1-title': 'Test 2',
... 'form-1-pub_date': '1912-06-23',
... }
>>> formset = ArticleFormSet(data)
>>> formset.is_valid()
False
>>> formset.errors
[{}, {}]
>>> formset.non_form_errors()
['Please submit 3 or more forms.']

Dealing with ordering and deletion of forms

The formset_factory() provides two optional parameters can_order and can_delete to help with order-
ing of forms in formsets and deletion of forms from a formset.

can_order

BaseFormSet.can_order

Default: False

Lets you create a formset with the ability to order:

>>> from django.forms import formset_factory
>>> from myapp.forms import ArticleForm
>>> ArticleFormSet = formset_factory(ArticleForm, can_order=True)
>>> formset = ArticleFormSet(initial=[
... {'title': 'Article #1', 'pub_date': datetime.date(2008, 5, 10)},
... {'title': 'Article #2', 'pub_date': datetime.date(2008, 5, 11)},
...])
>>> for form in formset:
... print(form.as_table())
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name=
→˓"form-0-title" value="Article #1" id="id_form-0-title" /></td></tr>
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text"
→˓name="form-0-pub_date" value="2008-05-10" id="id_form-0-pub_date" /></td></tr>
<tr><th><label for="id_form-0-ORDER">Order:</label></th><td><input type="number" name=
→˓"form-0-ORDER" value="1" id="id_form-0-ORDER" /></td></tr>
<tr><th><label for="id_form-1-title">Title:</label></th><td><input type="text" name=
→˓"form-1-title" value="Article #2" id="id_form-1-title" /></td></tr>
<tr><th><label for="id_form-1-pub_date">Pub date:</label></th><td><input type="text"
→˓name="form-1-pub_date" value="2008-05-11" id="id_form-1-pub_date" /></td></tr>
<tr><th><label for="id_form-1-ORDER">Order:</label></th><td><input type="number" name=
→˓"form-1-ORDER" value="2" id="id_form-1-ORDER" /></td></tr>

238 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

<tr><th><label for="id_form-2-title">Title:</label></th><td><input type="text" name=
→˓"form-2-title" id="id_form-2-title" /></td></tr>
<tr><th><label for="id_form-2-pub_date">Pub date:</label></th><td><input type="text"
→˓name="form-2-pub_date" id="id_form-2-pub_date" /></td></tr>
<tr><th><label for="id_form-2-ORDER">Order:</label></th><td><input type="number" name=
→˓"form-2-ORDER" id="id_form-2-ORDER" /></td></tr>

This adds an additional field to each form. This new field is named ORDER and is an forms.IntegerField.
For the forms that came from the initial data it automatically assigned them a numeric value. Let’s look at what will
happen when the user changes these values:

>>> data = {
... 'form-TOTAL_FORMS': '3',
... 'form-INITIAL_FORMS': '2',
... 'form-MAX_NUM_FORMS': '',
... 'form-0-title': 'Article #1',
... 'form-0-pub_date': '2008-05-10',
... 'form-0-ORDER': '2',
... 'form-1-title': 'Article #2',
... 'form-1-pub_date': '2008-05-11',
... 'form-1-ORDER': '1',
... 'form-2-title': 'Article #3',
... 'form-2-pub_date': '2008-05-01',
... 'form-2-ORDER': '0',
... }

>>> formset = ArticleFormSet(data, initial=[
... {'title': 'Article #1', 'pub_date': datetime.date(2008, 5, 10)},
... {'title': 'Article #2', 'pub_date': datetime.date(2008, 5, 11)},
...])
>>> formset.is_valid()
True
>>> for form in formset.ordered_forms:
... print(form.cleaned_data)
{'pub_date': datetime.date(2008, 5, 1), 'ORDER': 0, 'title': 'Article #3'}
{'pub_date': datetime.date(2008, 5, 11), 'ORDER': 1, 'title': 'Article #2'}
{'pub_date': datetime.date(2008, 5, 10), 'ORDER': 2, 'title': 'Article #1'}

can_delete

BaseFormSet.can_delete

Default: False

Lets you create a formset with the ability to select forms for deletion:

>>> from django.forms import formset_factory
>>> from myapp.forms import ArticleForm
>>> ArticleFormSet = formset_factory(ArticleForm, can_delete=True)
>>> formset = ArticleFormSet(initial=[
... {'title': 'Article #1', 'pub_date': datetime.date(2008, 5, 10)},
... {'title': 'Article #2', 'pub_date': datetime.date(2008, 5, 11)},
...])
>>> for form in formset:
... print(form.as_table())
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name=
→˓"form-0-title" value="Article #1" id="id_form-0-title" /></td></tr>

3.4. Working with forms 239

Django Documentation, Release 1.10.9.dev20171123183751

<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text"
→˓name="form-0-pub_date" value="2008-05-10" id="id_form-0-pub_date" /></td></tr>
<tr><th><label for="id_form-0-DELETE">Delete:</label></th><td><input type="checkbox"
→˓name="form-0-DELETE" id="id_form-0-DELETE" /></td></tr>
<tr><th><label for="id_form-1-title">Title:</label></th><td><input type="text" name=
→˓"form-1-title" value="Article #2" id="id_form-1-title" /></td></tr>
<tr><th><label for="id_form-1-pub_date">Pub date:</label></th><td><input type="text"
→˓name="form-1-pub_date" value="2008-05-11" id="id_form-1-pub_date" /></td></tr>
<tr><th><label for="id_form-1-DELETE">Delete:</label></th><td><input type="checkbox"
→˓name="form-1-DELETE" id="id_form-1-DELETE" /></td></tr>
<tr><th><label for="id_form-2-title">Title:</label></th><td><input type="text" name=
→˓"form-2-title" id="id_form-2-title" /></td></tr>
<tr><th><label for="id_form-2-pub_date">Pub date:</label></th><td><input type="text"
→˓name="form-2-pub_date" id="id_form-2-pub_date" /></td></tr>
<tr><th><label for="id_form-2-DELETE">Delete:</label></th><td><input type="checkbox"
→˓name="form-2-DELETE" id="id_form-2-DELETE" /></td></tr>

Similar to can_order this adds a new field to each form named DELETE and is a forms.BooleanField. When
data comes through marking any of the delete fields you can access them with deleted_forms:

>>> data = {
... 'form-TOTAL_FORMS': '3',
... 'form-INITIAL_FORMS': '2',
... 'form-MAX_NUM_FORMS': '',
... 'form-0-title': 'Article #1',
... 'form-0-pub_date': '2008-05-10',
... 'form-0-DELETE': 'on',
... 'form-1-title': 'Article #2',
... 'form-1-pub_date': '2008-05-11',
... 'form-1-DELETE': '',
... 'form-2-title': '',
... 'form-2-pub_date': '',
... 'form-2-DELETE': '',
... }

>>> formset = ArticleFormSet(data, initial=[
... {'title': 'Article #1', 'pub_date': datetime.date(2008, 5, 10)},
... {'title': 'Article #2', 'pub_date': datetime.date(2008, 5, 11)},
...])
>>> [form.cleaned_data for form in formset.deleted_forms]
[{'DELETE': True, 'pub_date': datetime.date(2008, 5, 10), 'title': 'Article #1'}]

If you are using a ModelFormSet, model instances for deleted forms will be deleted when you call formset.
save().

If you call formset.save(commit=False), objects will not be deleted automatically. You’ll need to call
delete() on each of the formset.deleted_objects to actually delete them:

>>> instances = formset.save(commit=False)
>>> for obj in formset.deleted_objects:
... obj.delete()

On the other hand, if you are using a plain FormSet, it’s up to you to handle formset.deleted_forms, perhaps
in your formset’s save() method, as there’s no general notion of what it means to delete a form.

240 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Adding additional fields to a formset

If you need to add additional fields to the formset this can be easily accomplished. The formset base class provides
an add_fields method. You can simply override this method to add your own fields or even redefine the default
fields/attributes of the order and deletion fields:

>>> from django.forms import BaseFormSet
>>> from django.forms import formset_factory
>>> from myapp.forms import ArticleForm
>>> class BaseArticleFormSet(BaseFormSet):
... def add_fields(self, form, index):
... super(BaseArticleFormSet, self).add_fields(form, index)
... form.fields["my_field"] = forms.CharField()

>>> ArticleFormSet = formset_factory(ArticleForm, formset=BaseArticleFormSet)
>>> formset = ArticleFormSet()
>>> for form in formset:
... print(form.as_table())
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name=
→˓"form-0-title" id="id_form-0-title" /></td></tr>
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text"
→˓name="form-0-pub_date" id="id_form-0-pub_date" /></td></tr>
<tr><th><label for="id_form-0-my_field">My field:</label></th><td><input type="text"
→˓name="form-0-my_field" id="id_form-0-my_field" /></td></tr>

Passing custom parameters to formset forms

Sometimes your form class takes custom parameters, like MyArticleForm. You can pass this parameter when
instantiating the formset:

>>> from django.forms import BaseFormSet
>>> from django.forms import formset_factory
>>> from myapp.forms import ArticleForm

>>> class MyArticleForm(ArticleForm):
... def __init__(self, *args, **kwargs):
... self.user = kwargs.pop('user')
... super(MyArticleForm, self).__init__(*args, **kwargs)

>>> ArticleFormSet = formset_factory(MyArticleForm)
>>> formset = ArticleFormSet(form_kwargs={'user': request.user})

The form_kwargs may also depend on the specific form instance. The formset base class provides a
get_form_kwargs method. The method takes a single argument - the index of the form in the formset. The
index is None for the empty_form:

>>> from django.forms import BaseFormSet
>>> from django.forms import formset_factory

>>> class BaseArticleFormSet(BaseFormSet):
... def get_form_kwargs(self, index):
... kwargs = super(BaseArticleFormSet, self).get_form_kwargs(index)
... kwargs['custom_kwarg'] = index
... return kwargs

The form_kwargs argument was added.

3.4. Working with forms 241

Django Documentation, Release 1.10.9.dev20171123183751

Using a formset in views and templates

Using a formset inside a view is as easy as using a regular Form class. The only thing you will want to be aware of is
making sure to use the management form inside the template. Let’s look at a sample view:

from django.forms import formset_factory
from django.shortcuts import render
from myapp.forms import ArticleForm

def manage_articles(request):
ArticleFormSet = formset_factory(ArticleForm)
if request.method == 'POST':

formset = ArticleFormSet(request.POST, request.FILES)
if formset.is_valid():

do something with the formset.cleaned_data
pass

else:
formset = ArticleFormSet()

return render(request, 'manage_articles.html', {'formset': formset})

The manage_articles.html template might look like this:

<form method="post" action="">
{{ formset.management_form }}
<table>

{% for form in formset %}
{{ form }}
{% endfor %}

</table>
</form>

However there’s a slight shortcut for the above by letting the formset itself deal with the management form:

<form method="post" action="">
<table>

{{ formset }}
</table>

</form>

The above ends up calling the as_table method on the formset class.

Manually rendered can_delete and can_order

If you manually render fields in the template, you can render can_delete parameter with {{ form.DELETE }}:

<form method="post" action="">
{{ formset.management_form }}
{% for form in formset %}

{{ form.title }}
{{ form.pub_date }}
{% if formset.can_delete %}

{{ form.DELETE }}
{% endif %}

{% endfor %}

</form>

242 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Similarly, if the formset has the ability to order (can_order=True), it is possible to render it with {{ form.
ORDER }}.

Using more than one formset in a view

You are able to use more than one formset in a view if you like. Formsets borrow much of its behavior from forms.
With that said you are able to use prefix to prefix formset form field names with a given value to allow more than
one formset to be sent to a view without name clashing. Lets take a look at how this might be accomplished:

from django.forms import formset_factory
from django.shortcuts import render
from myapp.forms import ArticleForm, BookForm

def manage_articles(request):
ArticleFormSet = formset_factory(ArticleForm)
BookFormSet = formset_factory(BookForm)
if request.method == 'POST':

article_formset = ArticleFormSet(request.POST, request.FILES, prefix='articles
→˓')

book_formset = BookFormSet(request.POST, request.FILES, prefix='books')
if article_formset.is_valid() and book_formset.is_valid():

do something with the cleaned_data on the formsets.
pass

else:
article_formset = ArticleFormSet(prefix='articles')
book_formset = BookFormSet(prefix='books')

return render(request, 'manage_articles.html', {
'article_formset': article_formset,
'book_formset': book_formset,

})

You would then render the formsets as normal. It is important to point out that you need to pass prefix on both the
POST and non-POST cases so that it is rendered and processed correctly.

Creating forms from models

ModelForm

class ModelForm

If you’re building a database-driven app, chances are you’ll have forms that map closely to Django models. For
instance, you might have a BlogComment model, and you want to create a form that lets people submit comments.
In this case, it would be redundant to define the field types in your form, because you’ve already defined the fields in
your model.

For this reason, Django provides a helper class that lets you create a Form class from a Django model.

For example:

>>> from django.forms import ModelForm
>>> from myapp.models import Article

Create the form class.
>>> class ArticleForm(ModelForm):

3.4. Working with forms 243

Django Documentation, Release 1.10.9.dev20171123183751

... class Meta:

... model = Article

... fields = ['pub_date', 'headline', 'content', 'reporter']

Creating a form to add an article.
>>> form = ArticleForm()

Creating a form to change an existing article.
>>> article = Article.objects.get(pk=1)
>>> form = ArticleForm(instance=article)

Field types

The generated Form class will have a form field for every model field specified, in the order specified in the fields
attribute.

Each model field has a corresponding default form field. For example, a CharField on a model is represented as a
CharField on a form. A model ManyToManyField is represented as a MultipleChoiceField. Here is the
full list of conversions:

Model field Form field
AutoField Not represented in the form
BigAutoField Not represented in the form
BigIntegerField IntegerField with min_value set to -9223372036854775808 and

max_value set to 9223372036854775807.
BooleanField BooleanField
CharField CharField with max_length set to the model field’s max_length
CommaSeparatedIntegerFieldCharField
DateField DateField
DateTimeField DateTimeField
DecimalField DecimalField
EmailField EmailField
FileField FileField
FilePathField FilePathField
FloatField FloatField
ForeignKey ModelChoiceField (see below)
ImageField ImageField
IntegerField IntegerField
IPAddressField IPAddressField
GenericIPAddressFieldGenericIPAddressField
ManyToManyField ModelMultipleChoiceField (see below)
NullBooleanField NullBooleanField
PositiveIntegerField IntegerField
PositiveSmallIntegerFieldIntegerField
SlugField SlugField
SmallIntegerField IntegerField
TextField CharField with widget=forms.Textarea
TimeField TimeField
URLField URLField

As you might expect, the ForeignKey and ManyToManyField model field types are special cases:

• ForeignKey is represented by django.forms.ModelChoiceField, which is a ChoiceFieldwhose
choices are a model QuerySet.

244 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

• ManyToManyField is represented by django.forms.ModelMultipleChoiceField, which is a
MultipleChoiceField whose choices are a model QuerySet.

In addition, each generated form field has attributes set as follows:

• If the model field has blank=True, then required is set to False on the form field. Otherwise,
required=True.

• The form field’s label is set to the verbose_name of the model field, with the first character capitalized.

• The form field’s help_text is set to the help_text of the model field.

• If the model field has choices set, then the form field’s widget will be set to Select, with choices coming
from the model field’s choices. The choices will normally include the blank choice which is selected by
default. If the field is required, this forces the user to make a selection. The blank choice will not be included
if the model field has blank=False and an explicit default value (the default value will be initially
selected instead).

Finally, note that you can override the form field used for a given model field. See Overriding the default fields below.

A full example

Consider this set of models:

from django.db import models
from django.forms import ModelForm

TITLE_CHOICES = (
('MR', 'Mr.'),
('MRS', 'Mrs.'),
('MS', 'Ms.'),

)

class Author(models.Model):
name = models.CharField(max_length=100)
title = models.CharField(max_length=3, choices=TITLE_CHOICES)
birth_date = models.DateField(blank=True, null=True)

def __str__(self): # __unicode__ on Python 2
return self.name

class Book(models.Model):
name = models.CharField(max_length=100)
authors = models.ManyToManyField(Author)

class AuthorForm(ModelForm):
class Meta:

model = Author
fields = ['name', 'title', 'birth_date']

class BookForm(ModelForm):
class Meta:

model = Book
fields = ['name', 'authors']

With these models, the ModelForm subclasses above would be roughly equivalent to this (the only difference being
the save() method, which we’ll discuss in a moment.):

3.4. Working with forms 245

Django Documentation, Release 1.10.9.dev20171123183751

from django import forms

class AuthorForm(forms.Form):
name = forms.CharField(max_length=100)
title = forms.CharField(

max_length=3,
widget=forms.Select(choices=TITLE_CHOICES),

)
birth_date = forms.DateField(required=False)

class BookForm(forms.Form):
name = forms.CharField(max_length=100)
authors = forms.ModelMultipleChoiceField(queryset=Author.objects.all())

Validation on a ModelForm

There are two main steps involved in validating a ModelForm:

1. Validating the form

2. Validating the model instance

Just like normal form validation, model form validation is triggered implicitly when calling is_valid() or access-
ing the errors attribute and explicitly when calling full_clean(), although you will typically not use the latter
method in practice.

Model validation (Model.full_clean()) is triggered from within the form validation step, right after the form’s
clean() method is called.

Warning: The cleaning process modifies the model instance passed to the ModelForm constructor in various
ways. For instance, any date fields on the model are converted into actual date objects. Failed validation may leave
the underlying model instance in an inconsistent state and therefore it’s not recommended to reuse it.

Overriding the clean() method

You can override the clean() method on a model form to provide additional validation in the same way you can on
a normal form.

A model form instance attached to a model object will contain an instance attribute that gives its methods access
to that specific model instance.

Warning: The ModelForm.clean() method sets a flag that makes the model validation
step validate the uniqueness of model fields that are marked as unique, unique_together or
unique_for_date|month|year.

If you would like to override the clean() method and maintain this validation, you must call the parent class’s
clean() method.

246 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Interaction with model validation

As part of the validation process, ModelForm will call the clean() method of each field on your model that has
a corresponding field on your form. If you have excluded any model fields, validation will not be run on those fields.
See the form validation documentation for more on how field cleaning and validation work.

The model’s clean() method will be called before any uniqueness checks are made. See Validating objects for more
information on the model’s clean() hook.

Considerations regarding model’s error_messages

Error messages defined at the form field level or at the form Meta level always take precedence over the error
messages defined at the model field level.

Error messages defined on model fields are only used when the ValidationError is raised during the model
validation step and no corresponding error messages are defined at the form level.

You can override the error messages from NON_FIELD_ERRORS raised by model validation by adding the
NON_FIELD_ERRORS key to the error_messages dictionary of the ModelForm’s inner Meta class:

from django.forms import ModelForm
from django.core.exceptions import NON_FIELD_ERRORS

class ArticleForm(ModelForm):
class Meta:

error_messages = {
NON_FIELD_ERRORS: {

'unique_together': "%(model_name)s's %(field_labels)s are not unique.
→˓",

}
}

The save() method

Every ModelForm also has a save() method. This method creates and saves a database object from the data bound
to the form. A subclass of ModelForm can accept an existing model instance as the keyword argument instance;
if this is supplied, save() will update that instance. If it’s not supplied, save() will create a new instance of the
specified model:

>>> from myapp.models import Article
>>> from myapp.forms import ArticleForm

Create a form instance from POST data.
>>> f = ArticleForm(request.POST)

Save a new Article object from the form's data.
>>> new_article = f.save()

Create a form to edit an existing Article, but use
POST data to populate the form.
>>> a = Article.objects.get(pk=1)
>>> f = ArticleForm(request.POST, instance=a)
>>> f.save()

3.4. Working with forms 247

Django Documentation, Release 1.10.9.dev20171123183751

Note that if the form hasn’t been validated, calling save()will do so by checking form.errors. A ValueError
will be raised if the data in the form doesn’t validate – i.e., if form.errors evaluates to True.

If an optional field doesn’t appear in the form’s data, the resulting model instance uses the model
field default, if there is one, for that field. This behavior doesn’t apply to fields that use
CheckboxInput, CheckboxSelectMultiple, or SelectMultiple (or any custom widget whose
value_omitted_from_data() method always returns False) since an unchecked checkbox and unselected
<select multiple> don’t appear in the data of an HTML form submission. Use a custom form field or widget
if you’re designing an API and want the default fallback behavior for a field that uses one of these widgets.

Older versions don’t have the exception for CheckboxInput which means that unchecked checkboxes receive a
value of True if that’s the model field default.

The value_omitted_from_data() method was added.

This save() method accepts an optional commit keyword argument, which accepts either True or False. If you
call save() with commit=False, then it will return an object that hasn’t yet been saved to the database. In this
case, it’s up to you to call save() on the resulting model instance. This is useful if you want to do custom processing
on the object before saving it, or if you want to use one of the specialized model saving options. commit is True by
default.

Another side effect of using commit=False is seen when your model has a many-to-many relation with another
model. If your model has a many-to-many relation and you specify commit=False when you save a form, Django
cannot immediately save the form data for the many-to-many relation. This is because it isn’t possible to save many-
to-many data for an instance until the instance exists in the database.

To work around this problem, every time you save a form using commit=False, Django adds a save_m2m()
method to your ModelForm subclass. After you’ve manually saved the instance produced by the form, you can
invoke save_m2m() to save the many-to-many form data. For example:

Create a form instance with POST data.
>>> f = AuthorForm(request.POST)

Create, but don't save the new author instance.
>>> new_author = f.save(commit=False)

Modify the author in some way.
>>> new_author.some_field = 'some_value'

Save the new instance.
>>> new_author.save()

Now, save the many-to-many data for the form.
>>> f.save_m2m()

Calling save_m2m() is only required if you use save(commit=False). When you use a simple save() on a
form, all data – including many-to-many data – is saved without the need for any additional method calls. For example:

Create a form instance with POST data.
>>> a = Author()
>>> f = AuthorForm(request.POST, instance=a)

Create and save the new author instance. There's no need to do anything else.
>>> new_author = f.save()

Other than the save() and save_m2m() methods, a ModelForm works exactly the same way as any other forms
form. For example, the is_valid() method is used to check for validity, the is_multipart() method is used
to determine whether a form requires multipart file upload (and hence whether request.FILES must be passed to
the form), etc. See Binding uploaded files to a form for more information.

248 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Selecting the fields to use

It is strongly recommended that you explicitly set all fields that should be edited in the form using the fields
attribute. Failure to do so can easily lead to security problems when a form unexpectedly allows a user to set certain
fields, especially when new fields are added to a model. Depending on how the form is rendered, the problem may not
even be visible on the web page.

The alternative approach would be to include all fields automatically, or blacklist only some. This fundamental ap-
proach is known to be much less secure and has led to serious exploits on major websites (e.g. GitHub).

There are, however, two shortcuts available for cases where you can guarantee these security concerns do not apply to
you:

1. Set the fields attribute to the special value '__all__' to indicate that all fields in the model should be
used. For example:

from django.forms import ModelForm

class AuthorForm(ModelForm):
class Meta:

model = Author
fields = '__all__'

2. Set the exclude attribute of the ModelForm’s inner Meta class to a list of fields to be excluded from the
form.

For example:

class PartialAuthorForm(ModelForm):
class Meta:

model = Author
exclude = ['title']

Since the Author model has the 3 fields name, title and birth_date, this will result in the fields name
and birth_date being present on the form.

If either of these are used, the order the fields appear in the form will be the order the fields are defined in the model,
with ManyToManyField instances appearing last.

In addition, Django applies the following rule: if you set editable=False on the model field, any form created
from the model via ModelForm will not include that field.

Note: Any fields not included in a form by the above logic will not be set by the form’s save() method. Also, if
you manually add the excluded fields back to the form, they will not be initialized from the model instance.

Django will prevent any attempt to save an incomplete model, so if the model does not allow the missing fields to
be empty, and does not provide a default value for the missing fields, any attempt to save() a ModelForm with
missing fields will fail. To avoid this failure, you must instantiate your model with initial values for the missing, but
required fields:

author = Author(title='Mr')
form = PartialAuthorForm(request.POST, instance=author)
form.save()

Alternatively, you can use save(commit=False) and manually set any extra required fields:

form = PartialAuthorForm(request.POST)
author = form.save(commit=False)

3.4. Working with forms 249

https://github.com/blog/1068-public-key-security-vulnerability-and-mitigation

Django Documentation, Release 1.10.9.dev20171123183751

author.title = 'Mr'
author.save()

See the section on saving forms for more details on using save(commit=False).

Overriding the default fields

The default field types, as described in the Field types table above, are sensible defaults. If you have a DateField
in your model, chances are you’d want that to be represented as a DateField in your form. But ModelForm gives
you the flexibility of changing the form field for a given model.

To specify a custom widget for a field, use the widgets attribute of the inner Meta class. This should be a dictionary
mapping field names to widget classes or instances.

For example, if you want the CharField for the name attribute of Author to be represented by a <textarea>
instead of its default <input type="text">, you can override the field’s widget:

from django.forms import ModelForm, Textarea
from myapp.models import Author

class AuthorForm(ModelForm):
class Meta:

model = Author
fields = ('name', 'title', 'birth_date')
widgets = {

'name': Textarea(attrs={'cols': 80, 'rows': 20}),
}

The widgets dictionary accepts either widget instances (e.g., Textarea(...)) or classes (e.g., Textarea).

Similarly, you can specify the labels, help_texts and error_messages attributes of the inner Meta class if
you want to further customize a field.

For example if you wanted to customize the wording of all user facing strings for the name field:

from django.utils.translation import ugettext_lazy as _

class AuthorForm(ModelForm):
class Meta:

model = Author
fields = ('name', 'title', 'birth_date')
labels = {

'name': _('Writer'),
}
help_texts = {

'name': _('Some useful help text.'),
}
error_messages = {

'name': {
'max_length': _("This writer's name is too long."),

},
}

You can also specify field_classes to customize the type of fields instantiated by the form.

For example, if you wanted to use MySlugFormField for the slug field, you could do the following:

250 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

from django.forms import ModelForm
from myapp.models import Article

class ArticleForm(ModelForm):
class Meta:

model = Article
fields = ['pub_date', 'headline', 'content', 'reporter', 'slug']
field_classes = {

'slug': MySlugFormField,
}

Finally, if you want complete control over of a field – including its type, validators, required, etc. – you can do this by
declaratively specifying fields like you would in a regular Form.

If you want to specify a field’s validators, you can do so by defining the field declaratively and setting its validators
parameter:

from django.forms import ModelForm, CharField
from myapp.models import Article

class ArticleForm(ModelForm):
slug = CharField(validators=[validate_slug])

class Meta:
model = Article
fields = ['pub_date', 'headline', 'content', 'reporter', 'slug']

The Meta.field_classes attribute was added.

Note: When you explicitly instantiate a form field like this, it is important to understand how ModelForm and
regular Form are related.

ModelForm is a regular Form which can automatically generate certain fields. The fields that are automatically
generated depend on the content of the Meta class and on which fields have already been defined declaratively.
Basically, ModelForm will only generate fields that are missing from the form, or in other words, fields that weren’t
defined declaratively.

Fields defined declaratively are left as-is, therefore any customizations made to Meta attributes such as widgets,
labels, help_texts, or error_messages are ignored; these only apply to fields that are generated automati-
cally.

Similarly, fields defined declaratively do not draw their attributes like max_length or required from the corre-
sponding model. If you want to maintain the behavior specified in the model, you must set the relevant arguments
explicitly when declaring the form field.

For example, if the Article model looks like this:

class Article(models.Model):
headline = models.CharField(

max_length=200,
null=True,
blank=True,
help_text='Use puns liberally',

)
content = models.TextField()

and you want to do some custom validation for headline, while keeping the blank and help_text values as
specified, you might define ArticleForm like this:

3.4. Working with forms 251

Django Documentation, Release 1.10.9.dev20171123183751

class ArticleForm(ModelForm):
headline = MyFormField(

max_length=200,
required=False,
help_text='Use puns liberally',

)

class Meta:
model = Article
fields = ['headline', 'content']

You must ensure that the type of the form field can be used to set the contents of the corresponding model field. When
they are not compatible, you will get a ValueError as no implicit conversion takes place.

See the form field documentation for more information on fields and their arguments.

Enabling localization of fields

By default, the fields in a ModelForm will not localize their data. To enable localization for fields, you can use the
localized_fields attribute on the Meta class.

>>> from django.forms import ModelForm
>>> from myapp.models import Author
>>> class AuthorForm(ModelForm):
... class Meta:
... model = Author
... localized_fields = ('birth_date',)

If localized_fields is set to the special value '__all__', all fields will be localized.

Form inheritance

As with basic forms, you can extend and reuse ModelForms by inheriting them. This is useful if you need to declare
extra fields or extra methods on a parent class for use in a number of forms derived from models. For example, using
the previous ArticleForm class:

>>> class EnhancedArticleForm(ArticleForm):
... def clean_pub_date(self):
... ...

This creates a form that behaves identically to ArticleForm, except there’s some extra validation and cleaning for
the pub_date field.

You can also subclass the parent’s Meta inner class if you want to change the Meta.fields or Meta.exclude
lists:

>>> class RestrictedArticleForm(EnhancedArticleForm):
... class Meta(ArticleForm.Meta):
... exclude = ('body',)

This adds the extra method from the EnhancedArticleForm and modifies the original ArticleForm.Meta to
remove one field.

There are a couple of things to note, however.

252 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

• Normal Python name resolution rules apply. If you have multiple base classes that declare a Meta inner class,
only the first one will be used. This means the child’s Meta, if it exists, otherwise the Meta of the first parent,
etc.

• It’s possible to inherit from both Form and ModelForm simultaneously, however, you must ensure that
ModelForm appears first in the MRO. This is because these classes rely on different metaclasses and a class
can only have one metaclass.

• It’s possible to declaratively remove a Field inherited from a parent class by setting the name to be None on
the subclass.

You can only use this technique to opt out from a field defined declaratively by a parent class; it won’t prevent
the ModelForm metaclass from generating a default field. To opt-out from default fields, see Selecting the
fields to use.

Providing initial values

As with regular forms, it’s possible to specify initial data for forms by specifying an initial parameter when
instantiating the form. Initial values provided this way will override both initial values from the form field and values
from an attached model instance. For example:

>>> article = Article.objects.get(pk=1)
>>> article.headline
'My headline'
>>> form = ArticleForm(initial={'headline': 'Initial headline'}, instance=article)
>>> form['headline'].value()
'Initial headline'

ModelForm factory function

You can create forms from a given model using the standalone function modelform_factory(), instead of using
a class definition. This may be more convenient if you do not have many customizations to make:

>>> from django.forms import modelform_factory
>>> from myapp.models import Book
>>> BookForm = modelform_factory(Book, fields=("author", "title"))

This can also be used to make simple modifications to existing forms, for example by specifying the widgets to be
used for a given field:

>>> from django.forms import Textarea
>>> Form = modelform_factory(Book, form=BookForm,
... widgets={"title": Textarea()})

The fields to include can be specified using the fields and exclude keyword arguments, or the corresponding
attributes on the ModelForm inner Meta class. Please see the ModelForm Selecting the fields to use documentation.

... or enable localization for specific fields:

>>> Form = modelform_factory(Author, form=AuthorForm, localized_fields=("birth_date",
→˓))

3.4. Working with forms 253

Django Documentation, Release 1.10.9.dev20171123183751

Model formsets

class models.BaseModelFormSet

Like regular formsets, Django provides a couple of enhanced formset classes that make it easy to work with Django
models. Let’s reuse the Author model from above:

>>> from django.forms import modelformset_factory
>>> from myapp.models import Author
>>> AuthorFormSet = modelformset_factory(Author, fields=('name', 'title'))

Using fields restricts the formset to use only the given fields. Alternatively, you can take an “opt-out” approach,
specifying which fields to exclude:

>>> AuthorFormSet = modelformset_factory(Author, exclude=('birth_date',))

This will create a formset that is capable of working with the data associated with the Author model. It works just
like a regular formset:

>>> formset = AuthorFormSet()
>>> print(formset)
<input type="hidden" name="form-TOTAL_FORMS" value="1" id="id_form-TOTAL_FORMS" />
→˓<input type="hidden" name="form-INITIAL_FORMS" value="0" id="id_form-INITIAL_FORMS"
→˓/><input type="hidden" name="form-MAX_NUM_FORMS" id="id_form-MAX_NUM_FORMS" />
<tr><th><label for="id_form-0-name">Name:</label></th><td><input id="id_form-0-name"
→˓type="text" name="form-0-name" maxlength="100" /></td></tr>
<tr><th><label for="id_form-0-title">Title:</label></th><td><select name="form-0-title
→˓" id="id_form-0-title">
<option value="" selected="selected">---------</option>
<option value="MR">Mr.</option>
<option value="MRS">Mrs.</option>
<option value="MS">Ms.</option>
</select><input type="hidden" name="form-0-id" id="id_form-0-id" /></td></tr>

Note: modelformset_factory() uses formset_factory() to generate formsets. This means that a model
formset is just an extension of a basic formset that knows how to interact with a particular model.

Changing the queryset

By default, when you create a formset from a model, the formset will use a queryset that includes all objects in the
model (e.g., Author.objects.all()). You can override this behavior by using the queryset argument:

>>> formset = AuthorFormSet(queryset=Author.objects.filter(name__startswith='O'))

Alternatively, you can create a subclass that sets self.queryset in __init__:

from django.forms import BaseModelFormSet
from myapp.models import Author

class BaseAuthorFormSet(BaseModelFormSet):
def __init__(self, *args, **kwargs):

super(BaseAuthorFormSet, self).__init__(*args, **kwargs)
self.queryset = Author.objects.filter(name__startswith='O')

254 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Then, pass your BaseAuthorFormSet class to the factory function:

>>> AuthorFormSet = modelformset_factory(
... Author, fields=('name', 'title'), formset=BaseAuthorFormSet)

If you want to return a formset that doesn’t include any pre-existing instances of the model, you can specify an empty
QuerySet:

>>> AuthorFormSet(queryset=Author.objects.none())

Changing the form

By default, when you use modelformset_factory, a model form will be created using
modelform_factory(). Often, it can be useful to specify a custom model form. For example, you can
create a custom model form that has custom validation:

class AuthorForm(forms.ModelForm):
class Meta:

model = Author
fields = ('name', 'title')

def clean_name(self):
custom validation for the name field
...

Then, pass your model form to the factory function:

AuthorFormSet = modelformset_factory(Author, form=AuthorForm)

It is not always necessary to define a custom model form. The modelformset_factory function has several
arguments which are passed through to modelform_factory, which are described below.

Specifying widgets to use in the form with widgets

Using the widgets parameter, you can specify a dictionary of values to customize the ModelForm’s widget class
for a particular field. This works the same way as the widgets dictionary on the inner Meta class of a ModelForm
works:

>>> AuthorFormSet = modelformset_factory(
... Author, fields=('name', 'title'),
... widgets={'name': Textarea(attrs={'cols': 80, 'rows': 20})})

Enabling localization for fields with localized_fields

Using the localized_fields parameter, you can enable localization for fields in the form.

>>> AuthorFormSet = modelformset_factory(
... Author, fields=('name', 'title', 'birth_date'),
... localized_fields=('birth_date',))

If localized_fields is set to the special value '__all__', all fields will be localized.

3.4. Working with forms 255

Django Documentation, Release 1.10.9.dev20171123183751

Providing initial values

As with regular formsets, it’s possible to specify initial data for forms in the formset by specifying an initial
parameter when instantiating the model formset class returned by modelformset_factory(). However, with
model formsets, the initial values only apply to extra forms, those that aren’t attached to an existing model instance. If
the extra forms with initial data aren’t changed by the user, they won’t be validated or saved.

Saving objects in the formset

As with a ModelForm, you can save the data as a model object. This is done with the formset’s save() method:

Create a formset instance with POST data.
>>> formset = AuthorFormSet(request.POST)

Assuming all is valid, save the data.
>>> instances = formset.save()

The save()method returns the instances that have been saved to the database. If a given instance’s data didn’t change
in the bound data, the instance won’t be saved to the database and won’t be included in the return value (instances,
in the above example).

When fields are missing from the form (for example because they have been excluded), these fields will not be
set by the save() method. You can find more information about this restriction, which also holds for regular
ModelForms, in Selecting the fields to use.

Pass commit=False to return the unsaved model instances:

don't save to the database
>>> instances = formset.save(commit=False)
>>> for instance in instances:
... # do something with instance
... instance.save()

This gives you the ability to attach data to the instances before saving them to the database. If your formset contains
a ManyToManyField, you’ll also need to call formset.save_m2m() to ensure the many-to-many relationships
are saved properly.

After calling save(), your model formset will have three new attributes containing the formset’s changes:

models.BaseModelFormSet.changed_objects

models.BaseModelFormSet.deleted_objects

models.BaseModelFormSet.new_objects

Limiting the number of editable objects

As with regular formsets, you can use the max_num and extra parameters to modelformset_factory() to
limit the number of extra forms displayed.

max_num does not prevent existing objects from being displayed:

>>> Author.objects.order_by('name')
<QuerySet [<Author: Charles Baudelaire>, <Author: Paul Verlaine>, <Author: Walt
→˓Whitman>]>

>>> AuthorFormSet = modelformset_factory(Author, fields=('name',), max_num=1)

256 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

>>> formset = AuthorFormSet(queryset=Author.objects.order_by('name'))
>>> [x.name for x in formset.get_queryset()]
['Charles Baudelaire', 'Paul Verlaine', 'Walt Whitman']

Also, extra=0 doesn’t prevent creation of new model instances as you can add additional forms with JavaScript or
just send additional POST data. Formsets don’t yet provide functionality for an “edit only” view that prevents creation
of new instances.

If the value of max_num is greater than the number of existing related objects, up to extra additional blank forms
will be added to the formset, so long as the total number of forms does not exceed max_num:

>>> AuthorFormSet = modelformset_factory(Author, fields=('name',), max_num=4, extra=2)
>>> formset = AuthorFormSet(queryset=Author.objects.order_by('name'))
>>> for form in formset:
... print(form.as_table())
<tr><th><label for="id_form-0-name">Name:</label></th><td><input id="id_form-0-name"
→˓type="text" name="form-0-name" value="Charles Baudelaire" maxlength="100" /><input
→˓type="hidden" name="form-0-id" value="1" id="id_form-0-id" /></td></tr>
<tr><th><label for="id_form-1-name">Name:</label></th><td><input id="id_form-1-name"
→˓type="text" name="form-1-name" value="Paul Verlaine" maxlength="100" /><input type=
→˓"hidden" name="form-1-id" value="3" id="id_form-1-id" /></td></tr>
<tr><th><label for="id_form-2-name">Name:</label></th><td><input id="id_form-2-name"
→˓type="text" name="form-2-name" value="Walt Whitman" maxlength="100" /><input type=
→˓"hidden" name="form-2-id" value="2" id="id_form-2-id" /></td></tr>
<tr><th><label for="id_form-3-name">Name:</label></th><td><input id="id_form-3-name"
→˓type="text" name="form-3-name" maxlength="100" /><input type="hidden" name="form-3-
→˓id" id="id_form-3-id" /></td></tr>

A max_num value of None (the default) puts a high limit on the number of forms displayed (1000). In practice this
is equivalent to no limit.

Using a model formset in a view

Model formsets are very similar to formsets. Let’s say we want to present a formset to edit Author model instances:

from django.forms import modelformset_factory
from django.shortcuts import render
from myapp.models import Author

def manage_authors(request):
AuthorFormSet = modelformset_factory(Author, fields=('name', 'title'))
if request.method == 'POST':

formset = AuthorFormSet(request.POST, request.FILES)
if formset.is_valid():

formset.save()
do something.

else:
formset = AuthorFormSet()

return render(request, 'manage_authors.html', {'formset': formset})

As you can see, the view logic of a model formset isn’t drastically different than that of a “normal” formset. The only
difference is that we call formset.save() to save the data into the database. (This was described above, in Saving
objects in the formset.)

3.4. Working with forms 257

https://code.djangoproject.com/ticket/26142

Django Documentation, Release 1.10.9.dev20171123183751

Overriding clean() on a ModelFormSet

Just like with ModelForms, by default the clean() method of a ModelFormSet will validate that none of
the items in the formset violate the unique constraints on your model (either unique, unique_together or
unique_for_date|month|year). If you want to override the clean() method on a ModelFormSet and
maintain this validation, you must call the parent class’s clean method:

from django.forms import BaseModelFormSet

class MyModelFormSet(BaseModelFormSet):
def clean(self):

super(MyModelFormSet, self).clean()
example custom validation across forms in the formset
for form in self.forms:

your custom formset validation
...

Also note that by the time you reach this step, individual model instances have already been created for each Form.
Modifying a value in form.cleaned_data is not sufficient to affect the saved value. If you wish to modify a value
in ModelFormSet.clean() you must modify form.instance:

from django.forms import BaseModelFormSet

class MyModelFormSet(BaseModelFormSet):
def clean(self):

super(MyModelFormSet, self).clean()

for form in self.forms:
name = form.cleaned_data['name'].upper()
form.cleaned_data['name'] = name
update the instance value.
form.instance.name = name

Using a custom queryset

As stated earlier, you can override the default queryset used by the model formset:

from django.forms import modelformset_factory
from django.shortcuts import render
from myapp.models import Author

def manage_authors(request):
AuthorFormSet = modelformset_factory(Author, fields=('name', 'title'))
if request.method == "POST":

formset = AuthorFormSet(
request.POST, request.FILES,
queryset=Author.objects.filter(name__startswith='O'),

)
if formset.is_valid():

formset.save()
Do something.

else:
formset = AuthorFormSet(queryset=Author.objects.filter(name__startswith='O'))

return render(request, 'manage_authors.html', {'formset': formset})

Note that we pass the queryset argument in both the POST and GET cases in this example.

258 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Using the formset in the template

There are three ways to render a formset in a Django template.

First, you can let the formset do most of the work:

<form method="post" action="">
{{ formset }}

</form>

Second, you can manually render the formset, but let the form deal with itself:

<form method="post" action="">
{{ formset.management_form }}
{% for form in formset %}

{{ form }}
{% endfor %}

</form>

When you manually render the forms yourself, be sure to render the management form as shown above. See the
management form documentation.

Third, you can manually render each field:

<form method="post" action="">
{{ formset.management_form }}
{% for form in formset %}

{% for field in form %}
{{ field.label_tag }} {{ field }}

{% endfor %}
{% endfor %}

</form>

If you opt to use this third method and you don’t iterate over the fields with a {% for %} loop, you’ll need to render
the primary key field. For example, if you were rendering the name and age fields of a model:

<form method="post" action="">
{{ formset.management_form }}
{% for form in formset %}

{{ form.id }}

{{ form.name }}
{{ form.age }}

{% endfor %}

</form>

Notice how we need to explicitly render {{ form.id }}. This ensures that the model formset, in the POST case,
will work correctly. (This example assumes a primary key named id. If you’ve explicitly defined your own primary
key that isn’t called id, make sure it gets rendered.)

Inline formsets

class models.BaseInlineFormSet

Inline formsets is a small abstraction layer on top of model formsets. These simplify the case of working with related
objects via a foreign key. Suppose you have these two models:

3.4. Working with forms 259

Django Documentation, Release 1.10.9.dev20171123183751

from django.db import models

class Author(models.Model):
name = models.CharField(max_length=100)

class Book(models.Model):
author = models.ForeignKey(Author, on_delete=models.CASCADE)
title = models.CharField(max_length=100)

If you want to create a formset that allows you to edit books belonging to a particular author, you could do this:

>>> from django.forms import inlineformset_factory
>>> BookFormSet = inlineformset_factory(Author, Book, fields=('title',))
>>> author = Author.objects.get(name='Mike Royko')
>>> formset = BookFormSet(instance=author)

Note: inlineformset_factory() uses modelformset_factory() and marks can_delete=True.

See also:

Manually rendered can_delete and can_order.

Overriding methods on an InlineFormSet

When overriding methods on InlineFormSet, you should subclass BaseInlineFormSet rather than
BaseModelFormSet.

For example, if you want to override clean():

from django.forms import BaseInlineFormSet

class CustomInlineFormSet(BaseInlineFormSet):
def clean(self):

super(CustomInlineFormSet, self).clean()
example custom validation across forms in the formset
for form in self.forms:

your custom formset validation
...

See also Overriding clean() on a ModelFormSet.

Then when you create your inline formset, pass in the optional argument formset:

>>> from django.forms import inlineformset_factory
>>> BookFormSet = inlineformset_factory(Author, Book, fields=('title',),
... formset=CustomInlineFormSet)
>>> author = Author.objects.get(name='Mike Royko')
>>> formset = BookFormSet(instance=author)

More than one foreign key to the same model

If your model contains more than one foreign key to the same model, you’ll need to resolve the ambiguity manually
using fk_name. For example, consider the following model:

260 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

class Friendship(models.Model):
from_friend = models.ForeignKey(

Friend,
on_delete=models.CASCADE,
related_name='from_friends',

)
to_friend = models.ForeignKey(

Friend,
on_delete=models.CASCADE,
related_name='friends',

)
length_in_months = models.IntegerField()

To resolve this, you can use fk_name to inlineformset_factory():

>>> FriendshipFormSet = inlineformset_factory(Friend, Friendship, fk_name='from_friend
→˓',
... fields=('to_friend', 'length_in_months'))

Using an inline formset in a view

You may want to provide a view that allows a user to edit the related objects of a model. Here’s how you can do that:

def manage_books(request, author_id):
author = Author.objects.get(pk=author_id)
BookInlineFormSet = inlineformset_factory(Author, Book, fields=('title',))
if request.method == "POST":

formset = BookInlineFormSet(request.POST, request.FILES, instance=author)
if formset.is_valid():

formset.save()
Do something. Should generally end with a redirect. For example:
return HttpResponseRedirect(author.get_absolute_url())

else:
formset = BookInlineFormSet(instance=author)

return render(request, 'manage_books.html', {'formset': formset})

Notice how we pass instance in both the POST and GET cases.

Specifying widgets to use in the inline form

inlineformset_factory uses modelformset_factory and passes most of its arguments to
modelformset_factory. This means you can use the widgets parameter in much the same way as passing it
to modelformset_factory. See Specifying widgets to use in the form with widgets above.

Form Assets (the Media class)

Rendering an attractive and easy-to-use Web form requires more than just HTML - it also requires CSS stylesheets,
and if you want to use fancy “Web2.0” widgets, you may also need to include some JavaScript on each page. The
exact combination of CSS and JavaScript that is required for any given page will depend upon the widgets that are in
use on that page.

This is where asset definitions come in. Django allows you to associate different files – like stylesheets and scripts –
with the forms and widgets that require those assets. For example, if you want to use a calendar to render DateFields,

3.4. Working with forms 261

Django Documentation, Release 1.10.9.dev20171123183751

you can define a custom Calendar widget. This widget can then be associated with the CSS and JavaScript that is
required to render the calendar. When the Calendar widget is used on a form, Django is able to identify the CSS and
JavaScript files that are required, and provide the list of file names in a form suitable for easy inclusion on your Web
page.

Assets and Django Admin

The Django Admin application defines a number of customized widgets for calendars, filtered selections, and so on.
These widgets define asset requirements, and the Django Admin uses the custom widgets in place of the Django
defaults. The Admin templates will only include those files that are required to render the widgets on any given page.

If you like the widgets that the Django Admin application uses, feel free to use them in your own application! They’re
all stored in django.contrib.admin.widgets.

Which JavaScript toolkit?

Many JavaScript toolkits exist, and many of them include widgets (such as calendar widgets) that can be used to
enhance your application. Django has deliberately avoided blessing any one JavaScript toolkit. Each toolkit has its
own relative strengths and weaknesses - use whichever toolkit suits your requirements. Django is able to integrate
with any JavaScript toolkit.

Assets as a static definition

The easiest way to define assets is as a static definition. Using this method, the declaration is an inner Media class.
The properties of the inner class define the requirements.

Here’s a simple example:

from django import forms

class CalendarWidget(forms.TextInput):
class Media:

css = {
'all': ('pretty.css',)

}
js = ('animations.js', 'actions.js')

This code defines a CalendarWidget, which will be based on TextInput. Every time the CalendarWid-
get is used on a form, that form will be directed to include the CSS file pretty.css, and the JavaScript files
animations.js and actions.js.

This static definition is converted at runtime into a widget property named media. The list of assets for a
CalendarWidget instance can be retrieved through this property:

>>> w = CalendarWidget()
>>> print(w.media)
<link href="http://static.example.com/pretty.css" type="text/css" media="all" rel=
→˓"stylesheet" />
<script type="text/javascript" src="http://static.example.com/animations.js"></script>
<script type="text/javascript" src="http://static.example.com/actions.js"></script>

Here’s a list of all possible Media options. There are no required options.

262 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

css

A dictionary describing the CSS files required for various forms of output media.

The values in the dictionary should be a tuple/list of file names. See the section on paths for details of how to specify
paths to these files.

The keys in the dictionary are the output media types. These are the same types accepted by CSS files in media
declarations: ‘all’, ‘aural’, ‘braille’, ‘embossed’, ‘handheld’, ‘print’, ‘projection’, ‘screen’, ‘tty’ and ‘tv’. If you
need to have different stylesheets for different media types, provide a list of CSS files for each output medium. The
following example would provide two CSS options – one for the screen, and one for print:

class Media:
css = {

'screen': ('pretty.css',),
'print': ('newspaper.css',)

}

If a group of CSS files are appropriate for multiple output media types, the dictionary key can be a comma separated
list of output media types. In the following example, TV’s and projectors will have the same media requirements:

class Media:
css = {

'screen': ('pretty.css',),
'tv,projector': ('lo_res.css',),
'print': ('newspaper.css',)

}

If this last CSS definition were to be rendered, it would become the following HTML:

<link href="http://static.example.com/pretty.css" type="text/css" media="screen" rel=
→˓"stylesheet" />
<link href="http://static.example.com/lo_res.css" type="text/css" media="tv,projector
→˓" rel="stylesheet" />
<link href="http://static.example.com/newspaper.css" type="text/css" media="print"
→˓rel="stylesheet" />

js

A tuple describing the required JavaScript files. See the section on paths for details of how to specify paths to these
files.

extend

A boolean defining inheritance behavior for Media declarations.

By default, any object using a static Media definition will inherit all the assets associated with the parent widget.
This occurs regardless of how the parent defines its own requirements. For example, if we were to extend our basic
Calendar widget from the example above:

>>> class FancyCalendarWidget(CalendarWidget):
... class Media:
... css = {
... 'all': ('fancy.css',)
... }

3.4. Working with forms 263

Django Documentation, Release 1.10.9.dev20171123183751

... js = ('whizbang.js',)

>>> w = FancyCalendarWidget()
>>> print(w.media)
<link href="http://static.example.com/pretty.css" type="text/css" media="all" rel=
→˓"stylesheet" />
<link href="http://static.example.com/fancy.css" type="text/css" media="all" rel=
→˓"stylesheet" />
<script type="text/javascript" src="http://static.example.com/animations.js"></script>
<script type="text/javascript" src="http://static.example.com/actions.js"></script>
<script type="text/javascript" src="http://static.example.com/whizbang.js"></script>

The FancyCalendar widget inherits all the assets from its parent widget. If you don’t want Media to be inherited in
this way, add an extend=False declaration to the Media declaration:

>>> class FancyCalendarWidget(CalendarWidget):
... class Media:
... extend = False
... css = {
... 'all': ('fancy.css',)
... }
... js = ('whizbang.js',)

>>> w = FancyCalendarWidget()
>>> print(w.media)
<link href="http://static.example.com/fancy.css" type="text/css" media="all" rel=
→˓"stylesheet" />
<script type="text/javascript" src="http://static.example.com/whizbang.js"></script>

If you require even more control over inheritance, define your assets using a dynamic property. Dynamic properties
give you complete control over which files are inherited, and which are not.

Media as a dynamic property

If you need to perform some more sophisticated manipulation of asset requirements, you can define the media prop-
erty directly. This is done by defining a widget property that returns an instance of forms.Media. The constructor
for forms.Media accepts css and js keyword arguments in the same format as that used in a static media defini-
tion.

For example, the static definition for our Calendar Widget could also be defined in a dynamic fashion:

class CalendarWidget(forms.TextInput):
def _media(self):

return forms.Media(css={'all': ('pretty.css',)},
js=('animations.js', 'actions.js'))

media = property(_media)

See the section on Media objects for more details on how to construct return values for dynamic media properties.

Paths in asset definitions

Paths used to specify assets can be either relative or absolute. If a path starts with /, http:// or https://, it will
be interpreted as an absolute path, and left as-is. All other paths will be prepended with the value of the appropriate
prefix. If the django.contrib.staticfiles app is installed, it will be used to serve assets.

264 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Whether or not you use django.contrib.staticfiles, the STATIC_URL and STATIC_ROOT settings are
required to render a complete web page.

To find the appropriate prefix to use, Django will check if the STATIC_URL setting is not None and automatically fall
back to using MEDIA_URL. For example, if the MEDIA_URL for your site was 'http://uploads.example.
com/' and STATIC_URL was None:

>>> from django import forms
>>> class CalendarWidget(forms.TextInput):
... class Media:
... css = {
... 'all': ('/css/pretty.css',),
... }
... js = ('animations.js', 'http://othersite.com/actions.js')

>>> w = CalendarWidget()
>>> print(w.media)
<link href="/css/pretty.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="http://uploads.example.com/animations.js"></
→˓script>
<script type="text/javascript" src="http://othersite.com/actions.js"></script>

But if STATIC_URL is 'http://static.example.com/':

>>> w = CalendarWidget()
>>> print(w.media)
<link href="/css/pretty.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="http://static.example.com/animations.js"></script>
<script type="text/javascript" src="http://othersite.com/actions.js"></script>

Or if staticfiles is configured using the ~django.contib.staticfiles.ManifestStaticFilesStorage:

>>> w = CalendarWidget()
>>> print(w.media)
<link href="/css/pretty.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="https://static.example.com/animations.
→˓27e20196a850.js"></script>
<script type="text/javascript" src="http://othersite.com/actions.js"></script>

Older versions didn’t serve assets using django.contrib.staticfiles.

Media objects

When you interrogate the media attribute of a widget or form, the value that is returned is a forms.Media object.
As we have already seen, the string representation of a Media object is the HTML required to include the relevant
files in the <head> block of your HTML page.

However, Media objects have some other interesting properties.

Subsets of assets

If you only want files of a particular type, you can use the subscript operator to filter out a medium of interest. For
example:

3.4. Working with forms 265

Django Documentation, Release 1.10.9.dev20171123183751

>>> w = CalendarWidget()
>>> print(w.media)
<link href="http://static.example.com/pretty.css" type="text/css" media="all" rel=
→˓"stylesheet" />
<script type="text/javascript" src="http://static.example.com/animations.js"></script>
<script type="text/javascript" src="http://static.example.com/actions.js"></script>

>>> print(w.media['css'])
<link href="http://static.example.com/pretty.css" type="text/css" media="all" rel=
→˓"stylesheet" />

When you use the subscript operator, the value that is returned is a new Media object – but one that only contains the
media of interest.

Combining Media objects

Media objects can also be added together. When two Media objects are added, the resulting Media object contains
the union of the assets specified by both:

>>> from django import forms
>>> class CalendarWidget(forms.TextInput):
... class Media:
... css = {
... 'all': ('pretty.css',)
... }
... js = ('animations.js', 'actions.js')

>>> class OtherWidget(forms.TextInput):
... class Media:
... js = ('whizbang.js',)

>>> w1 = CalendarWidget()
>>> w2 = OtherWidget()
>>> print(w1.media + w2.media)
<link href="http://static.example.com/pretty.css" type="text/css" media="all" rel=
→˓"stylesheet" />
<script type="text/javascript" src="http://static.example.com/animations.js"></script>
<script type="text/javascript" src="http://static.example.com/actions.js"></script>
<script type="text/javascript" src="http://static.example.com/whizbang.js"></script>

Media on Forms

Widgets aren’t the only objects that can have media definitions – forms can also define media. The rules for media
definitions on forms are the same as the rules for widgets: declarations can be static or dynamic; path and inheritance
rules for those declarations are exactly the same.

Regardless of whether you define a media declaration, all Form objects have a media property. The default value
for this property is the result of adding the media definitions for all widgets that are part of the form:

>>> from django import forms
>>> class ContactForm(forms.Form):
... date = DateField(widget=CalendarWidget)
... name = CharField(max_length=40, widget=OtherWidget)

>>> f = ContactForm()

266 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

>>> f.media
<link href="http://static.example.com/pretty.css" type="text/css" media="all" rel=
→˓"stylesheet" />
<script type="text/javascript" src="http://static.example.com/animations.js"></script>
<script type="text/javascript" src="http://static.example.com/actions.js"></script>
<script type="text/javascript" src="http://static.example.com/whizbang.js"></script>

If you want to associate additional assets with a form – for example, CSS for form layout – simply add a Media
declaration to the form:

>>> class ContactForm(forms.Form):
... date = DateField(widget=CalendarWidget)
... name = CharField(max_length=40, widget=OtherWidget)
...
... class Media:
... css = {
... 'all': ('layout.css',)
... }

>>> f = ContactForm()
>>> f.media
<link href="http://static.example.com/pretty.css" type="text/css" media="all" rel=
→˓"stylesheet" />
<link href="http://static.example.com/layout.css" type="text/css" media="all" rel=
→˓"stylesheet" />
<script type="text/javascript" src="http://static.example.com/animations.js"></script>
<script type="text/javascript" src="http://static.example.com/actions.js"></script>
<script type="text/javascript" src="http://static.example.com/whizbang.js"></script>

See also:

The Forms Reference Covers the full API reference, including form fields, form widgets, and form and field valida-
tion.

3.5 Templates

Being a web framework, Django needs a convenient way to generate HTML dynamically. The most common approach
relies on templates. A template contains the static parts of the desired HTML output as well as some special syntax
describing how dynamic content will be inserted. For a hands-on example of creating HTML pages with templates,
see Tutorial 3.

A Django project can be configured with one or several template engines (or even zero if you don’t use templates).
Django ships built-in backends for its own template system, creatively called the Django template language (DTL),
and for the popular alternative Jinja2. Backends for other template languages may be available from third-parties.

Django defines a standard API for loading and rendering templates regardless of the backend. Loading consists of
finding the template for a given identifier and preprocessing it, usually compiling it to an in-memory representation.
Rendering means interpolating the template with context data and returning the resulting string.

The Django template language is Django’s own template system. Until Django 1.8 it was the only built-in option avail-
able. It’s a good template library even though it’s fairly opinionated and sports a few idiosyncrasies. If you don’t have
a pressing reason to choose another backend, you should use the DTL, especially if you’re writing a pluggable appli-
cation and you intend to distribute templates. Django’s contrib apps that include templates, like django.contrib.admin,
use the DTL.

3.5. Templates 267

http://jinja.pocoo.org/

Django Documentation, Release 1.10.9.dev20171123183751

For historical reasons, both the generic support for template engines and the implementation of the Django template
language live in the django.template namespace.

3.5.1 Support for template engines

Configuration

Templates engines are configured with the TEMPLATES setting. It’s a list of configurations, one for each engine.
The default value is empty. The settings.py generated by the startproject command defines a more useful
value:

TEMPLATES = [
{

'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {

... some options here ...
},

},
]

BACKEND is a dotted Python path to a template engine class implementing Django’s template backend API. The built-
in backends are django.template.backends.django.DjangoTemplates and django.template.
backends.jinja2.Jinja2.

Since most engines load templates from files, the top-level configuration for each engine contains two common set-
tings:

• DIRS defines a list of directories where the engine should look for template source files, in search order.

• APP_DIRS tells whether the engine should look for templates inside installed applications. Each backend
defines a conventional name for the subdirectory inside applications where its templates should be stored.

While uncommon, it’s possible to configure several instances of the same backend with different options. In that case
you should define a unique NAME for each engine.

OPTIONS contains backend-specific settings.

Usage

The django.template.loader module defines two functions to load templates.

get_template(template_name, using=None)
This function loads the template with the given name and returns a Template object.

The exact type of the return value depends on the backend that loaded the template. Each backend has its own
Template class.

get_template() tries each template engine in order until one succeeds. If the template cannot be
found, it raises TemplateDoesNotExist. If the template is found but contains invalid syntax, it raises
TemplateSyntaxError.

How templates are searched and loaded depends on each engine’s backend and configuration.

If you want to restrict the search to a particular template engine, pass the engine’s NAME in the using argument.

268 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

select_template(template_name_list, using=None)
select_template() is just like get_template(), except it takes a list of template names. It tries each
name in order and returns the first template that exists.

If loading a template fails, the following two exceptions, defined in django.template, may be raised:

exception TemplateDoesNotExist(msg, tried=None, backend=None, chain=None)
This exception is raised when a template cannot be found. It accepts the following optional arguments for
populating the template postmortem on the debug page:

backend The template backend instance from which the exception originated.

tried A list of sources that were tried when finding the template. This is formatted as a list of tuples containing
(origin, status), where origin is an origin-like object and status is a string with the reason
the template wasn’t found.

chain A list of intermediate TemplateDoesNotExist exceptions raised when trying to load a template.
This is used by functions, such as get_template(), that try to load a given template from multiple
engines.

The backend, tried, and chain arguments were added.

exception TemplateSyntaxError(msg)
This exception is raised when a template was found but contains errors.

Template objects returned by get_template() and select_template() must provide a render()
method with the following signature:

Template.render(context=None, request=None)
Renders this template with a given context.

If context is provided, it must be a dict. If it isn’t provided, the engine will render the template with an
empty context.

If request is provided, it must be an HttpRequest. Then the engine must make it, as well as the CSRF
token, available in the template. How this is achieved is up to each backend.

Here’s an example of the search algorithm. For this example the TEMPLATES setting is:

TEMPLATES = [
{

'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [

'/home/html/example.com',
'/home/html/default',

],
},
{

'BACKEND': 'django.template.backends.jinja2.Jinja2',
'DIRS': [

'/home/html/jinja2',
],

},
]

If you call get_template('story_detail.html'), here are the files Django will look for, in order:

• /home/html/example.com/story_detail.html ('django' engine)

• /home/html/default/story_detail.html ('django' engine)

• /home/html/jinja2/story_detail.html ('jinja2' engine)

3.5. Templates 269

https://docs.python.org/3/library/stdtypes.html#dict

Django Documentation, Release 1.10.9.dev20171123183751

If you call select_template(['story_253_detail.html', 'story_detail.html']), here’s what
Django will look for:

• /home/html/example.com/story_253_detail.html ('django' engine)

• /home/html/default/story_253_detail.html ('django' engine)

• /home/html/jinja2/story_253_detail.html ('jinja2' engine)

• /home/html/example.com/story_detail.html ('django' engine)

• /home/html/default/story_detail.html ('django' engine)

• /home/html/jinja2/story_detail.html ('jinja2' engine)

When Django finds a template that exists, it stops looking.

Tip

You can use select_template() for flexible template loading. For example, if you’ve written a news story and
want some stories to have custom templates, use something like select_template(['story_%s_detail.
html' % story.id, 'story_detail.html']). That’ll allow you to use a custom template for an individ-
ual story, with a fallback template for stories that don’t have custom templates.

It’s possible – and preferable – to organize templates in subdirectories inside each directory containing templates. The
convention is to make a subdirectory for each Django app, with subdirectories within those subdirectories as needed.

Do this for your own sanity. Storing all templates in the root level of a single directory gets messy.

To load a template that’s within a subdirectory, just use a slash, like so:

get_template('news/story_detail.html')

Using the same TEMPLATES option as above, this will attempt to load the following templates:

• /home/html/example.com/news/story_detail.html ('django' engine)

• /home/html/default/news/story_detail.html ('django' engine)

• /home/html/jinja2/news/story_detail.html ('jinja2' engine)

In addition, to cut down on the repetitive nature of loading and rendering templates, Django provides a shortcut
function which automates the process.

render_to_string(template_name, context=None, request=None, using=None)
render_to_string() loads a template like get_template() and calls its render() method imme-
diately. It takes the following arguments.

template_name The name of the template to load and render. If it’s a list of template names, Django uses
select_template() instead of get_template() to find the template.

context A dict to be used as the template’s context for rendering.

request An optional HttpRequest that will be available during the template’s rendering process.

using An optional template engine NAME. The search for the template will be restricted to that engine.

Usage example:

from django.template.loader import render_to_string
rendered = render_to_string('my_template.html', {'foo': 'bar'})

270 Chapter 3. Using Django

https://docs.python.org/3/library/stdtypes.html#dict

Django Documentation, Release 1.10.9.dev20171123183751

See also the render() shortcut which calls render_to_string() and feeds the result into an HttpResponse
suitable for returning from a view.

Finally, you can use configured engines directly:

engines
Template engines are available in django.template.engines:

from django.template import engines

django_engine = engines['django']
template = django_engine.from_string("Hello {{ name }}!")

The lookup key — 'django' in this example — is the engine’s NAME.

Built-in backends

class DjangoTemplates

Set BACKEND to 'django.template.backends.django.DjangoTemplates' to configure a Django
template engine.

When APP_DIRS is True, DjangoTemplates engines look for templates in the templates subdirectory of
installed applications. This generic name was kept for backwards-compatibility.

DjangoTemplates engines accept the following OPTIONS:

• 'autoescape': a boolean that controls whether HTML autoescaping is enabled.

It defaults to True.

Warning: Only set it to False if you’re rendering non-HTML templates!

The autoescape option was added.

• 'context_processors': a list of dotted Python paths to callables that are used to populate the context
when a template is rendered with a request. These callables take a request object as their argument and return a
dict of items to be merged into the context.

It defaults to an empty list.

See RequestContext for more information.

• 'debug': a boolean that turns on/off template debug mode. If it is True, the fancy error page will display a
detailed report for any exception raised during template rendering. This report contains the relevant snippet of
the template with the appropriate line highlighted.

It defaults to the value of the DEBUG setting.

• 'loaders': a list of dotted Python paths to template loader classes. Each Loader class knows how to import
templates from a particular source. Optionally, a tuple can be used instead of a string. The first item in the tuple
should be the Loader class name, and subsequent items are passed to the Loader during initialization.

The default depends on the values of DIRS and APP_DIRS.

See Loader types for details.

• 'string_if_invalid': the output, as a string, that the template system should use for invalid (e.g. mis-
spelled) variables.

It defaults to an empty string.

3.5. Templates 271

https://docs.python.org/3/library/stdtypes.html#dict

Django Documentation, Release 1.10.9.dev20171123183751

See How invalid variables are handled for details.

• 'file_charset': the charset used to read template files on disk.

It defaults to the value of FILE_CHARSET.

• 'libraries': A dictionary of labels and dotted Python paths of template tag modules to register with the
template engine. This can be used to add new libraries or provide alternate labels for existing ones. For example:

OPTIONS={
'libraries': {

'myapp_tags': 'path.to.myapp.tags',
'admin.urls': 'django.contrib.admin.templatetags.admin_urls',

},
}

Libraries can be loaded by passing the corresponding dictionary key to the {% load %} tag.

• 'builtins': A list of dotted Python paths of template tag modules to add to built-ins. For example:

OPTIONS={
'builtins': ['myapp.builtins'],

}

Tags and filters from built-in libraries can be used without first calling the {% load %} tag.

The libraries and builtins arguments were added.

class Jinja2

Requires Jinja2 to be installed:

$ pip install Jinja2

Set BACKEND to 'django.template.backends.jinja2.Jinja2' to configure a Jinja2 engine.

When APP_DIRS is True, Jinja2 engines look for templates in the jinja2 subdirectory of installed applications.

The most important entry in OPTIONS is 'environment'. It’s a dotted Python path to a callable returning a Jinja2
environment. It defaults to 'jinja2.Environment'. Django invokes that callable and passes other options as
keyword arguments. Furthermore, Django adds defaults that differ from Jinja2’s for a few options:

• 'autoescape': True

• 'loader': a loader configured for DIRS and APP_DIRS

• 'auto_reload': settings.DEBUG

• 'undefined': DebugUndefined if settings.DEBUG else Undefined

The default configuration is purposefully kept to a minimum. If a template is rendered with a request (e.g. when using
render()), the Jinja2 backend adds the globals request, csrf_input, and csrf_token to the context.
Apart from that, this backend doesn’t create a Django-flavored environment. It doesn’t know about Django context
processors, filters, and tags. In order to use Django-specific APIs, you must configure them into the environment.

For example, you can create myproject/jinja2.py with this content:

from __future__ import absolute_import # Python 2 only

from django.contrib.staticfiles.storage import staticfiles_storage
from django.urls import reverse

from jinja2 import Environment

272 Chapter 3. Using Django

http://jinja.pocoo.org/
http://jinja.pocoo.org/

Django Documentation, Release 1.10.9.dev20171123183751

def environment(**options):
env = Environment(**options)
env.globals.update({

'static': staticfiles_storage.url,
'url': reverse,

})
return env

and set the 'environment' option to 'myproject.jinja2.environment'.

Then you could use the following constructs in Jinja2 templates:

Administration

The concepts of tags and filters exist both in the Django template language and in Jinja2 but they’re used differently.
Since Jinja2 supports passing arguments to callables in templates, many features that require a template tag or filter
in Django templates can be achieved simply by calling a function in Jinja2 templates, as shown in the example above.
Jinja2’s global namespace removes the need for template context processors. The Django template language doesn’t
have an equivalent of Jinja2 tests.

Custom backends

Here’s how to implement a custom template backend in order to use another template system. A template
backend is a class that inherits django.template.backends.base.BaseEngine. It must implement
get_template() and optionally from_string(). Here’s an example for a fictional foobar template library:

from django.template import TemplateDoesNotExist, TemplateSyntaxError
from django.template.backends.base import BaseEngine
from django.template.backends.utils import csrf_input_lazy, csrf_token_lazy

import foobar

class FooBar(BaseEngine):

Name of the subdirectory containing the templates for this engine
inside an installed application.
app_dirname = 'foobar'

def __init__(self, params):
params = params.copy()
options = params.pop('OPTIONS').copy()
super(FooBar, self).__init__(params)

self.engine = foobar.Engine(**options)

def from_string(self, template_code):
try:
return Template(self.engine.from_string(template_code))

except foobar.TemplateCompilationFailed as exc:
raise TemplateSyntaxError(exc.args)

def get_template(self, template_name):

3.5. Templates 273

Django Documentation, Release 1.10.9.dev20171123183751

try:
return Template(self.engine.get_template(template_name))

except foobar.TemplateNotFound as exc:
raise TemplateDoesNotExist(exc.args, backend=self)

except foobar.TemplateCompilationFailed as exc:
raise TemplateSyntaxError(exc.args)

class Template(object):

def __init__(self, template):
self.template = template

def render(self, context=None, request=None):
if context is None:

context = {}
if request is not None:

context['request'] = request
context['csrf_input'] = csrf_input_lazy(request)
context['csrf_token'] = csrf_token_lazy(request)

return self.template.render(context)

See DEP 182 for more information.

Debug integration for custom engines

Debug page integration for non-Django template engines was added.

The Django debug page has hooks to provide detailed information when a template error arises. Custom template
engines can use these hooks to enhance the traceback information that appears to users. The following hooks are
available:

Template postmortem

The postmortem appears when TemplateDoesNotExist is raised. It lists the template engines and loaders that
were used when trying to find a given template. For example, if two Django engines are configured, the postmortem
will appear like:

Custom engines can populate the postmortem by passing the backend and tried arguments when raising
TemplateDoesNotExist. Backends that use the postmortem should specify an origin on the template object.

274 Chapter 3. Using Django

https://github.com/django/deps/blob/master/final/0182-multiple-template-engines.rst

Django Documentation, Release 1.10.9.dev20171123183751

Contextual line information

If an error happens during template parsing or rendering, Django can display the line the error happened on. For
example:

Custom engines can populate this information by setting a template_debug attribute on exceptions raised during
parsing and rendering. This attribute is a dict with the following values:

• 'name': The name of the template in which the exception occurred.

• 'message': The exception message.

• 'source_lines': The lines before, after, and including the line the exception occurred on. This is for
context, so it shouldn’t contain more than 20 lines or so.

• 'line': The line number on which the exception occurred.

• 'before': The content on the error line before the token that raised the error.

• 'during': The token that raised the error.

• 'after': The content on the error line after the token that raised the error.

• 'total': The number of lines in source_lines.

• 'top': The line number where source_lines starts.

• 'bottom': The line number where source_lines ends.

Given the above template error, template_debug would look like:

{
'name': '/path/to/template.html',
'message': "Invalid block tag: 'syntax'",
'source_lines': [

(1, 'some\n'),
(2, 'lines\n'),
(3, 'before\n'),
(4, 'Hello {% syntax error %} {{ world }}\n'),
(5, 'some\n'),
(6, 'lines\n'),
(7, 'after\n'),
(8, ''),

],
'line': 4,
'before': 'Hello ',

3.5. Templates 275

https://docs.python.org/3/library/stdtypes.html#dict

Django Documentation, Release 1.10.9.dev20171123183751

'during': '{% syntax error %}',
'after': ' {{ world }}\n',
'total': 9,
'bottom': 9,
'top': 1,

}

Origin API and 3rd-party integration

Django templates have an Origin object available through the template.origin attribute. This enables debug
information to be displayed in the template postmortem, as well as in 3rd-party libraries, like the Django Debug
Toolbar.

Custom engines can provide their own template.origin information by creating an object that specifies the
following attributes:

• 'name': The full path to the template.

• 'template_name': The relative path to the template as passed into the the template loading methods.

• 'loader_name': An optional string identifying the function or class used to load the template, e.g.
django.template.loaders.filesystem.Loader.

3.5.2 The Django template language

Syntax

About this section

This is an overview of the Django template language’s syntax. For details see the language syntax reference.

A Django template is simply a text document or a Python string marked-up using the Django template language. Some
constructs are recognized and interpreted by the template engine. The main ones are variables and tags.

A template is rendered with a context. Rendering replaces variables with their values, which are looked up in the
context, and executes tags. Everything else is output as is.

The syntax of the Django template language involves four constructs.

Variables

A variable outputs a value from the context, which is a dict-like object mapping keys to values.

Variables are surrounded by {{ and }} like this:

My first name is {{ first_name }}. My last name is {{ last_name }}.

With a context of {'first_name': 'John', 'last_name': 'Doe'}, this template renders to:

My first name is John. My last name is Doe.

Dictionary lookup, attribute lookup and list-index lookups are implemented with a dot notation:

276 Chapter 3. Using Django

https://github.com/django-debug-toolbar/django-debug-toolbar
https://github.com/django-debug-toolbar/django-debug-toolbar

Django Documentation, Release 1.10.9.dev20171123183751

{{ my_dict.key }}
{{ my_object.attribute }}
{{ my_list.0 }}

If a variable resolves to a callable, the template system will call it with no arguments and use its result instead of the
callable.

Tags

Tags provide arbitrary logic in the rendering process.

This definition is deliberately vague. For example, a tag can output content, serve as a control structure e.g. an “if”
statement or a “for” loop, grab content from a database, or even enable access to other template tags.

Tags are surrounded by {% and %} like this:

{% csrf_token %}

Most tags accept arguments:

{% cycle 'odd' 'even' %}

Some tags require beginning and ending tags:

{% if user.is_authenticated %}Hello, {{ user.username }}.{% endif %}

A reference of built-in tags is available as well as instructions for writing custom tags.

Filters

Filters transform the values of variables and tag arguments.

They look like this:

{{ django|title }}

With a context of {'django': 'the web framework for perfectionists with deadlines'},
this template renders to:

The Web Framework For Perfectionists With Deadlines

Some filters take an argument:

{{ my_date|date:"Y-m-d" }}

A reference of built-in filters is available as well as instructions for writing custom filters.

Comments

Comments look like this:

{# this won't be rendered #}

A {% comment %} tag provides multi-line comments.

3.5. Templates 277

Django Documentation, Release 1.10.9.dev20171123183751

Components

About this section

This is an overview of the Django template language’s APIs. For details see the API reference.

Engine

django.template.Engine encapsulates an instance of the Django template system. The main reason for instan-
tiating an Engine directly is to use the Django template language outside of a Django project.

django.template.backends.django.DjangoTemplates is a thin wrapper adapting django.
template.Engine to Django’s template backend API.

Template

django.template.Template represents a compiled template. Templates are obtained with Engine.
get_template() or Engine.from_string()

Likewise django.template.backends.django.Template is a thin wrapper adapting django.
template.Template to the common template API.

Context

django.template.Context holds some metadata in addition to the context data. It is passed to Template.
render() for rendering a template.

django.template.RequestContext is a subclass of Context that stores the current HttpRequest and
runs template context processors.

The common API doesn’t have an equivalent concept. Context data is passed in a plain dict and the current
HttpRequest is passed separately if needed.

Loaders

Template loaders are responsible for locating templates, loading them, and returning Template objects.

Django provides several built-in template loaders and supports custom template loaders.

Context processors

Context processors are functions that receive the current HttpRequest as an argument and return a dict of data
to be added to the rendering context.

Their main use is to add common data shared by all templates to the context without repeating code in every view.

Django provides many built-in context processors. Implementing a custom context processor is as simple as defining
a function.

278 Chapter 3. Using Django

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Django Documentation, Release 1.10.9.dev20171123183751

3.6 Class-based views

A view is a callable which takes a request and returns a response. This can be more than just a function, and Django
provides an example of some classes which can be used as views. These allow you to structure your views and reuse
code by harnessing inheritance and mixins. There are also some generic views for simple tasks which we’ll get to
later, but you may want to design your own structure of reusable views which suits your use case. For full details, see
the class-based views reference documentation.

3.6.1 Introduction to class-based views

Class-based views provide an alternative way to implement views as Python objects instead of functions. They do not
replace function-based views, but have certain differences and advantages when compared to function-based views:

• Organization of code related to specific HTTP methods (GET, POST, etc.) can be addressed by separate methods
instead of conditional branching.

• Object oriented techniques such as mixins (multiple inheritance) can be used to factor code into reusable com-
ponents.

The relationship and history of generic views, class-based views, and class-based generic views

In the beginning there was only the view function contract, Django passed your function an HttpRequest and
expected back an HttpResponse. This was the extent of what Django provided.

Early on it was recognized that there were common idioms and patterns found in view development. Function-based
generic views were introduced to abstract these patterns and ease view development for the common cases.

The problem with function-based generic views is that while they covered the simple cases well, there was no way
to extend or customize them beyond some simple configuration options, limiting their usefulness in many real-world
applications.

Class-based generic views were created with the same objective as function-based generic views, to make view devel-
opment easier. However, the way the solution is implemented, through the use of mixins, provides a toolkit that results
in class-based generic views being more extensible and flexible than their function-based counterparts.

If you have tried function based generic views in the past and found them lacking, you should not think of class-based
generic views as simply a class-based equivalent, but rather as a fresh approach to solving the original problems that
generic views were meant to solve.

The toolkit of base classes and mixins that Django uses to build class-based generic views are built for maximum
flexibility, and as such have many hooks in the form of default method implementations and attributes that you are
unlikely to be concerned with in the simplest use cases. For example, instead of limiting you to a class-based attribute
for form_class, the implementation uses a get_form method, which calls a get_form_class method, which
in its default implementation just returns the form_class attribute of the class. This gives you several options for
specifying what form to use, from a simple attribute, to a fully dynamic, callable hook. These options seem to add
hollow complexity for simple situations, but without them, more advanced designs would be limited.

Using class-based views

At its core, a class-based view allows you to respond to different HTTP request methods with different class instance
methods, instead of with conditionally branching code inside a single view function.

So where the code to handle HTTP GET in a view function would look something like:

3.6. Class-based views 279

Django Documentation, Release 1.10.9.dev20171123183751

from django.http import HttpResponse

def my_view(request):
if request.method == 'GET':

<view logic>
return HttpResponse('result')

In a class-based view, this would become:

from django.http import HttpResponse
from django.views import View

class MyView(View):
def get(self, request):

<view logic>
return HttpResponse('result')

Because Django’s URL resolver expects to send the request and associated arguments to a callable function, not
a class, class-based views have an as_view() class method which returns a function that can be called when a
request arrives for a URL matching the associated pattern. The function creates an instance of the class and calls its
dispatch() method. dispatch looks at the request to determine whether it is a GET, POST, etc, and relays the
request to a matching method if one is defined, or raises HttpResponseNotAllowed if not:

urls.py
from django.conf.urls import url
from myapp.views import MyView

urlpatterns = [
url(r'^about/$', MyView.as_view()),

]

It is worth noting that what your method returns is identical to what you return from a function-based view, namely
some form of HttpResponse. This means that http shortcuts or TemplateResponse objects are valid to use
inside a class-based view.

While a minimal class-based view does not require any class attributes to perform its job, class attributes are useful in
many class-based designs, and there are two ways to configure or set class attributes.

The first is the standard Python way of subclassing and overriding attributes and methods in the subclass. So that if
your parent class had an attribute greeting like this:

from django.http import HttpResponse
from django.views import View

class GreetingView(View):
greeting = "Good Day"

def get(self, request):
return HttpResponse(self.greeting)

You can override that in a subclass:

class MorningGreetingView(GreetingView):
greeting = "Morning to ya"

Another option is to configure class attributes as keyword arguments to the as_view() call in the URLconf:

280 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

urlpatterns = [
url(r'^about/$', GreetingView.as_view(greeting="G'day")),

]

Note: While your class is instantiated for each request dispatched to it, class attributes set through the as_view()
entry point are configured only once at the time your URLs are imported.

Using mixins

Mixins are a form of multiple inheritance where behaviors and attributes of multiple parent classes can be combined.

For example, in the generic class-based views there is a mixin called TemplateResponseMixin whose primary
purpose is to define the method render_to_response(). When combined with the behavior of the View base
class, the result is a TemplateView class that will dispatch requests to the appropriate matching methods (a behavior
defined in the View base class), and that has a render_to_response() method that uses a template_name
attribute to return a TemplateResponse object (a behavior defined in the TemplateResponseMixin).

Mixins are an excellent way of reusing code across multiple classes, but they come with some cost. The more your
code is scattered among mixins, the harder it will be to read a child class and know what exactly it is doing, and the
harder it will be to know which methods from which mixins to override if you are subclassing something that has a
deep inheritance tree.

Note also that you can only inherit from one generic view - that is, only one parent class may inherit from View
and the rest (if any) should be mixins. Trying to inherit from more than one class that inherits from View - for
example, trying to use a form at the top of a list and combining ProcessFormView and ListView - won’t work
as expected.

Handling forms with class-based views

A basic function-based view that handles forms may look something like this:

from django.http import HttpResponseRedirect
from django.shortcuts import render

from .forms import MyForm

def myview(request):
if request.method == "POST":

form = MyForm(request.POST)
if form.is_valid():

<process form cleaned data>
return HttpResponseRedirect('/success/')

else:
form = MyForm(initial={'key': 'value'})

return render(request, 'form_template.html', {'form': form})

A similar class-based view might look like:

from django.http import HttpResponseRedirect
from django.shortcuts import render
from django.views import View

from .forms import MyForm

3.6. Class-based views 281

Django Documentation, Release 1.10.9.dev20171123183751

class MyFormView(View):
form_class = MyForm
initial = {'key': 'value'}
template_name = 'form_template.html'

def get(self, request, *args, **kwargs):
form = self.form_class(initial=self.initial)
return render(request, self.template_name, {'form': form})

def post(self, request, *args, **kwargs):
form = self.form_class(request.POST)
if form.is_valid():

<process form cleaned data>
return HttpResponseRedirect('/success/')

return render(request, self.template_name, {'form': form})

This is a very simple case, but you can see that you would then have the option of customizing this view by overriding
any of the class attributes, e.g. form_class, via URLconf configuration, or subclassing and overriding one or more
of the methods (or both!).

Decorating class-based views

The extension of class-based views isn’t limited to using mixins. You can also use decorators. Since class-based views
aren’t functions, decorating them works differently depending on if you’re using as_view() or creating a subclass.

Decorating in URLconf

The simplest way of decorating class-based views is to decorate the result of the as_view() method. The easiest
place to do this is in the URLconf where you deploy your view:

from django.contrib.auth.decorators import login_required, permission_required
from django.views.generic import TemplateView

from .views import VoteView

urlpatterns = [
url(r'^about/$', login_required(TemplateView.as_view(template_name="secret.html

→˓"))),
url(r'^vote/$', permission_required('polls.can_vote')(VoteView.as_view())),

]

This approach applies the decorator on a per-instance basis. If you want every instance of a view to be decorated, you
need to take a different approach.

Decorating the class

To decorate every instance of a class-based view, you need to decorate the class definition itself. To do this you apply
the decorator to the dispatch() method of the class.

A method on a class isn’t quite the same as a standalone function, so you can’t just apply a function decorator to the
method – you need to transform it into a method decorator first. The method_decorator decorator transforms a
function decorator into a method decorator so that it can be used on an instance method. For example:

282 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

from django.contrib.auth.decorators import login_required
from django.utils.decorators import method_decorator
from django.views.generic import TemplateView

class ProtectedView(TemplateView):
template_name = 'secret.html'

@method_decorator(login_required)
def dispatch(self, *args, **kwargs):

return super(ProtectedView, self).dispatch(*args, **kwargs)

Or, more succinctly, you can decorate the class instead and pass the name of the method to be decorated as the keyword
argument name:

@method_decorator(login_required, name='dispatch')
class ProtectedView(TemplateView):

template_name = 'secret.html'

If you have a set of common decorators used in several places, you can define a list or tuple of decorators and use this
instead of invoking method_decorator() multiple times. These two classes are equivalent:

decorators = [never_cache, login_required]

@method_decorator(decorators, name='dispatch')
class ProtectedView(TemplateView):

template_name = 'secret.html'

@method_decorator(never_cache, name='dispatch')
@method_decorator(login_required, name='dispatch')
class ProtectedView(TemplateView):

template_name = 'secret.html'

The decorators will process a request in the order they are passed to the decorator. In the example, never_cache()
will process the request before login_required().

The ability to use method_decorator() on a class and the ability for it to accept a list or tuple of decorators were
added.

In this example, every instance of ProtectedView will have login protection.

Note: method_decorator passes *args and **kwargs as parameters to the decorated method on the class. If
your method does not accept a compatible set of parameters it will raise a TypeError exception.

3.6.2 Built-in class-based generic views

Writing Web applications can be monotonous, because we repeat certain patterns again and again. Django tries to take
away some of that monotony at the model and template layers, but Web developers also experience this boredom at
the view level.

Django’s generic views were developed to ease that pain. They take certain common idioms and patterns found in
view development and abstract them so that you can quickly write common views of data without having to write too
much code.

We can recognize certain common tasks, like displaying a list of objects, and write code that displays a list of any
object. Then the model in question can be passed as an extra argument to the URLconf.

3.6. Class-based views 283

Django Documentation, Release 1.10.9.dev20171123183751

Django ships with generic views to do the following:

• Display list and detail pages for a single object. If we were creating an application to manage conferences then
a TalkListView and a RegisteredUserListView would be examples of list views. A single talk page
is an example of what we call a “detail” view.

• Present date-based objects in year/month/day archive pages, associated detail, and “latest” pages.

• Allow users to create, update, and delete objects – with or without authorization.

Taken together, these views provide easy interfaces to perform the most common tasks developers encounter.

Extending generic views

There’s no question that using generic views can speed up development substantially. In most projects, however, there
comes a moment when the generic views no longer suffice. Indeed, the most common question asked by new Django
developers is how to make generic views handle a wider array of situations.

This is one of the reasons generic views were redesigned for the 1.3 release - previously, they were just view functions
with a bewildering array of options; now, rather than passing in a large amount of configuration in the URLconf, the
recommended way to extend generic views is to subclass them, and override their attributes or methods.

That said, generic views will have a limit. If you find you’re struggling to implement your view as a subclass of
a generic view, then you may find it more effective to write just the code you need, using your own class-based or
functional views.

More examples of generic views are available in some third party applications, or you could write your own as needed.

Generic views of objects

TemplateView certainly is useful, but Django’s generic views really shine when it comes to presenting views of
your database content. Because it’s such a common task, Django comes with a handful of built-in generic views that
make generating list and detail views of objects incredibly easy.

Let’s start by looking at some examples of showing a list of objects or an individual object.

We’ll be using these models:

models.py
from django.db import models

class Publisher(models.Model):
name = models.CharField(max_length=30)
address = models.CharField(max_length=50)
city = models.CharField(max_length=60)
state_province = models.CharField(max_length=30)
country = models.CharField(max_length=50)
website = models.URLField()

class Meta:
ordering = ["-name"]

def __str__(self): # __unicode__ on Python 2
return self.name

class Author(models.Model):
salutation = models.CharField(max_length=10)
name = models.CharField(max_length=200)
email = models.EmailField()

284 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

headshot = models.ImageField(upload_to='author_headshots')

def __str__(self): # __unicode__ on Python 2
return self.name

class Book(models.Model):
title = models.CharField(max_length=100)
authors = models.ManyToManyField('Author')
publisher = models.ForeignKey(Publisher, on_delete=models.CASCADE)
publication_date = models.DateField()

Now we need to define a view:

views.py
from django.views.generic import ListView
from books.models import Publisher

class PublisherList(ListView):
model = Publisher

Finally hook that view into your urls:

urls.py
from django.conf.urls import url
from books.views import PublisherList

urlpatterns = [
url(r'^publishers/$', PublisherList.as_view()),

]

That’s all the Python code we need to write. We still need to write a template, however. We could explicitly tell
the view which template to use by adding a template_name attribute to the view, but in the absence of an ex-
plicit template Django will infer one from the object’s name. In this case, the inferred template will be "books/
publisher_list.html" – the “books” part comes from the name of the app that defines the model, while the
“publisher” bit is just the lowercased version of the model’s name.

Note: Thus, when (for example) the APP_DIRS option of a DjangoTemplates backend is set to True in
TEMPLATES, a template location could be: /path/to/project/books/templates/books/publisher_list.html

This template will be rendered against a context containing a variable called object_list that contains all the
publisher objects. A very simple template might look like the following:

{% extends "base.html" %}

{% block content %}
<h2>Publishers</h2>

{% for publisher in object_list %}
{{ publisher.name }}

{% endfor %}

{% endblock %}

That’s really all there is to it. All the cool features of generic views come from changing the attributes set on the
generic view. The generic views reference documents all the generic views and their options in detail; the rest of this
document will consider some of the common ways you might customize and extend generic views.

3.6. Class-based views 285

Django Documentation, Release 1.10.9.dev20171123183751

Making “friendly” template contexts

You might have noticed that our sample publisher list template stores all the publishers in a variable named
object_list. While this works just fine, it isn’t all that “friendly” to template authors: they have to “just know”
that they’re dealing with publishers here.

Well, if you’re dealing with a model object, this is already done for you. When you are dealing with an object
or queryset, Django is able to populate the context using the lower cased version of the model class’ name. This is
provided in addition to the default object_list entry, but contains exactly the same data, i.e. publisher_list.

If this still isn’t a good match, you can manually set the name of the context variable. The context_object_name
attribute on a generic view specifies the context variable to use:

views.py
from django.views.generic import ListView
from books.models import Publisher

class PublisherList(ListView):
model = Publisher
context_object_name = 'my_favorite_publishers'

Providing a useful context_object_name is always a good idea. Your coworkers who design templates will
thank you.

Adding extra context

Often you simply need to present some extra information beyond that provided by the generic view. For example,
think of showing a list of all the books on each publisher detail page. The DetailView generic view provides the
publisher to the context, but how do we get additional information in that template?

The answer is to subclass DetailView and provide your own implementation of the get_context_data
method. The default implementation simply adds the object being displayed to the template, but you can override
it to send more:

from django.views.generic import DetailView
from books.models import Publisher, Book

class PublisherDetail(DetailView):

model = Publisher

def get_context_data(self, **kwargs):
Call the base implementation first to get a context
context = super(PublisherDetail, self).get_context_data(**kwargs)
Add in a QuerySet of all the books
context['book_list'] = Book.objects.all()
return context

Note: Generally, get_context_data will merge the context data of all parent classes with those of the current
class. To preserve this behavior in your own classes where you want to alter the context, you should be sure to call
get_context_data on the super class. When no two classes try to define the same key, this will give the expected
results. However if any class attempts to override a key after parent classes have set it (after the call to super), any
children of that class will also need to explicitly set it after super if they want to be sure to override all parents. If
you’re having trouble, review the method resolution order of your view.

286 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Another consideration is that the context data from class-based generic views will override data provided by context
processors; see get_context_data() for an example.

Viewing subsets of objects

Now let’s take a closer look at the model argument we’ve been using all along. The model argument, which specifies
the database model that the view will operate upon, is available on all the generic views that operate on a single object
or a collection of objects. However, the model argument is not the only way to specify the objects that the view will
operate upon – you can also specify the list of objects using the queryset argument:

from django.views.generic import DetailView
from books.models import Publisher

class PublisherDetail(DetailView):

context_object_name = 'publisher'
queryset = Publisher.objects.all()

Specifying model = Publisher is really just shorthand for saying queryset = Publisher.objects.
all(). However, by using queryset to define a filtered list of objects you can be more specific about the objects
that will be visible in the view (see Making queries for more information about QuerySet objects, and see the
class-based views reference for the complete details).

To pick a simple example, we might want to order a list of books by publication date, with the most recent first:

from django.views.generic import ListView
from books.models import Book

class BookList(ListView):
queryset = Book.objects.order_by('-publication_date')
context_object_name = 'book_list'

That’s a pretty simple example, but it illustrates the idea nicely. Of course, you’ll usually want to do more than just
reorder objects. If you want to present a list of books by a particular publisher, you can use the same technique:

from django.views.generic import ListView
from books.models import Book

class AcmeBookList(ListView):

context_object_name = 'book_list'
queryset = Book.objects.filter(publisher__name='ACME Publishing')
template_name = 'books/acme_list.html'

Notice that along with a filtered queryset, we’re also using a custom template name. If we didn’t, the generic view
would use the same template as the “vanilla” object list, which might not be what we want.

Also notice that this isn’t a very elegant way of doing publisher-specific books. If we want to add another publisher
page, we’d need another handful of lines in the URLconf, and more than a few publishers would get unreasonable.
We’ll deal with this problem in the next section.

Note: If you get a 404 when requesting /books/acme/, check to ensure you actually have a Publisher with the
name ‘ACME Publishing’. Generic views have an allow_empty parameter for this case. See the class-based-views
reference for more details.

3.6. Class-based views 287

Django Documentation, Release 1.10.9.dev20171123183751

Dynamic filtering

Another common need is to filter down the objects given in a list page by some key in the URL. Earlier we hard-coded
the publisher’s name in the URLconf, but what if we wanted to write a view that displayed all the books by some
arbitrary publisher?

Handily, the ListView has a get_queryset() method we can override. Previously, it has just been returning the
value of the queryset attribute, but now we can add more logic.

The key part to making this work is that when class-based views are called, various useful things are stored on self; as
well as the request (self.request) this includes the positional (self.args) and name-based (self.kwargs)
arguments captured according to the URLconf.

Here, we have a URLconf with a single captured group:

urls.py
from django.conf.urls import url
from books.views import PublisherBookList

urlpatterns = [
url(r'^books/([\w-]+)/$', PublisherBookList.as_view()),

]

Next, we’ll write the PublisherBookList view itself:

views.py
from django.shortcuts import get_object_or_404
from django.views.generic import ListView
from books.models import Book, Publisher

class PublisherBookList(ListView):

template_name = 'books/books_by_publisher.html'

def get_queryset(self):
self.publisher = get_object_or_404(Publisher, name=self.args[0])
return Book.objects.filter(publisher=self.publisher)

As you can see, it’s quite easy to add more logic to the queryset selection; if we wanted, we could use self.
request.user to filter using the current user, or other more complex logic.

We can also add the publisher into the context at the same time, so we can use it in the template:

...

def get_context_data(self, **kwargs):
Call the base implementation first to get a context
context = super(PublisherBookList, self).get_context_data(**kwargs)
Add in the publisher
context['publisher'] = self.publisher
return context

Performing extra work

The last common pattern we’ll look at involves doing some extra work before or after calling the generic view.

Imagine we had a last_accessed field on our Author model that we were using to keep track of the last time
anybody looked at that author:

288 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

models.py
from django.db import models

class Author(models.Model):
salutation = models.CharField(max_length=10)
name = models.CharField(max_length=200)
email = models.EmailField()
headshot = models.ImageField(upload_to='author_headshots')
last_accessed = models.DateTimeField()

The generic DetailView class, of course, wouldn’t know anything about this field, but once again we could easily
write a custom view to keep that field updated.

First, we’d need to add an author detail bit in the URLconf to point to a custom view:

from django.conf.urls import url
from books.views import AuthorDetailView

urlpatterns = [
#...
url(r'^authors/(?P<pk>[0-9]+)/$', AuthorDetailView.as_view(), name='author-detail

→˓'),
]

Then we’d write our new view – get_object is the method that retrieves the object – so we simply override it and
wrap the call:

from django.views.generic import DetailView
from django.utils import timezone
from books.models import Author

class AuthorDetailView(DetailView):

queryset = Author.objects.all()

def get_object(self):
Call the superclass
object = super(AuthorDetailView, self).get_object()
Record the last accessed date
object.last_accessed = timezone.now()
object.save()
Return the object
return object

Note: The URLconf here uses the named group pk - this name is the default name that DetailView uses to find
the value of the primary key used to filter the queryset.

If you want to call the group something else, you can set pk_url_kwarg on the view. More details can be found in
the reference for DetailView

3.6.3 Form handling with class-based views

Form processing generally has 3 paths:

• Initial GET (blank or prepopulated form)

3.6. Class-based views 289

Django Documentation, Release 1.10.9.dev20171123183751

• POST with invalid data (typically redisplay form with errors)

• POST with valid data (process the data and typically redirect)

Implementing this yourself often results in a lot of repeated boilerplate code (see Using a form in a view). To help
avoid this, Django provides a collection of generic class-based views for form processing.

Basic forms

Given a simple contact form:

forms.py

from django import forms

class ContactForm(forms.Form):
name = forms.CharField()
message = forms.CharField(widget=forms.Textarea)

def send_email(self):
send email using the self.cleaned_data dictionary
pass

The view can be constructed using a FormView:

views.py

from myapp.forms import ContactForm
from django.views.generic.edit import FormView

class ContactView(FormView):
template_name = 'contact.html'
form_class = ContactForm
success_url = '/thanks/'

def form_valid(self, form):
This method is called when valid form data has been POSTed.
It should return an HttpResponse.
form.send_email()
return super(ContactView, self).form_valid(form)

Notes:

• FormView inherits TemplateResponseMixin so template_name can be used here.

• The default implementation for form_valid() simply redirects to the success_url.

Model forms

Generic views really shine when working with models. These generic views will automatically create a ModelForm,
so long as they can work out which model class to use:

• If the model attribute is given, that model class will be used.

• If get_object() returns an object, the class of that object will be used.

• If a queryset is given, the model for that queryset will be used.

Model form views provide a form_valid() implementation that saves the model automatically. You can override
this if you have any special requirements; see below for examples.

290 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

You don’t even need to provide a success_url for CreateView or UpdateView - they will use
get_absolute_url() on the model object if available.

If you want to use a custom ModelForm (for instance to add extra validation) simply set form_class on your
view.

Note: When specifying a custom form class, you must still specify the model, even though the form_class may
be a ModelForm.

First we need to add get_absolute_url() to our Author class:

models.py

from django.urls import reverse
from django.db import models

class Author(models.Model):
name = models.CharField(max_length=200)

def get_absolute_url(self):
return reverse('author-detail', kwargs={'pk': self.pk})

Then we can use CreateView and friends to do the actual work. Notice how we’re just configuring the generic
class-based views here; we don’t have to write any logic ourselves:

views.py

from django.views.generic.edit import CreateView, UpdateView, DeleteView
from django.urls import reverse_lazy
from myapp.models import Author

class AuthorCreate(CreateView):
model = Author
fields = ['name']

class AuthorUpdate(UpdateView):
model = Author
fields = ['name']

class AuthorDelete(DeleteView):
model = Author
success_url = reverse_lazy('author-list')

Note: We have to use reverse_lazy() here, not just reverse() as the urls are not loaded when the file is
imported.

The fields attribute works the same way as the fields attribute on the inner Meta class on ModelForm.
Unless you define the form class in another way, the attribute is required and the view will raise an
ImproperlyConfigured exception if it’s not.

If you specify both the fields and form_class attributes, an ImproperlyConfigured exception will be
raised.

Finally, we hook these new views into the URLconf:

urls.py

from django.conf.urls import url
from myapp.views import AuthorCreate, AuthorUpdate, AuthorDelete

3.6. Class-based views 291

Django Documentation, Release 1.10.9.dev20171123183751

urlpatterns = [
...
url(r'author/add/$', AuthorCreate.as_view(), name='author-add'),
url(r'author/(?P<pk>[0-9]+)/$', AuthorUpdate.as_view(), name='author-update'),
url(r'author/(?P<pk>[0-9]+)/delete/$', AuthorDelete.as_view(), name='author-delete'),

]

Note: These views inherit SingleObjectTemplateResponseMixin which uses
template_name_suffix to construct the template_name based on the model.

In this example:

• CreateView and UpdateView use myapp/author_form.html

• DeleteView uses myapp/author_confirm_delete.html

If you wish to have separate templates for CreateView and UpdateView , you can set either template_name
or template_name_suffix on your view class.

Models and request.user

To track the user that created an object using a CreateView , you can use a custom ModelForm to do this. First,
add the foreign key relation to the model:

models.py

from django.contrib.auth.models import User
from django.db import models

class Author(models.Model):
name = models.CharField(max_length=200)
created_by = models.ForeignKey(User, on_delete=models.CASCADE)

...

In the view, ensure that you don’t include created_by in the list of fields to edit, and override form_valid() to
add the user:

views.py

from django.views.generic.edit import CreateView
from myapp.models import Author

class AuthorCreate(CreateView):
model = Author
fields = ['name']

def form_valid(self, form):
form.instance.created_by = self.request.user
return super(AuthorCreate, self).form_valid(form)

Note that you’ll need to decorate this view using login_required(), or alternatively handle unauthorized users
in the form_valid().

292 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

AJAX example

Here is a simple example showing how you might go about implementing a form that works for AJAX requests as
well as ‘normal’ form POSTs:

from django.http import JsonResponse
from django.views.generic.edit import CreateView
from myapp.models import Author

class AjaxableResponseMixin(object):
"""
Mixin to add AJAX support to a form.
Must be used with an object-based FormView (e.g. CreateView)
"""
def form_invalid(self, form):

response = super(AjaxableResponseMixin, self).form_invalid(form)
if self.request.is_ajax():

return JsonResponse(form.errors, status=400)
else:

return response

def form_valid(self, form):
We make sure to call the parent's form_valid() method because
it might do some processing (in the case of CreateView, it will
call form.save() for example).
response = super(AjaxableResponseMixin, self).form_valid(form)
if self.request.is_ajax():

data = {
'pk': self.object.pk,

}
return JsonResponse(data)

else:
return response

class AuthorCreate(AjaxableResponseMixin, CreateView):
model = Author
fields = ['name']

3.6.4 Using mixins with class-based views

Caution: This is an advanced topic. A working knowledge of Django’s class-based views is advised before
exploring these techniques.

Django’s built-in class-based views provide a lot of functionality, but some of it you may want to use separately.
For instance, you may want to write a view that renders a template to make the HTTP response, but you can’t use
TemplateView ; perhaps you need to render a template only on POST, with GET doing something else entirely.
While you could use TemplateResponse directly, this will likely result in duplicate code.

For this reason, Django also provides a number of mixins that provide more discrete functionality. Template rendering,
for instance, is encapsulated in the TemplateResponseMixin. The Django reference documentation contains full
documentation of all the mixins.

3.6. Class-based views 293

Django Documentation, Release 1.10.9.dev20171123183751

Context and template responses

Two central mixins are provided that help in providing a consistent interface to working with templates in class-based
views.

TemplateResponseMixin Every built in view which returns a TemplateResponse will call the
render_to_response() method that TemplateResponseMixin provides. Most of the time this will
be called for you (for instance, it is called by the get() method implemented by both TemplateView and
DetailView); similarly, it’s unlikely that you’ll need to override it, although if you want your response to
return something not rendered via a Django template then you’ll want to do it. For an example of this, see the
JSONResponseMixin example.

render_to_response() itself calls get_template_names(), which by de-
fault will just look up template_name on the class-based view; two other mixins
(SingleObjectTemplateResponseMixin and MultipleObjectTemplateResponseMixin)
override this to provide more flexible defaults when dealing with actual objects.

ContextMixin Every built in view which needs context data, such as for rendering a template (including
TemplateResponseMixin above), should call get_context_data() passing any data they want to
ensure is in there as keyword arguments. get_context_data() returns a dictionary; in ContextMixin
it simply returns its keyword arguments, but it is common to override this to add more members to the dictionary.

Building up Django’s generic class-based views

Let’s look at how two of Django’s generic class-based views are built out of mixins providing discrete functionality.
We’ll consider DetailView , which renders a “detail” view of an object, and ListView , which will render a list of
objects, typically from a queryset, and optionally paginate them. This will introduce us to four mixins which between
them provide useful functionality when working with either a single Django object, or multiple objects.

There are also mixins involved in the generic edit views (FormView , and the model-specific views CreateView ,
UpdateView and DeleteView), and in the date-based generic views. These are covered in the mixin reference
documentation.

DetailView: working with a single Django object

To show the detail of an object, we basically need to do two things: we need to look up the object and then we need to
make a TemplateResponse with a suitable template, and that object as context.

To get the object, DetailView relies on SingleObjectMixin, which provides a get_object() method that
figures out the object based on the URL of the request (it looks for pk and slug keyword arguments as declared in the
URLConf, and looks the object up either from the model attribute on the view, or the queryset attribute if that’s
provided). SingleObjectMixin also overrides get_context_data(), which is used across all Django’s built
in class-based views to supply context data for template renders.

To then make a TemplateResponse, DetailView uses SingleObjectTemplateResponseMixin,
which extends TemplateResponseMixin, overriding get_template_names() as discussed above. It
actually provides a fairly sophisticated set of options, but the main one that most people are going to
use is <app_label>/<model_name>_detail.html. The _detail part can be changed by setting
template_name_suffix on a subclass to something else. (For instance, the generic edit views use _form
for create and update views, and _confirm_delete for delete views.)

294 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

ListView: working with many Django objects

Lists of objects follow roughly the same pattern: we need a (possibly paginated) list of objects, typically a QuerySet,
and then we need to make a TemplateResponse with a suitable template using that list of objects.

To get the objects, ListView uses MultipleObjectMixin, which provides both get_queryset() and
paginate_queryset(). Unlike with SingleObjectMixin, there’s no need to key off parts of the URL
to figure out the queryset to work with, so the default just uses the queryset or model attribute on the view class.
A common reason to override get_queryset() here would be to dynamically vary the objects, such as depending
on the current user or to exclude posts in the future for a blog.

MultipleObjectMixin also overrides get_context_data() to include appropriate context variables for
pagination (providing dummies if pagination is disabled). It relies on object_list being passed in as a keyword
argument, which ListView arranges for it.

To make a TemplateResponse, ListView then uses MultipleObjectTemplateResponseMixin; as
with SingleObjectTemplateResponseMixin above, this overrides get_template_names() to provide
a range of options, with the most commonly-used being <app_label>/<model_name>_list.html,
with the _list part again being taken from the template_name_suffix attribute. (The date based generic views
use suffixes such as _archive, _archive_year and so on to use different templates for the various specialized
date-based list views.)

Using Django’s class-based view mixins

Now we’ve seen how Django’s generic class-based views use the provided mixins, let’s look at other ways we can
combine them. Of course we’re still going to be combining them with either built-in class-based views, or other
generic class-based views, but there are a range of rarer problems you can solve than are provided for by Django out
of the box.

Warning: Not all mixins can be used together, and not all generic class based views can be used with all other
mixins. Here we present a few examples that do work; if you want to bring together other functionality then you’ll
have to consider interactions between attributes and methods that overlap between the different classes you’re
using, and how method resolution order will affect which versions of the methods will be called in what order.

The reference documentation for Django’s class-based views and class-based view mixins will help you in under-
standing which attributes and methods are likely to cause conflict between different classes and mixins.

If in doubt, it’s often better to back off and base your work on View or TemplateView , perhaps with
SingleObjectMixin and MultipleObjectMixin. Although you will probably end up writing more code,
it is more likely to be clearly understandable to someone else coming to it later, and with fewer interactions to worry
about you will save yourself some thinking. (Of course, you can always dip into Django’s implementation of the
generic class-based views for inspiration on how to tackle problems.)

Using SingleObjectMixin with View

If we want to write a simple class-based view that responds only to POST, we’ll subclass View and write a post()
method in the subclass. However if we want our processing to work on a particular object, identified from the URL,
we’ll want the functionality provided by SingleObjectMixin.

We’ll demonstrate this with the Author model we used in the generic class-based views introduction.

views.py

from django.http import HttpResponseForbidden, HttpResponseRedirect
from django.urls import reverse

3.6. Class-based views 295

https://www.python.org/download/releases/2.3/mro/

Django Documentation, Release 1.10.9.dev20171123183751

from django.views import View
from django.views.generic.detail import SingleObjectMixin
from books.models import Author

class RecordInterest(SingleObjectMixin, View):
"""Records the current user's interest in an author."""
model = Author

def post(self, request, *args, **kwargs):
if not request.user.is_authenticated:

return HttpResponseForbidden()

Look up the author we're interested in.
self.object = self.get_object()
Actually record interest somehow here!

return HttpResponseRedirect(reverse('author-detail', kwargs={'pk': self.object.pk}))

In practice you’d probably want to record the interest in a key-value store rather than in a relational database, so we’ve
left that bit out. The only bit of the view that needs to worry about using SingleObjectMixin is where we want
to look up the author we’re interested in, which it just does with a simple call to self.get_object(). Everything
else is taken care of for us by the mixin.

We can hook this into our URLs easily enough:

urls.py

from django.conf.urls import url
from books.views import RecordInterest

urlpatterns = [
#...
url(r'^author/(?P<pk>[0-9]+)/interest/$', RecordInterest.as_view(), name='author-interest'),

]

Note the pk named group, which get_object() uses to look up the Author instance. You could also use a slug,
or any of the other features of SingleObjectMixin.

Using SingleObjectMixin with ListView

ListView provides built-in pagination, but you might want to paginate a list of objects that are all linked (by a
foreign key) to another object. In our publishing example, you might want to paginate through all the books by a
particular publisher.

One way to do this is to combine ListView with SingleObjectMixin, so that the queryset for the paginated
list of books can hang off the publisher found as the single object. In order to do this, we need to have two different
querysets:

Book queryset for use by ListView Since we have access to the Publisher whose books we want to list, we
simply override get_queryset() and use the Publisher’s reverse foreign key manager.

Publisher queryset for use in get_object() We’ll rely on the default implementation of get_object()
to fetch the correct Publisher object. However, we need to explicitly pass a queryset argument because
otherwise the default implementation of get_object()would call get_queryset()which we have over-
ridden to return Book objects instead of Publisher ones.

Note: We have to think carefully about get_context_data(). Since both SingleObjectMixin and
ListView will put things in the context data under the value of context_object_name if it’s set, we’ll in-

296 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

stead explicitly ensure the Publisher is in the context data. ListView will add in the suitable page_obj and
paginator for us providing we remember to call super().

Now we can write a new PublisherDetail:

from django.views.generic import ListView
from django.views.generic.detail import SingleObjectMixin
from books.models import Publisher

class PublisherDetail(SingleObjectMixin, ListView):
paginate_by = 2
template_name = "books/publisher_detail.html"

def get(self, request, *args, **kwargs):
self.object = self.get_object(queryset=Publisher.objects.all())
return super(PublisherDetail, self).get(request, *args, **kwargs)

def get_context_data(self, **kwargs):
context = super(PublisherDetail, self).get_context_data(**kwargs)
context['publisher'] = self.object
return context

def get_queryset(self):
return self.object.book_set.all()

Notice how we set self.object within get() so we can use it again later in get_context_data() and
get_queryset(). If you don’t set template_name, the template will default to the normal ListView choice,
which in this case would be "books/book_list.html" because it’s a list of books; ListView knows nothing
about SingleObjectMixin, so it doesn’t have any clue this view is anything to do with a Publisher.

The paginate_by is deliberately small in the example so you don’t have to create lots of books to see the pagination
working! Here’s the template you’d want to use:

{% extends "base.html" %}

{% block content %}
<h2>Publisher {{ publisher.name }}</h2>

{% for book in page_obj %}

{{ book.title }}
{% endfor %}

<div class="pagination">

{% if page_obj.has_previous %}
previous

{% endif %}

Page {{ page_obj.number }} of {{ paginator.num_pages }}.

{% if page_obj.has_next %}
next

{% endif %}

3.6. Class-based views 297

Django Documentation, Release 1.10.9.dev20171123183751

</div>
{% endblock %}

Avoid anything more complex

Generally you can use TemplateResponseMixin and SingleObjectMixin when you need their functional-
ity. As shown above, with a bit of care you can even combine SingleObjectMixin with ListView . However
things get increasingly complex as you try to do so, and a good rule of thumb is:

Hint: Each of your views should use only mixins or views from one of the groups of generic class-based
views: detail, list, editing and date. For example it’s fine to combine TemplateView (built in view) with
MultipleObjectMixin (generic list), but you’re likely to have problems combining SingleObjectMixin
(generic detail) with MultipleObjectMixin (generic list).

To show what happens when you try to get more sophisticated, we show an example that sacrifices readability and
maintainability when there is a simpler solution. First, let’s look at a naive attempt to combine DetailView
with FormMixin to enable us to POST a Django Form to the same URL as we’re displaying an object using
DetailView .

Using FormMixin with DetailView

Think back to our earlier example of using View and SingleObjectMixin together. We were recording a user’s
interest in a particular author; say now that we want to let them leave a message saying why they like them. Again,
let’s assume we’re not going to store this in a relational database but instead in something more esoteric that we won’t
worry about here.

At this point it’s natural to reach for a Form to encapsulate the information sent from the user’s browser to Django. Say
also that we’re heavily invested in REST, so we want to use the same URL for displaying the author as for capturing
the message from the user. Let’s rewrite our AuthorDetailView to do that.

We’ll keep the GET handling from DetailView , although we’ll have to add a Form into the context data so we can
render it in the template. We’ll also want to pull in form processing from FormMixin, and write a bit of code so that
on POST the form gets called appropriately.

Note: We use FormMixin and implement post() ourselves rather than try to mix DetailView with FormView
(which provides a suitable post() already) because both of the views implement get(), and things would get much
more confusing.

Our new AuthorDetail looks like this:

CAUTION: you almost certainly do not want to do this.
It is provided as part of a discussion of problems you can
run into when combining different generic class-based view
functionality that is not designed to be used together.

from django import forms
from django.http import HttpResponseForbidden
from django.urls import reverse
from django.views.generic import DetailView
from django.views.generic.edit import FormMixin
from books.models import Author

298 Chapter 3. Using Django

https://en.wikipedia.org/wiki/Representational_state_transfer

Django Documentation, Release 1.10.9.dev20171123183751

class AuthorInterestForm(forms.Form):
message = forms.CharField()

class AuthorDetail(FormMixin, DetailView):
model = Author
form_class = AuthorInterestForm

def get_success_url(self):
return reverse('author-detail', kwargs={'pk': self.object.pk})

def get_context_data(self, **kwargs):
context = super(AuthorDetail, self).get_context_data(**kwargs)
context['form'] = self.get_form()
return context

def post(self, request, *args, **kwargs):
if not request.user.is_authenticated:

return HttpResponseForbidden()
self.object = self.get_object()
form = self.get_form()
if form.is_valid():

return self.form_valid(form)
else:

return self.form_invalid(form)

def form_valid(self, form):
Here, we would record the user's interest using the message
passed in form.cleaned_data['message']
return super(AuthorDetail, self).form_valid(form)

get_success_url() is just providing somewhere to redirect to, which gets used in the default implementation of
form_valid(). We have to provide our own post() as noted earlier, and override get_context_data() to
make the Form available in the context data.

A better solution

It should be obvious that the number of subtle interactions between FormMixin and DetailView is already testing
our ability to manage things. It’s unlikely you’d want to write this kind of class yourself.

In this case, it would be fairly easy to just write the post() method yourself, keeping DetailView as the only
generic functionality, although writing Form handling code involves a lot of duplication.

Alternatively, it would still be easier than the above approach to have a separate view for processing the form, which
could use FormView distinct from DetailView without concerns.

An alternative better solution

What we’re really trying to do here is to use two different class based views from the same URL. So why not do just
that? We have a very clear division here: GET requests should get the DetailView (with the Form added to the
context data), and POST requests should get the FormView . Let’s set up those views first.

The AuthorDisplay view is almost the same as when we first introduced AuthorDetail; we have to write our
own get_context_data() to make the AuthorInterestForm available to the template. We’ll skip the
get_object() override from before for clarity:

3.6. Class-based views 299

Django Documentation, Release 1.10.9.dev20171123183751

from django.views.generic import DetailView
from django import forms
from books.models import Author

class AuthorInterestForm(forms.Form):
message = forms.CharField()

class AuthorDisplay(DetailView):
model = Author

def get_context_data(self, **kwargs):
context = super(AuthorDisplay, self).get_context_data(**kwargs)
context['form'] = AuthorInterestForm()
return context

Then the AuthorInterest is a simple FormView , but we have to bring in SingleObjectMixin so we can
find the author we’re talking about, and we have to remember to set template_name to ensure that form errors will
render the same template as AuthorDisplay is using on GET:

from django.urls import reverse
from django.http import HttpResponseForbidden
from django.views.generic import FormView
from django.views.generic.detail import SingleObjectMixin

class AuthorInterest(SingleObjectMixin, FormView):
template_name = 'books/author_detail.html'
form_class = AuthorInterestForm
model = Author

def post(self, request, *args, **kwargs):
if not request.user.is_authenticated:

return HttpResponseForbidden()
self.object = self.get_object()
return super(AuthorInterest, self).post(request, *args, **kwargs)

def get_success_url(self):
return reverse('author-detail', kwargs={'pk': self.object.pk})

Finally we bring this together in a new AuthorDetail view. We already know that calling as_view() on a
class-based view gives us something that behaves exactly like a function based view, so we can do that at the point we
choose between the two subviews.

You can of course pass through keyword arguments to as_view() in the same way you would in your URLconf,
such as if you wanted the AuthorInterest behavior to also appear at another URL but using a different template:

from django.views import View

class AuthorDetail(View):

def get(self, request, *args, **kwargs):
view = AuthorDisplay.as_view()
return view(request, *args, **kwargs)

def post(self, request, *args, **kwargs):
view = AuthorInterest.as_view()
return view(request, *args, **kwargs)

This approach can also be used with any other generic class-based views or your own class-based views inheriting

300 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

directly from View or TemplateView , as it keeps the different views as separate as possible.

More than just HTML

Where class-based views shine is when you want to do the same thing many times. Suppose you’re writing an API,
and every view should return JSON instead of rendered HTML.

We can create a mixin class to use in all of our views, handling the conversion to JSON once.

For example, a simple JSON mixin might look something like this:

from django.http import JsonResponse

class JSONResponseMixin(object):
"""
A mixin that can be used to render a JSON response.
"""
def render_to_json_response(self, context, **response_kwargs):

"""
Returns a JSON response, transforming 'context' to make the payload.
"""
return JsonResponse(

self.get_data(context),
**response_kwargs

)

def get_data(self, context):
"""
Returns an object that will be serialized as JSON by json.dumps().
"""
Note: This is *EXTREMELY* naive; in reality, you'll need
to do much more complex handling to ensure that arbitrary
objects -- such as Django model instances or querysets
-- can be serialized as JSON.
return context

Note: Check out the Serializing Django objects documentation for more information on how to correctly transform
Django models and querysets into JSON.

This mixin provides a render_to_json_response() method with the same signature as
render_to_response(). To use it, we simply need to mix it into a TemplateView for example, and
override render_to_response() to call render_to_json_response() instead:

from django.views.generic import TemplateView

class JSONView(JSONResponseMixin, TemplateView):
def render_to_response(self, context, **response_kwargs):

return self.render_to_json_response(context, **response_kwargs)

Equally we could use our mixin with one of the generic views. We can make our own version of DetailView
by mixing JSONResponseMixin with the django.views.generic.detail.BaseDetailView – (the
DetailView before template rendering behavior has been mixed in):

from django.views.generic.detail import BaseDetailView

class JSONDetailView(JSONResponseMixin, BaseDetailView):

3.6. Class-based views 301

Django Documentation, Release 1.10.9.dev20171123183751

def render_to_response(self, context, **response_kwargs):
return self.render_to_json_response(context, **response_kwargs)

This view can then be deployed in the same way as any other DetailView , with exactly the same behavior – except
for the format of the response.

If you want to be really adventurous, you could even mix a DetailView subclass that is able to return both HTML
and JSON content, depending on some property of the HTTP request, such as a query argument or a HTTP header.
Just mix in both the JSONResponseMixin and a SingleObjectTemplateResponseMixin, and override
the implementation of render_to_response() to defer to the appropriate rendering method depending on the
type of response that the user requested:

from django.views.generic.detail import SingleObjectTemplateResponseMixin

class HybridDetailView(JSONResponseMixin, SingleObjectTemplateResponseMixin,
→˓BaseDetailView):

def render_to_response(self, context):
Look for a 'format=json' GET argument
if self.request.GET.get('format') == 'json':

return self.render_to_json_response(context)
else:

return super(HybridDetailView, self).render_to_response(context)

Because of the way that Python resolves method overloading, the call to super(HybridDetailView,
self).render_to_response(context) ends up calling the render_to_response() implementation
of TemplateResponseMixin.

3.6.5 Basic examples

Django provides base view classes which will suit a wide range of applications. All views inherit from the
View class, which handles linking the view in to the URLs, HTTP method dispatching and other simple features.
RedirectView is for a simple HTTP redirect, and TemplateView extends the base class to make it also render
a template.

3.6.6 Simple usage in your URLconf

The simplest way to use generic views is to create them directly in your URLconf. If you’re only changing a few
simple attributes on a class-based view, you can simply pass them into the as_view() method call itself:

from django.conf.urls import url
from django.views.generic import TemplateView

urlpatterns = [
url(r'^about/$', TemplateView.as_view(template_name="about.html")),

]

Any arguments passed to as_view() will override attributes set on the class. In this example, we set
template_name on the TemplateView. A similar overriding pattern can be used for the url attribute on
RedirectView .

302 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

3.6.7 Subclassing generic views

The second, more powerful way to use generic views is to inherit from an existing view and override attributes (such
as the template_name) or methods (such as get_context_data) in your subclass to provide new values or
methods. Consider, for example, a view that just displays one template, about.html. Django has a generic view to
do this - TemplateView - so we can just subclass it, and override the template name:

some_app/views.py
from django.views.generic import TemplateView

class AboutView(TemplateView):
template_name = "about.html"

Then we just need to add this new view into our URLconf. TemplateView is a class, not a function, so we point
the URL to the as_view() class method instead, which provides a function-like entry to class-based views:

urls.py
from django.conf.urls import url
from some_app.views import AboutView

urlpatterns = [
url(r'^about/$', AboutView.as_view()),

]

For more information on how to use the built in generic views, consult the next topic on generic class-based views.

Supporting other HTTP methods

Suppose somebody wants to access our book library over HTTP using the views as an API. The API client would
connect every now and then and download book data for the books published since last visit. But if no new books
appeared since then, it is a waste of CPU time and bandwidth to fetch the books from the database, render a full
response and send it to the client. It might be preferable to ask the API when the most recent book was published.

We map the URL to book list view in the URLconf:

from django.conf.urls import url
from books.views import BookListView

urlpatterns = [
url(r'^books/$', BookListView.as_view()),

]

And the view:

from django.http import HttpResponse
from django.views.generic import ListView
from books.models import Book

class BookListView(ListView):
model = Book

def head(self, *args, **kwargs):
last_book = self.get_queryset().latest('publication_date')
response = HttpResponse('')
RFC 1123 date format

3.6. Class-based views 303

Django Documentation, Release 1.10.9.dev20171123183751

response['Last-Modified'] = last_book.publication_date.strftime('%a, %d %b %Y
→˓%H:%M:%S GMT')

return response

If the view is accessed from a GET request, a plain-and-simple object list is returned in the response (using
book_list.html template). But if the client issues a HEAD request, the response has an empty body and the
Last-Modified header indicates when the most recent book was published. Based on this information, the client
may or may not download the full object list.

3.7 Migrations

Migrations are Django’s way of propagating changes you make to your models (adding a field, deleting a model,
etc.) into your database schema. They’re designed to be mostly automatic, but you’ll need to know when to make
migrations, when to run them, and the common problems you might run into.

3.7.1 The Commands

There are several commands which you will use to interact with migrations and Django’s handling of database schema:

• migrate, which is responsible for applying and unapplying migrations.

• makemigrations, which is responsible for creating new migrations based on the changes you have made to
your models.

• sqlmigrate, which displays the SQL statements for a migration.

• showmigrations, which lists a project’s migrations and their status.

You should think of migrations as a version control system for your database schema. makemigrations is respon-
sible for packaging up your model changes into individual migration files - analogous to commits - and migrate is
responsible for applying those to your database.

The migration files for each app live in a “migrations” directory inside of that app, and are designed to be committed
to, and distributed as part of, its codebase. You should be making them once on your development machine and then
running the same migrations on your colleagues’ machines, your staging machines, and eventually your production
machines.

Note: It is possible to override the name of the package which contains the migrations on a per-app basis by modifying
the MIGRATION_MODULES setting.

Migrations will run the same way on the same dataset and produce consistent results, meaning that what you see in
development and staging is, under the same circumstances, exactly what will happen in production.

Django will make migrations for any change to your models or fields - even options that don’t affect the database -
as the only way it can reconstruct a field correctly is to have all the changes in the history, and you might need those
options in some data migrations later on (for example, if you’ve set custom validators).

3.7.2 Backend Support

Migrations are supported on all backends that Django ships with, as well as any third-party backends if they have
programmed in support for schema alteration (done via the SchemaEditor class).

304 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

However, some databases are more capable than others when it comes to schema migrations; some of the caveats are
covered below.

PostgreSQL

PostgreSQL is the most capable of all the databases here in terms of schema support; the only caveat is that adding
columns with default values will cause a full rewrite of the table, for a time proportional to its size.

For this reason, it’s recommended you always create new columns with null=True, as this way they will be added
immediately.

MySQL

MySQL lacks support for transactions around schema alteration operations, meaning that if a migration fails to apply
you will have to manually unpick the changes in order to try again (it’s impossible to roll back to an earlier point).

In addition, MySQL will fully rewrite tables for almost every schema operation and generally takes a time proportional
to the number of rows in the table to add or remove columns. On slower hardware this can be worse than a minute
per million rows - adding a few columns to a table with just a few million rows could lock your site up for over ten
minutes.

Finally, MySQL has relatively small limits on name lengths for columns, tables and indexes, as well as a limit on the
combined size of all columns an index covers. This means that indexes that are possible on other backends will fail to
be created under MySQL.

SQLite

SQLite has very little built-in schema alteration support, and so Django attempts to emulate it by:

• Creating a new table with the new schema

• Copying the data across

• Dropping the old table

• Renaming the new table to match the original name

This process generally works well, but it can be slow and occasionally buggy. It is not recommended that you run
and migrate SQLite in a production environment unless you are very aware of the risks and its limitations; the support
Django ships with is designed to allow developers to use SQLite on their local machines to develop less complex
Django projects without the need for a full database.

3.7.3 Workflow

Working with migrations is simple. Make changes to your models - say, add a field and remove a model - and then run
makemigrations:

$ python manage.py makemigrations
Migrations for 'books':

books/migrations/0003_auto.py:
- Alter field author on book

Your models will be scanned and compared to the versions currently contained in your migration files, and then a new
set of migrations will be written out. Make sure to read the output to see what makemigrations thinks you have
changed - it’s not perfect, and for complex changes it might not be detecting what you expect.

3.7. Migrations 305

Django Documentation, Release 1.10.9.dev20171123183751

Once you have your new migration files, you should apply them to your database to make sure they work as expected:

$ python manage.py migrate
Operations to perform:

Apply all migrations: books
Running migrations:

Rendering model states... DONE
Applying books.0003_auto... OK

Once the migration is applied, commit the migration and the models change to your version control system as a single
commit - that way, when other developers (or your production servers) check out the code, they’ll get both the changes
to your models and the accompanying migration at the same time.

If you want to give the migration(s) a meaningful name instead of a generated one, you can use the
makemigrations --name option:

$ python manage.py makemigrations --name changed_my_model your_app_label

Version control

Because migrations are stored in version control, you’ll occasionally come across situations where you and another
developer have both committed a migration to the same app at the same time, resulting in two migrations with the
same number.

Don’t worry - the numbers are just there for developers’ reference, Django just cares that each migration has a different
name. Migrations specify which other migrations they depend on - including earlier migrations in the same app - in
the file, so it’s possible to detect when there’s two new migrations for the same app that aren’t ordered.

When this happens, Django will prompt you and give you some options. If it thinks it’s safe enough, it will offer to
automatically linearize the two migrations for you. If not, you’ll have to go in and modify the migrations yourself -
don’t worry, this isn’t difficult, and is explained more in Migration files below.

3.7.4 Dependencies

While migrations are per-app, the tables and relationships implied by your models are too complex to be created for
just one app at a time. When you make a migration that requires something else to run - for example, you add a
ForeignKey in your books app to your authors app - the resulting migration will contain a dependency on a
migration in authors.

This means that when you run the migrations, the authors migration runs first and creates the table the
ForeignKey references, and then the migration that makes the ForeignKey column runs afterwards and cre-
ates the constraint. If this didn’t happen, the migration would try to create the ForeignKey column without the table
it’s referencing existing and your database would throw an error.

This dependency behavior affects most migration operations where you restrict to a single app. Restricting to a single
app (either in makemigrations or migrate) is a best-efforts promise, and not a guarantee; any other apps that
need to be used to get dependencies correct will be.

3.7.5 Migration files

Migrations are stored as an on-disk format, referred to here as “migration files”. These files are actually just normal
Python files with an agreed-upon object layout, written in a declarative style.

A basic migration file looks like this:

306 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

from django.db import migrations, models

class Migration(migrations.Migration):

dependencies = [("migrations", "0001_initial")]

operations = [
migrations.DeleteModel("Tribble"),
migrations.AddField("Author", "rating", models.IntegerField(default=0)),

]

What Django looks for when it loads a migration file (as a Python module) is a subclass of django.db.
migrations.Migration called Migration. It then inspects this object for four attributes, only two of which
are used most of the time:

• dependencies, a list of migrations this one depends on.

• operations, a list of Operation classes that define what this migration does.

The operations are the key; they are a set of declarative instructions which tell Django what schema changes need to
be made. Django scans them and builds an in-memory representation of all of the schema changes to all apps, and
uses this to generate the SQL which makes the schema changes.

That in-memory structure is also used to work out what the differences are between your models and the current state
of your migrations; Django runs through all the changes, in order, on an in-memory set of models to come up with the
state of your models last time you ran makemigrations. It then uses these models to compare against the ones in
your models.py files to work out what you have changed.

You should rarely, if ever, need to edit migration files by hand, but it’s entirely possible to write them manually if
you need to. Some of the more complex operations are not autodetectable and are only available via a hand-written
migration, so don’t be scared about editing them if you have to.

Custom fields

You can’t modify the number of positional arguments in an already migrated custom field without raising a
TypeError. The old migration will call the modified __init__ method with the old signature. So if you need
a new argument, please create a keyword argument and add something like assert 'argument_name' in
kwargs in the constructor.

Model managers

You can optionally serialize managers into migrations and have them available in RunPython operations. This is
done by defining a use_in_migrations attribute on the manager class:

class MyManager(models.Manager):
use_in_migrations = True

class MyModel(models.Model):
objects = MyManager()

If you are using the from_queryset() function to dynamically generate a manager class, you need to inherit from
the generated class to make it importable:

class MyManager(MyBaseManager.from_queryset(CustomQuerySet)):
use_in_migrations = True

3.7. Migrations 307

Django Documentation, Release 1.10.9.dev20171123183751

class MyModel(models.Model):
objects = MyManager()

Please refer to the notes about Historical models in migrations to see the implications that come along.

Initial migrations

Migration.initial

The “initial migrations” for an app are the migrations that create the first version of that app’s tables. Usually an app
will have just one initial migration, but in some cases of complex model interdependencies it may have two or more.

Initial migrations are marked with an initial = True class attribute on the migration class. If an initial class
attribute isn’t found, a migration will be considered “initial” if it is the first migration in the app (i.e. if it has no
dependencies on any other migration in the same app).

When the migrate --fake-initial option is used, these initial migrations are treated specially. For an initial
migration that creates one or more tables (CreateModel operation), Django checks that all of those tables already
exist in the database and fake-applies the migration if so. Similarly, for an initial migration that adds one or more
fields (AddField operation), Django checks that all of the respective columns already exist in the database and fake-
applies the migration if so. Without --fake-initial, initial migrations are treated no differently from any other
migration.

History consistency

As previously discussed, you may need to linearize migrations manually when two development branches are joined.
While editing migration dependencies, you can inadvertently create an inconsistent history state where a migration has
been applied but some of its dependencies haven’t. This is a strong indication that the dependencies are incorrect, so
Django will refuse to run migrations or make new migrations until it’s fixed. When using multiple databases, you can
use the allow_migrate() method of database routers to control which databases makemigrations checks for
consistent history.

Migration consistency checks were added. Checks based on database routers were added in 1.10.1.

3.7.6 Adding migrations to apps

Adding migrations to new apps is straightforward - they come preconfigured to accept migrations, and so just run
makemigrations once you’ve made some changes.

If your app already has models and database tables, and doesn’t have migrations yet (for example, you created it
against a previous Django version), you’ll need to convert it to use migrations; this is a simple process:

$ python manage.py makemigrations your_app_label

This will make a new initial migration for your app. Now, run python manage.py migrate
--fake-initial, and Django will detect that you have an initial migration and that the tables it wants to cre-
ate already exist, and will mark the migration as already applied. (Without the migrate --fake-initial flag,
the command would error out because the tables it wants to create already exist.)

Note that this only works given two things:

• You have not changed your models since you made their tables. For migrations to work, you must make the
initial migration first and then make changes, as Django compares changes against migration files, not the
database.

308 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

• You have not manually edited your database - Django won’t be able to detect that your database doesn’t match
your models, you’ll just get errors when migrations try to modify those tables.

3.7.7 Historical models

When you run migrations, Django is working from historical versions of your models stored in the migration files. If
you write Python code using the RunPython operation, or if you have allow_migrate methods on your database
routers, you will be exposed to these versions of your models.

Because it’s impossible to serialize arbitrary Python code, these historical models will not have any custom meth-
ods that you have defined. They will, however, have the same fields, relationships, managers (limited to those with
use_in_migrations = True) and Meta options (also versioned, so they may be different from your current
ones).

Warning: This means that you will NOT have custom save() methods called on objects when you access them
in migrations, and you will NOT have any custom constructors or instance methods. Plan appropriately!

References to functions in field options such as upload_to and limit_choices_to and model manager dec-
larations with managers having use_in_migrations = True are serialized in migrations, so the functions and
classes will need to be kept around for as long as there is a migration referencing them. Any custom model fields will
also need to be kept, since these are imported directly by migrations.

In addition, the base classes of the model are just stored as pointers, so you must always keep base classes around for
as long as there is a migration that contains a reference to them. On the plus side, methods and managers from these
base classes inherit normally, so if you absolutely need access to these you can opt to move them into a superclass.

To remove old references, you can squash migrations or, if there aren’t many references, copy them into the migration
files.

3.7.8 Considerations when removing model fields

Similar to the “references to historical functions” considerations described in the previous section, removing custom
model fields from your project or third-party app will cause a problem if they are referenced in old migrations.

To help with this situation, Django provides some model field attributes to assist with model field deprecation using
the system checks framework.

Add the system_check_deprecated_details attribute to your model field similar to the following:

class IPAddressField(Field):
system_check_deprecated_details = {

'msg': (
'IPAddressField has been deprecated. Support for it (except '
'in historical migrations) will be removed in Django 1.9.'

),
'hint': 'Use GenericIPAddressField instead.', # optional
'id': 'fields.W900', # pick a unique ID for your field.

}

After a deprecation period of your choosing (two or three feature releases for fields in Django itself), change the
system_check_deprecated_details attribute to system_check_removed_details and update the
dictionary similar to:

3.7. Migrations 309

Django Documentation, Release 1.10.9.dev20171123183751

class IPAddressField(Field):
system_check_removed_details = {

'msg': (
'IPAddressField has been removed except for support in '
'historical migrations.'

),
'hint': 'Use GenericIPAddressField instead.',
'id': 'fields.E900', # pick a unique ID for your field.

}

You should keep the field’s methods that are required for it to operate in database migrations such as __init__(),
deconstruct(), and get_internal_type(). Keep this stub field for as long as any migrations which refer-
ence the field exist. For example, after squashing migrations and removing the old ones, you should be able to remove
the field completely.

3.7.9 Data Migrations

As well as changing the database schema, you can also use migrations to change the data in the database itself, in
conjunction with the schema if you want.

Migrations that alter data are usually called “data migrations”; they’re best written as separate migrations, sitting
alongside your schema migrations.

Django can’t automatically generate data migrations for you, as it does with schema migrations, but it’s not very hard
to write them. Migration files in Django are made up of Operations, and the main operation you use for data migrations
is RunPython.

To start, make an empty migration file you can work from (Django will put the file in the right place, suggest a name,
and add dependencies for you):

python manage.py makemigrations --empty yourappname

Then, open up the file; it should look something like this:

-*- coding: utf-8 -*-
Generated by Django A.B on YYYY-MM-DD HH:MM
from __future__ import unicode_literals

from django.db import migrations, models

class Migration(migrations.Migration):

dependencies = [
('yourappname', '0001_initial'),

]

operations = [
]

Now, all you need to do is create a new function and have RunPython use it. RunPython expects a callable as its
argument which takes two arguments - the first is an app registry that has the historical versions of all your models
loaded into it to match where in your history the migration sits, and the second is a SchemaEditor, which you can use
to manually effect database schema changes (but beware, doing this can confuse the migration autodetector!)

Let’s write a simple migration that populates our new name field with the combined values of first_name and
last_name (we’ve come to our senses and realized that not everyone has first and last names). All we need to do is
use the historical model and iterate over the rows:

310 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

-*- coding: utf-8 -*-
from __future__ import unicode_literals

from django.db import migrations, models

def combine_names(apps, schema_editor):
We can't import the Person model directly as it may be a newer
version than this migration expects. We use the historical version.
Person = apps.get_model("yourappname", "Person")
for person in Person.objects.all():

person.name = "%s %s" % (person.first_name, person.last_name)
person.save()

class Migration(migrations.Migration):

dependencies = [
('yourappname', '0001_initial'),

]

operations = [
migrations.RunPython(combine_names),

]

Once that’s done, we can just run python manage.py migrate as normal and the data migration will run in
place alongside other migrations.

You can pass a second callable to RunPython to run whatever logic you want executed when migrating backwards.
If this callable is omitted, migrating backwards will raise an exception.

Accessing models from other apps

When writing a RunPython function that uses models from apps other than the one in which the migration is located,
the migration’s dependencies attribute should include the latest migration of each app that is involved, otherwise
you may get an error similar to: LookupError: No installed app with label 'myappname' when
you try to retrieve the model in the RunPython function using apps.get_model().

In the following example, we have a migration in app1 which needs to use models in app2. We aren’t concerned
with the details of move_m1 other than the fact it will need to access models from both apps. Therefore we’ve added
a dependency that specifies the last migration of app2:

class Migration(migrations.Migration):

dependencies = [
('app1', '0001_initial'),
added dependency to enable using models from app2 in move_m1
('app2', '0004_foobar'),

]

operations = [
migrations.RunPython(move_m1),

]

More advanced migrations

If you’re interested in the more advanced migration operations, or want to be able to write your own, see the migration
operations reference and the “how-to” on writing migrations.

3.7. Migrations 311

Django Documentation, Release 1.10.9.dev20171123183751

3.7.10 Squashing migrations

You are encouraged to make migrations freely and not worry about how many you have; the migration code is opti-
mized to deal with hundreds at a time without much slowdown. However, eventually you will want to move back from
having several hundred migrations to just a few, and that’s where squashing comes in.

Squashing is the act of reducing an existing set of many migrations down to one (or sometimes a few) migrations
which still represent the same changes.

Django does this by taking all of your existing migrations, extracting their Operations and putting them all in
sequence, and then running an optimizer over them to try and reduce the length of the list - for example, it knows
that CreateModel and DeleteModel cancel each other out, and it knows that AddField can be rolled into
CreateModel.

Once the operation sequence has been reduced as much as possible - the amount possible depends on how closely
intertwined your models are and if you have any RunSQL or RunPython operations (which can’t be optimized
through unless they are marked as elidable) - Django will then write it back out into a new set of migration files.

These files are marked to say they replace the previously-squashed migrations, so they can coexist with the old mi-
gration files, and Django will intelligently switch between them depending where you are in the history. If you’re still
part-way through the set of migrations that you squashed, it will keep using them until it hits the end and then switch
to the squashed history, while new installs will just use the new squashed migration and skip all the old ones.

This enables you to squash and not mess up systems currently in production that aren’t fully up-to-date yet. The
recommended process is to squash, keeping the old files, commit and release, wait until all systems are upgraded with
the new release (or if you’re a third-party project, just ensure your users upgrade releases in order without skipping
any), and then remove the old files, commit and do a second release.

The command that backs all this is squashmigrations - just pass it the app label and migration name you want
to squash up to, and it’ll get to work:

$./manage.py squashmigrations myapp 0004
Will squash the following migrations:
- 0001_initial
- 0002_some_change
- 0003_another_change
- 0004_undo_something

Do you wish to proceed? [yN] y
Optimizing...

Optimized from 12 operations to 7 operations.
Created new squashed migration /home/andrew/Programs/DjangoTest/test/migrations/0001_
→˓squashed_0004_undo_somthing.py
You should commit this migration but leave the old ones in place;
the new migration will be used for new installs. Once you are sure
all instances of the codebase have applied the migrations you squashed,
you can delete them.

Note that model interdependencies in Django can get very complex, and squashing may result in migrations that do
not run; either mis-optimized (in which case you can try again with --no-optimize, though you should also report
an issue), or with a CircularDependencyError, in which case you can manually resolve it.

To manually resolve a CircularDependencyError, break out one of the ForeignKeys in the circular dependency
loop into a separate migration, and move the dependency on the other app with it. If you’re unsure, see how makem-
igrations deals with the problem when asked to create brand new migrations from your models. In a future release of
Django, squashmigrations will be updated to attempt to resolve these errors itself.

Once you’ve squashed your migration, you should then commit it alongside the migrations it replaces and distribute
this change to all running instances of your application, making sure that they run migrate to store the change in
their database.

312 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

You must then transition the squashed migration to a normal migration by:

• Deleting all the migration files it replaces.

• Updating all migrations that depend on the deleted migrations to depend on the squashed migration instead.

• Removing the replaces attribute in the Migration class of the squashed migration (this is how Django
tells that it is a squashed migration).

Note: Once you’ve squashed a migration, you should not then re-squash that squashed migration until you have fully
transitioned it to a normal migration.

3.7.11 Serializing values

Migrations are just Python files containing the old definitions of your models - thus, to write them, Django must take
the current state of your models and serialize them out into a file.

While Django can serialize most things, there are some things that we just can’t serialize out into a valid Python
representation - there’s no Python standard for how a value can be turned back into code (repr() only works for
basic values, and doesn’t specify import paths).

Django can serialize the following:

• int, long, float, bool, str, unicode, bytes, None

• list, set, tuple, dict

• datetime.date, datetime.time, and datetime.datetime instances (include those that are
timezone-aware)

• decimal.Decimal instances

• enum.Enum instances

• functools.partial instances which have serializable func, args, and keywords values.

• LazyObject instances which wrap a serializable value.

• Any Django field

• Any function or method reference (e.g. datetime.datetime.today) (must be in module’s top-level
scope)

• Any class reference (must be in module’s top-level scope)

• Anything with a custom deconstruct() method (see below)

Serialization support for functools.partial and LazyObject instances was added.

Serialization support for enum.Enum was added.

Django can serialize the following on Python 3 only:

• Unbound methods used from within the class body (see below)

Django cannot serialize:

• Nested classes

• Arbitrary class instances (e.g. MyClass(4.3, 5.7))

• Lambdas

3.7. Migrations 313

Django Documentation, Release 1.10.9.dev20171123183751

Due to the fact __qualname__ was only introduced in Python 3, Django can only serialize the following pattern (an
unbound method used within the class body) on Python 3, and will fail to serialize a reference to it on Python 2:

class MyModel(models.Model):

def upload_to(self):
return "something dynamic"

my_file = models.FileField(upload_to=upload_to)

If you are using Python 2, we recommend you move your methods for upload_to and similar arguments that accept
callables (e.g. default) to live in the main module body, rather than the class body.

Adding a deconstruct() method

You can let Django serialize your own custom class instances by giving the class a deconstruct() method. It
takes no arguments, and should return a tuple of three things (path, args, kwargs):

• path should be the Python path to the class, with the class name included as the last part (for example, myapp.
custom_things.MyClass). If your class is not available at the top level of a module it is not serializable.

• args should be a list of positional arguments to pass to your class’ __init__ method. Everything in this list
should itself be serializable.

• kwargs should be a dict of keyword arguments to pass to your class’ __init__ method. Every value should
itself be serializable.

Note: This return value is different from the deconstruct() method for custom fields which returns a tuple of
four items.

Django will write out the value as an instantiation of your class with the given arguments, similar to the way it writes
out references to Django fields.

To prevent a new migration from being created each time makemigrations is run, you should also add a
__eq__() method to the decorated class. This function will be called by Django’s migration framework to detect
changes between states.

As long as all of the arguments to your class’ constructor are themselves serializable, you can use the
@deconstructible class decorator from django.utils.deconstruct to add the deconstruct()
method:

from django.utils.deconstruct import deconstructible

@deconstructible
class MyCustomClass(object):

def __init__(self, foo=1):
self.foo = foo
...

def __eq__(self, other):
return self.foo == other.foo

The decorator adds logic to capture and preserve the arguments on their way into your constructor, and then returns
those arguments exactly when deconstruct() is called.

314 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

3.7.12 Supporting Python 2 and 3

In order to generate migrations that support both Python 2 and 3, all string literals used in your models and fields (e.g.
verbose_name, related_name, etc.), must be consistently either bytestrings or text (unicode) strings in both
Python 2 and 3 (rather than bytes in Python 2 and text in Python 3, the default situation for unmarked string literals.)
Otherwise running makemigrations under Python 3 will generate spurious new migrations to convert all these
string attributes to text.

The easiest way to achieve this is to follow the advice in Django’s Python 3 porting guide and make sure that all your
modules begin with from __future__ import unicode_literals, so that all unmarked string literals are
always unicode, regardless of Python version. When you add this to an app with existing migrations generated on
Python 2, your next run of makemigrations on Python 3 will likely generate many changes as it converts all the
bytestring attributes to text strings; this is normal and should only happen once.

3.7.13 Supporting multiple Django versions

If you are the maintainer of a third-party app with models, you may need to ship migrations that support multiple
Django versions. In this case, you should always run makemigrations with the lowest Django version you wish
to support.

The migrations system will maintain backwards-compatibility according to the same policy as the rest of Django,
so migration files generated on Django X.Y should run unchanged on Django X.Y+1. The migrations system does
not promise forwards-compatibility, however. New features may be added, and migration files generated with newer
versions of Django may not work on older versions.

See also:

The Migrations Operations Reference Covers the schema operations API, special operations, and writing your own
operations.

The Writing Migrations “how-to” Explains how to structure and write database migrations for different scenarios
you might encounter.

3.8 Managing files

This document describes Django’s file access APIs for files such as those uploaded by a user. The lower level APIs
are general enough that you could use them for other purposes. If you want to handle “static files” (JS, CSS, etc.), see
Managing static files (e.g. images, JavaScript, CSS).

By default, Django stores files locally, using the MEDIA_ROOT and MEDIA_URL settings. The examples below
assume that you’re using these defaults.

However, Django provides ways to write custom file storage systems that allow you to completely customize where
and how Django stores files. The second half of this document describes how these storage systems work.

3.8.1 Using files in models

When you use a FileField or ImageField, Django provides a set of APIs you can use to deal with that file.

Consider the following model, using an ImageField to store a photo:

from django.db import models

class Car(models.Model):
name = models.CharField(max_length=255)

3.8. Managing files 315

Django Documentation, Release 1.10.9.dev20171123183751

price = models.DecimalField(max_digits=5, decimal_places=2)
photo = models.ImageField(upload_to='cars')

Any Car instance will have a photo attribute that you can use to get at the details of the attached photo:

>>> car = Car.objects.get(name="57 Chevy")
>>> car.photo
<ImageFieldFile: chevy.jpg>
>>> car.photo.name
'cars/chevy.jpg'
>>> car.photo.path
'/media/cars/chevy.jpg'
>>> car.photo.url
'http://media.example.com/cars/chevy.jpg'

This object – car.photo in the example – is a File object, which means it has all the methods and attributes
described below.

Note: The file is saved as part of saving the model in the database, so the actual file name used on disk cannot be
relied on until after the model has been saved.

For example, you can change the file name by setting the file’s name to a path relative to the file storage’s location
(MEDIA_ROOT if you are using the default FileSystemStorage):

>>> import os
>>> from django.conf import settings
>>> initial_path = car.photo.path
>>> car.photo.name = 'cars/chevy_ii.jpg'
>>> new_path = settings.MEDIA_ROOT + car.photo.name
>>> # Move the file on the filesystem
>>> os.rename(initial_path, new_path)
>>> car.save()
>>> car.photo.path
'/media/cars/chevy_ii.jpg'
>>> car.photo.path == new_path
True

3.8.2 The File object

Internally, Django uses a django.core.files.File instance any time it needs to represent a file.

Most of the time you’ll simply use a File that Django’s given you (i.e. a file attached to a model as above, or perhaps
an uploaded file).

If you need to construct a File yourself, the easiest way is to create one using a Python built-in file object:

>>> from django.core.files import File

Create a Python file object using open()
>>> f = open('/path/to/hello.world', 'w')
>>> myfile = File(f)

Now you can use any of the documented attributes and methods of the File class.

Be aware that files created in this way are not automatically closed. The following approach may be used to close files
automatically:

316 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

>>> from django.core.files import File

Create a Python file object using open() and the with statement
>>> with open('/path/to/hello.world', 'w') as f:
... myfile = File(f)
... myfile.write('Hello World')
...
>>> myfile.closed
True
>>> f.closed
True

Closing files is especially important when accessing file fields in a loop over a large number of objects. If files are
not manually closed after accessing them, the risk of running out of file descriptors may arise. This may lead to the
following error:

IOError: [Errno 24] Too many open files

3.8.3 File storage

Behind the scenes, Django delegates decisions about how and where to store files to a file storage system. This is the
object that actually understands things like file systems, opening and reading files, etc.

Django’s default file storage is given by the DEFAULT_FILE_STORAGE setting; if you don’t explicitly provide a
storage system, this is the one that will be used.

See below for details of the built-in default file storage system, and see Writing a custom storage system for information
on writing your own file storage system.

Storage objects

Though most of the time you’ll want to use a File object (which delegates to the proper storage for that file), you can
use file storage systems directly. You can create an instance of some custom file storage class, or – often more useful
– you can use the global default storage system:

>>> from django.core.files.storage import default_storage
>>> from django.core.files.base import ContentFile

>>> path = default_storage.save('/path/to/file', ContentFile('new content'))
>>> path
'/path/to/file'

>>> default_storage.size(path)
11
>>> default_storage.open(path).read()
'new content'

>>> default_storage.delete(path)
>>> default_storage.exists(path)
False

See File storage API for the file storage API.

3.8. Managing files 317

Django Documentation, Release 1.10.9.dev20171123183751

The built-in filesystem storage class

Django ships with a django.core.files.storage.FileSystemStorage class which implements basic
local filesystem file storage.

For example, the following code will store uploaded files under /media/photos regardless of what your
MEDIA_ROOT setting is:

from django.db import models
from django.core.files.storage import FileSystemStorage

fs = FileSystemStorage(location='/media/photos')

class Car(models.Model):
...
photo = models.ImageField(storage=fs)

Custom storage systems work the same way: you can pass them in as the storage argument to a FileField.

3.9 Testing in Django

Automated testing is an extremely useful bug-killing tool for the modern Web developer. You can use a collection of
tests – a test suite – to solve, or avoid, a number of problems:

• When you’re writing new code, you can use tests to validate your code works as expected.

• When you’re refactoring or modifying old code, you can use tests to ensure your changes haven’t affected your
application’s behavior unexpectedly.

Testing a Web application is a complex task, because a Web application is made of several layers of logic – from
HTTP-level request handling, to form validation and processing, to template rendering. With Django’s test-execution
framework and assorted utilities, you can simulate requests, insert test data, inspect your application’s output and
generally verify your code is doing what it should be doing.

The best part is, it’s really easy.

The preferred way to write tests in Django is using the unittest module built in to the Python standard library. This
is covered in detail in the Writing and running tests document.

You can also use any other Python test framework; Django provides an API and tools for that kind of integration. They
are described in the Using different testing frameworks section of Advanced testing topics.

3.9.1 Writing and running tests

See also:

The testing tutorial, the testing tools reference, and the advanced testing topics.

This document is split into two primary sections. First, we explain how to write tests with Django. Then, we explain
how to run them.

Writing tests

Django’s unit tests use a Python standard library module: unittest. This module defines tests using a class-based
approach.

318 Chapter 3. Using Django

https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#module-unittest

Django Documentation, Release 1.10.9.dev20171123183751

Here is an example which subclasses from django.test.TestCase, which is a subclass of unittest.
TestCase that runs each test inside a transaction to provide isolation:

from django.test import TestCase
from myapp.models import Animal

class AnimalTestCase(TestCase):
def setUp(self):

Animal.objects.create(name="lion", sound="roar")
Animal.objects.create(name="cat", sound="meow")

def test_animals_can_speak(self):
"""Animals that can speak are correctly identified"""
lion = Animal.objects.get(name="lion")
cat = Animal.objects.get(name="cat")
self.assertEqual(lion.speak(), 'The lion says "roar"')
self.assertEqual(cat.speak(), 'The cat says "meow"')

When you run your tests, the default behavior of the test utility is to find all the test cases (that is, subclasses of
unittest.TestCase) in any file whose name begins with test, automatically build a test suite out of those test
cases, and run that suite.

For more details about unittest, see the Python documentation.

Where should the tests live?

The default startapp template creates a tests.py file in the new application. This might be fine if you only have
a few tests, but as your test suite grows you’ll likely want to restructure it into a tests package so you can split your
tests into different submodules such as test_models.py, test_views.py, test_forms.py, etc. Feel free
to pick whatever organizational scheme you like.

See also Using the Django test runner to test reusable applications.

Warning: If your tests rely on database access such as creating or querying models, be sure to create your test
classes as subclasses of django.test.TestCase rather than unittest.TestCase.

Using unittest.TestCase avoids the cost of running each test in a transaction and flushing the database, but
if your tests interact with the database their behavior will vary based on the order that the test runner executes them.
This can lead to unit tests that pass when run in isolation but fail when run in a suite.

Running tests

Once you’ve written tests, run them using the test command of your project’s manage.py utility:

$./manage.py test

Test discovery is based on the unittest module’s built-in test discovery. By default, this will discover tests in any file
named “test*.py” under the current working directory.

You can specify particular tests to run by supplying any number of “test labels” to ./manage.py test. Each test
label can be a full Python dotted path to a package, module, TestCase subclass, or test method. For instance:

Run all the tests in the animals.tests module
$./manage.py test animals.tests

3.9. Testing in Django 319

https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#unittest-test-discovery

Django Documentation, Release 1.10.9.dev20171123183751

Run all the tests found within the 'animals' package
$./manage.py test animals

Run just one test case
$./manage.py test animals.tests.AnimalTestCase

Run just one test method
$./manage.py test animals.tests.AnimalTestCase.test_animals_can_speak

You can also provide a path to a directory to discover tests below that directory:

$./manage.py test animals/

You can specify a custom filename pattern match using the -p (or --pattern) option, if your test files are named
differently from the test*.py pattern:

$./manage.py test --pattern="tests_*.py"

If you press Ctrl-C while the tests are running, the test runner will wait for the currently running test to complete
and then exit gracefully. During a graceful exit the test runner will output details of any test failures, report on how
many tests were run and how many errors and failures were encountered, and destroy any test databases as usual.
Thus pressing Ctrl-C can be very useful if you forget to pass the --failfast option, notice that some tests are
unexpectedly failing and want to get details on the failures without waiting for the full test run to complete.

If you do not want to wait for the currently running test to finish, you can press Ctrl-C a second time and the test
run will halt immediately, but not gracefully. No details of the tests run before the interruption will be reported, and
any test databases created by the run will not be destroyed.

Test with warnings enabled

It’s a good idea to run your tests with Python warnings enabled: python -Wall manage.py test. The -Wall
flag tells Python to display deprecation warnings. Django, like many other Python libraries, uses these warnings to
flag when features are going away. It also might flag areas in your code that aren’t strictly wrong but could benefit
from a better implementation.

The test database

Tests that require a database (namely, model tests) will not use your “real” (production) database. Separate, blank
databases are created for the tests.

Regardless of whether the tests pass or fail, the test databases are destroyed when all the tests have been executed.

You can prevent the test databases from being destroyed by using the test --keepdb option. This will preserve
the test database between runs. If the database does not exist, it will first be created. Any migrations will also be
applied in order to keep it up to date.

The default test database names are created by prepending test_ to the value of each NAME in DATABASES. When
using SQLite, the tests will use an in-memory database by default (i.e., the database will be created in memory,
bypassing the filesystem entirely!). The TEST dictionary in DATABASES offers a number of settings to configure
your test database. For example, if you want to use a different database name, specify NAME in the TEST dictionary
for any given database in DATABASES.

On PostgreSQL, USER will also need read access to the built-in postgres database.

320 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Aside from using a separate database, the test runner will otherwise use all of the same database settings you have in
your settings file: ENGINE, USER, HOST, etc. The test database is created by the user specified by USER, so you’ll
need to make sure that the given user account has sufficient privileges to create a new database on the system.

For fine-grained control over the character encoding of your test database, use the CHARSET TEST option. If you’re
using MySQL, you can also use the COLLATION option to control the particular collation used by the test database.
See the settings documentation for details of these and other advanced settings.

If using an SQLite in-memory database with Python 3.4+ and SQLite 3.7.13+, shared cache will be enabled, so you
can write tests with ability to share the database between threads.

Finding data from your production database when running tests?

If your code attempts to access the database when its modules are compiled, this will occur before the test database is
set up, with potentially unexpected results. For example, if you have a database query in module-level code and a real
database exists, production data could pollute your tests. It is a bad idea to have such import-time database queries in
your code anyway - rewrite your code so that it doesn’t do this.

This also applies to customized implementations of ready().

See also:

The advanced multi-db testing topics.

Order in which tests are executed

In order to guarantee that all TestCase code starts with a clean database, the Django test runner reorders tests in the
following way:

• All TestCase subclasses are run first.

• Then, all other Django-based tests (test cases based on SimpleTestCase, including
TransactionTestCase) are run with no particular ordering guaranteed nor enforced among them.

• Then any other unittest.TestCase tests (including doctests) that may alter the database without restoring
it to its original state are run.

Note: The new ordering of tests may reveal unexpected dependencies on test case ordering. This is the case with
doctests that relied on state left in the database by a given TransactionTestCase test, they must be updated to
be able to run independently.

You may reverse the execution order inside groups using the test --reverse option. This can help with ensuring
your tests are independent from each other.

Rollback emulation

Any initial data loaded in migrations will only be available in TestCase tests and not in TransactionTestCase
tests, and additionally only on backends where transactions are supported (the most important exception being My-
ISAM). This is also true for tests which rely on TransactionTestCase such as LiveServerTestCase and
StaticLiveServerTestCase.

Django can reload that data for you on a per-testcase basis by setting the serialized_rollback option to True
in the body of the TestCase or TransactionTestCase, but note that this will slow down that test suite by
approximately 3x.

3.9. Testing in Django 321

https://www.sqlite.org/sharedcache.html
https://docs.python.org/3/library/unittest.html#unittest.TestCase

Django Documentation, Release 1.10.9.dev20171123183751

Third-party apps or those developing against MyISAM will need to set this; in general, however, you should be
developing your own projects against a transactional database and be using TestCase for most tests, and thus not
need this setting.

The initial serialization is usually very quick, but if you wish to exclude some apps from this process (and speed up
test runs slightly), you may add those apps to TEST_NON_SERIALIZED_APPS.

To prevent serialized data from being loaded twice, setting serialized_rollback=True disables the
post_migrate signal when flushing the test database.

Other test conditions

Regardless of the value of the DEBUG setting in your configuration file, all Django tests run with DEBUG=False. This
is to ensure that the observed output of your code matches what will be seen in a production setting.

Caches are not cleared after each test, and running “manage.py test fooapp” can insert data from the tests into the
cache of a live system if you run your tests in production because, unlike databases, a separate “test cache” is not used.
This behavior may change in the future.

Understanding the test output

When you run your tests, you’ll see a number of messages as the test runner prepares itself. You can control the level
of detail of these messages with the verbosity option on the command line:

Creating test database...
Creating table myapp_animal
Creating table myapp_mineral

This tells you that the test runner is creating a test database, as described in the previous section.

Once the test database has been created, Django will run your tests. If everything goes well, you’ll see something like
this:

--
Ran 22 tests in 0.221s

OK

If there are test failures, however, you’ll see full details about which tests failed:

==
FAIL: test_was_published_recently_with_future_poll (polls.tests.PollMethodTests)
--
Traceback (most recent call last):

File "/dev/mysite/polls/tests.py", line 16, in test_was_published_recently_with_
→˓future_poll

self.assertIs(future_poll.was_published_recently(), False)
AssertionError: True is not False

--
Ran 1 test in 0.003s

FAILED (failures=1)

A full explanation of this error output is beyond the scope of this document, but it’s pretty intuitive. You can consult
the documentation of Python’s unittest library for details.

322 Chapter 3. Using Django

https://code.djangoproject.com/ticket/11505
https://docs.python.org/3/library/unittest.html#module-unittest

Django Documentation, Release 1.10.9.dev20171123183751

Note that the return code for the test-runner script is 1 for any number of failed and erroneous tests. If all the tests
pass, the return code is 0. This feature is useful if you’re using the test-runner script in a shell script and need to test
for success or failure at that level.

Speeding up the tests

Running tests in parallel

As long as your tests are properly isolated, you can run them in parallel to gain a speed up on multi-core hardware.
See test --parallel.

Password hashing

The default password hasher is rather slow by design. If you’re authenticating many users in your tests, you may want
to use a custom settings file and set the PASSWORD_HASHERS setting to a faster hashing algorithm:

PASSWORD_HASHERS = [
'django.contrib.auth.hashers.MD5PasswordHasher',

]

Don’t forget to also include in PASSWORD_HASHERS any hashing algorithm used in fixtures, if any.

3.9.2 Testing tools

Django provides a small set of tools that come in handy when writing tests.

The test client

The test client is a Python class that acts as a dummy Web browser, allowing you to test your views and interact with
your Django-powered application programmatically.

Some of the things you can do with the test client are:

• Simulate GET and POST requests on a URL and observe the response – everything from low-level HTTP (result
headers and status codes) to page content.

• See the chain of redirects (if any) and check the URL and status code at each step.

• Test that a given request is rendered by a given Django template, with a template context that contains certain
values.

Note that the test client is not intended to be a replacement for Selenium or other “in-browser” frameworks. Django’s
test client has a different focus. In short:

• Use Django’s test client to establish that the correct template is being rendered and that the template is passed
the correct context data.

• Use in-browser frameworks like Selenium to test rendered HTML and the behavior of Web pages, namely
JavaScript functionality. Django also provides special support for those frameworks; see the section on
LiveServerTestCase for more details.

A comprehensive test suite should use a combination of both test types.

3.9. Testing in Django 323

http://seleniumhq.org/
http://seleniumhq.org/

Django Documentation, Release 1.10.9.dev20171123183751

Overview and a quick example

To use the test client, instantiate django.test.Client and retrieve Web pages:

>>> from django.test import Client
>>> c = Client()
>>> response = c.post('/login/', {'username': 'john', 'password': 'smith'})
>>> response.status_code
200
>>> response = c.get('/customer/details/')
>>> response.content
b'<!DOCTYPE html...'

As this example suggests, you can instantiate Client from within a session of the Python interactive interpreter.

Note a few important things about how the test client works:

• The test client does not require the Web server to be running. In fact, it will run just fine with no Web server
running at all! That’s because it avoids the overhead of HTTP and deals directly with the Django framework.
This helps make the unit tests run quickly.

• When retrieving pages, remember to specify the path of the URL, not the whole domain. For example, this is
correct:

>>> c.get('/login/')

This is incorrect:

>>> c.get('https://www.example.com/login/')

The test client is not capable of retrieving Web pages that are not powered by your Django project. If you need
to retrieve other Web pages, use a Python standard library module such as urllib.

• To resolve URLs, the test client uses whatever URLconf is pointed-to by your ROOT_URLCONF setting.

• Although the above example would work in the Python interactive interpreter, some of the test client’s function-
ality, notably the template-related functionality, is only available while tests are running.

The reason for this is that Django’s test runner performs a bit of black magic in order to determine which
template was loaded by a given view. This black magic (essentially a patching of Django’s template system in
memory) only happens during test running.

• By default, the test client will disable any CSRF checks performed by your site.

If, for some reason, you want the test client to perform CSRF checks, you can create an instance of the test client
that enforces CSRF checks. To do this, pass in the enforce_csrf_checks argument when you construct
your client:

>>> from django.test import Client
>>> csrf_client = Client(enforce_csrf_checks=True)

Making requests

Use the django.test.Client class to make requests.

class Client(enforce_csrf_checks=False, **defaults)
It requires no arguments at time of construction. However, you can use keywords arguments to specify some
default headers. For example, this will send a User-Agent HTTP header in each request:

324 Chapter 3. Using Django

https://docs.python.org/3/library/urllib.html#module-urllib

Django Documentation, Release 1.10.9.dev20171123183751

>>> c = Client(HTTP_USER_AGENT='Mozilla/5.0')

The values from the extra keywords arguments passed to get(), post(), etc. have precedence over the
defaults passed to the class constructor.

The enforce_csrf_checks argument can be used to test CSRF protection (see above).

Once you have a Client instance, you can call any of the following methods:

get(path, data=None, follow=False, secure=False, **extra)
Makes a GET request on the provided path and returns a Response object, which is documented below.

The key-value pairs in the data dictionary are used to create a GET data payload. For example:

>>> c = Client()
>>> c.get('/customers/details/', {'name': 'fred', 'age': 7})

...will result in the evaluation of a GET request equivalent to:

/customers/details/?name=fred&age=7

The extra keyword arguments parameter can be used to specify headers to be sent in the request. For
example:

>>> c = Client()
>>> c.get('/customers/details/', {'name': 'fred', 'age': 7},
... HTTP_X_REQUESTED_WITH='XMLHttpRequest')

...will send the HTTP header HTTP_X_REQUESTED_WITH to the details view, which is a good way to
test code paths that use the django.http.HttpRequest.is_ajax() method.

CGI specification

The headers sent via **extra should follow CGI specification. For example, emulating a different
“Host” header as sent in the HTTP request from the browser to the server should be passed as HTTP_HOST.

If you already have the GET arguments in URL-encoded form, you can use that encoding instead of using
the data argument. For example, the previous GET request could also be posed as:

>>> c = Client()
>>> c.get('/customers/details/?name=fred&age=7')

If you provide a URL with both an encoded GET data and a data argument, the data argument will take
precedence.

If you set follow to True the client will follow any redirects and a redirect_chain attribute will
be set in the response object containing tuples of the intermediate urls and status codes.

If you had a URL /redirect_me/ that redirected to /next/, that redirected to /final/, this is what
you’d see:

>>> response = c.get('/redirect_me/', follow=True)
>>> response.redirect_chain
[('http://testserver/next/', 302), ('http://testserver/final/', 302)]

If you set secure to True the client will emulate an HTTPS request.

3.9. Testing in Django 325

http://www.w3.org/CGI/

Django Documentation, Release 1.10.9.dev20171123183751

post(path, data=None, content_type=MULTIPART_CONTENT, follow=False, secure=False, **extra)
Makes a POST request on the provided path and returns a Response object, which is documented
below.

The key-value pairs in the data dictionary are used to submit POST data. For example:

>>> c = Client()
>>> c.post('/login/', {'name': 'fred', 'passwd': 'secret'})

...will result in the evaluation of a POST request to this URL:

/login/

...with this POST data:

name=fred&passwd=secret

If you provide content_type (e.g. text/xml for an XML payload), the contents of data will be
sent as-is in the POST request, using content_type in the HTTP Content-Type header.

If you don’t provide a value for content_type, the values in data will be transmitted with a con-
tent type of multipart/form-data. In this case, the key-value pairs in data will be encoded as a
multipart message and used to create the POST data payload.

To submit multiple values for a given key – for example, to specify the selections for a <select
multiple> – provide the values as a list or tuple for the required key. For example, this value of data
would submit three selected values for the field named choices:

{'choices': ('a', 'b', 'd')}

Submitting files is a special case. To POST a file, you need only provide the file field name as a key, and a
file handle to the file you wish to upload as a value. For example:

>>> c = Client()
>>> with open('wishlist.doc') as fp:
... c.post('/customers/wishes/', {'name': 'fred', 'attachment': fp})

(The name attachment here is not relevant; use whatever name your file-processing code expects.)

You may also provide any file-like object (e.g., StringIO or BytesIO) as a file handle.

Note that if you wish to use the same file handle for multiple post() calls then you will need to manually
reset the file pointer between posts. The easiest way to do this is to manually close the file after it has been
provided to post(), as demonstrated above.

You should also ensure that the file is opened in a way that allows the data to be read. If your file contains
binary data such as an image, this means you will need to open the file in rb (read binary) mode.

The extra argument acts the same as for Client.get().

If the URL you request with a POST contains encoded parameters, these parameters will be made available
in the request.GET data. For example, if you were to make the request:

>>> c.post('/login/?visitor=true', {'name': 'fred', 'passwd': 'secret'})

... the view handling this request could interrogate request.POST to retrieve the username and password,
and could interrogate request.GET to determine if the user was a visitor.

If you set follow to True the client will follow any redirects and a redirect_chain attribute will
be set in the response object containing tuples of the intermediate urls and status codes.

326 Chapter 3. Using Django

https://docs.python.org/3/library/io.html#io.StringIO
https://docs.python.org/3/library/io.html#io.BytesIO

Django Documentation, Release 1.10.9.dev20171123183751

If you set secure to True the client will emulate an HTTPS request.

head(path, data=None, follow=False, secure=False, **extra)
Makes a HEAD request on the provided path and returns a Response object. This method works just
like Client.get(), including the follow, secure and extra arguments, except it does not return
a message body.

options(path, data=’‘, content_type=’application/octet-stream’, follow=False, secure=False, **ex-
tra)

Makes an OPTIONS request on the provided path and returns a Response object. Useful for testing
RESTful interfaces.

When data is provided, it is used as the request body, and a Content-Type header is set to
content_type.

The follow, secure and extra arguments act the same as for Client.get().

put(path, data=’‘, content_type=’application/octet-stream’, follow=False, secure=False, **extra)
Makes a PUT request on the provided path and returns a Response object. Useful for testing RESTful
interfaces.

When data is provided, it is used as the request body, and a Content-Type header is set to
content_type.

The follow, secure and extra arguments act the same as for Client.get().

patch(path, data=’‘, content_type=’application/octet-stream’, follow=False, secure=False, **extra)
Makes a PATCH request on the provided path and returns a Response object. Useful for testing REST-
ful interfaces.

The follow, secure and extra arguments act the same as for Client.get().

delete(path, data=’‘, content_type=’application/octet-stream’, follow=False, secure=False, **extra)
Makes a DELETE request on the provided path and returns a Response object. Useful for testing
RESTful interfaces.

When data is provided, it is used as the request body, and a Content-Type header is set to
content_type.

The follow, secure and extra arguments act the same as for Client.get().

trace(path, follow=False, secure=False, **extra)
Makes a TRACE request on the provided path and returns a Response object. Useful for simulating
diagnostic probes.

Unlike the other request methods, data is not provided as a keyword parameter in order to comply with
RFC 7231#section-4.3.8, which mandates that TRACE requests must not have a body.

The follow, secure, and extra arguments act the same as for Client.get().

login(**credentials)
If your site uses Django’s authentication system and you deal with logging in users, you can use the test
client’s login() method to simulate the effect of a user logging into the site.

After you call this method, the test client will have all the cookies and session data required to pass any
login-based tests that may form part of a view.

The format of the credentials argument depends on which authentication backend you’re using
(which is configured by your AUTHENTICATION_BACKENDS setting). If you’re using the standard
authentication backend provided by Django (ModelBackend), credentials should be the user’s
username and password, provided as keyword arguments:

3.9. Testing in Django 327

https://tools.ietf.org/html/rfc7231.html#section-4.3.8

Django Documentation, Release 1.10.9.dev20171123183751

>>> c = Client()
>>> c.login(username='fred', password='secret')

Now you can access a view that's only available to logged-in users.

If you’re using a different authentication backend, this method may require different credentials. It requires
whichever credentials are required by your backend’s authenticate() method.

login() returns True if it the credentials were accepted and login was successful.

Finally, you’ll need to remember to create user accounts before you can use this method. As we explained
above, the test runner is executed using a test database, which contains no users by default. As a result,
user accounts that are valid on your production site will not work under test conditions. You’ll need to
create users as part of the test suite – either manually (using the Django model API) or with a test fixture.
Remember that if you want your test user to have a password, you can’t set the user’s password by setting
the password attribute directly – you must use the set_password() function to store a correctly hashed
password. Alternatively, you can use the create_user() helper method to create a new user with a
correctly hashed password.

In previous versions, inactive users (is_active=False) were not permitted to login.

force_login(user, backend=None)
If your site uses Django’s authentication system, you can use the force_login() method to simulate
the effect of a user logging into the site. Use this method instead of login() when a test requires a user
be logged in and the details of how a user logged in aren’t important.

Unlike login(), this method skips the authentication and verification steps: inactive users
(is_active=False) are permitted to login and the user’s credentials don’t need to be provided.

The user will have its backend attribute set to the value of the backend argument (which should be
a dotted Python path string), or to settings.AUTHENTICATION_BACKENDS[0] if a value isn’t
provided. The authenticate() function called by login() normally annotates the user like this.

This method is faster than login() since the expensive password hashing algorithms are bypassed. Also,
you can speed up login() by using a weaker hasher while testing.

logout()
If your site uses Django’s authentication system, the logout() method can be used to simulate the effect
of a user logging out of your site.

After you call this method, the test client will have all the cookies and session data cleared to defaults.
Subsequent requests will appear to come from an AnonymousUser.

Testing responses

The get() and post() methods both return a Response object. This Response object is not the same as the
HttpResponse object returned by Django views; the test response object has some additional data useful for test
code to verify.

Specifically, a Response object has the following attributes:

class Response

client
The test client that was used to make the request that resulted in the response.

328 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

content
The body of the response, as a bytestring. This is the final page content as rendered by the view, or any
error message.

context
The template Context instance that was used to render the template that produced the response content.

If the rendered page used multiple templates, then context will be a list of Context objects, in the
order in which they were rendered.

Regardless of the number of templates used during rendering, you can retrieve context values using the []
operator. For example, the context variable name could be retrieved using:

>>> response = client.get('/foo/')
>>> response.context['name']
'Arthur'

Not using Django templates?

This attribute is only populated when using the DjangoTemplates backend. If you’re using another
template engine, context_data may be a suitable alternative on responses with that attribute.

json(**kwargs)
The body of the response, parsed as JSON. Extra keyword arguments are passed to json.loads(). For
example:

>>> response = client.get('/foo/')
>>> response.json()['name']
'Arthur'

If the Content-Type header is not "application/json", then a ValueError will be raised
when trying to parse the response.

request
The request data that stimulated the response.

wsgi_request
The WSGIRequest instance generated by the test handler that generated the response.

status_code
The HTTP status of the response, as an integer. For a full list of defined codes, see the IANA status code
registry.

templates
A list of Template instances used to render the final content, in the order they were rendered. For each
template in the list, use template.name to get the template’s file name, if the template was loaded from
a file. (The name is a string such as 'admin/index.html'.)

Not using Django templates?

This attribute is only populated when using the DjangoTemplates backend. If you’re using another
template engine, template_name may be a suitable alternative if you only need the name of the tem-
plate used for rendering.

resolver_match
An instance of ResolverMatch for the response. You can use the func attribute, for example, to verify
the view that served the response:

3.9. Testing in Django 329

https://docs.python.org/3/library/json.html#json.loads
https://docs.python.org/3/library/exceptions.html#ValueError
https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml

Django Documentation, Release 1.10.9.dev20171123183751

my_view here is a function based view
self.assertEqual(response.resolver_match.func, my_view)

class-based views need to be compared by name, as the functions
generated by as_view() won't be equal
self.assertEqual(response.resolver_match.func.__name__, MyView.as_view().__
→˓name__)

If the given URL is not found, accessing this attribute will raise a Resolver404 exception.

You can also use dictionary syntax on the response object to query the value of any settings in the HTTP headers. For
example, you could determine the content type of a response using response['Content-Type'].

Exceptions

If you point the test client at a view that raises an exception, that exception will be visible in the test case. You can
then use a standard try ... except block or assertRaises() to test for exceptions.

The only exceptions that are not visible to the test client are Http404, PermissionDenied, SystemExit, and
SuspiciousOperation. Django catches these exceptions internally and converts them into the appropriate HTTP
response codes. In these cases, you can check response.status_code in your test.

Persistent state

The test client is stateful. If a response returns a cookie, then that cookie will be stored in the test client and sent with
all subsequent get() and post() requests.

Expiration policies for these cookies are not followed. If you want a cookie to expire, either delete it manually or
create a new Client instance (which will effectively delete all cookies).

A test client has two attributes that store persistent state information. You can access these properties as part of a test
condition.

Client.cookies
A Python SimpleCookie object, containing the current values of all the client cookies. See the documentation
of the http.cookies module for more.

Client.session
A dictionary-like object containing session information. See the session documentation for full details.

To modify the session and then save it, it must be stored in a variable first (because a new SessionStore is
created every time this property is accessed):

def test_something(self):
session = self.client.session
session['somekey'] = 'test'
session.save()

Setting the language

When testing applications that support internationalization and localization, you might want to set the language for a
test client request. The method for doing so depends on whether or not the LocaleMiddleware is enabled.

If the middleware is enabled, the language can be set by creating a cookie with a name of LANGUAGE_COOKIE_NAME
and a value of the language code:

330 Chapter 3. Using Django

https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertRaises
https://docs.python.org/3/library/exceptions.html#SystemExit
https://docs.python.org/3/library/http.cookies.html#http.cookies.SimpleCookie
https://docs.python.org/3/library/http.cookies.html#module-http.cookies

Django Documentation, Release 1.10.9.dev20171123183751

from django.conf import settings

def test_language_using_cookie(self):
self.client.cookies.load({settings.LANGUAGE_COOKIE_NAME: 'fr'})
response = self.client.get('/')
self.assertEqual(response.content, b"Bienvenue sur mon site.")

or by including the Accept-Language HTTP header in the request:

def test_language_using_header(self):
response = self.client.get('/', HTTP_ACCEPT_LANGUAGE='fr')
self.assertEqual(response.content, b"Bienvenue sur mon site.")

More details are in How Django discovers language preference.

If the middleware isn’t enabled, the active language may be set using translation.override():

from django.utils import translation

def test_language_using_override(self):
with translation.override('fr'):

response = self.client.get('/')
self.assertEqual(response.content, b"Bienvenue sur mon site.")

More details are in Explicitly setting the active language.

Example

The following is a simple unit test using the test client:

import unittest
from django.test import Client

class SimpleTest(unittest.TestCase):
def setUp(self):

Every test needs a client.
self.client = Client()

def test_details(self):
Issue a GET request.
response = self.client.get('/customer/details/')

Check that the response is 200 OK.
self.assertEqual(response.status_code, 200)

Check that the rendered context contains 5 customers.
self.assertEqual(len(response.context['customers']), 5)

See also:

django.test.RequestFactory

Provided test case classes

Normal Python unit test classes extend a base class of unittest.TestCase. Django provides a few extensions of
this base class:

3.9. Testing in Django 331

https://docs.python.org/3/library/unittest.html#unittest.TestCase

Django Documentation, Release 1.10.9.dev20171123183751

standard library

unittest

django.test

LiveServerTestCaseTestCase

TransactionTestCase

SimpleTestCase

TestCase

Fig. 3.1: Hierarchy of Django unit testing classes

Converting a normal unittest.TestCase to any of the subclasses is easy: change the base class of your test from
unittest.TestCase to the subclass. All of the standard Python unit test functionality will be available, and it
will be augmented with some useful additions as described in each section below.

SimpleTestCase

class SimpleTestCase

A subclass of unittest.TestCase that adds this functionality:

• Some useful assertions like:

– Checking that a callable raises a certain exception.

– Testing form field rendering and error treatment.

– Testing HTML responses for the presence/lack of a given fragment.

– Verifying that a template has/hasn't been used to generate a given response
content.

– Verifying a HTTP redirect is performed by the app.

– Robustly testing two HTML fragments for equality/inequality or containment.

– Robustly testing two XML fragments for equality/inequality.

– Robustly testing two JSON fragments for equality.

• The ability to run tests with modified settings.

• Using the client Client.

If your tests make any database queries, use subclasses TransactionTestCase or TestCase.

332 Chapter 3. Using Django

https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#unittest.TestCase

Django Documentation, Release 1.10.9.dev20171123183751

SimpleTestCase.allow_database_queries
SimpleTestCase disallows database queries by default. This helps to avoid executing write queries which
will affect other tests since each SimpleTestCase test isn’t run in a transaction. If you aren’t concerned
about this problem, you can disable this behavior by setting the allow_database_queries class attribute
to True on your test class.

Warning: SimpleTestCase and its subclasses (e.g. TestCase, ...) rely on setUpClass() and
tearDownClass() to perform some class-wide initialization (e.g. overriding settings). If you need to over-
ride those methods, don’t forget to call the super implementation:

class MyTestCase(TestCase):

@classmethod
def setUpClass(cls):

super(MyTestCase, cls).setUpClass()
...

@classmethod
def tearDownClass(cls):

...
super(MyTestCase, cls).tearDownClass()

Be sure to account for Python’s behavior if an exception is raised during setUpClass(). If that happens, neither
the tests in the class nor tearDownClass() are run. In the case of django.test.TestCase, this will leak
the transaction created in super() which results in various symptoms including a segmentation fault on some
platforms (reported on OS X). If you want to intentionally raise an exception such as unittest.SkipTest in
setUpClass(), be sure to do it before calling super() to avoid this.

TransactionTestCase

class TransactionTestCase

TransactionTestCase inherits from SimpleTestCase to add some database-specific features:

• Resetting the database to a known state at the beginning of each test to ease testing and using the ORM.

• Database fixtures.

• Test skipping based on database backend features.

• The remaining specialized assert* methods.

Django’s TestCase class is a more commonly used subclass of TransactionTestCase that makes use of
database transaction facilities to speed up the process of resetting the database to a known state at the beginning
of each test. A consequence of this, however, is that some database behaviors cannot be tested within a Django
TestCase class. For instance, you cannot test that a block of code is executing within a transaction, as is required
when using select_for_update(). In those cases, you should use TransactionTestCase.

TransactionTestCase and TestCase are identical except for the manner in which the database is reset to a
known state and the ability for test code to test the effects of commit and rollback:

• A TransactionTestCase resets the database after the test runs by truncating all tables. A
TransactionTestCasemay call commit and rollback and observe the effects of these calls on the database.

• A TestCase, on the other hand, does not truncate tables after a test. Instead, it encloses the test code in a
database transaction that is rolled back at the end of the test. This guarantees that the rollback at the end of the
test restores the database to its initial state.

3.9. Testing in Django 333

https://docs.python.org/3/library/unittest.html#unittest.SkipTest

Django Documentation, Release 1.10.9.dev20171123183751

Warning: TestCase running on a database that does not support rollback (e.g. MySQL with the MyISAM
storage engine), and all instances of TransactionTestCase, will roll back at the end of the test by deleting
all data from the test database.

Apps will not see their data reloaded; if you need this functionality (for example, third-party apps should enable
this) you can set serialized_rollback = True inside the TestCase body.

TestCase

class TestCase

This is the most common class to use for writing tests in Django. It inherits from TransactionTestCase (and by
extension SimpleTestCase). If your Django application doesn’t use a database, use SimpleTestCase.

The class:

• Wraps the tests within two nested atomic() blocks: one for the whole class and one for each test. Therefore,
if you want to test some specific database transaction behavior, use TransactionTestCase.

• Checks deferrable database constraints at the end of each test.

The check for deferrable database constraints at the end of each test was added.

It also provides an additional method:

classmethod TestCase.setUpTestData()
The class-level atomic block described above allows the creation of initial data at the class level, once for the
whole TestCase. This technique allows for faster tests as compared to using setUp().

For example:

from django.test import TestCase

class MyTests(TestCase):
@classmethod
def setUpTestData(cls):

Set up data for the whole TestCase
cls.foo = Foo.objects.create(bar="Test")
...

def test1(self):
Some test using self.foo
...

def test2(self):
Some other test using self.foo
...

Note that if the tests are run on a database with no transaction support (for instance, MySQL with the MyISAM
engine), setUpTestData() will be called before each test, negating the speed benefits.

Be careful not to modify any objects created in setUpTestData() in your test methods. Modifications to
in-memory objects from setup work done at the class level will persist between test methods. If you do need to
modify them, you could reload them in the setUp() method with refresh_from_db(), for example.

334 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

LiveServerTestCase

class LiveServerTestCase

LiveServerTestCase does basically the same as TransactionTestCase with one extra feature: it launches
a live Django server in the background on setup, and shuts it down on teardown. This allows the use of automated test
clients other than the Django dummy client such as, for example, the Selenium client, to execute a series of functional
tests inside a browser and simulate a real user’s actions.

By default the live server listens on localhost and picks the first available port in the 8081-8179 range. Its full
URL can be accessed with self.live_server_url during the tests.

In earlier versions, the live server’s default address was always 'localhost:8081'.

If you’d like to select another address, you may pass a different one using the test --liveserver option, for
example:

$./manage.py test --liveserver=localhost:8082

In older versions live_server_url could only be accessed from an instance. It now is a class property and can
be accessed from class methods like setUpClass().

Another way of changing the default server address is by setting the DJANGO_LIVE_TEST_SERVER_ADDRESS
environment variable somewhere in your code (for example, in a custom test runner):

import os
os.environ['DJANGO_LIVE_TEST_SERVER_ADDRESS'] = 'localhost:8082'

In the case where the tests are run by multiple processes in parallel (for example, in the context of several simulta-
neous continuous integration builds), the processes will compete for the same address, and therefore your tests might
randomly fail with an “Address already in use” error. To avoid this problem, you can pass a comma-separated list of
ports or ranges of ports (at least as many as the number of potential parallel processes). For example:

$./manage.py test --liveserver=localhost:8082,8090-8100,9000-9200,7041

Then, during test execution, each new live test server will try every specified port until it finds one that is free and
takes it.

To demonstrate how to use LiveServerTestCase, let’s write a simple Selenium test. First of all, you need to
install the selenium package into your Python path:

$ pip install selenium

Then, add a LiveServerTestCase-based test to your app’s tests module (for example: myapp/tests.py).
For this example, we’ll assume you’re using the staticfiles app and want to have static files served during
the execution of your tests similar to what we get at development time with DEBUG=True, i.e. without having to
collect them using collectstatic. We’ll use the StaticLiveServerTestCase subclass which provides
that functionality. Replace it with django.test.LiveServerTestCase if you don’t need that.

The code for this test may look as follows:

from django.contrib.staticfiles.testing import StaticLiveServerTestCase
from selenium.webdriver.firefox.webdriver import WebDriver

class MySeleniumTests(StaticLiveServerTestCase):
fixtures = ['user-data.json']

@classmethod
def setUpClass(cls):

3.9. Testing in Django 335

http://seleniumhq.org/
https://en.wikipedia.org/wiki/Continuous_integration
https://pypi.python.org/pypi/selenium

Django Documentation, Release 1.10.9.dev20171123183751

super(MySeleniumTests, cls).setUpClass()
cls.selenium = WebDriver()
cls.selenium.implicitly_wait(10)

@classmethod
def tearDownClass(cls):

cls.selenium.quit()
super(MySeleniumTests, cls).tearDownClass()

def test_login(self):
self.selenium.get('%s%s' % (self.live_server_url, '/login/'))
username_input = self.selenium.find_element_by_name("username")
username_input.send_keys('myuser')
password_input = self.selenium.find_element_by_name("password")
password_input.send_keys('secret')
self.selenium.find_element_by_xpath('//input[@value="Log in"]').click()

Finally, you may run the test as follows:

$./manage.py test myapp.tests.MySeleniumTests.test_login

This example will automatically open Firefox then go to the login page, enter the credentials and press the “Log in”
button. Selenium offers other drivers in case you do not have Firefox installed or wish to use another browser. The
example above is just a tiny fraction of what the Selenium client can do; check out the full reference for more details.

Note: When using an in-memory SQLite database to run the tests, the same database connection will be shared
by two threads in parallel: the thread in which the live server is run and the thread in which the test case is run.
It’s important to prevent simultaneous database queries via this shared connection by the two threads, as that may
sometimes randomly cause the tests to fail. So you need to ensure that the two threads don’t access the database at the
same time. In particular, this means that in some cases (for example, just after clicking a link or submitting a form),
you might need to check that a response is received by Selenium and that the next page is loaded before proceeding
with further test execution. Do this, for example, by making Selenium wait until the <body> HTML tag is found in
the response (requires Selenium > 2.13):

def test_login(self):
from selenium.webdriver.support.wait import WebDriverWait
timeout = 2
...
self.selenium.find_element_by_xpath('//input[@value="Log in"]').click()
Wait until the response is received
WebDriverWait(self.selenium, timeout).until(

lambda driver: driver.find_element_by_tag_name('body'))

The tricky thing here is that there’s really no such thing as a “page load,” especially in modern Web apps that generate
HTML dynamically after the server generates the initial document. So, simply checking for the presence of <body>
in the response might not necessarily be appropriate for all use cases. Please refer to the Selenium FAQ and Selenium
documentation for more information.

Test cases features

Default test client

SimpleTestCase.client

336 Chapter 3. Using Django

https://selenium-python.readthedocs.io/api.html
https://web.archive.org/web/20160129132110/http://code.google.com/p/selenium/wiki/FrequentlyAskedQuestions#Q:_WebDriver_fails_to_find_elements_/_Does_not_block_on_page_loa
http://seleniumhq.org/docs/04_webdriver_advanced.html#explicit-waits
http://seleniumhq.org/docs/04_webdriver_advanced.html#explicit-waits

Django Documentation, Release 1.10.9.dev20171123183751

Every test case in a django.test.*TestCase instance has access to an instance of a Django test client. This
client can be accessed as self.client. This client is recreated for each test, so you don’t have to worry about state
(such as cookies) carrying over from one test to another.

This means, instead of instantiating a Client in each test:

import unittest
from django.test import Client

class SimpleTest(unittest.TestCase):
def test_details(self):

client = Client()
response = client.get('/customer/details/')
self.assertEqual(response.status_code, 200)

def test_index(self):
client = Client()
response = client.get('/customer/index/')
self.assertEqual(response.status_code, 200)

...you can just refer to self.client, like so:

from django.test import TestCase

class SimpleTest(TestCase):
def test_details(self):

response = self.client.get('/customer/details/')
self.assertEqual(response.status_code, 200)

def test_index(self):
response = self.client.get('/customer/index/')
self.assertEqual(response.status_code, 200)

Customizing the test client

SimpleTestCase.client_class

If you want to use a different Client class (for example, a subclass with customized behavior), use the
client_class class attribute:

from django.test import TestCase, Client

class MyTestClient(Client):
Specialized methods for your environment
...

class MyTest(TestCase):
client_class = MyTestClient

def test_my_stuff(self):
Here self.client is an instance of MyTestClient...
call_some_test_code()

Fixture loading

TransactionTestCase.fixtures

3.9. Testing in Django 337

Django Documentation, Release 1.10.9.dev20171123183751

A test case for a database-backed website isn’t much use if there isn’t any data in the database. Tests are more readable
and it’s more maintainable to create objects using the ORM, for example in TestCase.setUpTestData(),
however, you can also use fixtures.

A fixture is a collection of data that Django knows how to import into a database. For example, if your site has user
accounts, you might set up a fixture of fake user accounts in order to populate your database during tests.

The most straightforward way of creating a fixture is to use the manage.py dumpdata command. This assumes
you already have some data in your database. See the dumpdata documentation for more details.

Once you’ve created a fixture and placed it in a fixtures directory in one of your INSTALLED_APPS, you can
use it in your unit tests by specifying a fixtures class attribute on your django.test.TestCase subclass:

from django.test import TestCase
from myapp.models import Animal

class AnimalTestCase(TestCase):
fixtures = ['mammals.json', 'birds']

def setUp(self):
Test definitions as before.
call_setup_methods()

def testFluffyAnimals(self):
A test that uses the fixtures.
call_some_test_code()

Here’s specifically what will happen:

• At the start of each test, before setUp() is run, Django will flush the database, returning the database to the
state it was in directly after migrate was called.

• Then, all the named fixtures are installed. In this example, Django will install any JSON fixture named
mammals, followed by any fixture named birds. See the loaddata documentation for more details on
defining and installing fixtures.

For performance reasons, TestCase loads fixtures once for the entire test class, before setUpTestData(), in-
stead of before each test, and it uses transactions to clean the database before each test. In any case, you can be certain
that the outcome of a test will not be affected by another test or by the order of test execution.

By default, fixtures are only loaded into the default database. If you are using multiple databases and set
multi_db=True, fixtures will be loaded into all databases.

URLconf configuration

If your application provides views, you may want to include tests that use the test client to exercise those views.
However, an end user is free to deploy the views in your application at any URL of their choosing. This means that
your tests can’t rely upon the fact that your views will be available at a particular URL. Decorate your test class or test
method with @override_settings(ROOT_URLCONF=...) for URLconf configuration.

Multi-database support

TransactionTestCase.multi_db

Django sets up a test database corresponding to every database that is defined in the DATABASES definition in your
settings file. However, a big part of the time taken to run a Django TestCase is consumed by the call to flush that
ensures that you have a clean database at the start of each test run. If you have multiple databases, multiple flushes are

338 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

required (one for each database), which can be a time consuming activity – especially if your tests don’t need to test
multi-database activity.

As an optimization, Django only flushes the default database at the start of each test run. If your setup contains
multiple databases, and you have a test that requires every database to be clean, you can use the multi_db attribute
on the test suite to request a full flush.

For example:

class TestMyViews(TestCase):
multi_db = True

def test_index_page_view(self):
call_some_test_code()

This test case will flush all the test databases before running test_index_page_view.

The multi_db flag also affects into which databases the TransactionTestCase.fixtures are loaded. By
default (when multi_db=False), fixtures are only loaded into the default database. If multi_db=True,
fixtures are loaded into all databases.

Overriding settings

Warning: Use the functions below to temporarily alter the value of settings in tests. Don’t manipulate django.
conf.settings directly as Django won’t restore the original values after such manipulations.

SimpleTestCase.settings()

For testing purposes it’s often useful to change a setting temporarily and revert to the original value after run-
ning the testing code. For this use case Django provides a standard Python context manager (see PEP 343) called
settings(), which can be used like this:

from django.test import TestCase

class LoginTestCase(TestCase):

def test_login(self):

First check for the default behavior
response = self.client.get('/sekrit/')
self.assertRedirects(response, '/accounts/login/?next=/sekrit/')

Then override the LOGIN_URL setting
with self.settings(LOGIN_URL='/other/login/'):

response = self.client.get('/sekrit/')
self.assertRedirects(response, '/other/login/?next=/sekrit/')

This example will override the LOGIN_URL setting for the code in the with block and reset its value to the previous
state afterwards.

SimpleTestCase.modify_settings()

It can prove unwieldy to redefine settings that contain a list of values. In practice, adding or removing values is often
sufficient. The modify_settings() context manager makes it easy:

3.9. Testing in Django 339

https://www.python.org/dev/peps/pep-0343

Django Documentation, Release 1.10.9.dev20171123183751

from django.test import TestCase

class MiddlewareTestCase(TestCase):

def test_cache_middleware(self):
with self.modify_settings(MIDDLEWARE={

'append': 'django.middleware.cache.FetchFromCacheMiddleware',
'prepend': 'django.middleware.cache.UpdateCacheMiddleware',
'remove': [

'django.contrib.sessions.middleware.SessionMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',

],
}):

response = self.client.get('/')
...

For each action, you can supply either a list of values or a string. When the value already exists in the list, append
and prepend have no effect; neither does remove when the value doesn’t exist.

override_settings()

In case you want to override a setting for a test method, Django provides the override_settings() decorator
(see PEP 318). It’s used like this:

from django.test import TestCase, override_settings

class LoginTestCase(TestCase):

@override_settings(LOGIN_URL='/other/login/')
def test_login(self):

response = self.client.get('/sekrit/')
self.assertRedirects(response, '/other/login/?next=/sekrit/')

The decorator can also be applied to TestCase classes:

from django.test import TestCase, override_settings

@override_settings(LOGIN_URL='/other/login/')
class LoginTestCase(TestCase):

def test_login(self):
response = self.client.get('/sekrit/')
self.assertRedirects(response, '/other/login/?next=/sekrit/')

modify_settings()

Likewise, Django provides the modify_settings() decorator:

from django.test import TestCase, modify_settings

class MiddlewareTestCase(TestCase):

@modify_settings(MIDDLEWARE={
'append': 'django.middleware.cache.FetchFromCacheMiddleware',
'prepend': 'django.middleware.cache.UpdateCacheMiddleware',

})
def test_cache_middleware(self):

340 Chapter 3. Using Django

https://www.python.org/dev/peps/pep-0318

Django Documentation, Release 1.10.9.dev20171123183751

response = self.client.get('/')
...

The decorator can also be applied to test case classes:

from django.test import TestCase, modify_settings

@modify_settings(MIDDLEWARE={
'append': 'django.middleware.cache.FetchFromCacheMiddleware',
'prepend': 'django.middleware.cache.UpdateCacheMiddleware',

})
class MiddlewareTestCase(TestCase):

def test_cache_middleware(self):
response = self.client.get('/')
...

Note: When given a class, these decorators modify the class directly and return it; they don’t create and re-
turn a modified copy of it. So if you try to tweak the above examples to assign the return value to a different
name than LoginTestCase or MiddlewareTestCase, you may be surprised to find that the original test case
classes are still equally affected by the decorator. For a given class, modify_settings() is always applied after
override_settings().

Warning: The settings file contains some settings that are only consulted during initialization of Django
internals. If you change them with override_settings, the setting is changed if you access it via
the django.conf.settings module, however, Django’s internals access it differently. Effectively, using
override_settings() or modify_settings() with these settings is probably not going to do what you
expect it to do.

We do not recommend altering the DATABASES setting. Altering the CACHES setting is possible, but a bit tricky
if you are using internals that make using of caching, like django.contrib.sessions. For example, you
will have to reinitialize the session backend in a test that uses cached sessions and overrides CACHES.

Finally, avoid aliasing your settings as module-level constants as override_settings() won’t work on such
values since they are only evaluated the first time the module is imported.

You can also simulate the absence of a setting by deleting it after settings have been overridden, like this:

@override_settings()
def test_something(self):

del settings.LOGIN_URL
...

When overriding settings, make sure to handle the cases in which your app’s code uses a cache or similar feature that
retains state even if the setting is changed. Django provides the django.test.signals.setting_changed
signal that lets you register callbacks to clean up and otherwise reset state when settings are changed.

Django itself uses this signal to reset various data:

3.9. Testing in Django 341

Django Documentation, Release 1.10.9.dev20171123183751

Overridden settings Data reset
USE_TZ, TIME_ZONE Databases timezone
TEMPLATES Template engines
SERIALIZATION_MODULES Serializers cache
LOCALE_PATHS, LANGUAGE_CODE Default translation and loaded translations
MEDIA_ROOT, DEFAULT_FILE_STORAGE Default file storage

Emptying the test outbox

If you use any of Django’s custom TestCase classes, the test runner will clear the contents of the test email outbox
at the start of each test case.

For more detail on email services during tests, see Email services below.

Assertions

As Python’s normal unittest.TestCase class implements assertion methods such as assertTrue() and
assertEqual(), Django’s custom TestCase class provides a number of custom assertion methods that are useful
for testing Web applications:

The failure messages given by most of these assertion methods can be customized with the msg_prefix argument.
This string will be prefixed to any failure message generated by the assertion. This allows you to provide additional
details that may help you to identify the location and cause of a failure in your test suite.

SimpleTestCase.assertRaisesMessage(expected_exception, expected_message, callable, *args,
**kwargs)

SimpleTestCase.assertRaisesMessage(expected_exception, expected_message)
Asserts that execution of callable raises expected_exception and that expected_message is
found in the exception’s message. Any other outcome is reported as a failure. It’s a simpler version of
unittest.TestCase.assertRaisesRegex() with the difference that expected_message isn’t
treated as a regular expression.

If only the expected_exception and expected_message parameters are given, returns a context man-
ager so that the code being tested can be written inline rather than as a function:

with self.assertRaisesMessage(ValueError, 'invalid literal for int()'):
int('a')

Deprecated since version 1.9: Passing callable as a keyword argument called callable_obj is depre-
cated. Pass the callable as a positional argument instead.

SimpleTestCase.assertFieldOutput(fieldclass, valid, invalid, field_args=None,
field_kwargs=None, empty_value=’‘)

Asserts that a form field behaves correctly with various inputs.

Parameters

• fieldclass – the class of the field to be tested.

• valid – a dictionary mapping valid inputs to their expected cleaned values.

• invalid – a dictionary mapping invalid inputs to one or more raised error messages.

• field_args – the args passed to instantiate the field.

• field_kwargs – the kwargs passed to instantiate the field.

• empty_value – the expected clean output for inputs in empty_values.

342 Chapter 3. Using Django

https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertTrue
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertEqual
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertRaisesRegex

Django Documentation, Release 1.10.9.dev20171123183751

For example, the following code tests that an EmailField accepts a@a.com as a valid email address, but
rejects aaa with a reasonable error message:

self.assertFieldOutput(EmailField, {'a@a.com': 'a@a.com'}, {'aaa': ['Enter a
→˓valid email address.']})

SimpleTestCase.assertFormError(response, form, field, errors, msg_prefix=’‘)
Asserts that a field on a form raises the provided list of errors when rendered on the form.

form is the name the Form instance was given in the template context.

field is the name of the field on the form to check. If field has a value of None, non-field errors (errors
you can access via form.non_field_errors()) will be checked.

errors is an error string, or a list of error strings, that are expected as a result of form validation.

SimpleTestCase.assertFormsetError(response, formset, form_index, field, errors, msg_prefix=’‘)
Asserts that the formset raises the provided list of errors when rendered.

formset is the name the Formset instance was given in the template context.

form_index is the number of the form within the Formset. If form_index has a value of None, non-form
errors (errors you can access via formset.non_form_errors()) will be checked.

field is the name of the field on the form to check. If field has a value of None, non-field errors (errors
you can access via form.non_field_errors()) will be checked.

errors is an error string, or a list of error strings, that are expected as a result of form validation.

SimpleTestCase.assertContains(response, text, count=None, status_code=200, msg_prefix=’‘,
html=False)

Asserts that a Response instance produced the given status_code and that text appears in the content
of the response. If count is provided, text must occur exactly count times in the response.

Set html to True to handle text as HTML. The comparison with the response content will be based on
HTML semantics instead of character-by-character equality. Whitespace is ignored in most cases, attribute
ordering is not significant. See assertHTMLEqual() for more details.

SimpleTestCase.assertNotContains(response, text, status_code=200, msg_prefix=’‘, html=False)
Asserts that a Response instance produced the given status_code and that text does not appear in the
content of the response.

Set html to True to handle text as HTML. The comparison with the response content will be based on
HTML semantics instead of character-by-character equality. Whitespace is ignored in most cases, attribute
ordering is not significant. See assertHTMLEqual() for more details.

SimpleTestCase.assertTemplateUsed(response, template_name, msg_prefix=’‘, count=None)
Asserts that the template with the given name was used in rendering the response.

The name is a string such as 'admin/index.html'.

The count argument is an integer indicating the number of times the template should be rendered. Default is
None, meaning that the template should be rendered one or more times.

You can use this as a context manager, like this:

with self.assertTemplateUsed('index.html'):
render_to_string('index.html')

with self.assertTemplateUsed(template_name='index.html'):
render_to_string('index.html')

SimpleTestCase.assertTemplateNotUsed(response, template_name, msg_prefix=’‘)
Asserts that the template with the given name was not used in rendering the response.

3.9. Testing in Django 343

Django Documentation, Release 1.10.9.dev20171123183751

You can use this as a context manager in the same way as assertTemplateUsed().

SimpleTestCase.assertRedirects(response, expected_url, status_code=302,
target_status_code=200, msg_prefix=’‘,
fetch_redirect_response=True)

Asserts that the response returned a status_code redirect status, redirected to expected_url (including
any GET data), and that the final page was received with target_status_code.

If your request used the follow argument, the expected_url and target_status_code will be the
url and status code for the final point of the redirect chain.

If fetch_redirect_response is False, the final page won’t be loaded. Since the test client can’t fetch
external URLs, this is particularly useful if expected_url isn’t part of your Django app.

Scheme is handled correctly when making comparisons between two URLs. If there isn’t any scheme specified
in the location where we are redirected to, the original request’s scheme is used. If present, the scheme in
expected_url is the one used to make the comparisons to.

Deprecated since version 1.9: The host argument is deprecated, as redirections are no longer forced to be
absolute URLs.

SimpleTestCase.assertHTMLEqual(html1, html2, msg=None)
Asserts that the strings html1 and html2 are equal. The comparison is based on HTML semantics. The
comparison takes following things into account:

• Whitespace before and after HTML tags is ignored.

• All types of whitespace are considered equivalent.

• All open tags are closed implicitly, e.g. when a surrounding tag is closed or the HTML document ends.

• Empty tags are equivalent to their self-closing version.

• The ordering of attributes of an HTML element is not significant.

• Attributes without an argument are equal to attributes that equal in name and value (see the examples).

The following examples are valid tests and don’t raise any AssertionError:

self.assertHTMLEqual(
'<p>Hello world!</p>',
'''<p>

Hello world!
</p>'''

)
self.assertHTMLEqual(

'<input type="checkbox" checked="checked" id="id_accept_terms" />',
'<input id="id_accept_terms" type="checkbox" checked>'

)

html1 and html2 must be valid HTML. An AssertionError will be raised if one of them cannot be
parsed.

Output in case of error can be customized with the msg argument.

SimpleTestCase.assertHTMLNotEqual(html1, html2, msg=None)
Asserts that the strings html1 and html2 are not equal. The comparison is based on HTML semantics. See
assertHTMLEqual() for details.

html1 and html2 must be valid HTML. An AssertionError will be raised if one of them cannot be
parsed.

Output in case of error can be customized with the msg argument.

344 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

SimpleTestCase.assertXMLEqual(xml1, xml2, msg=None)
Asserts that the strings xml1 and xml2 are equal. The comparison is based on XML semantics. Similarly
to assertHTMLEqual(), the comparison is made on parsed content, hence only semantic differences are
considered, not syntax differences. When invalid XML is passed in any parameter, an AssertionError is
always raised, even if both string are identical.

Output in case of error can be customized with the msg argument.

SimpleTestCase.assertXMLNotEqual(xml1, xml2, msg=None)
Asserts that the strings xml1 and xml2 are not equal. The comparison is based on XML semantics. See
assertXMLEqual() for details.

Output in case of error can be customized with the msg argument.

SimpleTestCase.assertInHTML(needle, haystack, count=None, msg_prefix=’‘)
Asserts that the HTML fragment needle is contained in the haystack one.

If the count integer argument is specified, then additionally the number of needle occurrences will be strictly
verified.

Whitespace in most cases is ignored, and attribute ordering is not significant. The passed-in arguments must be
valid HTML.

SimpleTestCase.assertJSONEqual(raw, expected_data, msg=None)
Asserts that the JSON fragments raw and expected_data are equal. Usual JSON non-significant whitespace
rules apply as the heavyweight is delegated to the json library.

Output in case of error can be customized with the msg argument.

SimpleTestCase.assertJSONNotEqual(raw, expected_data, msg=None)
Asserts that the JSON fragments raw and expected_data are not equal. See assertJSONEqual() for
further details.

Output in case of error can be customized with the msg argument.

TransactionTestCase.assertQuerysetEqual(qs, values, transform=repr, ordered=True,
msg=None)

Asserts that a queryset qs returns a particular list of values values.

The comparison of the contents of qs and values is performed using the function transform; by default,
this means that the repr() of each value is compared. Any other callable can be used if repr() doesn’t
provide a unique or helpful comparison.

By default, the comparison is also ordering dependent. If qs doesn’t provide an implicit ordering, you can set the
ordered parameter to False, which turns the comparison into a collections.Counter comparison. If
the order is undefined (if the given qs isn’t ordered and the comparison is against more than one ordered values),
a ValueError is raised.

Output in case of error can be customized with the msg argument.

TransactionTestCase.assertNumQueries(num, func, *args, **kwargs)
Asserts that when func is called with *args and **kwargs that num database queries are executed.

If a "using" key is present in kwargs it is used as the database alias for which to check the number of queries.
If you wish to call a function with a using parameter you can do it by wrapping the call with a lambda to add
an extra parameter:

self.assertNumQueries(7, lambda: my_function(using=7))

You can also use this as a context manager:

3.9. Testing in Django 345

https://docs.python.org/3/library/json.html#module-json

Django Documentation, Release 1.10.9.dev20171123183751

with self.assertNumQueries(2):
Person.objects.create(name="Aaron")
Person.objects.create(name="Daniel")

Tagging tests

You can tag your tests so you can easily run a particular subset. For example, you might label fast or slow tests:

from django.test import tag

class SampleTestCase(TestCase):

@tag('fast')
def test_fast(self):

...

@tag('slow')
def test_slow(self):

...

@tag('slow', 'core')
def test_slow_but_core(self):

...

You can also tag a test case:

@tag('slow', 'core')
class SampleTestCase(TestCase):

...

Then you can choose which tests to run. For example, to run only fast tests:

$./manage.py test --tag=fast

Or to run fast tests and the core one (even though it’s slow):

$./manage.py test --tag=fast --tag=core

You can also exclude tests by tag. To run core tests if they are not slow:

$./manage.py test --tag=core --exclude-tag=slow

test --exclude-tag has precedence over test --tag, so if a test has two tags and you select one of them
and exclude the other, the test won’t be run.

Email services

If any of your Django views send email using Django’s email functionality, you probably don’t want to send email
each time you run a test using that view. For this reason, Django’s test runner automatically redirects all Django-sent
email to a dummy outbox. This lets you test every aspect of sending email – from the number of messages sent to the
contents of each message – without actually sending the messages.

The test runner accomplishes this by transparently replacing the normal email backend with a testing backend. (Don’t
worry – this has no effect on any other email senders outside of Django, such as your machine’s mail server, if you’re
running one.)

346 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

django.core.mail.outbox

During test running, each outgoing email is saved in django.core.mail.outbox. This is a simple list of all
EmailMessage instances that have been sent. The outbox attribute is a special attribute that is created only when
the locmem email backend is used. It doesn’t normally exist as part of the django.core.mail module and you
can’t import it directly. The code below shows how to access this attribute correctly.

Here’s an example test that examines django.core.mail.outbox for length and contents:

from django.core import mail
from django.test import TestCase

class EmailTest(TestCase):
def test_send_email(self):

Send message.
mail.send_mail(

'Subject here', 'Here is the message.',
'from@example.com', ['to@example.com'],
fail_silently=False,

)

Test that one message has been sent.
self.assertEqual(len(mail.outbox), 1)

Verify that the subject of the first message is correct.
self.assertEqual(mail.outbox[0].subject, 'Subject here')

As noted previously, the test outbox is emptied at the start of every test in a Django *TestCase. To empty the outbox
manually, assign the empty list to mail.outbox:

from django.core import mail

Empty the test outbox
mail.outbox = []

Management Commands

Management commands can be tested with the call_command() function. The output can be redirected into a
StringIO instance:

from django.core.management import call_command
from django.test import TestCase
from django.utils.six import StringIO

class ClosepollTest(TestCase):
def test_command_output(self):

out = StringIO()
call_command('closepoll', stdout=out)
self.assertIn('Expected output', out.getvalue())

Skipping tests

The unittest library provides the @skipIf and @skipUnless decorators to allow you to skip tests if you know
ahead of time that those tests are going to fail under certain conditions.

3.9. Testing in Django 347

https://docs.python.org/3/library/unittest.html#unittest.skipIf
https://docs.python.org/3/library/unittest.html#unittest.skipUnless

Django Documentation, Release 1.10.9.dev20171123183751

For example, if your test requires a particular optional library in order to succeed, you could decorate the test case
with @skipIf. Then, the test runner will report that the test wasn’t executed and why, instead of failing the test or
omitting the test altogether.

To supplement these test skipping behaviors, Django provides two additional skip decorators. Instead of testing a
generic boolean, these decorators check the capabilities of the database, and skip the test if the database doesn’t
support a specific named feature.

The decorators use a string identifier to describe database features. This string corresponds to attributes of the
database connection features class. See django.db.backends.BaseDatabaseFeatures class for a full list
of database features that can be used as a basis for skipping tests.

skipIfDBFeature(*feature_name_strings)

Skip the decorated test or TestCase if all of the named database features are supported.

For example, the following test will not be executed if the database supports transactions (e.g., it would not run under
PostgreSQL, but it would under MySQL with MyISAM tables):

class MyTests(TestCase):
@skipIfDBFeature('supports_transactions')
def test_transaction_behavior(self):

... conditional test code
pass

skipUnlessDBFeature(*feature_name_strings)

Skip the decorated test or TestCase if any of the named database features are not supported.

For example, the following test will only be executed if the database supports transactions (e.g., it would run under
PostgreSQL, but not under MySQL with MyISAM tables):

class MyTests(TestCase):
@skipUnlessDBFeature('supports_transactions')
def test_transaction_behavior(self):

... conditional test code
pass

3.9.3 Advanced testing topics

The request factory

class RequestFactory

The RequestFactory shares the same API as the test client. However, instead of behaving like a browser, the
RequestFactory provides a way to generate a request instance that can be used as the first argument to any view. This
means you can test a view function the same way as you would test any other function – as a black box, with exactly
known inputs, testing for specific outputs.

The API for the RequestFactory is a slightly restricted subset of the test client API:

• It only has access to the HTTP methods get(), post(), put(), delete(), head(), options(), and
trace().

• These methods accept all the same arguments except for follows. Since this is just a factory for producing
requests, it’s up to you to handle the response.

• It does not support middleware. Session and authentication attributes must be supplied by the test itself if
required for the view to function properly.

348 Chapter 3. Using Django

https://docs.python.org/3/library/unittest.html#unittest.skipIf

Django Documentation, Release 1.10.9.dev20171123183751

Example

The following is a simple unit test using the request factory:

from django.contrib.auth.models import AnonymousUser, User
from django.test import TestCase, RequestFactory

from .views import MyView, my_view

class SimpleTest(TestCase):
def setUp(self):

Every test needs access to the request factory.
self.factory = RequestFactory()
self.user = User.objects.create_user(

username='jacob', email='jacob@...', password='top_secret')

def test_details(self):
Create an instance of a GET request.
request = self.factory.get('/customer/details')

Recall that middleware are not supported. You can simulate a
logged-in user by setting request.user manually.
request.user = self.user

Or you can simulate an anonymous user by setting request.user to
an AnonymousUser instance.
request.user = AnonymousUser()

Test my_view() as if it were deployed at /customer/details
response = my_view(request)
Use this syntax for class-based views.
response = MyView.as_view()(request)
self.assertEqual(response.status_code, 200)

Tests and multiple databases

Testing primary/replica configurations

If you’re testing a multiple database configuration with primary/replica (referred to as master/slave by some databases)
replication, this strategy of creating test databases poses a problem. When the test databases are created, there won’t
be any replication, and as a result, data created on the primary won’t be seen on the replica.

To compensate for this, Django allows you to define that a database is a test mirror. Consider the following (simplified)
example database configuration:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.mysql',
'NAME': 'myproject',
'HOST': 'dbprimary',
... plus some other settings

},
'replica': {

'ENGINE': 'django.db.backends.mysql',
'NAME': 'myproject',
'HOST': 'dbreplica',

3.9. Testing in Django 349

Django Documentation, Release 1.10.9.dev20171123183751

'TEST': {
'MIRROR': 'default',

},
... plus some other settings

}
}

In this setup, we have two database servers: dbprimary, described by the database alias default, and
dbreplica described by the alias replica. As you might expect, dbreplica has been configured by the
database administrator as a read replica of dbprimary, so in normal activity, any write to default will appear on
replica.

If Django created two independent test databases, this would break any tests that expected replication to occur. How-
ever, the replica database has been configured as a test mirror (using the MIRROR test setting), indicating that
under testing, replica should be treated as a mirror of default.

When the test environment is configured, a test version of replica will not be created. Instead the connection to
replica will be redirected to point at default. As a result, writes to default will appear on replica – but
because they are actually the same database, not because there is data replication between the two databases.

Controlling creation order for test databases

By default, Django will assume all databases depend on the default database and therefore always create the
default database first. However, no guarantees are made on the creation order of any other databases in your test
setup.

If your database configuration requires a specific creation order, you can specify the dependencies that exist using the
DEPENDENCIES test setting. Consider the following (simplified) example database configuration:

DATABASES = {
'default': {

... db settings
'TEST': {

'DEPENDENCIES': ['diamonds'],
},

},
'diamonds': {

... db settings
'TEST': {

'DEPENDENCIES': [],
},

},
'clubs': {

... db settings
'TEST': {

'DEPENDENCIES': ['diamonds'],
},

},
'spades': {

... db settings
'TEST': {

'DEPENDENCIES': ['diamonds', 'hearts'],
},

},
'hearts': {

... db settings
'TEST': {

350 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

'DEPENDENCIES': ['diamonds', 'clubs'],
},

}
}

Under this configuration, the diamonds database will be created first, as it is the only database alias without de-
pendencies. The default and clubs alias will be created next (although the order of creation of this pair is not
guaranteed), then hearts, and finally spades.

If there are any circular dependencies in the DEPENDENCIES definition, an ImproperlyConfigured exception
will be raised.

Advanced features of TransactionTestCase

TransactionTestCase.available_apps

Warning: This attribute is a private API. It may be changed or removed without a deprecation period in the
future, for instance to accommodate changes in application loading.

It’s used to optimize Django’s own test suite, which contains hundreds of models but no relations between
models in different applications.

By default, available_apps is set to None. After each test, Django calls flush to reset the database
state. This empties all tables and emits the post_migrate signal, which re-creates one content type and three
permissions for each model. This operation gets expensive proportionally to the number of models.

Setting available_apps to a list of applications instructs Django to behave as if only the models from these
applications were available. The behavior of TransactionTestCase changes as follows:

• post_migrate is fired before each test to create the content types and permissions for each model in
available apps, in case they’re missing.

• After each test, Django empties only tables corresponding to models in available apps. However,
at the database level, truncation may cascade to related models in unavailable apps. Furthermore
post_migrate isn’t fired; it will be fired by the next TransactionTestCase, after the correct
set of applications is selected.

Since the database isn’t fully flushed, if a test creates instances of models not included in available_apps,
they will leak and they may cause unrelated tests to fail. Be careful with tests that use sessions; the default
session engine stores them in the database.

Since post_migrate isn’t emitted after flushing the database, its state after a TransactionTestCase
isn’t the same as after a TestCase: it’s missing the rows created by listeners to post_migrate. Considering
the order in which tests are executed, this isn’t an issue, provided either all TransactionTestCase in a
given test suite declare available_apps, or none of them.

available_apps is mandatory in Django’s own test suite.

TransactionTestCase.reset_sequences
Setting reset_sequences = True on a TransactionTestCase will make sure sequences are always
reset before the test run:

class TestsThatDependsOnPrimaryKeySequences(TransactionTestCase):
reset_sequences = True

3.9. Testing in Django 351

Django Documentation, Release 1.10.9.dev20171123183751

def test_animal_pk(self):
lion = Animal.objects.create(name="lion", sound="roar")
lion.pk is guaranteed to always be 1
self.assertEqual(lion.pk, 1)

Unless you are explicitly testing primary keys sequence numbers, it is recommended that you do not hard code
primary key values in tests.

Using reset_sequences = True will slow down the test, since the primary key reset is an relatively
expensive database operation.

Using the Django test runner to test reusable applications

If you are writing a reusable application you may want to use the Django test runner to run your own test suite and
thus benefit from the Django testing infrastructure.

A common practice is a tests directory next to the application code, with the following structure:

runtests.py
polls/

__init__.py
models.py
...

tests/
__init__.py
models.py
test_settings.py
tests.py

Let’s take a look inside a couple of those files:

runtests.py

#!/usr/bin/env python
import os
import sys

import django
from django.conf import settings
from django.test.utils import get_runner

if __name__ == "__main__":
os.environ['DJANGO_SETTINGS_MODULE'] = 'tests.test_settings'
django.setup()
TestRunner = get_runner(settings)
test_runner = TestRunner()
failures = test_runner.run_tests(["tests"])
sys.exit(bool(failures))

This is the script that you invoke to run the test suite. It sets up the Django environment, creates the test database and
runs the tests.

For the sake of clarity, this example contains only the bare minimum necessary to use the Django test runner. You may
want to add command-line options for controlling verbosity, passing in specific test labels to run, etc.

tests/test_settings.py

SECRET_KEY = 'fake-key'
INSTALLED_APPS = [

352 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

"tests",
]

This file contains the Django settings required to run your app’s tests.

Again, this is a minimal example; your tests may require additional settings to run.

Since the tests package is included in INSTALLED_APPS when running your tests, you can define test-only models
in its models.py file.

Using different testing frameworks

Clearly, unittest is not the only Python testing framework. While Django doesn’t provide explicit support for
alternative frameworks, it does provide a way to invoke tests constructed for an alternative framework as if they were
normal Django tests.

When you run ./manage.py test, Django looks at the TEST_RUNNER setting to determine what to do. By
default, TEST_RUNNER points to 'django.test.runner.DiscoverRunner'. This class defines the default
Django testing behavior. This behavior involves:

1. Performing global pre-test setup.

2. Looking for tests in any file below the current directory whose name matches the pattern test*.py.

3. Creating the test databases.

4. Running migrate to install models and initial data into the test databases.

5. Running the tests that were found.

6. Destroying the test databases.

7. Performing global post-test teardown.

If you define your own test runner class and point TEST_RUNNER at that class, Django will execute your test runner
whenever you run ./manage.py test. In this way, it is possible to use any test framework that can be executed
from Python code, or to modify the Django test execution process to satisfy whatever testing requirements you may
have.

Defining a test runner

A test runner is a class defining a run_tests() method. Django ships with a DiscoverRunner class that
defines the default Django testing behavior. This class defines the run_tests() entry point, plus a selection of
other methods that are used to by run_tests() to set up, execute and tear down the test suite.

class DiscoverRunner(pattern=’test*.py’, top_level=None, verbosity=1, interactive=True, failfast=False,
keepdb=False, reverse=False, debug_sql=False, **kwargs)

DiscoverRunner will search for tests in any file matching pattern.

top_level can be used to specify the directory containing your top-level Python modules. Usually Django
can figure this out automatically, so it’s not necessary to specify this option. If specified, it should generally be
the directory containing your manage.py file.

verbosity determines the amount of notification and debug information that will be printed to the console;
0 is no output, 1 is normal output, and 2 is verbose output.

If interactive is True, the test suite has permission to ask the user for instructions when the test suite is
executed. An example of this behavior would be asking for permission to delete an existing test database. If
interactive is False, the test suite must be able to run without any manual intervention.

If failfast is True, the test suite will stop running after the first test failure is detected.

3.9. Testing in Django 353

https://docs.python.org/3/library/unittest.html#module-unittest

Django Documentation, Release 1.10.9.dev20171123183751

If keepdb is True, the test suite will use the existing database, or create one if necessary. If False, a new
database will be created, prompting the user to remove the existing one, if present.

If reverse is True, test cases will be executed in the opposite order. This could be useful to debug tests that
aren’t properly isolated and have side effects. Grouping by test class is preserved when using this option.

If debug_sql is True, failing test cases will output SQL queries logged to the django.db.backends logger as
well as the traceback. If verbosity is 2, then queries in all tests are output.

Django may, from time to time, extend the capabilities of the test runner by adding new arguments. The
**kwargs declaration allows for this expansion. If you subclass DiscoverRunner or write your own
test runner, ensure it accepts **kwargs.

Your test runner may also define additional command-line options. Create or override an
add_arguments(cls, parser) class method and add custom arguments by calling parser.
add_argument() inside the method, so that the test command will be able to use those arguments.

Attributes

DiscoverRunner.test_suite
The class used to build the test suite. By default it is set to unittest.TestSuite. This can be overridden
if you wish to implement different logic for collecting tests.

DiscoverRunner.test_runner
This is the class of the low-level test runner which is used to execute the individual tests and format the results.
By default it is set to unittest.TextTestRunner. Despite the unfortunate similarity in naming conven-
tions, this is not the same type of class as DiscoverRunner, which covers a broader set of responsibilities.
You can override this attribute to modify the way tests are run and reported.

DiscoverRunner.test_loader
This is the class that loads tests, whether from TestCases or modules or otherwise and bundles them into test
suites for the runner to execute. By default it is set to unittest.defaultTestLoader. You can override
this attribute if your tests are going to be loaded in unusual ways.

Methods

DiscoverRunner.run_tests(test_labels, extra_tests=None, **kwargs)
Run the test suite.

test_labels allows you to specify which tests to run and supports several formats (see
DiscoverRunner.build_suite() for a list of supported formats).

extra_tests is a list of extra TestCase instances to add to the suite that is executed by the test runner.
These extra tests are run in addition to those discovered in the modules listed in test_labels.

This method should return the number of tests that failed.

classmethod DiscoverRunner.add_arguments(parser)
Override this class method to add custom arguments accepted by the test management command. See
argparse.ArgumentParser.add_argument() for details about adding arguments to a parser.

DiscoverRunner.setup_test_environment(**kwargs)
Sets up the test environment by calling setup_test_environment() and setting DEBUG to False.

DiscoverRunner.build_suite(test_labels, extra_tests=None, **kwargs)
Constructs a test suite that matches the test labels provided.

test_labels is a list of strings describing the tests to be run. A test label can take one of four forms:

354 Chapter 3. Using Django

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument

Django Documentation, Release 1.10.9.dev20171123183751

• path.to.test_module.TestCase.test_method – Run a single test method in a test case.

• path.to.test_module.TestCase – Run all the test methods in a test case.

• path.to.module – Search for and run all tests in the named Python package or module.

• path/to/directory – Search for and run all tests below the named directory.

If test_labels has a value of None, the test runner will search for tests in all files below the current directory
whose names match its pattern (see above).

extra_tests is a list of extra TestCase instances to add to the suite that is executed by the test runner.
These extra tests are run in addition to those discovered in the modules listed in test_labels.

Returns a TestSuite instance ready to be run.

DiscoverRunner.setup_databases(**kwargs)
Creates the test databases.

Returns a data structure that provides enough detail to undo the changes that have been made. This data will be
provided to the teardown_databases() function at the conclusion of testing.

DiscoverRunner.run_suite(suite, **kwargs)
Runs the test suite.

Returns the result produced by the running the test suite.

DiscoverRunner.teardown_databases(old_config, **kwargs)
Destroys the test databases, restoring pre-test conditions.

old_config is a data structure defining the changes in the database configuration that need to be reversed. It
is the return value of the setup_databases() method.

DiscoverRunner.teardown_test_environment(**kwargs)
Restores the pre-test environment.

DiscoverRunner.suite_result(suite, result, **kwargs)
Computes and returns a return code based on a test suite, and the result from that test suite.

Testing utilities

django.test.utils

To assist in the creation of your own test runner, Django provides a number of utility methods in the django.test.
utils module.

setup_test_environment()
Performs global pre-test setup, such as installing instrumentation for the template rendering system and setting
up the dummy email outbox.

teardown_test_environment()
Performs global post-test teardown, such as removing instrumentation from the template system and restoring
normal email services.

django.db.connection.creation

The creation module of the database backend also provides some utilities that can be useful during testing.

3.9. Testing in Django 355

Django Documentation, Release 1.10.9.dev20171123183751

create_test_db(verbosity=1, autoclobber=False, serialize=True, keepdb=False)
Creates a new test database and runs migrate against it.

verbosity has the same behavior as in run_tests().

autoclobber describes the behavior that will occur if a database with the same name as the test database is
discovered:

• If autoclobber is False, the user will be asked to approve destroying the existing database. sys.
exit is called if the user does not approve.

• If autoclobber is True, the database will be destroyed without consulting the user.

serialize determines if Django serializes the database into an in-memory JSON string before running tests
(used to restore the database state between tests if you don’t have transactions). You can set this to False to
speed up creation time if you don’t have any test classes with serialized_rollback=True.

If you are using the default test runner, you can control this with the the SERIALIZE entry in the TEST
dictionary.

keepdb determines if the test run should use an existing database, or create a new one. If True, the existing
database will be used, or created if not present. If False, a new database will be created, prompting the user to
remove the existing one, if present.

Returns the name of the test database that it created.

create_test_db() has the side effect of modifying the value of NAME in DATABASES to match the name
of the test database.

destroy_test_db(old_database_name, verbosity=1, keepdb=False)
Destroys the database whose name is the value of NAME in DATABASES, and sets NAME to the value of
old_database_name.

The verbosity argument has the same behavior as for DiscoverRunner.

If the keepdb argument is True, then the connection to the database will be closed, but the database will not
be destroyed.

Integration with coverage.py

Code coverage describes how much source code has been tested. It shows which parts of your code are being exercised
by tests and which are not. It’s an important part of testing applications, so it’s strongly recommended to check the
coverage of your tests.

Django can be easily integrated with coverage.py, a tool for measuring code coverage of Python programs. First,
install coverage.py. Next, run the following from your project folder containing manage.py:

coverage run --source='.' manage.py test myapp

This runs your tests and collects coverage data of the executed files in your project. You can see a report of this data
by typing following command:

coverage report

Note that some Django code was executed while running tests, but it is not listed here because of the source flag
passed to the previous command.

For more options like annotated HTML listings detailing missed lines, see the coverage.py docs.

356 Chapter 3. Using Django

http://nedbatchelder.com/code/coverage/
https://pypi.python.org/pypi/coverage
http://nedbatchelder.com/code/coverage/

Django Documentation, Release 1.10.9.dev20171123183751

3.10 User authentication in Django

3.10.1 Using the Django authentication system

This document explains the usage of Django’s authentication system in its default configuration. This configuration
has evolved to serve the most common project needs, handling a reasonably wide range of tasks, and has a careful
implementation of passwords and permissions. For projects where authentication needs differ from the default, Django
supports extensive extension and customization of authentication.

Django authentication provides both authentication and authorization together and is generally referred to as the au-
thentication system, as these features are somewhat coupled.

User objects

User objects are the core of the authentication system. They typically represent the people interacting with your site
and are used to enable things like restricting access, registering user profiles, associating content with creators etc.
Only one class of user exists in Django’s authentication framework, i.e., 'superusers' or admin 'staff' users
are just user objects with special attributes set, not different classes of user objects.

The primary attributes of the default user are:

• username

• password

• email

• first_name

• last_name

See the full API documentation for full reference, the documentation that follows is more task oriented.

Creating users

The most direct way to create users is to use the included create_user() helper function:

>>> from django.contrib.auth.models import User
>>> user = User.objects.create_user('john', 'lennon@thebeatles.com', 'johnpassword')

At this point, user is a User object that has already been saved
to the database. You can continue to change its attributes
if you want to change other fields.
>>> user.last_name = 'Lennon'
>>> user.save()

If you have the Django admin installed, you can also create users interactively.

Creating superusers

Create superusers using the createsuperuser command:

$ python manage.py createsuperuser --username=joe --email=joe@example.com

You will be prompted for a password. After you enter one, the user will be created immediately. If you leave off the
--username or --email options, it will prompt you for those values.

3.10. User authentication in Django 357

Django Documentation, Release 1.10.9.dev20171123183751

Changing passwords

Django does not store raw (clear text) passwords on the user model, but only a hash (see documentation of how
passwords are managed for full details). Because of this, do not attempt to manipulate the password attribute of the
user directly. This is why a helper function is used when creating a user.

To change a user’s password, you have several options:

manage.py changepassword *username* offers a method of changing a user’s password from the com-
mand line. It prompts you to change the password of a given user which you must enter twice. If they both match,
the new password will be changed immediately. If you do not supply a user, the command will attempt to change the
password whose username matches the current system user.

You can also change a password programmatically, using set_password():

>>> from django.contrib.auth.models import User
>>> u = User.objects.get(username='john')
>>> u.set_password('new password')
>>> u.save()

If you have the Django admin installed, you can also change user’s passwords on the authentication system’s admin
pages.

Django also provides views and forms that may be used to allow users to change their own passwords.

Changing a user’s password will log out all their sessions. See Session invalidation on password change for details.

Authenticating users

authenticate(**credentials)
Use authenticate() to verify a set of credentials. It takes credentials as keyword arguments, username
and password for the default case, checks them against each authentication backend, and returns a User
object if the credentials are valid for a backend. If the credentials aren’t valid for any backend or if a backend
raises PermissionDenied, it returns None. For example:

from django.contrib.auth import authenticate
user = authenticate(username='john', password='secret')
if user is not None:

A backend authenticated the credentials
else:

No backend authenticated the credentials

Note: This is a low level way to authenticate a set of credentials; for example, it’s used by the
RemoteUserMiddleware. Unless you are writing your own authentication system, you probably won’t
use this. Rather if you are looking for a way to limit access to logged in users, see the login_required()
decorator.

Permissions and Authorization

Django comes with a simple permissions system. It provides a way to assign permissions to specific users and groups
of users.

It’s used by the Django admin site, but you’re welcome to use it in your own code.

The Django admin site uses permissions as follows:

358 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

• Access to view the “add” form and add an object is limited to users with the “add” permission for that type of
object.

• Access to view the change list, view the “change” form and change an object is limited to users with the “change”
permission for that type of object.

• Access to delete an object is limited to users with the “delete” permission for that type of object.

Permissions can be set not only per type of object, but also per specific object instance. By using the
has_add_permission(), has_change_permission() and has_delete_permission() methods
provided by the ModelAdmin class, it is possible to customize permissions for different object instances of the
same type.

User objects have two many-to-many fields: groups and user_permissions. User objects can access their
related objects in the same way as any other Django model:

myuser.groups.set([group_list])
myuser.groups.add(group, group, ...)
myuser.groups.remove(group, group, ...)
myuser.groups.clear()
myuser.user_permissions.set([permission_list])
myuser.user_permissions.add(permission, permission, ...)
myuser.user_permissions.remove(permission, permission, ...)
myuser.user_permissions.clear()

Default permissions

When django.contrib.auth is listed in your INSTALLED_APPS setting, it will ensure that three default per-
missions – add, change and delete – are created for each Django model defined in one of your installed applications.

These permissions will be created when you run manage.py migrate; the first time you run migrate after
adding django.contrib.auth to INSTALLED_APPS, the default permissions will be created for all previously-
installed models, as well as for any new models being installed at that time. Afterward, it will create default permis-
sions for new models each time you run manage.py migrate (the function that creates permissions is connected
to the post_migrate signal).

Assuming you have an application with an app_label foo and a model named Bar, to test for basic permissions
you should use:

• add: user.has_perm('foo.add_bar')

• change: user.has_perm('foo.change_bar')

• delete: user.has_perm('foo.delete_bar')

The Permission model is rarely accessed directly.

Groups

django.contrib.auth.models.Group models are a generic way of categorizing users so you can apply
permissions, or some other label, to those users. A user can belong to any number of groups.

A user in a group automatically has the permissions granted to that group. For example, if the group Site editors
has the permission can_edit_home_page, any user in that group will have that permission.

Beyond permissions, groups are a convenient way to categorize users to give them some label, or extended functional-
ity. For example, you could create a group 'Special users', and you could write code that could, say, give them
access to a members-only portion of your site, or send them members-only email messages.

3.10. User authentication in Django 359

Django Documentation, Release 1.10.9.dev20171123183751

Programmatically creating permissions

While custom permissions can be defined within a model’s Meta class, you can also create permissions directly. For
example, you can create the can_publish permission for a BlogPost model in myapp:

from myapp.models import BlogPost
from django.contrib.auth.models import Permission
from django.contrib.contenttypes.models import ContentType

content_type = ContentType.objects.get_for_model(BlogPost)
permission = Permission.objects.create(

codename='can_publish',
name='Can Publish Posts',
content_type=content_type,

)

The permission can then be assigned to a User via its user_permissions attribute or to a Group via its
permissions attribute.

Permission caching

The ModelBackend caches permissions on the user object after the first time they need to be fetched for a permis-
sions check. This is typically fine for the request-response cycle since permissions aren’t typically checked immedi-
ately after they are added (in the admin, for example). If you are adding permissions and checking them immediately
afterward, in a test or view for example, the easiest solution is to re-fetch the user from the database. For example:

from django.contrib.auth.models import Permission, User
from django.shortcuts import get_object_or_404

def user_gains_perms(request, user_id):
user = get_object_or_404(User, pk=user_id)
any permission check will cache the current set of permissions
user.has_perm('myapp.change_bar')

permission = Permission.objects.get(codename='change_bar')
user.user_permissions.add(permission)

Checking the cached permission set
user.has_perm('myapp.change_bar') # False

Request new instance of User
Be aware that user.refresh_from_db() won't clear the cache.
user = get_object_or_404(User, pk=user_id)

Permission cache is repopulated from the database
user.has_perm('myapp.change_bar') # True

...

Authentication in Web requests

Django uses sessions and middleware to hook the authentication system into request objects.

These provide a request.user attribute on every request which represents the current user. If the current user has
not logged in, this attribute will be set to an instance of AnonymousUser, otherwise it will be an instance of User.

360 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

You can tell them apart with is_authenticated, like so:

if request.user.is_authenticated:
Do something for authenticated users.
...

else:
Do something for anonymous users.
...

How to log a user in

If you have an authenticated user you want to attach to the current session - this is done with a login() function.

login(request, user, backend=None)
To log a user in, from a view, use login(). It takes an HttpRequest object and a User object. login()
saves the user’s ID in the session, using Django’s session framework.

Note that any data set during the anonymous session is retained in the session after a user logs in.

This example shows how you might use both authenticate() and login():

from django.contrib.auth import authenticate, login

def my_view(request):
username = request.POST['username']
password = request.POST['password']
user = authenticate(username=username, password=password)
if user is not None:

login(request, user)
Redirect to a success page.
...

else:
Return an 'invalid login' error message.
...

In older versions, when you’re manually logging a user in, you must successfully authenticate the user with
authenticate() before you call login(). Now you can set the backend using the new backend argu-
ment.

Selecting the authentication backend

When a user logs in, the user’s ID and the backend that was used for authentication are saved in the user’s session.
This allows the same authentication backend to fetch the user’s details on a future request. The authentication backend
to save in the session is selected as follows:

1. Use the value of the optional backend argument, if provided.

2. Use the value of the user.backend attribute, if present. This allows pairing authenticate() and
login(): authenticate() sets the user.backend attribute on the user object it returns.

3. Use the backend in AUTHENTICATION_BACKENDS, if there is only one.

4. Otherwise, raise an exception.

In cases 1 and 2, the value of the backend argument or the user.backend attribute should be a dotted import path
string (like that found in AUTHENTICATION_BACKENDS), not the actual backend class.

3.10. User authentication in Django 361

Django Documentation, Release 1.10.9.dev20171123183751

How to log a user out

logout(request)
To log out a user who has been logged in via django.contrib.auth.login(), use django.
contrib.auth.logout() within your view. It takes an HttpRequest object and has no return value.
Example:

from django.contrib.auth import logout

def logout_view(request):
logout(request)
Redirect to a success page.

Note that logout() doesn’t throw any errors if the user wasn’t logged in.

When you call logout(), the session data for the current request is completely cleaned out. All existing data
is removed. This is to prevent another person from using the same Web browser to log in and have access to
the previous user’s session data. If you want to put anything into the session that will be available to the user
immediately after logging out, do that after calling django.contrib.auth.logout().

Limiting access to logged-in users

The raw way

The simple, raw way to limit access to pages is to check request.user.is_authenticated and either redirect
to a login page:

from django.conf import settings
from django.shortcuts import redirect

def my_view(request):
if not request.user.is_authenticated:

return redirect('%s?next=%s' % (settings.LOGIN_URL, request.path))
...

...or display an error message:

from django.shortcuts import render

def my_view(request):
if not request.user.is_authenticated:

return render(request, 'myapp/login_error.html')
...

The login_required decorator

login_required(redirect_field_name=’next’, login_url=None)
As a shortcut, you can use the convenient login_required() decorator:

from django.contrib.auth.decorators import login_required

@login_required
def my_view(request):

...

362 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

login_required() does the following:

• If the user isn’t logged in, redirect to settings.LOGIN_URL, passing the current absolute path in the
query string. Example: /accounts/login/?next=/polls/3/.

• If the user is logged in, execute the view normally. The view code is free to assume the user is logged in.

By default, the path that the user should be redirected to upon successful authentication is stored in a
query string parameter called "next". If you would prefer to use a different name for this parameter,
login_required() takes an optional redirect_field_name parameter:

from django.contrib.auth.decorators import login_required

@login_required(redirect_field_name='my_redirect_field')
def my_view(request):

...

Note that if you provide a value to redirect_field_name, you will most likely need to customize your
login template as well, since the template context variable which stores the redirect path will use the value of
redirect_field_name as its key rather than "next" (the default).

login_required() also takes an optional login_url parameter. Example:

from django.contrib.auth.decorators import login_required

@login_required(login_url='/accounts/login/')
def my_view(request):

...

Note that if you don’t specify the login_url parameter, you’ll need to ensure that the settings.
LOGIN_URL and your login view are properly associated. For example, using the defaults, add the following
lines to your URLconf:

from django.contrib.auth import views as auth_views

url(r'^accounts/login/$', auth_views.login),

The settings.LOGIN_URL also accepts view function names and named URL patterns. This allows you to
freely remap your login view within your URLconf without having to update the setting.

Note: The login_required decorator does NOT check the is_active flag on a user, but the default
AUTHENTICATION_BACKENDS reject inactive users.

See also:

If you are writing custom views for Django’s admin (or need the same authorization check that the built-in views use),
you may find the django.contrib.admin.views.decorators.staff_member_required() decora-
tor a useful alternative to login_required().

The LoginRequired mixin

When using class-based views, you can achieve the same behavior as with login_required by using the
LoginRequiredMixin. This mixin should be at the leftmost position in the inheritance list.

class LoginRequiredMixin
If a view is using this mixin, all requests by non-authenticated users will be redirected to the login page or shown
an HTTP 403 Forbidden error, depending on the raise_exception parameter.

3.10. User authentication in Django 363

Django Documentation, Release 1.10.9.dev20171123183751

You can set any of the parameters of AccessMixin to customize the handling of unauthorized users:

from django.contrib.auth.mixins import LoginRequiredMixin

class MyView(LoginRequiredMixin, View):
login_url = '/login/'
redirect_field_name = 'redirect_to'

Note: Just as the login_required decorator, this mixin does NOT check the is_active flag on a user, but the
default AUTHENTICATION_BACKENDS reject inactive users.

Limiting access to logged-in users that pass a test

To limit access based on certain permissions or some other test, you’d do essentially the same thing as described in the
previous section.

The simple way is to run your test on request.user in the view directly. For example, this view checks to make
sure the user has an email in the desired domain and if not, redirects to the login page:

from django.shortcuts import redirect

def my_view(request):
if not request.user.email.endswith('@example.com'):

return redirect('/login/?next=%s' % request.path)
...

user_passes_test(test_func, login_url=None, redirect_field_name=’next’)
As a shortcut, you can use the convenient user_passes_test decorator which performs a redirect when the
callable returns False:

from django.contrib.auth.decorators import user_passes_test

def email_check(user):
return user.email.endswith('@example.com')

@user_passes_test(email_check)
def my_view(request):

...

user_passes_test() takes a required argument: a callable that takes a User object and returns True if
the user is allowed to view the page. Note that user_passes_test() does not automatically check that the
User is not anonymous.

user_passes_test() takes two optional arguments:

login_url Lets you specify the URL that users who don’t pass the test will be redirected to. It may be a
login page and defaults to settings.LOGIN_URL if you don’t specify one.

redirect_field_name Same as for login_required(). Setting it to None removes it from the URL,
which you may want to do if you are redirecting users that don’t pass the test to a non-login page where
there’s no “next page”.

For example:

364 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

@user_passes_test(email_check, login_url='/login/')
def my_view(request):

...

class UserPassesTestMixin
When using class-based views, you can use the UserPassesTestMixin to do this.

test_func()
You have to override the test_func() method of the class to provide the test that is performed. Fur-
thermore, you can set any of the parameters of AccessMixin to customize the handling of unauthorized
users:

from django.contrib.auth.mixins import UserPassesTestMixin

class MyView(UserPassesTestMixin, View):

def test_func(self):
return self.request.user.email.endswith('@example.com')

get_test_func()
You can also override the get_test_func()method to have the mixin use a differently named function
for its checks (instead of test_func()).

Stacking UserPassesTestMixin

Due to the way UserPassesTestMixin is implemented, you cannot stack them in your inheritance list. The
following does NOT work:

class TestMixin1(UserPassesTestMixin):
def test_func(self):

return self.request.user.email.endswith('@example.com')

class TestMixin2(UserPassesTestMixin):
def test_func(self):

return self.request.user.username.startswith('django')

class MyView(TestMixin1, TestMixin2, View):
...

If TestMixin1 would call super() and take that result into account, TestMixin1 wouldn’t work stan-
dalone anymore.

The permission_required decorator

permission_required(perm, login_url=None, raise_exception=False)
It’s a relatively common task to check whether a user has a particular permission. For that reason, Django
provides a shortcut for that case: the permission_required() decorator.:

from django.contrib.auth.decorators import permission_required

@permission_required('polls.can_vote')
def my_view(request):

...

3.10. User authentication in Django 365

Django Documentation, Release 1.10.9.dev20171123183751

Just like the has_perm() method, permission names take the form "<app label>.<permission
codename>" (i.e. polls.can_vote for a permission on a model in the polls application).

The decorator may also take an iterable of permissions, in which case the user must have all of the permissions
in order to access the view.

Note that permission_required() also takes an optional login_url parameter:

from django.contrib.auth.decorators import permission_required

@permission_required('polls.can_vote', login_url='/loginpage/')
def my_view(request):

...

As in the login_required() decorator, login_url defaults to settings.LOGIN_URL.

If the raise_exception parameter is given, the decorator will raise PermissionDenied, prompting the
403 (HTTP Forbidden) view instead of redirecting to the login page.

If you want to use raise_exception but also give your users a chance to login first, you can add the
login_required() decorator:

from django.contrib.auth.decorators import login_required, permission_required

@login_required
@permission_required('polls.can_vote', raise_exception=True)
def my_view(request):

...

In older versions, the permission parameter only worked with strings, lists, and tuples instead of strings and
any iterable.

The PermissionRequiredMixin mixin

To apply permission checks to class-based views, you can use the PermissionRequiredMixin:

class PermissionRequiredMixin
This mixin, just like the permission_required decorator, checks whether the user accessing a view
has all given permissions. You should specify the permission (or an iterable of permissions) using the
permission_required parameter:

from django.contrib.auth.mixins import PermissionRequiredMixin

class MyView(PermissionRequiredMixin, View):
permission_required = 'polls.can_vote'
Or multiple of permissions:
permission_required = ('polls.can_open', 'polls.can_edit')

You can set any of the parameters of AccessMixin to customize the handling of unauthorized users.

You may also override these methods:

get_permission_required()
Returns an iterable of permission names used by the mixin. Defaults to the permission_required
attribute, converted to a tuple if necessary.

has_permission()
Returns a boolean denoting whether the current user has permission to execute the decorated view.

366 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

By default, this returns the result of calling has_perms() with the list of permissions returned by
get_permission_required().

Redirecting unauthorized requests in class-based views

To ease the handling of access restrictions in class-based views, the AccessMixin can be used to redirect a user to
the login page or issue an HTTP 403 Forbidden response.

class AccessMixin

login_url
Default return value for get_login_url(). Defaults to None in which case get_login_url()
falls back to settings.LOGIN_URL.

permission_denied_message
Default return value for get_permission_denied_message(). Defaults to an empty string.

redirect_field_name
Default return value for get_redirect_field_name(). Defaults to "next".

raise_exception
If this attribute is set to True, a PermissionDenied exception will be raised instead of the redirect.
Defaults to False.

get_login_url()
Returns the URL that users who don’t pass the test will be redirected to. Returns login_url if set, or
settings.LOGIN_URL otherwise.

get_permission_denied_message()
When raise_exception is True, this method can be used to control the error message passed to the
error handler for display to the user. Returns the permission_denied_message attribute by default.

get_redirect_field_name()
Returns the name of the query parameter that will contain the URL the user should be redirected to
after a successful login. If you set this to None, a query parameter won’t be added. Returns the
redirect_field_name attribute by default.

handle_no_permission()
Depending on the value of raise_exception, the method either raises a PermissionDenied ex-
ception or redirects the user to the login_url, optionally including the redirect_field_name if
it is set.

Session invalidation on password change

Session verification is enabled and mandatory in Django 1.10 (there’s no way to disable it) regardless of whether or not
SessionAuthenticationMiddleware is enabled. In older versions, this protection only applies if django.
contrib.auth.middleware.SessionAuthenticationMiddleware is enabled in MIDDLEWARE.

If your AUTH_USER_MODEL inherits from AbstractBaseUser or implements its own
get_session_auth_hash() method, authenticated sessions will include the hash returned by this func-
tion. In the AbstractBaseUser case, this is an HMAC of the password field. Django verifies that the hash in the
session for each request matches the one that’s computed during the request. This allows a user to log out all of their
sessions by changing their password.

The default password change views included with Django, password_change() and the
user_change_password view in the django.contrib.auth admin, update the session with the new

3.10. User authentication in Django 367

Django Documentation, Release 1.10.9.dev20171123183751

password hash so that a user changing their own password won’t log themselves out. If you have a custom password
change view and wish to have similar behavior, use the update_session_auth_hash() function. In this case,
however, if a user also wants to invalidate the session from which they’re changing their password (for example, if
they believe the session cookie on their machine was stolen), then they also need to log out that session.

update_session_auth_hash(request, user)
This function takes the current request and the updated user object from which the new session hash will be
derived and updates the session hash appropriately. Example usage:

from django.contrib.auth import update_session_auth_hash

def password_change(request):
if request.method == 'POST':

form = PasswordChangeForm(user=request.user, data=request.POST)
if form.is_valid():

form.save()
update_session_auth_hash(request, form.user)

else:
...

Note: Since get_session_auth_hash() is based on SECRET_KEY , updating your site to use a new secret
will invalidate all existing sessions.

Authentication Views

Django provides several views that you can use for handling login, logout, and password management. These make
use of the stock auth forms but you can pass in your own forms as well.

Django provides no default template for the authentication views. You should create your own templates for the views
you want to use. The template context is documented in each view, see All authentication views.

Using the views

There are different methods to implement these views in your project. The easiest way is to include the provided
URLconf in django.contrib.auth.urls in your own URLconf, for example:

urlpatterns = [
url('^', include('django.contrib.auth.urls')),

]

This will include the following URL patterns:

^login/$ [name='login']
^logout/$ [name='logout']
^password_change/$ [name='password_change']
^password_change/done/$ [name='password_change_done']
^password_reset/$ [name='password_reset']
^password_reset/done/$ [name='password_reset_done']
^reset/(?P<uidb64>[0-9A-Za-z_\-]+)/(?P<token>[0-9A-Za-z]{1,13}-[0-9A-Za-z]{1,20})/$
→˓[name='password_reset_confirm']
^reset/done/$ [name='password_reset_complete']

The views provide a URL name for easier reference. See the URL documentation for details on using named URL
patterns.

368 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

If you want more control over your URLs, you can reference a specific view in your URLconf:

from django.contrib.auth import views as auth_views

urlpatterns = [
url('^change-password/$', auth_views.password_change),

]

The views have optional arguments you can use to alter the behavior of the view. For example, if you want to change
the template name a view uses, you can provide the template_name argument. A way to do this is to provide
keyword arguments in the URLconf, these will be passed on to the view. For example:

urlpatterns = [
url(

'^change-password/$',
auth_views.password_change,
{'template_name': 'change-password.html'}

),
]

All views return a TemplateResponse instance, which allows you to easily customize the response data before
rendering. A way to do this is to wrap a view in your own view:

from django.contrib.auth import views

def change_password(request):
template_response = views.password_change(request)
Do something with `template_response`
return template_response

For more details, see the TemplateResponse documentation.

All authentication views

This is a list with all the views django.contrib.auth provides. For implementation details see Using the views.

login(request, template_name=‘registration/login.html‘, redirect_field_name=’next’, authen-
tication_form=AuthenticationForm, current_app=None, extra_context=None, redi-
rect_authenticated_user=False)

URL name: login

See the URL documentation for details on using named URL patterns.

Optional arguments:

• template_name: The name of a template to display for the view used to log the user in. Defaults to
registration/login.html.

• redirect_field_name: The name of a GET field containing the URL to redirect to after login. De-
faults to next.

• authentication_form: A callable (typically just a form class) to use for authentication. Defaults to
AuthenticationForm.

• current_app: A hint indicating which application contains the current view. See the namespaced URL
resolution strategy for more information.

3.10. User authentication in Django 369

Django Documentation, Release 1.10.9.dev20171123183751

• extra_context: A dictionary of context data that will be added to the default context data passed to
the template.

• redirect_authenticated_user: A boolean that controls whether or not authenticated users ac-
cessing the login page will be redirected as if they had just successfully logged in. Defaults to False.

Warning: If you enable redirect_authenticated_user, other websites will be able to de-
termine if their visitors are authenticated on your site by requesting redirect URLs to image files on
your website. To avoid this “social media fingerprinting” information leakage, host all images and your
favicon on a separate domain.

Deprecated since version 1.9: The current_app parameter is deprecated and will be removed in Django 2.0.
Callers should set request.current_app instead.

The redirect_authenticated_user parameter was added.

Here’s what django.contrib.auth.views.login does:

• If called via GET, it displays a login form that POSTs to the same URL. More on this in a bit.

• If called via POST with user submitted credentials, it tries to log the user in. If login is successful,
the view redirects to the URL specified in next. If next isn’t provided, it redirects to settings.
LOGIN_REDIRECT_URL (which defaults to /accounts/profile/). If login isn’t successful, it
redisplays the login form.

It’s your responsibility to provide the html for the login template , called registration/login.html by
default. This template gets passed four template context variables:

• form: A Form object representing the AuthenticationForm.

• next: The URL to redirect to after successful login. This may contain a query string, too.

• site: The current Site, according to the SITE_ID setting. If you don’t have the site framework
installed, this will be set to an instance of RequestSite, which derives the site name and domain from
the current HttpRequest.

• site_name: An alias for site.name. If you don’t have the site framework installed, this will be set to
the value of request.META['SERVER_NAME']. For more on sites, see The “sites” framework.

If you’d prefer not to call the template registration/login.html, you can pass the template_name
parameter via the extra arguments to the view in your URLconf. For example, this URLconf line would use
myapp/login.html instead:

url(r'^accounts/login/$', auth_views.login, {'template_name': 'myapp/login.html'}
→˓),

You can also specify the name of the GET field which contains the URL to redirect to after login by passing
redirect_field_name to the view. By default, the field is called next.

Here’s a sample registration/login.html template you can use as a starting point. It assumes you
have a base.html template that defines a content block:

{% extends "base.html" %}

{% block content %}

{% if form.errors %}
<p>Your username and password didn't match. Please try again.</p>
{% endif %}

370 Chapter 3. Using Django

https://robinlinus.github.io/socialmedia-leak/

Django Documentation, Release 1.10.9.dev20171123183751

{% if next %}
{% if user.is_authenticated %}
<p>Your account doesn't have access to this page. To proceed,
please login with an account that has access.</p>
{% else %}
<p>Please login to see this page.</p>
{% endif %}

{% endif %}

<form method="post" action="{% url 'login' %}">
{% csrf_token %}
<table>
<tr>

<td>{{ form.username.label_tag }}</td>
<td>{{ form.username }}</td>

</tr>
<tr>

<td>{{ form.password.label_tag }}</td>
<td>{{ form.password }}</td>

</tr>
</table>

<input type="submit" value="login" />
<input type="hidden" name="next" value="{{ next }}" />
</form>

{# Assumes you setup the password_reset view in your URLconf #}
<p>Lost password?</p>

{% endblock %}

If you have customized authentication (see Customizing Authentication) you can pass a custom authentication
form to the login view via the authentication_form parameter. This form must accept a request key-
word argument in its __init__ method, and provide a get_user() method which returns the authenticated
user object (this method is only ever called after successful form validation).

logout(request, next_page=None, template_name=’registration/logged_out.html’, redi-
rect_field_name=’next’, current_app=None, extra_context=None)

Logs a user out.

URL name: logout

Optional arguments:

• next_page: The URL to redirect to after logout. Defaults to settings.LOGOUT_REDIRECT_URL
if not supplied.

• template_name: The full name of a template to display after logging the user out. Defaults to
registration/logged_out.html if no argument is supplied.

• redirect_field_name: The name of a GET field containing the URL to redirect to after log out.
Defaults to next. Overrides the next_page URL if the given GET parameter is passed.

• current_app: A hint indicating which application contains the current view. See the namespaced URL
resolution strategy for more information.

• extra_context: A dictionary of context data that will be added to the default context data passed to
the template.

Deprecated since version 1.9: The current_app parameter is deprecated and will be removed in Django 2.0.
Callers should set request.current_app instead.

3.10. User authentication in Django 371

Django Documentation, Release 1.10.9.dev20171123183751

Template context:

• title: The string “Logged out”, localized.

• site: The current Site, according to the SITE_ID setting. If you don’t have the site framework
installed, this will be set to an instance of RequestSite, which derives the site name and domain from
the current HttpRequest.

• site_name: An alias for site.name. If you don’t have the site framework installed, this will be set to
the value of request.META['SERVER_NAME']. For more on sites, see The “sites” framework.

logout_then_login(request, login_url=None, current_app=None, extra_context=None)
Logs a user out, then redirects to the login page.

URL name: No default URL provided

Optional arguments:

• login_url: The URL of the login page to redirect to. Defaults to settings.LOGIN_URL if not
supplied.

• current_app: A hint indicating which application contains the current view. See the namespaced URL
resolution strategy for more information.

• extra_context: A dictionary of context data that will be added to the default context data passed to
the template.

Deprecated since version 1.9: The current_app parameter is deprecated and will be removed in Django 2.0.
Callers should set request.current_app instead.

password_change(request, template_name=’registration/password_change_form.html’,
post_change_redirect=None, password_change_form=PasswordChangeForm, cur-
rent_app=None, extra_context=None)

Allows a user to change their password.

URL name: password_change

Optional arguments:

• template_name: The full name of a template to use for displaying the password change form. Defaults
to registration/password_change_form.html if not supplied.

• post_change_redirect: The URL to redirect to after a successful password change.

• password_change_form: A custom “change password” form which must accept a user key-
word argument. The form is responsible for actually changing the user’s password. Defaults to
PasswordChangeForm.

• current_app: A hint indicating which application contains the current view. See the namespaced URL
resolution strategy for more information.

• extra_context: A dictionary of context data that will be added to the default context data passed to
the template.

Deprecated since version 1.9: The current_app parameter is deprecated and will be removed in Django 2.0.
Callers should set request.current_app instead.

Template context:

• form: The password change form (see password_change_form above).

password_change_done(request, template_name=’registration/password_change_done.html’, cur-
rent_app=None, extra_context=None)

The page shown after a user has changed their password.

URL name: password_change_done

372 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Optional arguments:

• template_name: The full name of a template to use. Defaults to registration/
password_change_done.html if not supplied.

• current_app: A hint indicating which application contains the current view. See the namespaced URL
resolution strategy for more information.

• extra_context: A dictionary of context data that will be added to the default context data passed to
the template.

Deprecated since version 1.9: The current_app parameter is deprecated and will be removed in Django 2.0.
Callers should set request.current_app instead.

password_reset(request, template_name=’registration/password_reset_form.html’,
email_template_name=’registration/password_reset_email.html’, sub-
ject_template_name=’registration/password_reset_subject.txt’, pass-
word_reset_form=PasswordResetForm, token_generator=default_token_generator,
post_reset_redirect=None, from_email=None, current_app=None, extra_context=None,
html_email_template_name=None, extra_email_context=None)

Allows a user to reset their password by generating a one-time use link that can be used to reset the password,
and sending that link to the user’s registered email address.

If the email address provided does not exist in the system, this view won’t send an email, but the user won’t re-
ceive any error message either. This prevents information leaking to potential attackers. If you want to provide an
error message in this case, you can subclass PasswordResetForm and use the password_reset_form
argument.

Users flagged with an unusable password (see set_unusable_password() aren’t allowed to request a
password reset to prevent misuse when using an external authentication source like LDAP. Note that they won’t
receive any error message since this would expose their account’s existence but no mail will be sent either.

URL name: password_reset

Optional arguments:

• template_name: The full name of a template to use for displaying the password reset form. Defaults
to registration/password_reset_form.html if not supplied.

• email_template_name: The full name of a template to use for generating the email with the reset
password link. Defaults to registration/password_reset_email.html if not supplied.

• subject_template_name: The full name of a template to use for the subject of the email with the
reset password link. Defaults to registration/password_reset_subject.txt if not supplied.

• password_reset_form: Form that will be used to get the email of the user to reset the password for.
Defaults to PasswordResetForm.

• token_generator: Instance of the class to check the one time link. This will de-
fault to default_token_generator, it’s an instance of django.contrib.auth.tokens.
PasswordResetTokenGenerator.

• post_reset_redirect: The URL to redirect to after a successful password reset request.

• from_email: A valid email address. By default Django uses the DEFAULT_FROM_EMAIL.

• current_app: A hint indicating which application contains the current view. See the namespaced URL
resolution strategy for more information.

• extra_context: A dictionary of context data that will be added to the default context data passed to
the template.

• html_email_template_name: The full name of a template to use for generating a text/html
multipart email with the password reset link. By default, HTML email is not sent.

3.10. User authentication in Django 373

Django Documentation, Release 1.10.9.dev20171123183751

• extra_email_context: A dictionary of context data that will be available in the email template.

Deprecated since version 1.9: The current_app parameter is deprecated and will be removed in Django 2.0.
Callers should set request.current_app instead.

The extra_email_context parameter was added.

Template context:

• form: The form (see password_reset_form above) for resetting the user’s password.

Email template context:

• email: An alias for user.email

• user: The current User, according to the email form field. Only active users are able to reset their
passwords (User.is_active is True).

• site_name: An alias for site.name. If you don’t have the site framework installed, this will be set to
the value of request.META['SERVER_NAME']. For more on sites, see The “sites” framework.

• domain: An alias for site.domain. If you don’t have the site framework installed, this will be set to
the value of request.get_host().

• protocol: http or https

• uid: The user’s primary key encoded in base 64.

• token: Token to check that the reset link is valid.

Sample registration/password_reset_email.html (email body template):

Someone asked for password reset for email {{ email }}. Follow the link below:
{{ protocol}}://{{ domain }}{% url 'password_reset_confirm' uidb64=uid
→˓token=token %}

The same template context is used for subject template. Subject must be single line plain text string.

password_reset_done(request, template_name=’registration/password_reset_done.html’, cur-
rent_app=None, extra_context=None)

The page shown after a user has been emailed a link to reset their password. This view is called by default if the
password_reset() view doesn’t have an explicit post_reset_redirect URL set.

URL name: password_reset_done

Note: If the email address provided does not exist in the system, the user is inactive, or has an unusable
password, the user will still be redirected to this view but no email will be sent.

Optional arguments:

• template_name: The full name of a template to use. Defaults to registration/
password_reset_done.html if not supplied.

• current_app: A hint indicating which application contains the current view. See the namespaced URL
resolution strategy for more information.

• extra_context: A dictionary of context data that will be added to the default context data passed to
the template.

Deprecated since version 1.9: The current_app parameter is deprecated and will be removed in Django 2.0.
Callers should set request.current_app instead.

374 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

password_reset_confirm(request, uidb64=None, token=None, tem-
plate_name=’registration/password_reset_confirm.html’, to-
ken_generator=default_token_generator, set_password_form=SetPasswordForm,
post_reset_redirect=None, current_app=None, extra_context=None)

Presents a form for entering a new password.

URL name: password_reset_confirm

Optional arguments:

• uidb64: The user’s id encoded in base 64. Defaults to None.

• token: Token to check that the password is valid. Defaults to None.

• template_name: The full name of a template to display the confirm password view. Default value is
registration/password_reset_confirm.html.

• token_generator: Instance of the class to check the password. This will default
to default_token_generator, it’s an instance of django.contrib.auth.tokens.
PasswordResetTokenGenerator.

• set_password_form: Form that will be used to set the password. Defaults to SetPasswordForm

• post_reset_redirect: URL to redirect after the password reset done. Defaults to None.

• current_app: A hint indicating which application contains the current view. See the namespaced URL
resolution strategy for more information.

• extra_context: A dictionary of context data that will be added to the default context data passed to
the template.

Template context:

• form: The form (see set_password_form above) for setting the new user’s password.

• validlink: Boolean, True if the link (combination of uidb64 and token) is valid or unused yet.

Deprecated since version 1.9: The current_app parameter is deprecated and will be removed in Django 2.0.
Callers should set request.current_app instead.

password_reset_complete(request, template_name=’registration/password_reset_complete.html’,
current_app=None, extra_context=None)

Presents a view which informs the user that the password has been successfully changed.

URL name: password_reset_complete

Optional arguments:

• template_name: The full name of a template to display the view. Defaults to registration/
password_reset_complete.html.

• current_app: A hint indicating which application contains the current view. See the namespaced URL
resolution strategy for more information.

• extra_context: A dictionary of context data that will be added to the default context data passed to
the template.

Deprecated since version 1.9: The current_app parameter is deprecated and will be removed in Django 2.0.
Callers should set request.current_app instead.

Helper functions

redirect_to_login(next, login_url=None, redirect_field_name=’next’)
Redirects to the login page, and then back to another URL after a successful login.

3.10. User authentication in Django 375

Django Documentation, Release 1.10.9.dev20171123183751

Required arguments:

• next: The URL to redirect to after a successful login.

Optional arguments:

• login_url: The URL of the login page to redirect to. Defaults to settings.LOGIN_URL if not
supplied.

• redirect_field_name: The name of a GET field containing the URL to redirect to after log out.
Overrides next if the given GET parameter is passed.

Built-in forms

If you don’t want to use the built-in views, but want the convenience of not having to write forms for this functionality,
the authentication system provides several built-in forms located in django.contrib.auth.forms:

Note: The built-in authentication forms make certain assumptions about the user model that they are working with.
If you’re using a custom user model, it may be necessary to define your own forms for the authentication system. For
more information, refer to the documentation about using the built-in authentication forms with custom user models.

class AdminPasswordChangeForm
A form used in the admin interface to change a user’s password.

Takes the user as the first positional argument.

class AuthenticationForm
A form for logging a user in.

Takes request as its first positional argument, which is stored on the form instance for use by sub-classes.

confirm_login_allowed(user)
By default, AuthenticationForm rejects users whose is_active flag is set to False. You may
override this behavior with a custom policy to determine which users can log in. Do this with a custom form
that subclasses AuthenticationForm and overrides the confirm_login_allowed() method.
This method should raise a ValidationError if the given user may not log in.

For example, to allow all users to log in regardless of “active” status:

from django.contrib.auth.forms import AuthenticationForm

class AuthenticationFormWithInactiveUsersOkay(AuthenticationForm):
def confirm_login_allowed(self, user):

pass

(In this case, you’ll also need to use an authentication backend that allows inactive users, such as as
AllowAllUsersModelBackend.)

Or to allow only some active users to log in:

class PickyAuthenticationForm(AuthenticationForm):
def confirm_login_allowed(self, user):

if not user.is_active:
raise forms.ValidationError(

_("This account is inactive."),
code='inactive',

)
if user.username.startswith('b'):

376 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

raise forms.ValidationError(
_("Sorry, accounts starting with 'b' aren't welcome here."),
code='no_b_users',

)

class PasswordChangeForm
A form for allowing a user to change their password.

class PasswordResetForm
A form for generating and emailing a one-time use link to reset a user’s password.

send_mail(subject_template_name, email_template_name, context, from_email, to_email,
html_email_template_name=None)

Uses the arguments to send an EmailMultiAlternatives. Can be overridden to customize how the
email is sent to the user.

Parameters

• subject_template_name – the template for the subject.

• email_template_name – the template for the email body.

• context – context passed to the subject_template, email_template, and
html_email_template (if it is not None).

• from_email – the sender’s email.

• to_email – the email of the requester.

• html_email_template_name – the template for the HTML body; defaults to None,
in which case a plain text email is sent.

By default, save() populates the context with the same variables that password_reset() passes
to its email context.

class SetPasswordForm
A form that lets a user change their password without entering the old password.

class UserChangeForm
A form used in the admin interface to change a user’s information and permissions.

class UserCreationForm
A ModelForm for creating a new user.

It has three fields: username (from the user model), password1, and password2. It verifies that
password1 and password2 match, validates the password using validate_password(), and sets the
user’s password using set_password().

Authentication data in templates

The currently logged-in user and their permissions are made available in the template context when you use
RequestContext.

Technicality

Technically, these variables are only made available in the template context if you use RequestContext and the
'django.contrib.auth.context_processors.auth' context processor is enabled. It is in the default
generated settings file. For more, see the RequestContext docs.

3.10. User authentication in Django 377

Django Documentation, Release 1.10.9.dev20171123183751

Users

When rendering a template RequestContext, the currently logged-in user, either a User instance or an
AnonymousUser instance, is stored in the template variable {{ user }}:

{% if user.is_authenticated %}
<p>Welcome, {{ user.username }}. Thanks for logging in.</p>

{% else %}
<p>Welcome, new user. Please log in.</p>

{% endif %}

This template context variable is not available if a RequestContext is not being used.

Permissions

The currently logged-in user’s permissions are stored in the template variable {{ perms }}. This is an instance
of django.contrib.auth.context_processors.PermWrapper, which is a template-friendly proxy of
permissions.

In the {{ perms }} object, single-attribute lookup is a proxy to User.has_module_perms. This example
would display True if the logged-in user had any permissions in the foo app:

{{ perms.foo }}

Two-level-attribute lookup is a proxy to User.has_perm. This example would display True if the logged-in user
had the permission foo.can_vote:

{{ perms.foo.can_vote }}

Thus, you can check permissions in template {% if %} statements:

{% if perms.foo %}
<p>You have permission to do something in the foo app.</p>
{% if perms.foo.can_vote %}

<p>You can vote!</p>
{% endif %}
{% if perms.foo.can_drive %}

<p>You can drive!</p>
{% endif %}

{% else %}
<p>You don't have permission to do anything in the foo app.</p>

{% endif %}

It is possible to also look permissions up by {% if in %} statements. For example:

{% if 'foo' in perms %}
{% if 'foo.can_vote' in perms %}

<p>In lookup works, too.</p>
{% endif %}

{% endif %}

Managing users in the admin

When you have both django.contrib.admin and django.contrib.auth installed, the admin provides a
convenient way to view and manage users, groups, and permissions. Users can be created and deleted like any Django

378 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

model. Groups can be created, and permissions can be assigned to users or groups. A log of user edits to models made
within the admin is also stored and displayed.

Creating users

You should see a link to “Users” in the “Auth” section of the main admin index page. The “Add user” admin page is
different than standard admin pages in that it requires you to choose a username and password before allowing you to
edit the rest of the user’s fields.

Also note: if you want a user account to be able to create users using the Django admin site, you’ll need to give them
permission to add users and change users (i.e., the “Add user” and “Change user” permissions). If an account has
permission to add users but not to change them, that account won’t be able to add users. Why? Because if you have
permission to add users, you have the power to create superusers, which can then, in turn, change other users. So
Django requires add and change permissions as a slight security measure.

Be thoughtful about how you allow users to manage permissions. If you give a non-superuser the ability to edit users,
this is ultimately the same as giving them superuser status because they will be able to elevate permissions of users
including themselves!

Changing passwords

User passwords are not displayed in the admin (nor stored in the database), but the password storage details are
displayed. Included in the display of this information is a link to a password change form that allows admins to change
user passwords.

3.10.2 Password management in Django

Password management is something that should generally not be reinvented unnecessarily, and Django endeavors to
provide a secure and flexible set of tools for managing user passwords. This document describes how Django stores
passwords, how the storage hashing can be configured, and some utilities to work with hashed passwords.

See also:

Even though users may use strong passwords, attackers might be able to eavesdrop on their connections. Use HTTPS
to avoid sending passwords (or any other sensitive data) over plain HTTP connections because they will be vulnerable
to password sniffing.

How Django stores passwords

Django provides a flexible password storage system and uses PBKDF2 by default.

The password attribute of a User object is a string in this format:

<algorithm>$<iterations>$<salt>$<hash>

Those are the components used for storing a User’s password, separated by the dollar-sign character and consist of: the
hashing algorithm, the number of algorithm iterations (work factor), the random salt, and the resulting password hash.
The algorithm is one of a number of one-way hashing or password storage algorithms Django can use; see below.
Iterations describe the number of times the algorithm is run over the hash. Salt is the random seed used and the hash
is the result of the one-way function.

By default, Django uses the PBKDF2 algorithm with a SHA256 hash, a password stretching mechanism recommended
by NIST. This should be sufficient for most users: it’s quite secure, requiring massive amounts of computing time to
break.

3.10. User authentication in Django 379

https://en.wikipedia.org/wiki/PBKDF2
https://dx.doi.org/10.6028/NIST.SP.800-132

Django Documentation, Release 1.10.9.dev20171123183751

However, depending on your requirements, you may choose a different algorithm, or even use a custom algorithm to
match your specific security situation. Again, most users shouldn’t need to do this – if you’re not sure, you probably
don’t. If you do, please read on:

Django chooses the algorithm to use by consulting the PASSWORD_HASHERS setting. This is a list of hash-
ing algorithm classes that this Django installation supports. The first entry in this list (that is, settings.
PASSWORD_HASHERS[0]) will be used to store passwords, and all the other entries are valid hashers that can
be used to check existing passwords. This means that if you want to use a different algorithm, you’ll need to modify
PASSWORD_HASHERS to list your preferred algorithm first in the list.

The default for PASSWORD_HASHERS is:

PASSWORD_HASHERS = [
'django.contrib.auth.hashers.PBKDF2PasswordHasher',
'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher',
'django.contrib.auth.hashers.Argon2PasswordHasher',
'django.contrib.auth.hashers.BCryptSHA256PasswordHasher',
'django.contrib.auth.hashers.BCryptPasswordHasher',

]

This means that Django will use PBKDF2 to store all passwords but will support checking passwords stored with
PBKDF2SHA1, argon2, and bcrypt.

The next few sections describe a couple of common ways advanced users may want to modify this setting.

Using Argon2 with Django

Argon2 is the winner of the 2015 Password Hashing Competition, a community organized open competition to select a
next generation hashing algorithm. It’s designed not to be easier to compute on custom hardware than it is to compute
on an ordinary CPU.

Argon2 is not the default for Django because it requires a third-party library. The Password Hashing Competition
panel, however, recommends immediate use of Argon2 rather than the other algorithms supported by Django.

To use Argon2 as your default storage algorithm, do the following:

1. Install the argon2-cffi library. This can be done by running pip install django[argon2], which is
equivalent to pip install argon2-cffi (along with any version requirement from Django’s setup.
py).

2. Modify PASSWORD_HASHERS to list Argon2PasswordHasher first. That is, in your settings file, you’d
put:

PASSWORD_HASHERS = [
'django.contrib.auth.hashers.Argon2PasswordHasher',
'django.contrib.auth.hashers.PBKDF2PasswordHasher',
'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher',
'django.contrib.auth.hashers.BCryptSHA256PasswordHasher',
'django.contrib.auth.hashers.BCryptPasswordHasher',

]

Keep and/or add any entries in this list if you need Django to upgrade passwords.

Using bcrypt with Django

Bcrypt is a popular password storage algorithm that’s specifically designed for long-term password storage. It’s not
the default used by Django since it requires the use of third-party libraries, but since many people may want to use it

380 Chapter 3. Using Django

https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Argon2
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Argon2
https://password-hashing.net
https://en.wikipedia.org/wiki/Argon2
https://pypi.python.org/pypi/argon2_cffi/
https://en.wikipedia.org/wiki/Bcrypt

Django Documentation, Release 1.10.9.dev20171123183751

Django supports bcrypt with minimal effort.

To use Bcrypt as your default storage algorithm, do the following:

1. Install the bcrypt library. This can be done by running pip install django[bcrypt], which is equiva-
lent to pip install bcrypt (along with any version requirement from Django’s setup.py).

2. Modify PASSWORD_HASHERS to list BCryptSHA256PasswordHasher first. That is, in your settings file,
you’d put:

PASSWORD_HASHERS = [
'django.contrib.auth.hashers.BCryptSHA256PasswordHasher',
'django.contrib.auth.hashers.BCryptPasswordHasher',
'django.contrib.auth.hashers.PBKDF2PasswordHasher',
'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher',
'django.contrib.auth.hashers.Argon2PasswordHasher',

]

Keep and/or add any entries in this list if you need Django to upgrade passwords.

That’s it – now your Django install will use Bcrypt as the default storage algorithm.

Password truncation with BCryptPasswordHasher

The designers of bcrypt truncate all passwords at 72 characters which means that
bcrypt(password_with_100_chars) == bcrypt(password_with_100_chars[:72]). The
original BCryptPasswordHasher does not have any special handling and thus is also subject to this hidden
password length limit. BCryptSHA256PasswordHasher fixes this by first hashing the password using sha256.
This prevents the password truncation and so should be preferred over the BCryptPasswordHasher. The
practical ramification of this truncation is pretty marginal as the average user does not have a password greater than 72
characters in length and even being truncated at 72 the compute powered required to brute force bcrypt in any useful
amount of time is still astronomical. Nonetheless, we recommend you use BCryptSHA256PasswordHasher
anyway on the principle of “better safe than sorry”.

Other bcrypt implementations

There are several other implementations that allow bcrypt to be used with Django. Django’s
bcrypt support is NOT directly compatible with these. To upgrade, you will need to modify the
hashes in your database to be in the form bcrypt$(raw bcrypt output). For example:
bcrypt$$2a12NT0I31Sa7ihGEWpka9ASYrEFkhuTNeBQ2xfZskIiiJeyFXhRgS.Sy.

Increasing the work factor

PBKDF2 and bcrypt

The PBKDF2 and bcrypt algorithms use a number of iterations or rounds of hashing. This deliberately slows down
attackers, making attacks against hashed passwords harder. However, as computing power increases, the number of
iterations needs to be increased. We’ve chosen a reasonable default (and will increase it with each release of Django),
but you may wish to tune it up or down, depending on your security needs and available processing power. To do so,
you’ll subclass the appropriate algorithm and override the iterations parameters. For example, to increase the
number of iterations used by the default PBKDF2 algorithm:

1. Create a subclass of django.contrib.auth.hashers.PBKDF2PasswordHasher:

3.10. User authentication in Django 381

https://pypi.python.org/pypi/bcrypt/

Django Documentation, Release 1.10.9.dev20171123183751

from django.contrib.auth.hashers import PBKDF2PasswordHasher

class MyPBKDF2PasswordHasher(PBKDF2PasswordHasher):
"""
A subclass of PBKDF2PasswordHasher that uses 100 times more iterations.
"""
iterations = PBKDF2PasswordHasher.iterations * 100

Save this somewhere in your project. For example, you might put this in a file like myproject/hashers.
py.

2. Add your new hasher as the first entry in PASSWORD_HASHERS:

PASSWORD_HASHERS = [
'myproject.hashers.MyPBKDF2PasswordHasher',
'django.contrib.auth.hashers.PBKDF2PasswordHasher',
'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher',
'django.contrib.auth.hashers.Argon2PasswordHasher',
'django.contrib.auth.hashers.BCryptSHA256PasswordHasher',
'django.contrib.auth.hashers.BCryptPasswordHasher',

]

That’s it – now your Django install will use more iterations when it stores passwords using PBKDF2.

Argon2

Argon2 has three attributes that can be customized:

1. time_cost controls the number of iterations within the hash.

2. memory_cost controls the size of memory that must be used during the computation of the hash.

3. parallelism controls how many CPUs the computation of the hash can be parallelized on.

The default values of these attributes are probably fine for you. If you determine that the password hash is too fast or
too slow, you can tweak it as follows:

1. Choose parallelism to be the number of threads you can spare computing the hash.

2. Choose memory_cost to be the KiB of memory you can spare.

3. Adjust time_cost and measure the time hashing a password takes. Pick a time_cost that takes an accept-
able time for you. If time_cost set to 1 is unacceptably slow, lower memory_cost.

memory_cost interpretation

The argon2 command-line utility and some other libraries interpret the memory_cost parameter differently from the
value that Django uses. The conversion is given by memory_cost == 2 ** memory_cost_commandline.

Password upgrading

When users log in, if their passwords are stored with anything other than the preferred algorithm, Django will auto-
matically upgrade the algorithm to the preferred one. This means that old installs of Django will get automatically
more secure as users log in, and it also means that you can switch to new (and better) storage algorithms as they get
invented.

382 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

However, Django can only upgrade passwords that use algorithms mentioned in PASSWORD_HASHERS, so as you
upgrade to new systems you should make sure never to remove entries from this list. If you do, users using unmentioned
algorithms won’t be able to upgrade. Hashed passwords will be updated when increasing (or decreasing) the number
of PBKDF2 iterations or bcrypt rounds.

Be aware that if all the passwords in your database aren’t encoded in the default hasher’s algorithm, you may be
vulnerable to a user enumeration timing attack due to a difference between the duration of a login request for a user
with a password encoded in a non-default algorithm and the duration of a login request for a nonexistent user (which
runs the default hasher). You may be able to mitigate this by upgrading older password hashes.

Passwords updates when changing the number of bcrypt rounds was added.

Password upgrading without requiring a login

If you have an existing database with an older, weak hash such as MD5 or SHA1, you might want to upgrade those
hashes yourself instead of waiting for the upgrade to happen when a user logs in (which may never happen if a user
doesn’t return to your site). In this case, you can use a “wrapped” password hasher.

For this example, we’ll migrate a collection of SHA1 hashes to use PBKDF2(SHA1(password)) and add the cor-
responding password hasher for checking if a user entered the correct password on login. We assume we’re using
the built-in User model and that our project has an accounts app. You can modify the pattern to work with any
algorithm or with a custom user model.

First, we’ll add the custom hasher:

accounts/hashers.py

from django.contrib.auth.hashers import (
PBKDF2PasswordHasher, SHA1PasswordHasher,

)

class PBKDF2WrappedSHA1PasswordHasher(PBKDF2PasswordHasher):
algorithm = 'pbkdf2_wrapped_sha1'

def encode_sha1_hash(self, sha1_hash, salt, iterations=None):
return super(PBKDF2WrappedSHA1PasswordHasher, self).encode(sha1_hash, salt, iterations)

def encode(self, password, salt, iterations=None):
_, _, sha1_hash = SHA1PasswordHasher().encode(password, salt).split('$', 2)
return self.encode_sha1_hash(sha1_hash, salt, iterations)

The data migration might look something like:

accounts/migrations/0002_migrate_sha1_passwords.py

from django.db import migrations

from ..hashers import PBKDF2WrappedSHA1PasswordHasher

def forwards_func(apps, schema_editor):
User = apps.get_model('auth', 'User')
users = User.objects.filter(password__startswith='sha1$')
hasher = PBKDF2WrappedSHA1PasswordHasher()
for user in users:

algorithm, salt, sha1_hash = user.password.split('$', 2)
user.password = hasher.encode_sha1_hash(sha1_hash, salt)
user.save(update_fields=['password'])

3.10. User authentication in Django 383

Django Documentation, Release 1.10.9.dev20171123183751

class Migration(migrations.Migration):

dependencies = [
('accounts', '0001_initial'),
replace this with the latest migration in contrib.auth
('auth', '####_migration_name'),

]

operations = [
migrations.RunPython(forwards_func),

]

Be aware that this migration will take on the order of several minutes for several thousand users, depending on the
speed of your hardware.

Finally, we’ll add a PASSWORD_HASHERS setting:

mysite/settings.py

PASSWORD_HASHERS = [
'django.contrib.auth.hashers.PBKDF2PasswordHasher',
'accounts.hashers.PBKDF2WrappedSHA1PasswordHasher',

]

Include any other hashers that your site uses in this list.

Included hashers

The full list of hashers included in Django is:

[
'django.contrib.auth.hashers.PBKDF2PasswordHasher',
'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher',
'django.contrib.auth.hashers.Argon2PasswordHasher',
'django.contrib.auth.hashers.BCryptSHA256PasswordHasher',
'django.contrib.auth.hashers.BCryptPasswordHasher',
'django.contrib.auth.hashers.SHA1PasswordHasher',
'django.contrib.auth.hashers.MD5PasswordHasher',
'django.contrib.auth.hashers.UnsaltedSHA1PasswordHasher',
'django.contrib.auth.hashers.UnsaltedMD5PasswordHasher',
'django.contrib.auth.hashers.CryptPasswordHasher',

]

The corresponding algorithm names are:

• pbkdf2_sha256

• pbkdf2_sha1

• argon2

• bcrypt_sha256

• bcrypt

• sha1

• md5

• unsalted_sha1

384 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

• unsalted_md5

• crypt

Writing your own hasher

If you write your own password hasher that contains a work factor such as a number of iterations, you should imple-
ment a harden_runtime(self, password, encoded) method to bridge the runtime gap between the work
factor supplied in the encoded password and the default work factor of the hasher. This prevents a user enumeration
timing attack due to difference between a login request for a user with a password encoded in an older number of
iterations and a nonexistent user (which runs the default hasher’s default number of iterations).

Taking PBKDF2 as example, if encoded contains 20,000 iterations and the hasher’s default iterations is 30,000,
the method should run password through another 10,000 iterations of PBKDF2.

If your hasher doesn’t have a work factor, implement the method as a no-op (pass).

Manually managing a user’s password

The django.contrib.auth.hashers module provides a set of functions to create and validate hashed pass-
word. You can use them independently from the User model.

check_password(password, encoded)
If you’d like to manually authenticate a user by comparing a plain-text password to the hashed password in the
database, use the convenience function check_password(). It takes two arguments: the plain-text password
to check, and the full value of a user’s password field in the database to check against, and returns True if
they match, False otherwise.

make_password(password, salt=None, hasher=’default’)
Creates a hashed password in the format used by this application. It takes one mandatory argument: the password
in plain-text. Optionally, you can provide a salt and a hashing algorithm to use, if you don’t want to use the
defaults (first entry of PASSWORD_HASHERS setting). See Included hashers for the algorithm name of each
hasher. If the password argument is None, an unusable password is returned (a one that will be never accepted
by check_password()).

is_password_usable(encoded_password)
Checks if the given string is a hashed password that has a chance of being verified against
check_password().

Password validation

Users often choose poor passwords. To help mitigate this problem, Django offers pluggable password validation. You
can configure multiple password validators at the same time. A few validators are included in Django, but it’s simple
to write your own as well.

Each password validator must provide a help text to explain the requirements to the user, validate a given password
and return an error message if it does not meet the requirements, and optionally receive passwords that have been set.
Validators can also have optional settings to fine tune their behavior.

Validation is controlled by the AUTH_PASSWORD_VALIDATORS setting. The default for the setting is an empty list,
which means no validators are applied. In new projects created with the default startproject template, a simple
set of validators is enabled.

By default, validators are used in the forms to reset or change passwords and in the createsuperuser and
changepassword management commands. Validators aren’t applied at the model level, for example in User.

3.10. User authentication in Django 385

Django Documentation, Release 1.10.9.dev20171123183751

objects.create_user() and create_superuser(), because we assume that developers, not users, interact
with Django at that level and also because model validation doesn’t automatically run as part of creating models.

Note: Password validation can prevent the use of many types of weak passwords. However, the fact that a password
passes all the validators doesn’t guarantee that it is a strong password. There are many factors that can weaken a
password that are not detectable by even the most advanced password validators.

Enabling password validation

Password validation is configured in the AUTH_PASSWORD_VALIDATORS setting:

AUTH_PASSWORD_VALIDATORS = [
{

'NAME': 'django.contrib.auth.password_validation.
→˓UserAttributeSimilarityValidator',

},
{

'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
'OPTIONS': {

'min_length': 9,
}

},
{

'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{

'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},

]

This example enables all four included validators:

• UserAttributeSimilarityValidator, which checks the similarity between the password and a set of
attributes of the user.

• MinimumLengthValidator, which simply checks whether the password meets a minimum length. This
validator is configured with a custom option: it now requires the minimum length to be nine characters, instead
of the default eight.

• CommonPasswordValidator, which checks whether the password occurs in a list of common passwords.
By default, it compares to an included list of 1000 common passwords.

• NumericPasswordValidator, which checks whether the password isn’t entirely numeric.

For UserAttributeSimilarityValidator and CommonPasswordValidator, we’re simply using the
default settings in this example. NumericPasswordValidator has no settings.

The help texts and any errors from password validators are always returned in the order they are listed in
AUTH_PASSWORD_VALIDATORS.

Included validators

Django includes four validators:

386 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

class MinimumLengthValidator(min_length=8)
Validates whether the password meets a minimum length. The minimum length can be customized with the
min_length parameter.

class UserAttributeSimilarityValidator(user_attributes=DEFAULT_USER_ATTRIBUTES,
max_similarity=0.7)

Validates whether the password is sufficiently different from certain attributes of the user.

The user_attributes parameter should be an iterable of names of user attributes to compare to. If
this argument is not provided, the default is used: 'username', 'first_name', 'last_name',
'email'. Attributes that don’t exist are ignored.

The maximum similarity the password can have, before it is rejected, can be set with the max_similarity
parameter, on a scale of 0 to 1. A setting of 0 will cause all passwords to be rejected, whereas a setting of 1 will
cause it to only reject passwords that are identical to an attribute’s value.

class CommonPasswordValidator(password_list_path=DEFAULT_PASSWORD_LIST_PATH)
Validates whether the password is not a common password. By default, this checks against a list of 1000
common password created by Mark Burnett.

The password_list_path can be set to the path of a custom file of common passwords. This file should
contain one password per line and may be plain text or gzipped.

class NumericPasswordValidator
Validates whether the password is not entirely numeric.

Integrating validation

There are a few functions in django.contrib.auth.password_validation that you can call from your
own forms or other code to integrate password validation. This can be useful if you use custom forms for password
setting, or if you have API calls that allow passwords to be set, for example.

validate_password(password, user=None, password_validators=None)
Validates a password. If all validators find the password valid, returns None. If one or more validators reject
the password, raises a ValidationError with all the error messages from the validators.

The user object is optional: if it’s not provided, some validators may not be able to perform any validation and
will accept any password.

password_changed(password, user=None, password_validators=None)
Informs all validators that the password has been changed. This can be used by validators such as one that
prevents password reuse. This should be called once the password has been successfully changed.

For subclasses of AbstractBaseUser, the password field will be marked as “dirty” when calling
set_password() which triggers a call to password_changed() after the user is saved.

password_validators_help_texts(password_validators=None)
Returns a list of the help texts of all validators. These explain the password requirements to the user.

password_validators_help_text_html(password_validators=None)
Returns an HTML string with all help texts in an . This is helpful when adding password validation to
forms, as you can pass the output directly to the help_text parameter of a form field.

get_password_validators(validator_config)
Returns a set of validator objects based on the validator_config parameter. By default, all functions use
the validators defined in AUTH_PASSWORD_VALIDATORS, but by calling this function with an alternate set
of validators and then passing the result into the password_validators parameter of the other functions,
your custom set of validators will be used instead. This is useful when you have a typical set of validators to use
for most scenarios, but also have a special situation that requires a custom set. If you always use the same set of

3.10. User authentication in Django 387

https://web.archive.org/web/20150315154609/https://xato.net/passwords/more-top-worst-passwords/

Django Documentation, Release 1.10.9.dev20171123183751

validators, there is no need to use this function, as the configuration from AUTH_PASSWORD_VALIDATORS
is used by default.

The structure of validator_config is identical to the structure of AUTH_PASSWORD_VALIDATORS. The
return value of this function can be passed into the password_validators parameter of the functions listed
above.

Note that where the password is passed to one of these functions, this should always be the clear text password - not a
hashed password.

Writing your own validator

If Django’s built-in validators are not sufficient, you can write your own password validators. Validators are fairly
simple classes. They must implement two methods:

• validate(self, password, user=None): validate a password. Return None if the password is
valid, or raise a ValidationError with an error message if the password is not valid. You must be able to
deal with user being None - if that means your validator can’t run, simply return None for no error.

• get_help_text(): provide a help text to explain the requirements to the user.

Any items in the OPTIONS in AUTH_PASSWORD_VALIDATORS for your validator will be passed to the constructor.
All constructor arguments should have a default value.

Here’s a basic example of a validator, with one optional setting:

from django.core.exceptions import ValidationError
from django.utils.translation import ugettext as _

class MinimumLengthValidator(object):
def __init__(self, min_length=8):

self.min_length = min_length

def validate(self, password, user=None):
if len(password) < self.min_length:

raise ValidationError(
_("This password must contain at least %(min_length)d characters."),
code='password_too_short',
params={'min_length': self.min_length},

)

def get_help_text(self):
return _(

"Your password must contain at least %(min_length)d characters."
% {'min_length': self.min_length}

)

You can also implement password_changed(password, user=None), which will be called after a successful
password change. That can be used to prevent password reuse, for example. However, if you decide to store a user’s
previous passwords, you should never do so in clear text.

3.10.3 Customizing authentication in Django

The authentication that comes with Django is good enough for most common cases, but you may have needs not met
by the out-of-the-box defaults. To customize authentication to your projects needs involves understanding what points
of the provided system are extensible or replaceable. This document provides details about how the auth system can
be customized.

388 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Authentication backends provide an extensible system for when a username and password stored with the user model
need to be authenticated against a different service than Django’s default.

You can give your models custom permissions that can be checked through Django’s authorization system.

You can extend the default User model, or substitute a completely customized model.

Other authentication sources

There may be times you have the need to hook into another authentication source – that is, another source of usernames
and passwords or authentication methods.

For example, your company may already have an LDAP setup that stores a username and password for every employee.
It’d be a hassle for both the network administrator and the users themselves if users had separate accounts in LDAP
and the Django-based applications.

So, to handle situations like this, the Django authentication system lets you plug in other authentication sources. You
can override Django’s default database-based scheme, or you can use the default system in tandem with other systems.

See the authentication backend reference for information on the authentication backends included with Django.

Specifying authentication backends

Behind the scenes, Django maintains a list of “authentication backends” that it checks for authentication. When
somebody calls django.contrib.auth.authenticate() – as described in How to log a user in – Django
tries authenticating across all of its authentication backends. If the first authentication method fails, Django tries the
second one, and so on, until all backends have been attempted.

The list of authentication backends to use is specified in the AUTHENTICATION_BACKENDS setting. This should be
a list of Python path names that point to Python classes that know how to authenticate. These classes can be anywhere
on your Python path.

By default, AUTHENTICATION_BACKENDS is set to:

['django.contrib.auth.backends.ModelBackend']

That’s the basic authentication backend that checks the Django users database and queries the built-in permissions. It
does not provide protection against brute force attacks via any rate limiting mechanism. You may either implement
your own rate limiting mechanism in a custom auth backend, or use the mechanisms provided by most Web servers.

The order of AUTHENTICATION_BACKENDS matters, so if the same username and password is valid in multiple
backends, Django will stop processing at the first positive match.

If a backend raises a PermissionDenied exception, authentication will immediately fail. Django won’t check the
backends that follow.

Note: Once a user has authenticated, Django stores which backend was used to authenticate the user in the user’s
session, and re-uses the same backend for the duration of that session whenever access to the currently authenticated
user is needed. This effectively means that authentication sources are cached on a per-session basis, so if you change
AUTHENTICATION_BACKENDS, you’ll need to clear out session data if you need to force users to re-authenticate
using different methods. A simple way to do that is simply to execute Session.objects.all().delete().

3.10. User authentication in Django 389

Django Documentation, Release 1.10.9.dev20171123183751

Writing an authentication backend

An authentication backend is a class that implements two required methods: get_user(user_id) and
authenticate(**credentials), as well as a set of optional permission related authorization methods.

The get_user method takes a user_id – which could be a username, database ID or whatever, but has to be the
primary key of your user object – and returns a user object.

The authenticate method takes credentials as keyword arguments. Most of the time, it’ll just look like this:

class MyBackend(object):
def authenticate(self, username=None, password=None):

Check the username/password and return a user.
...

But it could also authenticate a token, like so:

class MyBackend(object):
def authenticate(self, token=None):

Check the token and return a user.
...

Either way, authenticate() should check the credentials it gets and return a user object that matches those
credentials if the credentials are valid. If they’re not valid, it should return None.

The Django admin is tightly coupled to the Django User object. The best way to deal with this is to create a Django
User object for each user that exists for your backend (e.g., in your LDAP directory, your external SQL database,
etc.) You can either write a script to do this in advance, or your authenticate method can do it the first time a
user logs in.

Here’s an example backend that authenticates against a username and password variable defined in your settings.
py file and creates a Django User object the first time a user authenticates:

from django.conf import settings
from django.contrib.auth.hashers import check_password
from django.contrib.auth.models import User

class SettingsBackend(object):
"""
Authenticate against the settings ADMIN_LOGIN and ADMIN_PASSWORD.

Use the login name and a hash of the password. For example:

ADMIN_LOGIN = 'admin'
ADMIN_PASSWORD = 'pbkdf2_sha256$30000$Vo0VlMnkR4Bk$qEvtdyZRWTcOsCnI/

→˓oQ7fVOu1XAURIZYoOZ3iq8Dr4M='
"""

def authenticate(self, username=None, password=None):
login_valid = (settings.ADMIN_LOGIN == username)
pwd_valid = check_password(password, settings.ADMIN_PASSWORD)
if login_valid and pwd_valid:

try:
user = User.objects.get(username=username)

except User.DoesNotExist:
Create a new user. There's no need to set a password
because only the password from settings.py is checked.
user = User(username=username)
user.is_staff = True

390 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

user.is_superuser = True
user.save()

return user
return None

def get_user(self, user_id):
try:

return User.objects.get(pk=user_id)
except User.DoesNotExist:

return None

Handling authorization in custom backends

Custom auth backends can provide their own permissions.

The user model will delegate permission lookup functions (get_group_permissions(),
get_all_permissions(), has_perm(), and has_module_perms()) to any authentication backend
that implements these functions.

The permissions given to the user will be the superset of all permissions returned by all backends. That is, Django
grants a permission to a user that any one backend grants.

If a backend raises a PermissionDenied exception in has_perm() or has_module_perms(), the autho-
rization will immediately fail and Django won’t check the backends that follow.

The simple backend above could implement permissions for the magic admin fairly simply:

class SettingsBackend(object):
...
def has_perm(self, user_obj, perm, obj=None):

return user_obj.username == settings.ADMIN_LOGIN

This gives full permissions to the user granted access in the above example. Notice that in addition to the same
arguments given to the associated django.contrib.auth.models.User functions, the backend auth functions
all take the user object, which may be an anonymous user, as an argument.

A full authorization implementation can be found in the ModelBackend class in django/contrib/auth/backends.py,
which is the default backend and queries the auth_permission table most of the time. If you wish to pro-
vide custom behavior for only part of the backend API, you can take advantage of Python inheritance and subclass
ModelBackend instead of implementing the complete API in a custom backend.

Authorization for anonymous users

An anonymous user is one that is not authenticated i.e. they have provided no valid authentication details. However,
that does not necessarily mean they are not authorized to do anything. At the most basic level, most websites authorize
anonymous users to browse most of the site, and many allow anonymous posting of comments etc.

Django’s permission framework does not have a place to store permissions for anonymous users. However, the user
object passed to an authentication backend may be an django.contrib.auth.models.AnonymousUser
object, allowing the backend to specify custom authorization behavior for anonymous users. This is especially useful
for the authors of re-usable apps, who can delegate all questions of authorization to the auth backend, rather than
needing settings, for example, to control anonymous access.

3.10. User authentication in Django 391

https://github.com/django/django/blob/master/django/contrib/auth/backends.py

Django Documentation, Release 1.10.9.dev20171123183751

Authorization for inactive users

An inactive user is one that has its is_active field set to False. The ModelBackend and
RemoteUserBackend authentication backends prohibits these users from authenticating. If a custom user model
doesn’t have an is_active field, all users will be allowed to authenticate.

You can use AllowAllUsersModelBackend or AllowAllUsersRemoteUserBackend if you want to al-
low inactive users to authenticate.

The support for anonymous users in the permission system allows for a scenario where anonymous users have permis-
sions to do something while inactive authenticated users do not.

Do not forget to test for the is_active attribute of the user in your own backend permission methods.

In older versions, the ModelBackend allowed inactive users to authenticate.

Handling object permissions

Django’s permission framework has a foundation for object permissions, though there is no implementation for it in
the core. That means that checking for object permissions will always return False or an empty list (depending on
the check performed). An authentication backend will receive the keyword parameters obj and user_obj for each
object related authorization method and can return the object level permission as appropriate.

Custom permissions

To create custom permissions for a given model object, use the permissions model Meta attribute.

This example Task model creates three custom permissions, i.e., actions users can or cannot do with Task instances,
specific to your application:

class Task(models.Model):
...
class Meta:

permissions = (
("view_task", "Can see available tasks"),
("change_task_status", "Can change the status of tasks"),
("close_task", "Can remove a task by setting its status as closed"),

)

The only thing this does is create those extra permissions when you run manage.py migrate (the function that
creates permissions is connected to the post_migrate signal). Your code is in charge of checking the value of these
permissions when a user is trying to access the functionality provided by the application (viewing tasks, changing the
status of tasks, closing tasks.) Continuing the above example, the following checks if a user may view tasks:

user.has_perm('app.view_task')

Extending the existing User model

There are two ways to extend the default User model without substituting your own model. If the changes you
need are purely behavioral, and don’t require any change to what is stored in the database, you can create a proxy
model based on User. This allows for any of the features offered by proxy models including default ordering, custom
managers, or custom model methods.

392 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

If you wish to store information related to User, you can use a OneToOneField to a model containing the fields
for additional information. This one-to-one model is often called a profile model, as it might store non-auth related
information about a site user. For example you might create an Employee model:

from django.contrib.auth.models import User

class Employee(models.Model):
user = models.OneToOneField(User, on_delete=models.CASCADE)
department = models.CharField(max_length=100)

Assuming an existing Employee Fred Smith who has both a User and Employee model, you can access the related
information using Django’s standard related model conventions:

>>> u = User.objects.get(username='fsmith')
>>> freds_department = u.employee.department

To add a profile model’s fields to the user page in the admin, define an InlineModelAdmin (for this example, we’ll
use a StackedInline) in your app’s admin.py and add it to a UserAdmin class which is registered with the
User class:

from django.contrib import admin
from django.contrib.auth.admin import UserAdmin as BaseUserAdmin
from django.contrib.auth.models import User

from my_user_profile_app.models import Employee

Define an inline admin descriptor for Employee model
which acts a bit like a singleton
class EmployeeInline(admin.StackedInline):

model = Employee
can_delete = False
verbose_name_plural = 'employee'

Define a new User admin
class UserAdmin(BaseUserAdmin):

inlines = (EmployeeInline,)

Re-register UserAdmin
admin.site.unregister(User)
admin.site.register(User, UserAdmin)

These profile models are not special in any way - they are just Django models that happen to have a one-to-one link
with a user model. As such, they aren’t auto created when a user is created, but a django.db.models.signals.
post_save could be used to create or update related models as appropriate.

Using related models results in additional queries or joins to retrieve the related data. Depending on your needs, a
custom user model that includes the related fields may be your better option, however, existing relations to the default
user model within your project’s apps may justify the extra database load.

Substituting a custom User model

Some kinds of projects may have authentication requirements for which Django’s built-in User model is not always
appropriate. For instance, on some sites it makes more sense to use an email address as your identification token
instead of a username.

Django allows you to override the default user model by providing a value for the AUTH_USER_MODEL setting that
references a custom model:

3.10. User authentication in Django 393

Django Documentation, Release 1.10.9.dev20171123183751

AUTH_USER_MODEL = 'myapp.MyUser'

This dotted pair describes the name of the Django app (which must be in your INSTALLED_APPS), and the name of
the Django model that you wish to use as your user model.

Using a custom user model when starting a project

If you’re starting a new project, it’s highly recommended to set up a custom user model, even if the default User
model is sufficient for you. This model behaves identically to the default user model, but you’ll be able to customize
it in the future if the need arises:

from django.contrib.auth.models import AbstractUser

class User(AbstractUser):
pass

Don’t forget to point AUTH_USER_MODEL to it. Do this before creating any migrations or running manage.py
migrate for the first time.

Changing to a custom user model mid-project

Changing AUTH_USER_MODEL after you’ve created database tables is significantly more difficult since it affects
foreign keys and many-to-many relationships, for example.

This change can’t be done automatically and requires manually fixing your schema, moving your data from the old
user table, and possibly manually reapplying some migrations. See #25313 for an outline of the steps.

Due to limitations of Django’s dynamic dependency feature for swappable models, the model referenced by
AUTH_USER_MODEL must be created in the first migration of its app (usually called 0001_initial); otherwise,
you’ll have dependency issues.

In addition, you may run into a CircularDependencyError when running your migrations as Django won’t be
able to automatically break the dependency loop due to the dynamic dependency. If you see this error, you should
break the loop by moving the models depended on by your user model into a second migration. (You can try making
two normal models that have a ForeignKey to each other and seeing how makemigrations resolves that circular
dependency if you want to see how it’s usually done.)

Reusable apps and AUTH_USER_MODEL

Reusable apps shouldn’t implement a custom user model. A project may use many apps, and two reusable apps that
implemented a custom user model couldn’t be used together. If you need to store per user information in your app,
use a ForeignKey or OneToOneField to settings.AUTH_USER_MODEL as described below.

Referencing the User model

If you reference User directly (for example, by referring to it in a foreign key), your code will not work in projects
where the AUTH_USER_MODEL setting has been changed to a different user model.

get_user_model()
Instead of referring to User directly, you should reference the user model using django.contrib.auth.
get_user_model(). This method will return the currently active user model – the custom user model if one
is specified, or User otherwise.

394 Chapter 3. Using Django

https://code.djangoproject.com/ticket/25313

Django Documentation, Release 1.10.9.dev20171123183751

When you define a foreign key or many-to-many relations to the user model, you should specify the custom
model using the AUTH_USER_MODEL setting. For example:

from django.conf import settings
from django.db import models

class Article(models.Model):
author = models.ForeignKey(

settings.AUTH_USER_MODEL,
on_delete=models.CASCADE,

)

When connecting to signals sent by the user model, you should specify the custom model using the
AUTH_USER_MODEL setting. For example:

from django.conf import settings
from django.db.models.signals import post_save

def post_save_receiver(sender, instance, created, **kwargs):
pass

post_save.connect(post_save_receiver, sender=settings.AUTH_USER_MODEL)

Generally speaking, you should reference the user model with the AUTH_USER_MODEL setting in code that is
executed at import time. get_user_model() only works once Django has imported all models.

Specifying a custom user model

Model design considerations

Think carefully before handling information not directly related to authentication in your custom user model.

It may be better to store app-specific user information in a model that has a relation with the user model. That allows
each app to specify its own user data requirements without risking conflicts with other apps. On the other hand, queries
to retrieve this related information will involve a database join, which may have an effect on performance.

Django expects your custom user model to meet some minimum requirements.

1. If you use the default authentication backend, then your model must have a single unique field that can be
used for identification purposes. This can be a username, an email address, or any other unique attribute. A
non-unique username field is allowed if you use a custom authentication backend that can support it.

2. Your model must provide a way to address the user in a “short” and “long” form. The most common interpreta-
tion of this would be to use the user’s given name as the “short” identifier, and the user’s full name as the “long”
identifier. However, there are no constraints on what these two methods return - if you want, they can return
exactly the same value.

The easiest way to construct a compliant custom user model is to inherit from AbstractBaseUser.
AbstractBaseUser provides the core implementation of a user model, including hashed passwords and tokenized
password resets. You must then provide some key implementation details:

class models.CustomUser

USERNAME_FIELD
A string describing the name of the field on the user model that is used as the unique identifier. This will
usually be a username of some kind, but it can also be an email address, or any other unique identifier. The

3.10. User authentication in Django 395

Django Documentation, Release 1.10.9.dev20171123183751

field must be unique (i.e., have unique=True set in its definition), unless you use a custom authentication
backend that can support non-unique usernames.

In the following example, the field identifier is used as the identifying field:

class MyUser(AbstractBaseUser):
identifier = models.CharField(max_length=40, unique=True)
...
USERNAME_FIELD = 'identifier'

USERNAME_FIELD now supports ForeignKeys. Since there is no way to pass model instances
during the createsuperuser prompt, expect the user to enter the value of to_field value (the
primary_key by default) of an existing instance.

REQUIRED_FIELDS
A list of the field names that will be prompted for when creating a user via the createsuperuser
management command. The user will be prompted to supply a value for each of these fields. It must
include any field for which blank is False or undefined and may include additional fields you want
prompted for when a user is created interactively. REQUIRED_FIELDS has no effect in other parts of
Django, like creating a user in the admin.

For example, here is the partial definition for a user model that defines two required fields - a date of birth
and height:

class MyUser(AbstractBaseUser):
...
date_of_birth = models.DateField()
height = models.FloatField()
...
REQUIRED_FIELDS = ['date_of_birth', 'height']

Note: REQUIRED_FIELDS must contain all required fields on your user model, but should not contain
the USERNAME_FIELD or password as these fields will always be prompted for.

REQUIRED_FIELDS now supports ForeignKeys. Since there is no way to pass model instances
during the createsuperuser prompt, expect the user to enter the value of to_field value (the
primary_key by default) of an existing instance.

is_active
A boolean attribute that indicates whether the user is considered “active”. This attribute is provided as an
attribute on AbstractBaseUser defaulting to True. How you choose to implement it will depend on
the details of your chosen auth backends. See the documentation of the is_active attribute on
the built-in user model for details.

get_full_name()
A longer formal identifier for the user. A common interpretation would be the full name of the user, but it
can be any string that identifies the user.

get_short_name()
A short, informal identifier for the user. A common interpretation would be the first name of the user,
but it can be any string that identifies the user in an informal way. It may also return the same value as
django.contrib.auth.models.User.get_full_name().

Importing AbstractBaseUser

AbstractBaseUser and BaseUserManager are importable from django.contrib.auth.
base_user so that they can be imported without including django.contrib.auth in

396 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

INSTALLED_APPS (this raised a deprecation warning in older versions and is no longer supported in
Django 1.9).

The following attributes and methods are available on any subclass of AbstractBaseUser:

class models.AbstractBaseUser

get_username()
Returns the value of the field nominated by USERNAME_FIELD.

clean()
Normalizes the username by calling normalize_username(). If you override this method, be sure to
call super() to retain the normalization.

classmethod normalize_username(username)
Applies NFKC Unicode normalization to usernames so that visually identical characters with different
Unicode code points are considered identical.

is_authenticated
Read-only attribute which is always True (as opposed to AnonymousUser.is_authenticated
which is always False). This is a way to tell if the user has been authenticated. This does not im-
ply any permissions and doesn’t check if the user is active or has a valid session. Even though nor-
mally you will check this attribute on request.user to find out whether it has been populated by
the AuthenticationMiddleware (representing the currently logged-in user), you should know this
attribute is True for any User instance.

In older versions, this was a method. Backwards-compatibility support for using it as a method will be
removed in Django 2.0.

is_anonymous
Read-only attribute which is always False. This is a way of differentiating User and AnonymousUser
objects. Generally, you should prefer using is_authenticated to this attribute.

In older versions, this was a method. Backwards-compatibility support for using it as a method will be
removed in Django 2.0.

set_password(raw_password)
Sets the user’s password to the given raw string, taking care of the password hashing. Doesn’t save the
AbstractBaseUser object.

When the raw_password is None, the password will be set to an unusable password, as if
set_unusable_password() were used.

check_password(raw_password)
Returns True if the given raw string is the correct password for the user. (This takes care of the password
hashing in making the comparison.)

set_unusable_password()
Marks the user as having no password set. This isn’t the same as having a blank string for a password.
check_password() for this user will never return True. Doesn’t save the AbstractBaseUser
object.

You may need this if authentication for your application takes place against an existing external source
such as an LDAP directory.

has_usable_password()
Returns False if set_unusable_password() has been called for this user.

get_session_auth_hash()
Returns an HMAC of the password field. Used for Session invalidation on password change.

3.10. User authentication in Django 397

Django Documentation, Release 1.10.9.dev20171123183751

You should also define a custom manager for your user model. If your user model defines username, email,
is_staff, is_active, is_superuser, last_login, and date_joined fields the same as Django’s de-
fault user, you can just install Django’s UserManager; however, if your user model defines different fields, you’ll
need to define a custom manager that extends BaseUserManager providing two additional methods:

class models.CustomUserManager

create_user(*username_field*, password=None, **other_fields)
The prototype of create_user() should accept the username field, plus all required fields as argu-
ments. For example, if your user model uses email as the username field, and has date_of_birth as
a required field, then create_user should be defined as:

def create_user(self, email, date_of_birth, password=None):
create user here
...

create_superuser(*username_field*, password, **other_fields)
The prototype of create_superuser() should accept the username field, plus all required fields as
arguments. For example, if your user model uses email as the username field, and has date_of_birth
as a required field, then create_superuser should be defined as:

def create_superuser(self, email, date_of_birth, password):
create superuser here
...

Unlike create_user(), create_superuser() must require the caller to provide a password.

BaseUserManager provides the following utility methods:

class models.BaseUserManager

classmethod normalize_email(email)
Normalizes email addresses by lowercasing the domain portion of the email address.

get_by_natural_key(username)
Retrieves a user instance using the contents of the field nominated by USERNAME_FIELD.

make_random_password(length=10, allowed_chars=’abcdefghjkmnpqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ23456789’)
Returns a random password with the given length and given string of allowed characters. Note that the
default value of allowed_chars doesn’t contain letters that can cause user confusion, including:

• i, l, I, and 1 (lowercase letter i, lowercase letter L, uppercase letter i, and the number one)

• o, O, and 0 (lowercase letter o, uppercase letter o, and zero)

Extending Django’s default User

If you’re entirely happy with Django’s User model and you just want to add some additional profile information, you
could simply subclass django.contrib.auth.models.AbstractUser and add your custom profile fields,
although we’d recommend a separate model as described in the “Model design considerations” note of Specifying a
custom user model. AbstractUser provides the full implementation of the default User as an abstract model.

Custom users and the built-in auth forms

Django’s built-in forms and views make certain assumptions about the user model that they are working with.

398 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

The following forms are compatible with any subclass of AbstractBaseUser:

• AuthenticationForm: Uses the username field specified by USERNAME_FIELD.

• SetPasswordForm

• PasswordChangeForm

• AdminPasswordChangeForm

The following forms make assumptions about the user model and can be used as-is if those assumptions are met:

• PasswordResetForm: Assumes that the user model has a field named email that can be used to identify
the user and a boolean field named is_active to prevent password resets for inactive users.

Finally, the following forms are tied to User and need to be rewritten or extended to work with a custom user model:

• UserCreationForm

• UserChangeForm

If your custom user model is a simple subclass of AbstractUser, then you can extend these forms in this manner:

from django.contrib.auth.forms import UserCreationForm
from myapp.models import CustomUser

class CustomUserCreationForm(UserCreationForm):

class Meta(UserCreationForm.Meta):
model = CustomUser
fields = UserCreationForm.Meta.fields + ('custom_field',)

Custom users and django.contrib.admin

If you want your custom user model to also work with the admin, your user model must define some additional
attributes and methods. These methods allow the admin to control access of the user to admin content:

class models.CustomUser

is_staff
Returns True if the user is allowed to have access to the admin site.

is_active
Returns True if the user account is currently active.

has_perm(perm, obj=None):
Returns True if the user has the named permission. If obj is provided, the permission needs to be checked
against a specific object instance.

has_module_perms(app_label):
Returns True if the user has permission to access models in the given app.

You will also need to register your custom user model with the admin. If your custom user model extends
django.contrib.auth.models.AbstractUser, you can use Django’s existing django.contrib.
auth.admin.UserAdmin class. However, if your user model extends AbstractBaseUser, you’ll need to
define a custom ModelAdmin class. It may be possible to subclass the default django.contrib.auth.admin.
UserAdmin; however, you’ll need to override any of the definitions that refer to fields on django.contrib.
auth.models.AbstractUser that aren’t on your custom user class.

3.10. User authentication in Django 399

Django Documentation, Release 1.10.9.dev20171123183751

Custom users and permissions

To make it easy to include Django’s permission framework into your own user class, Django provides
PermissionsMixin. This is an abstract model you can include in the class hierarchy for your user model, giving
you all the methods and database fields necessary to support Django’s permission model.

PermissionsMixin provides the following methods and attributes:

class models.PermissionsMixin

is_superuser
Boolean. Designates that this user has all permissions without explicitly assigning them.

get_group_permissions(obj=None)
Returns a set of permission strings that the user has, through their groups.

If obj is passed in, only returns the group permissions for this specific object.

get_all_permissions(obj=None)
Returns a set of permission strings that the user has, both through group and user permissions.

If obj is passed in, only returns the permissions for this specific object.

has_perm(perm, obj=None)
Returns True if the user has the specified permission, where perm is in the format "<app label>.
<permission codename>" (see permissions). If the user is inactive, this method will always return
False.

If obj is passed in, this method won’t check for a permission for the model, but for this specific object.

has_perms(perm_list, obj=None)
Returns True if the user has each of the specified permissions, where each perm is in the format "<app
label>.<permission codename>". If the user is inactive, this method will always return False.

If obj is passed in, this method won’t check for permissions for the model, but for the specific object.

has_module_perms(package_name)
Returns True if the user has any permissions in the given package (the Django app label). If the user is
inactive, this method will always return False.

PermissionsMixin and ModelBackend

If you don’t include the PermissionsMixin, you must ensure you don’t invoke the permissions methods on
ModelBackend. ModelBackend assumes that certain fields are available on your user model. If your user model
doesn’t provide those fields, you’ll receive database errors when you check permissions.

Custom users and proxy models

One limitation of custom user models is that installing a custom user model will break any proxy model extending
User. Proxy models must be based on a concrete base class; by defining a custom user model, you remove the ability
of Django to reliably identify the base class.

If your project uses proxy models, you must either modify the proxy to extend the user model that’s in use in your
project, or merge your proxy’s behavior into your User subclass.

400 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

A full example

Here is an example of an admin-compliant custom user app. This user model uses an email address as the username,
and has a required date of birth; it provides no permission checking, beyond a simple admin flag on the user account.
This model would be compatible with all the built-in auth forms and views, except for the user creation forms. This
example illustrates how most of the components work together, but is not intended to be copied directly into projects
for production use.

This code would all live in a models.py file for a custom authentication app:

from django.db import models
from django.contrib.auth.models import (

BaseUserManager, AbstractBaseUser
)

class MyUserManager(BaseUserManager):
def create_user(self, email, date_of_birth, password=None):

"""
Creates and saves a User with the given email, date of
birth and password.
"""
if not email:

raise ValueError('Users must have an email address')

user = self.model(
email=self.normalize_email(email),
date_of_birth=date_of_birth,

)

user.set_password(password)
user.save(using=self._db)
return user

def create_superuser(self, email, date_of_birth, password):
"""
Creates and saves a superuser with the given email, date of
birth and password.
"""
user = self.create_user(

email,
password=password,
date_of_birth=date_of_birth,

)
user.is_admin = True
user.save(using=self._db)
return user

class MyUser(AbstractBaseUser):
email = models.EmailField(

verbose_name='email address',
max_length=255,
unique=True,

)
date_of_birth = models.DateField()
is_active = models.BooleanField(default=True)
is_admin = models.BooleanField(default=False)

3.10. User authentication in Django 401

Django Documentation, Release 1.10.9.dev20171123183751

objects = MyUserManager()

USERNAME_FIELD = 'email'
REQUIRED_FIELDS = ['date_of_birth']

def get_full_name(self):
The user is identified by their email address
return self.email

def get_short_name(self):
The user is identified by their email address
return self.email

def __str__(self): # __unicode__ on Python 2
return self.email

def has_perm(self, perm, obj=None):
"Does the user have a specific permission?"
Simplest possible answer: Yes, always
return True

def has_module_perms(self, app_label):
"Does the user have permissions to view the app `app_label`?"
Simplest possible answer: Yes, always
return True

@property
def is_staff(self):

"Is the user a member of staff?"
Simplest possible answer: All admins are staff
return self.is_admin

Then, to register this custom user model with Django’s admin, the following code would be required in the app’s
admin.py file:

from django import forms
from django.contrib import admin
from django.contrib.auth.models import Group
from django.contrib.auth.admin import UserAdmin as BaseUserAdmin
from django.contrib.auth.forms import ReadOnlyPasswordHashField

from customauth.models import MyUser

class UserCreationForm(forms.ModelForm):
"""A form for creating new users. Includes all the required
fields, plus a repeated password."""
password1 = forms.CharField(label='Password', widget=forms.PasswordInput)
password2 = forms.CharField(label='Password confirmation', widget=forms.

→˓PasswordInput)

class Meta:
model = MyUser
fields = ('email', 'date_of_birth')

def clean_password2(self):
Check that the two password entries match

402 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

password1 = self.cleaned_data.get("password1")
password2 = self.cleaned_data.get("password2")
if password1 and password2 and password1 != password2:

raise forms.ValidationError("Passwords don't match")
return password2

def save(self, commit=True):
Save the provided password in hashed format
user = super(UserCreationForm, self).save(commit=False)
user.set_password(self.cleaned_data["password1"])
if commit:

user.save()
return user

class UserChangeForm(forms.ModelForm):
"""A form for updating users. Includes all the fields on
the user, but replaces the password field with admin's
password hash display field.
"""
password = ReadOnlyPasswordHashField()

class Meta:
model = MyUser
fields = ('email', 'password', 'date_of_birth', 'is_active', 'is_admin')

def clean_password(self):
Regardless of what the user provides, return the initial value.
This is done here, rather than on the field, because the
field does not have access to the initial value
return self.initial["password"]

class UserAdmin(BaseUserAdmin):
The forms to add and change user instances
form = UserChangeForm
add_form = UserCreationForm

The fields to be used in displaying the User model.
These override the definitions on the base UserAdmin
that reference specific fields on auth.User.
list_display = ('email', 'date_of_birth', 'is_admin')
list_filter = ('is_admin',)
fieldsets = (

(None, {'fields': ('email', 'password')}),
('Personal info', {'fields': ('date_of_birth',)}),
('Permissions', {'fields': ('is_admin',)}),

)
add_fieldsets is not a standard ModelAdmin attribute. UserAdmin
overrides get_fieldsets to use this attribute when creating a user.
add_fieldsets = (

(None, {
'classes': ('wide',),
'fields': ('email', 'date_of_birth', 'password1', 'password2')}

),
)
search_fields = ('email',)
ordering = ('email',)

3.10. User authentication in Django 403

Django Documentation, Release 1.10.9.dev20171123183751

filter_horizontal = ()

Now register the new UserAdmin...
admin.site.register(MyUser, UserAdmin)
... and, since we're not using Django's built-in permissions,
unregister the Group model from admin.
admin.site.unregister(Group)

Finally, specify the custom model as the default user model for your project using the AUTH_USER_MODEL setting
in your settings.py:

AUTH_USER_MODEL = 'customauth.MyUser'

Django comes with a user authentication system. It handles user accounts, groups, permissions and cookie-based user
sessions. This section of the documentation explains how the default implementation works out of the box, as well as
how to extend and customize it to suit your project’s needs.

3.10.4 Overview

The Django authentication system handles both authentication and authorization. Briefly, authentication verifies a
user is who they claim to be, and authorization determines what an authenticated user is allowed to do. Here the term
authentication is used to refer to both tasks.

The auth system consists of:

• Users

• Permissions: Binary (yes/no) flags designating whether a user may perform a certain task.

• Groups: A generic way of applying labels and permissions to more than one user.

• A configurable password hashing system

• Forms and view tools for logging in users, or restricting content

• A pluggable backend system

The authentication system in Django aims to be very generic and doesn’t provide some features commonly found in
web authentication systems. Solutions for some of these common problems have been implemented in third-party
packages:

• Password strength checking

• Throttling of login attempts

• Authentication against third-parties (OAuth, for example)

3.10.5 Installation

Authentication support is bundled as a Django contrib module in django.contrib.auth. By default, the required
configuration is already included in the settings.py generated by django-admin startproject, these
consist of two items listed in your INSTALLED_APPS setting:

1. 'django.contrib.auth' contains the core of the authentication framework, and its default models.

2. 'django.contrib.contenttypes' is the Django content type system, which allows permissions to be
associated with models you create.

and these items in your MIDDLEWARE setting:

404 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

1. SessionMiddleware manages sessions across requests.

2. AuthenticationMiddleware associates users with requests using sessions.

With these settings in place, running the command manage.py migrate creates the necessary database tables for
auth related models and permissions for any models defined in your installed apps.

3.10.6 Usage

Using Django’s default implementation

• Working with User objects

• Permissions and authorization

• Authentication in web requests

• Managing users in the admin

API reference for the default implementation

Customizing Users and authentication

Password management in Django

3.11 Django’s cache framework

A fundamental trade-off in dynamic websites is, well, they’re dynamic. Each time a user requests a page, the Web
server makes all sorts of calculations – from database queries to template rendering to business logic – to create the
page that your site’s visitor sees. This is a lot more expensive, from a processing-overhead perspective, than your
standard read-a-file-off-the-filesystem server arrangement.

For most Web applications, this overhead isn’t a big deal. Most Web applications aren’t washingtonpost.com
or slashdot.org; they’re simply small- to medium-sized sites with so-so traffic. But for medium- to high-traffic
sites, it’s essential to cut as much overhead as possible.

That’s where caching comes in.

To cache something is to save the result of an expensive calculation so that you don’t have to perform the calculation
next time. Here’s some pseudocode explaining how this would work for a dynamically generated Web page:

given a URL, try finding that page in the cache
if the page is in the cache:

return the cached page
else:

generate the page
save the generated page in the cache (for next time)
return the generated page

Django comes with a robust cache system that lets you save dynamic pages so they don’t have to be calculated for
each request. For convenience, Django offers different levels of cache granularity: You can cache the output of specific
views, you can cache only the pieces that are difficult to produce, or you can cache your entire site.

Django also works well with “downstream” caches, such as Squid and browser-based caches. These are the types of
caches that you don’t directly control but to which you can provide hints (via HTTP headers) about which parts of
your site should be cached, and how.

See also:

The Cache Framework design philosophy explains a few of the design decisions of the framework.

3.11. Django’s cache framework 405

http://www.squid-cache.org

Django Documentation, Release 1.10.9.dev20171123183751

3.11.1 Setting up the cache

The cache system requires a small amount of setup. Namely, you have to tell it where your cached data should live –
whether in a database, on the filesystem or directly in memory. This is an important decision that affects your cache’s
performance; yes, some cache types are faster than others.

Your cache preference goes in the CACHES setting in your settings file. Here’s an explanation of all available values
for CACHES.

Memcached

The fastest, most efficient type of cache supported natively by Django, Memcached is an entirely memory-based
cache server, originally developed to handle high loads at LiveJournal.com and subsequently open-sourced by Danga
Interactive. It is used by sites such as Facebook and Wikipedia to reduce database access and dramatically increase
site performance.

Memcached runs as a daemon and is allotted a specified amount of RAM. All it does is provide a fast interface for
adding, retrieving and deleting data in the cache. All data is stored directly in memory, so there’s no overhead of
database or filesystem usage.

After installing Memcached itself, you’ll need to install a Memcached binding. There are several Python Memcached
bindings available; the two most common are python-memcached and pylibmc.

To use Memcached with Django:

• Set BACKEND to django.core.cache.backends.memcached.MemcachedCache or django.
core.cache.backends.memcached.PyLibMCCache (depending on your chosen memcached bind-
ing)

• Set LOCATION to ip:port values, where ip is the IP address of the Memcached daemon and port is the
port on which Memcached is running, or to a unix:path value, where path is the path to a Memcached
Unix socket file.

In this example, Memcached is running on localhost (127.0.0.1) port 11211, using the python-memcached binding:

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
'LOCATION': '127.0.0.1:11211',

}
}

In this example, Memcached is available through a local Unix socket file /tmp/memcached.sock using the
python-memcached binding:

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
'LOCATION': 'unix:/tmp/memcached.sock',

}
}

When using the pylibmc binding, do not include the unix:/ prefix:

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.memcached.PyLibMCCache',
'LOCATION': '/tmp/memcached.sock',

406 Chapter 3. Using Django

http://memcached.org/
https://pypi.python.org/pypi/python-memcached
https://pypi.python.org/pypi/pylibmc

Django Documentation, Release 1.10.9.dev20171123183751

}
}

One excellent feature of Memcached is its ability to share a cache over multiple servers. This means you can run
Memcached daemons on multiple machines, and the program will treat the group of machines as a single cache,
without the need to duplicate cache values on each machine. To take advantage of this feature, include all server
addresses in LOCATION , either separated by semicolons or as a list.

In this example, the cache is shared over Memcached instances running on IP address 172.19.26.240 and
172.19.26.242, both on port 11211:

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
'LOCATION': [

'172.19.26.240:11211',
'172.19.26.242:11211',

]
}

}

In the following example, the cache is shared over Memcached instances running on the IP addresses 172.19.26.240
(port 11211), 172.19.26.242 (port 11212), and 172.19.26.244 (port 11213):

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
'LOCATION': [

'172.19.26.240:11211',
'172.19.26.242:11212',
'172.19.26.244:11213',

]
}

}

A final point about Memcached is that memory-based caching has a disadvantage: because the cached data is stored
in memory, the data will be lost if your server crashes. Clearly, memory isn’t intended for permanent data storage, so
don’t rely on memory-based caching as your only data storage. Without a doubt, none of the Django caching backends
should be used for permanent storage – they’re all intended to be solutions for caching, not storage – but we point this
out here because memory-based caching is particularly temporary.

Database caching

Django can store its cached data in your database. This works best if you’ve got a fast, well-indexed database server.

To use a database table as your cache backend:

• Set BACKEND to django.core.cache.backends.db.DatabaseCache

• Set LOCATION to tablename, the name of the database table. This name can be whatever you want, as long
as it’s a valid table name that’s not already being used in your database.

In this example, the cache table’s name is my_cache_table:

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.db.DatabaseCache',
'LOCATION': 'my_cache_table',

3.11. Django’s cache framework 407

Django Documentation, Release 1.10.9.dev20171123183751

}
}

Creating the cache table

Before using the database cache, you must create the cache table with this command:

python manage.py createcachetable

This creates a table in your database that is in the proper format that Django’s database-cache system expects. The
name of the table is taken from LOCATION .

If you are using multiple database caches, createcachetable creates one table for each cache.

If you are using multiple databases, createcachetable observes the allow_migrate() method of your
database routers (see below).

Like migrate, createcachetable won’t touch an existing table. It will only create missing tables.

To print the SQL that would be run, rather than run it, use the createcachetable --dry-run option.

Multiple databases

If you use database caching with multiple databases, you’ll also need to set up routing instructions for your database
cache table. For the purposes of routing, the database cache table appears as a model named CacheEntry, in an
application named django_cache. This model won’t appear in the models cache, but the model details can be used
for routing purposes.

For example, the following router would direct all cache read operations to cache_replica, and all write operations
to cache_primary. The cache table will only be synchronized onto cache_primary:

class CacheRouter(object):
"""A router to control all database cache operations"""

def db_for_read(self, model, **hints):
"All cache read operations go to the replica"
if model._meta.app_label == 'django_cache':

return 'cache_replica'
return None

def db_for_write(self, model, **hints):
"All cache write operations go to primary"
if model._meta.app_label == 'django_cache':

return 'cache_primary'
return None

def allow_migrate(self, db, app_label, model_name=None, **hints):
"Only install the cache model on primary"
if app_label == 'django_cache':

return db == 'cache_primary'
return None

If you don’t specify routing directions for the database cache model, the cache backend will use the default
database.

408 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Of course, if you don’t use the database cache backend, you don’t need to worry about providing routing instructions
for the database cache model.

Filesystem caching

The file-based backend serializes and stores each cache value as a separate file. To use this backend set BACKEND to
"django.core.cache.backends.filebased.FileBasedCache" and LOCATION to a suitable direc-
tory. For example, to store cached data in /var/tmp/django_cache, use this setting:

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.filebased.FileBasedCache',
'LOCATION': '/var/tmp/django_cache',

}
}

If you’re on Windows, put the drive letter at the beginning of the path, like this:

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.filebased.FileBasedCache',
'LOCATION': 'c:/foo/bar',

}
}

The directory path should be absolute – that is, it should start at the root of your filesystem. It doesn’t matter whether
you put a slash at the end of the setting.

Make sure the directory pointed-to by this setting exists and is readable and writable by the system user under which
your Web server runs. Continuing the above example, if your server runs as the user apache, make sure the directory
/var/tmp/django_cache exists and is readable and writable by the user apache.

Local-memory caching

This is the default cache if another is not specified in your settings file. If you want the speed advantages of in-memory
caching but don’t have the capability of running Memcached, consider the local-memory cache backend. This cache
is per-process (see below) and thread-safe. To use it, set BACKEND to "django.core.cache.backends.
locmem.LocMemCache". For example:

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
'LOCATION': 'unique-snowflake',

}
}

The cache LOCATION is used to identify individual memory stores. If you only have one locmem cache, you can
omit the LOCATION ; however, if you have more than one local memory cache, you will need to assign a name to at
least one of them in order to keep them separate.

Note that each process will have its own private cache instance, which means no cross-process caching is possible.
This obviously also means the local memory cache isn’t particularly memory-efficient, so it’s probably not a good
choice for production environments. It’s nice for development.

3.11. Django’s cache framework 409

Django Documentation, Release 1.10.9.dev20171123183751

Dummy caching (for development)

Finally, Django comes with a “dummy” cache that doesn’t actually cache – it just implements the cache interface
without doing anything.

This is useful if you have a production site that uses heavy-duty caching in various places but a development/test
environment where you don’t want to cache and don’t want to have to change your code to special-case the latter. To
activate dummy caching, set BACKEND like so:

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.dummy.DummyCache',
}

}

Using a custom cache backend

While Django includes support for a number of cache backends out-of-the-box, sometimes you might want to use
a customized cache backend. To use an external cache backend with Django, use the Python import path as the
BACKEND of the CACHES setting, like so:

CACHES = {
'default': {

'BACKEND': 'path.to.backend',
}

}

If you’re building your own backend, you can use the standard cache backends as reference implementations. You’ll
find the code in the django/core/cache/backends/ directory of the Django source.

Note: Without a really compelling reason, such as a host that doesn’t support them, you should stick to the cache
backends included with Django. They’ve been well-tested and are easy to use.

Cache arguments

Each cache backend can be given additional arguments to control caching behavior. These arguments are provided as
additional keys in the CACHES setting. Valid arguments are as follows:

• TIMEOUT: The default timeout, in seconds, to use for the cache. This argument defaults to 300 seconds (5
minutes). You can set TIMEOUT to None so that, by default, cache keys never expire. A value of 0 causes keys
to immediately expire (effectively “don’t cache”).

• OPTIONS: Any options that should be passed to the cache backend. The list of valid options will vary with each
backend, and cache backends backed by a third-party library will pass their options directly to the underlying
cache library.

Cache backends that implement their own culling strategy (i.e., the locmem, filesystem and database
backends) will honor the following options:

– MAX_ENTRIES: The maximum number of entries allowed in the cache before old values are deleted. This
argument defaults to 300.

– CULL_FREQUENCY: The fraction of entries that are culled when MAX_ENTRIES is reached. The ac-
tual ratio is 1 / CULL_FREQUENCY, so set CULL_FREQUENCY to 2 to cull half the entries when
MAX_ENTRIES is reached. This argument should be an integer and defaults to 3.

410 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

A value of 0 for CULL_FREQUENCY means that the entire cache will be dumped when MAX_ENTRIES
is reached. On some backends (database in particular) this makes culling much faster at the expense of
more cache misses.

• KEY_PREFIX: A string that will be automatically included (prepended by default) to all cache keys used by
the Django server.

See the cache documentation for more information.

• VERSION : The default version number for cache keys generated by the Django server.

See the cache documentation for more information.

• KEY_FUNCTION A string containing a dotted path to a function that defines how to compose a prefix, version
and key into a final cache key.

See the cache documentation for more information.

In this example, a filesystem backend is being configured with a timeout of 60 seconds, and a maximum capacity of
1000 items:

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.filebased.FileBasedCache',
'LOCATION': '/var/tmp/django_cache',
'TIMEOUT': 60,
'OPTIONS': {

'MAX_ENTRIES': 1000
}

}
}

Invalid arguments are silently ignored, as are invalid values of known arguments.

3.11.2 The per-site cache

Once the cache is set up, the simplest way to use caching is to cache your entire site. You’ll need to
add 'django.middleware.cache.UpdateCacheMiddleware' and 'django.middleware.cache.
FetchFromCacheMiddleware' to your MIDDLEWARE setting, as in this example:

MIDDLEWARE = [
'django.middleware.cache.UpdateCacheMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.cache.FetchFromCacheMiddleware',

]

Note: No, that’s not a typo: the “update” middleware must be first in the list, and the “fetch” middleware must be
last. The details are a bit obscure, but see Order of MIDDLEWARE below if you’d like the full story.

Then, add the following required settings to your Django settings file:

• CACHE_MIDDLEWARE_ALIAS – The cache alias to use for storage.

• CACHE_MIDDLEWARE_SECONDS – The number of seconds each page should be cached.

• CACHE_MIDDLEWARE_KEY_PREFIX – If the cache is shared across multiple sites using the same Django
installation, set this to the name of the site, or some other string that is unique to this Django instance, to prevent
key collisions. Use an empty string if you don’t care.

3.11. Django’s cache framework 411

Django Documentation, Release 1.10.9.dev20171123183751

FetchFromCacheMiddleware caches GET and HEAD responses with status 200, where the request and response
headers allow. Responses to requests for the same URL with different query parameters are considered to be unique
pages and are cached separately. This middleware expects that a HEAD request is answered with the same response
headers as the corresponding GET request; in which case it can return a cached GET response for HEAD request.

Additionally, UpdateCacheMiddleware automatically sets a few headers in each HttpResponse:

• Sets the Last-Modified header to the current date/time when a fresh (not cached) version of the page is
requested.

• Sets the Expires header to the current date/time plus the defined CACHE_MIDDLEWARE_SECONDS.

• Sets the Cache-Control header to give a max age for the page – again, from the
CACHE_MIDDLEWARE_SECONDS setting.

See Middleware for more on middleware.

If a view sets its own cache expiry time (i.e. it has a max-age section in its Cache-Control header) then the
page will be cached until the expiry time, rather than CACHE_MIDDLEWARE_SECONDS. Using the decorators in
django.views.decorators.cache you can easily set a view’s expiry time (using the cache_control()
decorator) or disable caching for a view (using the never_cache() decorator). See the using other headers section
for more on these decorators. If USE_I18N is set to True then the generated cache key will include the name of the
active language – see also How Django discovers language preference). This allows you to easily cache multilingual
sites without having to create the cache key yourself.

Cache keys also include the active language when USE_L10N is set to True and the current time zone when USE_TZ
is set to True.

3.11.3 The per-view cache

django.views.decorators.cache.cache_page()

A more granular way to use the caching framework is by caching the output of individual views. django.views.
decorators.cache defines a cache_page decorator that will automatically cache the view’s response for you.
It’s easy to use:

from django.views.decorators.cache import cache_page

@cache_page(60 * 15)
def my_view(request):

...

cache_page takes a single argument: the cache timeout, in seconds. In the above example, the result of the
my_view() view will be cached for 15 minutes. (Note that we’ve written it as 60 * 15 for the purpose of read-
ability. 60 * 15 will be evaluated to 900 – that is, 15 minutes multiplied by 60 seconds per minute.)

The per-view cache, like the per-site cache, is keyed off of the URL. If multiple URLs point at the same view, each
URL will be cached separately. Continuing the my_view example, if your URLconf looks like this:

urlpatterns = [
url(r'^foo/([0-9]{1,2})/$', my_view),

]

then requests to /foo/1/ and /foo/23/ will be cached separately, as you may expect. But once a particular URL
(e.g., /foo/23/) has been requested, subsequent requests to that URL will use the cache.

cache_page can also take an optional keyword argument, cache, which directs the decorator to use a specific
cache (from your CACHES setting) when caching view results. By default, the default cache will be used, but you
can specify any cache you want:

412 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

@cache_page(60 * 15, cache="special_cache")
def my_view(request):

...

You can also override the cache prefix on a per-view basis. cache_page takes an optional keyword argument,
key_prefix, which works in the same way as the CACHE_MIDDLEWARE_KEY_PREFIX setting for the middle-
ware. It can be used like this:

@cache_page(60 * 15, key_prefix="site1")
def my_view(request):

...

The key_prefix and cache arguments may be specified together. The key_prefix argument and the
KEY_PREFIX specified under CACHES will be concatenated.

Specifying per-view cache in the URLconf

The examples in the previous section have hard-coded the fact that the view is cached, because cache_page alters
the my_view function in place. This approach couples your view to the cache system, which is not ideal for several
reasons. For instance, you might want to reuse the view functions on another, cache-less site, or you might want to
distribute the views to people who might want to use them without being cached. The solution to these problems is to
specify the per-view cache in the URLconf rather than next to the view functions themselves.

Doing so is easy: simply wrap the view function with cache_page when you refer to it in the URLconf. Here’s the
old URLconf from earlier:

urlpatterns = [
url(r'^foo/([0-9]{1,2})/$', my_view),

]

Here’s the same thing, with my_view wrapped in cache_page:

from django.views.decorators.cache import cache_page

urlpatterns = [
url(r'^foo/([0-9]{1,2})/$', cache_page(60 * 15)(my_view)),

]

3.11.4 Template fragment caching

If you’re after even more control, you can also cache template fragments using the cache template tag. To give your
template access to this tag, put {% load cache %} near the top of your template.

The {% cache %} template tag caches the contents of the block for a given amount of time. It takes at least two
arguments: the cache timeout, in seconds, and the name to give the cache fragment. The name will be taken as is, do
not use a variable. For example:

{% load cache %}
{% cache 500 sidebar %}

.. sidebar ..
{% endcache %}

Sometimes you might want to cache multiple copies of a fragment depending on some dynamic data that appears
inside the fragment. For example, you might want a separate cached copy of the sidebar used in the previous example

3.11. Django’s cache framework 413

Django Documentation, Release 1.10.9.dev20171123183751

for every user of your site. Do this by passing additional arguments to the {% cache %} template tag to uniquely
identify the cache fragment:

{% load cache %}
{% cache 500 sidebar request.user.username %}

.. sidebar for logged in user ..
{% endcache %}

It’s perfectly fine to specify more than one argument to identify the fragment. Simply pass as many arguments to {%
cache %} as you need.

If USE_I18N is set to True the per-site middleware cache will respect the active language. For the cache template
tag you could use one of the translation-specific variables available in templates to achieve the same result:

{% load i18n %}
{% load cache %}

{% get_current_language as LANGUAGE_CODE %}

{% cache 600 welcome LANGUAGE_CODE %}
{% trans "Welcome to example.com" %}

{% endcache %}

The cache timeout can be a template variable, as long as the template variable resolves to an integer value. For example,
if the template variable my_timeout is set to the value 600, then the following two examples are equivalent:

{% cache 600 sidebar %} ... {% endcache %}
{% cache my_timeout sidebar %} ... {% endcache %}

This feature is useful in avoiding repetition in templates. You can set the timeout in a variable, in one place, and just
reuse that value.

By default, the cache tag will try to use the cache called “template_fragments”. If no such cache exists, it will fall
back to using the default cache. You may select an alternate cache backend to use with the using keyword argument,
which must be the last argument to the tag.

{% cache 300 local-thing ... using="localcache" %}

It is considered an error to specify a cache name that is not configured.

django.core.cache.utils.make_template_fragment_key(fragment_name, vary_on=None)

If you want to obtain the cache key used for a cached fragment, you can use make_template_fragment_key.
fragment_name is the same as second argument to the cache template tag; vary_on is a list of all additional
arguments passed to the tag. This function can be useful for invalidating or overwriting a cached item, for example:

>>> from django.core.cache import cache
>>> from django.core.cache.utils import make_template_fragment_key
cache key for {% cache 500 sidebar username %}
>>> key = make_template_fragment_key('sidebar', [username])
>>> cache.delete(key) # invalidates cached template fragment

3.11.5 The low-level cache API

Sometimes, caching an entire rendered page doesn’t gain you very much and is, in fact, inconvenient overkill.

Perhaps, for instance, your site includes a view whose results depend on several expensive queries, the results of which
change at different intervals. In this case, it would not be ideal to use the full-page caching that the per-site or per-view

414 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

cache strategies offer, because you wouldn’t want to cache the entire result (since some of the data changes often), but
you’d still want to cache the results that rarely change.

For cases like this, Django exposes a simple, low-level cache API. You can use this API to store objects in the cache
with any level of granularity you like. You can cache any Python object that can be pickled safely: strings, dictionaries,
lists of model objects, and so forth. (Most common Python objects can be pickled; refer to the Python documentation
for more information about pickling.)

Accessing the cache

django.core.cache.caches
You can access the caches configured in the CACHES setting through a dict-like object: django.core.
cache.caches. Repeated requests for the same alias in the same thread will return the same object.

>>> from django.core.cache import caches
>>> cache1 = caches['myalias']
>>> cache2 = caches['myalias']
>>> cache1 is cache2
True

If the named key does not exist, InvalidCacheBackendError will be raised.

To provide thread-safety, a different instance of the cache backend will be returned for each thread.

django.core.cache.cache
As a shortcut, the default cache is available as django.core.cache.cache:

>>> from django.core.cache import cache

This object is equivalent to caches['default'].

Basic usage

The basic interface is set(key, value, timeout) and get(key):

>>> cache.set('my_key', 'hello, world!', 30)
>>> cache.get('my_key')
'hello, world!'

key should be a str (or unicode on Python 2), and value can be any picklable Python object.

The timeout argument is optional and defaults to the timeout argument of the appropriate backend in the CACHES
setting (explained above). It’s the number of seconds the value should be stored in the cache. Passing in None for
timeout will cache the value forever. A timeout of 0 won’t cache the value.

If the object doesn’t exist in the cache, cache.get() returns None:

>>> # Wait 30 seconds for 'my_key' to expire...
>>> cache.get('my_key')
None

We advise against storing the literal value None in the cache, because you won’t be able to distinguish between your
stored None value and a cache miss signified by a return value of None.

cache.get() can take a default argument. This specifies which value to return if the object doesn’t exist in the
cache:

3.11. Django’s cache framework 415

Django Documentation, Release 1.10.9.dev20171123183751

>>> cache.get('my_key', 'has expired')
'has expired'

To add a key only if it doesn’t already exist, use the add() method. It takes the same parameters as set(), but it
will not attempt to update the cache if the key specified is already present:

>>> cache.set('add_key', 'Initial value')
>>> cache.add('add_key', 'New value')
>>> cache.get('add_key')
'Initial value'

If you need to know whether add() stored a value in the cache, you can check the return value. It will return True
if the value was stored, False otherwise.

If you want to get a key’s value or set a value if the key isn’t in the cache, there is the get_or_set() method.
It takes the same parameters as get() but the default is set as the new cache value for that key, rather than simply
returned:

>>> cache.get('my_new_key') # returns None
>>> cache.get_or_set('my_new_key', 'my new value', 100)
'my new value'

You can also pass any callable as a default value:

>>> import datetime
>>> cache.get_or_set('some-timestamp-key', datetime.datetime.now)
datetime.datetime(2014, 12, 11, 0, 15, 49, 457920)

The get_or_set() method was added.

There’s also a get_many() interface that only hits the cache once. get_many() returns a dictionary with all the
keys you asked for that actually exist in the cache (and haven’t expired):

>>> cache.set('a', 1)
>>> cache.set('b', 2)
>>> cache.set('c', 3)
>>> cache.get_many(['a', 'b', 'c'])
{'a': 1, 'b': 2, 'c': 3}

To set multiple values more efficiently, use set_many() to pass a dictionary of key-value pairs:

>>> cache.set_many({'a': 1, 'b': 2, 'c': 3})
>>> cache.get_many(['a', 'b', 'c'])
{'a': 1, 'b': 2, 'c': 3}

Like cache.set(), set_many() takes an optional timeout parameter.

You can delete keys explicitly with delete(). This is an easy way of clearing the cache for a particular object:

>>> cache.delete('a')

If you want to clear a bunch of keys at once, delete_many() can take a list of keys to be cleared:

>>> cache.delete_many(['a', 'b', 'c'])

Finally, if you want to delete all the keys in the cache, use cache.clear(). Be careful with this; clear() will
remove everything from the cache, not just the keys set by your application.

416 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

>>> cache.clear()

You can also increment or decrement a key that already exists using the incr() or decr() methods, respectively.
By default, the existing cache value will incremented or decremented by 1. Other increment/decrement values can
be specified by providing an argument to the increment/decrement call. A ValueError will be raised if you attempt to
increment or decrement a nonexistent cache key.:

>>> cache.set('num', 1)
>>> cache.incr('num')
2
>>> cache.incr('num', 10)
12
>>> cache.decr('num')
11
>>> cache.decr('num', 5)
6

Note: incr()/decr() methods are not guaranteed to be atomic. On those backends that support atomic in-
crement/decrement (most notably, the memcached backend), increment and decrement operations will be atomic.
However, if the backend doesn’t natively provide an increment/decrement operation, it will be implemented using a
two-step retrieve/update.

You can close the connection to your cache with close() if implemented by the cache backend.

>>> cache.close()

Note: For caches that don’t implement close methods it is a no-op.

Cache key prefixing

If you are sharing a cache instance between servers, or between your production and development environments, it’s
possible for data cached by one server to be used by another server. If the format of cached data is different between
servers, this can lead to some very hard to diagnose problems.

To prevent this, Django provides the ability to prefix all cache keys used by a server. When a particular cache key is
saved or retrieved, Django will automatically prefix the cache key with the value of the KEY_PREFIX cache setting.

By ensuring each Django instance has a different KEY_PREFIX , you can ensure that there will be no collisions in
cache values.

Cache versioning

When you change running code that uses cached values, you may need to purge any existing cached values. The
easiest way to do this is to flush the entire cache, but this can lead to the loss of cache values that are still valid and
useful.

Django provides a better way to target individual cache values. Django’s cache framework has a system-wide version
identifier, specified using the VERSION cache setting. The value of this setting is automatically combined with the
cache prefix and the user-provided cache key to obtain the final cache key.

3.11. Django’s cache framework 417

Django Documentation, Release 1.10.9.dev20171123183751

By default, any key request will automatically include the site default cache key version. However, the primitive
cache functions all include a version argument, so you can specify a particular cache key version to set or get. For
example:

>>> # Set version 2 of a cache key
>>> cache.set('my_key', 'hello world!', version=2)
>>> # Get the default version (assuming version=1)
>>> cache.get('my_key')
None
>>> # Get version 2 of the same key
>>> cache.get('my_key', version=2)
'hello world!'

The version of a specific key can be incremented and decremented using the incr_version() and
decr_version() methods. This enables specific keys to be bumped to a new version, leaving other keys unaf-
fected. Continuing our previous example:

>>> # Increment the version of 'my_key'
>>> cache.incr_version('my_key')
>>> # The default version still isn't available
>>> cache.get('my_key')
None
Version 2 isn't available, either
>>> cache.get('my_key', version=2)
None
>>> # But version 3 *is* available
>>> cache.get('my_key', version=3)
'hello world!'

Cache key transformation

As described in the previous two sections, the cache key provided by a user is not used verbatim – it is combined with
the cache prefix and key version to provide a final cache key. By default, the three parts are joined using colons to
produce a final string:

def make_key(key, key_prefix, version):
return ':'.join([key_prefix, str(version), key])

If you want to combine the parts in different ways, or apply other processing to the final key (e.g., taking a hash digest
of the key parts), you can provide a custom key function.

The KEY_FUNCTION cache setting specifies a dotted-path to a function matching the prototype of make_key()
above. If provided, this custom key function will be used instead of the default key combining function.

Cache key warnings

Memcached, the most commonly-used production cache backend, does not allow cache keys longer than 250 char-
acters or containing whitespace or control characters, and using such keys will cause an exception. To encourage
cache-portable code and minimize unpleasant surprises, the other built-in cache backends issue a warning (django.
core.cache.backends.base.CacheKeyWarning) if a key is used that would cause an error on memcached.

If you are using a production backend that can accept a wider range of keys (a custom backend, or one of
the non-memcached built-in backends), and want to use this wider range without warnings, you can silence
CacheKeyWarning with this code in the management module of one of your INSTALLED_APPS:

418 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

import warnings

from django.core.cache import CacheKeyWarning

warnings.simplefilter("ignore", CacheKeyWarning)

If you want to instead provide custom key validation logic for one of the built-in backends, you can subclass it, override
just the validate_key method, and follow the instructions for using a custom cache backend. For instance, to do
this for the locmem backend, put this code in a module:

from django.core.cache.backends.locmem import LocMemCache

class CustomLocMemCache(LocMemCache):
def validate_key(self, key):

"""Custom validation, raising exceptions or warnings as needed."""
...

...and use the dotted Python path to this class in the BACKEND portion of your CACHES setting.

3.11.6 Downstream caches

So far, this document has focused on caching your own data. But another type of caching is relevant to Web develop-
ment, too: caching performed by “downstream” caches. These are systems that cache pages for users even before the
request reaches your website.

Here are a few examples of downstream caches:

• Your ISP may cache certain pages, so if you requested a page from https://example.com/, your ISP would
send you the page without having to access example.com directly. The maintainers of example.com have no
knowledge of this caching; the ISP sits between example.com and your Web browser, handling all of the caching
transparently.

• Your Django website may sit behind a proxy cache, such as Squid Web Proxy Cache (http://www.squid-cache.
org/), that caches pages for performance. In this case, each request first would be handled by the proxy, and it
would be passed to your application only if needed.

• Your Web browser caches pages, too. If a Web page sends out the appropriate headers, your browser will use
the local cached copy for subsequent requests to that page, without even contacting the Web page again to see
whether it has changed.

Downstream caching is a nice efficiency boost, but there’s a danger to it: Many Web pages’ contents differ based on
authentication and a host of other variables, and cache systems that blindly save pages based purely on URLs could
expose incorrect or sensitive data to subsequent visitors to those pages.

For example, say you operate a Web email system, and the contents of the “inbox” page obviously depend on which
user is logged in. If an ISP blindly cached your site, then the first user who logged in through that ISP would have
their user-specific inbox page cached for subsequent visitors to the site. That’s not cool.

Fortunately, HTTP provides a solution to this problem. A number of HTTP headers exist to instruct downstream
caches to differ their cache contents depending on designated variables, and to tell caching mechanisms not to cache
particular pages. We’ll look at some of these headers in the sections that follow.

3.11.7 Using Vary headers

The Vary header defines which request headers a cache mechanism should take into account when building its cache
key. For example, if the contents of a Web page depend on a user’s language preference, the page is said to “vary on

3.11. Django’s cache framework 419

https://example.com/
http://www.squid-cache.org/
http://www.squid-cache.org/

Django Documentation, Release 1.10.9.dev20171123183751

language.”

By default, Django’s cache system creates its cache keys using the requested fully-qualified URL – e.g., "https://
www.example.com/stories/2005/?order_by=author". This means every request to that URL will use
the same cached version, regardless of user-agent differences such as cookies or language preferences. However, if
this page produces different content based on some difference in request headers – such as a cookie, or a language, or
a user-agent – you’ll need to use the Vary header to tell caching mechanisms that the page output depends on those
things.

To do this in Django, use the convenient django.views.decorators.vary.vary_on_headers() view
decorator, like so:

from django.views.decorators.vary import vary_on_headers

@vary_on_headers('User-Agent')
def my_view(request):

...

In this case, a caching mechanism (such as Django’s own cache middleware) will cache a separate version of the page
for each unique user-agent.

The advantage to using the vary_on_headers decorator rather than manually setting the Vary header (using
something like response['Vary'] = 'user-agent') is that the decorator adds to the Vary header (which
may already exist), rather than setting it from scratch and potentially overriding anything that was already in there.

You can pass multiple headers to vary_on_headers():

@vary_on_headers('User-Agent', 'Cookie')
def my_view(request):

...

This tells downstream caches to vary on both, which means each combination of user-agent and cookie will get its own
cache value. For example, a request with the user-agent Mozilla and the cookie value foo=bar will be considered
different from a request with the user-agent Mozilla and the cookie value foo=ham.

Because varying on cookie is so common, there’s a django.views.decorators.vary.
vary_on_cookie() decorator. These two views are equivalent:

@vary_on_cookie
def my_view(request):

...

@vary_on_headers('Cookie')
def my_view(request):

...

The headers you pass to vary_on_headers are not case sensitive; "User-Agent" is the same thing as
"user-agent".

You can also use a helper function, django.utils.cache.patch_vary_headers(), directly. This function
sets, or adds to, the Vary header. For example:

from django.shortcuts import render
from django.utils.cache import patch_vary_headers

def my_view(request):
...
response = render(request, 'template_name', context)
patch_vary_headers(response, ['Cookie'])
return response

420 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

patch_vary_headers takes an HttpResponse instance as its first argument and a list/tuple of case-insensitive
header names as its second argument.

For more on Vary headers, see the official Vary spec.

3.11.8 Controlling cache: Using other headers

Other problems with caching are the privacy of data and the question of where data should be stored in a cascade of
caches.

A user usually faces two kinds of caches: their own browser cache (a private cache) and their provider’s cache (a
public cache). A public cache is used by multiple users and controlled by someone else. This poses problems with
sensitive data–you don’t want, say, your bank account number stored in a public cache. So Web applications need a
way to tell caches which data is private and which is public.

The solution is to indicate a page’s cache should be “private.” To do this in Django, use the cache_control()
view decorator. Example:

from django.views.decorators.cache import cache_control

@cache_control(private=True)
def my_view(request):

...

This decorator takes care of sending out the appropriate HTTP header behind the scenes.

Note that the cache control settings “private” and “public” are mutually exclusive. The decorator ensures that the
“public” directive is removed if “private” should be set (and vice versa). An example use of the two directives would be
a blog site that offers both private and public entries. Public entries may be cached on any shared cache. The following
code uses patch_cache_control(), the manual way to modify the cache control header (it is internally called
by the cache_control() decorator):

from django.views.decorators.cache import patch_cache_control
from django.views.decorators.vary import vary_on_cookie

@vary_on_cookie
def list_blog_entries_view(request):

if request.user.is_anonymous:
response = render_only_public_entries()
patch_cache_control(response, public=True)

else:
response = render_private_and_public_entries(request.user)
patch_cache_control(response, private=True)

return response

You can control downstream caches in other ways as well (see RFC 7234 for details on HTTP caching). For example,
even if you don’t use Django’s server-side cache framework, you can still tell clients to cache a view for a certain
amount of time with the max-age directive:

from django.views.decorators.cache import cache_control

@cache_control(max_age=3600)
def my_view(request):

...

3.11. Django’s cache framework 421

https://tools.ietf.org/html/rfc7231.html#section-7.1.4
https://tools.ietf.org/html/rfc7234.html
https://tools.ietf.org/html/rfc7234.html#section-5.2.2.8

Django Documentation, Release 1.10.9.dev20171123183751

(If you do use the caching middleware, it already sets the max-age with the value of the
CACHE_MIDDLEWARE_SECONDS setting. In that case, the custom max_age from the cache_control()
decorator will take precedence, and the header values will be merged correctly.)

Any valid Cache-Control response directive is valid in cache_control(). Here are some more examples:

• no_transform=True

• must_revalidate=True

• stale_while_revalidate=num_seconds

The full list of known directives can be found in the IANA registry (note that not all of them apply to responses).

If you want to use headers to disable caching altogether, never_cache() is a view decorator that adds headers to
ensure the response won’t be cached by browsers or other caches. Example:

from django.views.decorators.cache import never_cache

@never_cache
def myview(request):

...

3.11.9 Order of MIDDLEWARE

If you use caching middleware, it’s important to put each half in the right place within the MIDDLEWARE setting.
That’s because the cache middleware needs to know which headers by which to vary the cache storage. Middleware
always adds something to the Vary response header when it can.

UpdateCacheMiddleware runs during the response phase, where middleware is run in reverse order, so an item at
the top of the list runs last during the response phase. Thus, you need to make sure that UpdateCacheMiddleware
appears before any other middleware that might add something to the Vary header. The following middleware mod-
ules do so:

• SessionMiddleware adds Cookie

• GZipMiddleware adds Accept-Encoding

• LocaleMiddleware adds Accept-Language

FetchFromCacheMiddleware, on the other hand, runs during the request phase, where middleware is applied
first-to-last, so an item at the top of the list runs first during the request phase. The FetchFromCacheMiddleware
also needs to run after other middleware updates the Vary header, so FetchFromCacheMiddleware must be
after any item that does so.

3.12 Conditional View Processing

HTTP clients can send a number of headers to tell the server about copies of a resource that they have already seen.
This is commonly used when retrieving a Web page (using an HTTP GET request) to avoid sending all the data for
something the client has already retrieved. However, the same headers can be used for all HTTP methods (POST,
PUT, DELETE, etc.).

For each page (response) that Django sends back from a view, it might provide two HTTP headers: the ETag header
and the Last-Modified header. These headers are optional on HTTP responses. They can be set by your view
function, or you can rely on the CommonMiddleware middleware to set the ETag header.

When the client next requests the same resource, it might send along a header such as either If-modified-since or
If-unmodified-since, containing the date of the last modification time it was sent, or either If-match or If-none-match,

422 Chapter 3. Using Django

http://www.iana.org/assignments/http-cache-directives/http-cache-directives.xhtml
https://tools.ietf.org/html/rfc7232#section-3.3
https://tools.ietf.org/html/rfc7232#section-3.4
https://tools.ietf.org/html/rfc7232#section-3.1
https://tools.ietf.org/html/rfc7232#section-3.2

Django Documentation, Release 1.10.9.dev20171123183751

containing the last ETag it was sent. If the current version of the page matches the ETag sent by the client, or if the
resource has not been modified, a 304 status code can be sent back, instead of a full response, telling the client that
nothing has changed. Depending on the header, if the page has been modified or does not match the ETag sent by the
client, a 412 status code (Precondition Failed) may be returned.

When you need more fine-grained control you may use per-view conditional processing functions.

3.12.1 The condition decorator

Sometimes (in fact, quite often) you can create functions to rapidly compute the ETag value or the last-modified time
for a resource, without needing to do all the computations needed to construct the full view. Django can then use these
functions to provide an “early bailout” option for the view processing. Telling the client that the content has not been
modified since the last request, perhaps.

These two functions are passed as parameters to the django.views.decorators.http.condition decora-
tor. This decorator uses the two functions (you only need to supply one, if you can’t compute both quantities easily
and quickly) to work out if the headers in the HTTP request match those on the resource. If they don’t match, a new
copy of the resource must be computed and your normal view is called.

The condition decorator’s signature looks like this:

condition(etag_func=None, last_modified_func=None)

The two functions, to compute the ETag and the last modified time, will be passed the incoming request object
and the same parameters, in the same order, as the view function they are helping to wrap. The function passed
last_modified_func should return a standard datetime value specifying the last time the resource was modified,
or None if the resource doesn’t exist. The function passed to the etag decorator should return a string representing
the ETag for the resource, or None if it doesn’t exist.

Using this feature usefully is probably best explained with an example. Suppose you have this pair of models, repre-
senting a simple blog system:

import datetime
from django.db import models

class Blog(models.Model):
...

class Entry(models.Model):
blog = models.ForeignKey(Blog)
published = models.DateTimeField(default=datetime.datetime.now)
...

If the front page, displaying the latest blog entries, only changes when you add a new blog entry, you can compute the
last modified time very quickly. You need the latest published date for every entry associated with that blog. One
way to do this would be:

def latest_entry(request, blog_id):
return Entry.objects.filter(blog=blog_id).latest("published").published

You can then use this function to provide early detection of an unchanged page for your front page view:

from django.views.decorators.http import condition

@condition(last_modified_func=latest_entry)
def front_page(request, blog_id):

...

3.12. Conditional View Processing 423

https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-2.3

Django Documentation, Release 1.10.9.dev20171123183751

Be careful with the order of decorators

When condition() returns a conditional response, any decorators below it will be skipped and won’t apply to
the response. Therefore, any decorators that need to apply to both the regular view response and a conditional
response must be above condition(). In particular, vary_on_cookie(), vary_on_headers(), and
cache_control() should come first because RFC 7232 requires that the headers they set be present on 304
responses.

3.12.2 Shortcuts for only computing one value

As a general rule, if you can provide functions to compute both the ETag and the last modified time, you should do
so. You don’t know which headers any given HTTP client will send you, so be prepared to handle both. However,
sometimes only one value is easy to compute and Django provides decorators that handle only ETag or only last-
modified computations.

The django.views.decorators.http.etag and django.views.decorators.http.
last_modified decorators are passed the same type of functions as the condition decorator. Their
signatures are:

etag(etag_func)
last_modified(last_modified_func)

We could write the earlier example, which only uses a last-modified function, using one of these decorators:

@last_modified(latest_entry)
def front_page(request, blog_id):

...

...or:

def front_page(request, blog_id):
...

front_page = last_modified(latest_entry)(front_page)

Use condition when testing both conditions

It might look nicer to some people to try and chain the etag and last_modified decorators if you want to test
both preconditions. However, this would lead to incorrect behavior.

Bad code. Don't do this!
@etag(etag_func)
@last_modified(last_modified_func)
def my_view(request):

...

End of bad code.

The first decorator doesn’t know anything about the second and might answer that the response is not modified even if
the second decorators would determine otherwise. The condition decorator uses both callback functions simulta-
neously to work out the right action to take.

424 Chapter 3. Using Django

https://tools.ietf.org/html/rfc7232.html#section-4.1

Django Documentation, Release 1.10.9.dev20171123183751

3.12.3 Using the decorators with other HTTP methods

The condition decorator is useful for more than only GET and HEAD requests (HEAD requests are the same as GET
in this situation). It can also be used to provide checking for POST, PUT and DELETE requests. In these situations,
the idea isn’t to return a “not modified” response, but to tell the client that the resource they are trying to change has
been altered in the meantime.

For example, consider the following exchange between the client and server:

1. Client requests /foo/.

2. Server responds with some content with an ETag of "abcd1234".

3. Client sends an HTTP PUT request to /foo/ to update the resource. It also sends an If-Match:
"abcd1234" header to specify the version it is trying to update.

4. Server checks to see if the resource has changed, by computing the ETag the same way it does for a GET request
(using the same function). If the resource has changed, it will return a 412 status code, meaning “precondition
failed”.

5. Client sends a GET request to /foo/, after receiving a 412 response, to retrieve an updated version of the
content before updating it.

The important thing this example shows is that the same functions can be used to compute the ETag and last modifi-
cation values in all situations. In fact, you should use the same functions, so that the same values are returned every
time.

3.12.4 Comparison with middleware conditional processing

You may notice that Django already provides simple and straightforward conditional GET handling via the django.
middleware.http.ConditionalGetMiddleware and CommonMiddleware. While certainly being easy
to use and suitable for many situations, those pieces of middleware functionality have limitations for advanced usage:

• They are applied globally to all views in your project

• They don’t save you from generating the response itself, which may be expensive

• They are only appropriate for HTTP GET requests.

You should choose the most appropriate tool for your particular problem here. If you have a way to compute ETags
and modification times quickly and if some view takes a while to generate the content, you should consider using
the condition decorator described in this document. If everything already runs fairly quickly, stick to using the
middleware and the amount of network traffic sent back to the clients will still be reduced if the view hasn’t changed.

3.13 Cryptographic signing

The golden rule of Web application security is to never trust data from untrusted sources. Sometimes it can be useful to
pass data through an untrusted medium. Cryptographically signed values can be passed through an untrusted channel
safe in the knowledge that any tampering will be detected.

Django provides both a low-level API for signing values and a high-level API for setting and reading signed cookies,
one of the most common uses of signing in Web applications.

You may also find signing useful for the following:

• Generating “recover my account” URLs for sending to users who have lost their password.

• Ensuring data stored in hidden form fields has not been tampered with.

3.13. Cryptographic signing 425

Django Documentation, Release 1.10.9.dev20171123183751

• Generating one-time secret URLs for allowing temporary access to a protected resource, for example a down-
loadable file that a user has paid for.

3.13.1 Protecting the SECRET_KEY

When you create a new Django project using startproject, the settings.py file is generated automatically
and gets a random SECRET_KEY value. This value is the key to securing signed data – it is vital you keep this secure,
or attackers could use it to generate their own signed values.

3.13.2 Using the low-level API

Django’s signing methods live in the django.core.signing module. To sign a value, first instantiate a Signer
instance:

>>> from django.core.signing import Signer
>>> signer = Signer()
>>> value = signer.sign('My string')
>>> value
'My string:GdMGD6HNQ_qdgxYP8yBZAdAIV1w'

The signature is appended to the end of the string, following the colon. You can retrieve the original value using the
unsign method:

>>> original = signer.unsign(value)
>>> original
'My string'

If the signature or value have been altered in any way, a django.core.signing.BadSignature exception
will be raised:

>>> from django.core import signing
>>> value += 'm'
>>> try:
... original = signer.unsign(value)
... except signing.BadSignature:
... print("Tampering detected!")

By default, the Signer class uses the SECRET_KEY setting to generate signatures. You can use a different secret by
passing it to the Signer constructor:

>>> signer = Signer('my-other-secret')
>>> value = signer.sign('My string')
>>> value
'My string:EkfQJafvGyiofrdGnuthdxImIJw'

class Signer(key=None, sep=’:’, salt=None)
Returns a signer which uses key to generate signatures and sep to separate values. sep cannot be in the URL
safe base64 alphabet. This alphabet contains alphanumeric characters, hyphens, and underscores.

Using the salt argument

If you do not wish for every occurrence of a particular string to have the same signature hash, you can use the optional
salt argument to the Signer class. Using a salt will seed the signing hash function with both the salt and your
SECRET_KEY :

426 Chapter 3. Using Django

https://tools.ietf.org/html/rfc4648#section-5
https://tools.ietf.org/html/rfc4648#section-5

Django Documentation, Release 1.10.9.dev20171123183751

>>> signer = Signer()
>>> signer.sign('My string')
'My string:GdMGD6HNQ_qdgxYP8yBZAdAIV1w'
>>> signer = Signer(salt='extra')
>>> signer.sign('My string')
'My string:Ee7vGi-ING6n02gkcJ-QLHg6vFw'
>>> signer.unsign('My string:Ee7vGi-ING6n02gkcJ-QLHg6vFw')
'My string'

Using salt in this way puts the different signatures into different namespaces. A signature that comes from one
namespace (a particular salt value) cannot be used to validate the same plaintext string in a different namespace that is
using a different salt setting. The result is to prevent an attacker from using a signed string generated in one place in
the code as input to another piece of code that is generating (and verifying) signatures using a different salt.

Unlike your SECRET_KEY , your salt argument does not need to stay secret.

Verifying timestamped values

TimestampSigner is a subclass of Signer that appends a signed timestamp to the value. This allows you to
confirm that a signed value was created within a specified period of time:

>>> from datetime import timedelta
>>> from django.core.signing import TimestampSigner
>>> signer = TimestampSigner()
>>> value = signer.sign('hello')
>>> value
'hello:1NMg5H:oPVuCqlJWmChm1rA2lyTUtelC-c'
>>> signer.unsign(value)
'hello'
>>> signer.unsign(value, max_age=10)
...
SignatureExpired: Signature age 15.5289158821 > 10 seconds
>>> signer.unsign(value, max_age=20)
'hello'
>>> signer.unsign(value, max_age=timedelta(seconds=20))
'hello'

class TimestampSigner(key=None, sep=’:’, salt=None)

sign(value)
Sign value and append current timestamp to it.

unsign(value, max_age=None)
Checks if value was signed less than max_age seconds ago, otherwise raises SignatureExpired.
The max_age parameter can accept an integer or a datetime.timedelta object.

Protecting complex data structures

If you wish to protect a list, tuple or dictionary you can do so using the signing module’s dumps and loads functions.
These imitate Python’s pickle module, but use JSON serialization under the hood. JSON ensures that even if your
SECRET_KEY is stolen an attacker will not be able to execute arbitrary commands by exploiting the pickle format:

>>> from django.core import signing
>>> value = signing.dumps({"foo": "bar"})
>>> value

3.13. Cryptographic signing 427

https://docs.python.org/3/library/datetime.html#datetime.timedelta

Django Documentation, Release 1.10.9.dev20171123183751

'eyJmb28iOiJiYXIifQ:1NMg1b:zGcDE4-TCkaeGzLeW9UQwZesciI'
>>> signing.loads(value)
{'foo': 'bar'}

Because of the nature of JSON (there is no native distinction between lists and tuples) if you pass in a tuple, you will
get a list from signing.loads(object):

>>> from django.core import signing
>>> value = signing.dumps(('a','b','c'))
>>> signing.loads(value)
['a', 'b', 'c']

dumps(obj, key=None, salt=’django.core.signing’, compress=False)
Returns URL-safe, sha1 signed base64 compressed JSON string. Serialized object is signed using
TimestampSigner.

loads(string, key=None, salt=’django.core.signing’, max_age=None)
Reverse of dumps(), raises BadSignature if signature fails. Checks max_age (in seconds) if given.

3.14 Sending email

Although Python makes sending email relatively easy via the smtplib module, Django provides a couple of light
wrappers over it. These wrappers are provided to make sending email extra quick, to make it easy to test email sending
during development, and to provide support for platforms that can’t use SMTP.

The code lives in the django.core.mail module.

3.14.1 Quick example

In two lines:

from django.core.mail import send_mail

send_mail(
'Subject here',
'Here is the message.',
'from@example.com',
['to@example.com'],
fail_silently=False,

)

Mail is sent using the SMTP host and port specified in the EMAIL_HOST and EMAIL_PORT settings. The
EMAIL_HOST_USER and EMAIL_HOST_PASSWORD settings, if set, are used to authenticate to the SMTP server,
and the EMAIL_USE_TLS and EMAIL_USE_SSL settings control whether a secure connection is used.

Note: The character set of email sent with django.core.mail will be set to the value of your
DEFAULT_CHARSET setting.

3.14.2 send_mail()

send_mail(subject, message, from_email, recipient_list, fail_silently=False, auth_user=None,
auth_password=None, connection=None, html_message=None)

428 Chapter 3. Using Django

https://docs.python.org/3/library/smtplib.html#module-smtplib

Django Documentation, Release 1.10.9.dev20171123183751

The simplest way to send email is using django.core.mail.send_mail().

The subject, message, from_email and recipient_list parameters are required.

• subject: A string.

• message: A string.

• from_email: A string.

• recipient_list: A list of strings, each an email address. Each member of recipient_list will see
the other recipients in the “To:” field of the email message.

• fail_silently: A boolean. If it’s False, send_mail will raise an smtplib.SMTPException. See
the smtplib docs for a list of possible exceptions, all of which are subclasses of SMTPException.

• auth_user: The optional username to use to authenticate to the SMTP server. If this isn’t provided, Django
will use the value of the EMAIL_HOST_USER setting.

• auth_password: The optional password to use to authenticate to the SMTP server. If this isn’t provided,
Django will use the value of the EMAIL_HOST_PASSWORD setting.

• connection: The optional email backend to use to send the mail. If unspecified, an instance of the default
backend will be used. See the documentation on Email backends for more details.

• html_message: If html_message is provided, the resulting email will be a multipart/
alternative email with message as the text/plain content type and html_message as the text/
html content type.

The return value will be the number of successfully delivered messages (which can be 0 or 1 since it can only send
one message).

3.14.3 send_mass_mail()

send_mass_mail(datatuple, fail_silently=False, auth_user=None, auth_password=None, connec-
tion=None)

django.core.mail.send_mass_mail() is intended to handle mass emailing.

datatuple is a tuple in which each element is in this format:

(subject, message, from_email, recipient_list)

fail_silently, auth_user and auth_password have the same functions as in send_mail().

Each separate element of datatuple results in a separate email message. As in send_mail(), recipients in the
same recipient_list will all see the other addresses in the email messages’ “To:” field.

For example, the following code would send two different messages to two different sets of recipients; however, only
one connection to the mail server would be opened:

message1 = ('Subject here', 'Here is the message', 'from@example.com', [
→˓'first@example.com', 'other@example.com'])
message2 = ('Another Subject', 'Here is another message', 'from@example.com', [
→˓'second@test.com'])
send_mass_mail((message1, message2), fail_silently=False)

The return value will be the number of successfully delivered messages.

3.14. Sending email 429

https://docs.python.org/3/library/smtplib.html#smtplib.SMTPException
https://docs.python.org/3/library/smtplib.html#module-smtplib
https://docs.python.org/3/library/smtplib.html#smtplib.SMTPException

Django Documentation, Release 1.10.9.dev20171123183751

send_mass_mail() vs. send_mail()

The main difference between send_mass_mail() and send_mail() is that send_mail() opens a connec-
tion to the mail server each time it’s executed, while send_mass_mail() uses a single connection for all of its
messages. This makes send_mass_mail() slightly more efficient.

3.14.4 mail_admins()

mail_admins(subject, message, fail_silently=False, connection=None, html_message=None)

django.core.mail.mail_admins() is a shortcut for sending an email to the site admins, as defined in the
ADMINS setting.

mail_admins() prefixes the subject with the value of the EMAIL_SUBJECT_PREFIX setting, which is
"[Django] " by default.

The “From:” header of the email will be the value of the SERVER_EMAIL setting.

This method exists for convenience and readability.

If html_message is provided, the resulting email will be a multipart/alternative email with message
as the text/plain content type and html_message as the text/html content type.

3.14.5 mail_managers()

mail_managers(subject, message, fail_silently=False, connection=None, html_message=None)

django.core.mail.mail_managers() is just like mail_admins(), except it sends an email to the site
managers, as defined in the MANAGERS setting.

3.14.6 Examples

This sends a single email to john@example.com and jane@example.com, with them both appearing in the “To:”:

send_mail(
'Subject',
'Message.',
'from@example.com',
['john@example.com', 'jane@example.com'],

)

This sends a message to john@example.com and jane@example.com, with them both receiving a separate email:

datatuple = (
('Subject', 'Message.', 'from@example.com', ['john@example.com']),
('Subject', 'Message.', 'from@example.com', ['jane@example.com']),

)
send_mass_mail(datatuple)

3.14.7 Preventing header injection

Header injection is a security exploit in which an attacker inserts extra email headers to control the “To:” and “From:”
in email messages that your scripts generate.

430 Chapter 3. Using Django

mailto:john@example.com
mailto:jane@example.com
mailto:john@example.com
mailto:jane@example.com
http://www.nyphp.org/phundamentals/8_Preventing-Email-Header-Injection

Django Documentation, Release 1.10.9.dev20171123183751

The Django email functions outlined above all protect against header injection by forbidding newlines in header
values. If any subject, from_email or recipient_list contains a newline (in either Unix, Windows or Mac
style), the email function (e.g. send_mail()) will raise django.core.mail.BadHeaderError (a subclass
of ValueError) and, hence, will not send the email. It’s your responsibility to validate all data before passing it to
the email functions.

If a message contains headers at the start of the string, the headers will simply be printed as the first bit of the email
message.

Here’s an example view that takes a subject, message and from_email from the request’s POST data, sends
that to admin@example.com and redirects to “/contact/thanks/” when it’s done:

from django.core.mail import send_mail, BadHeaderError
from django.http import HttpResponse, HttpResponseRedirect

def send_email(request):
subject = request.POST.get('subject', '')
message = request.POST.get('message', '')
from_email = request.POST.get('from_email', '')
if subject and message and from_email:

try:
send_mail(subject, message, from_email, ['admin@example.com'])

except BadHeaderError:
return HttpResponse('Invalid header found.')

return HttpResponseRedirect('/contact/thanks/')
else:

In reality we'd use a form class
to get proper validation errors.
return HttpResponse('Make sure all fields are entered and valid.')

3.14.8 The EmailMessage class

Django’s send_mail() and send_mass_mail() functions are actually thin wrappers that make use of the
EmailMessage class.

Not all features of the EmailMessage class are available through the send_mail() and related wrapper functions.
If you wish to use advanced features, such as BCC’ed recipients, file attachments, or multi-part email, you’ll need to
create EmailMessage instances directly.

Note: This is a design feature. send_mail() and related functions were originally the only interface Django
provided. However, the list of parameters they accepted was slowly growing over time. It made sense to move to a
more object-oriented design for email messages and retain the original functions only for backwards compatibility.

EmailMessage is responsible for creating the email message itself. The email backend is then responsible for
sending the email.

For convenience, EmailMessage provides a simple send() method for sending a single email. If you need to send
multiple messages, the email backend API provides an alternative.

EmailMessage Objects

class EmailMessage

The EmailMessage class is initialized with the following parameters (in the given order, if positional arguments are
used). All parameters are optional and can be set at any time prior to calling the send() method.

3.14. Sending email 431

mailto:admin@example.com

Django Documentation, Release 1.10.9.dev20171123183751

• subject: The subject line of the email.

• body: The body text. This should be a plain text message.

• from_email: The sender’s address. Both fred@example.com and Fred <fred@example.com>
forms are legal. If omitted, the DEFAULT_FROM_EMAIL setting is used.

• to: A list or tuple of recipient addresses.

• bcc: A list or tuple of addresses used in the “Bcc” header when sending the email.

• connection: An email backend instance. Use this parameter if you want to use the same connection for
multiple messages. If omitted, a new connection is created when send() is called.

• attachments: A list of attachments to put on the message. These can be either email.MIMEBase.
MIMEBase instances, or (filename, content, mimetype) triples.

• headers: A dictionary of extra headers to put on the message. The keys are the header name, values are the
header values. It’s up to the caller to ensure header names and values are in the correct format for an email
message. The corresponding attribute is extra_headers.

• cc: A list or tuple of recipient addresses used in the “Cc” header when sending the email.

• reply_to: A list or tuple of recipient addresses used in the “Reply-To” header when sending the email.

For example:

from django.core.mail import EmailMessage

email = EmailMessage(
'Hello',
'Body goes here',
'from@example.com',
['to1@example.com', 'to2@example.com'],
['bcc@example.com'],
reply_to=['another@example.com'],
headers={'Message-ID': 'foo'},

)

The class has the following methods:

• send(fail_silently=False) sends the message. If a connection was specified when the email was
constructed, that connection will be used. Otherwise, an instance of the default backend will be instantiated and
used. If the keyword argument fail_silently is True, exceptions raised while sending the message will
be quashed. An empty list of recipients will not raise an exception.

• message() constructs a django.core.mail.SafeMIMEText object (a subclass of Python’s email.
MIMEText.MIMEText class) or a django.core.mail.SafeMIMEMultipart object holding the mes-
sage to be sent. If you ever need to extend the EmailMessage class, you’ll probably want to override this
method to put the content you want into the MIME object.

• recipients() returns a list of all the recipients of the message, whether they’re recorded in the to, cc or
bcc attributes. This is another method you might need to override when subclassing, because the SMTP server
needs to be told the full list of recipients when the message is sent. If you add another way to specify recipients
in your class, they need to be returned from this method as well.

• attach() creates a new file attachment and adds it to the message. There are two ways to call attach():

– You can pass it a single argument that is an email.MIMEBase.MIMEBase instance. This will be
inserted directly into the resulting message.

– Alternatively, you can pass attach() three arguments: filename, content and mimetype.
filename is the name of the file attachment as it will appear in the email, content is the data that

432 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

will be contained inside the attachment and mimetype is the optional MIME type for the attachment. If
you omit mimetype, the MIME content type will be guessed from the filename of the attachment.

For example:

message.attach('design.png', img_data, 'image/png')

If you specify a mimetype of message/rfc822, it will also accept django.core.mail.
EmailMessage and email.message.Message.

In addition, message/rfc822 attachments will no longer be base64-encoded in violation of RFC
2046#section-5.2.1, which can cause issues with displaying the attachments in Evolution and Thunder-
bird.

• attach_file() creates a new attachment using a file from your filesystem. Call it with the path of the file to
attach and, optionally, the MIME type to use for the attachment. If the MIME type is omitted, it will be guessed
from the filename. The simplest use would be:

message.attach_file('/images/weather_map.png')

Sending alternative content types

It can be useful to include multiple versions of the content in an email; the classic example is to send both text and
HTML versions of a message. With Django’s email library, you can do this using the EmailMultiAlternatives
class. This subclass of EmailMessage has an attach_alternative() method for including extra versions of
the message body in the email. All the other methods (including the class initialization) are inherited directly from
EmailMessage.

To send a text and HTML combination, you could write:

from django.core.mail import EmailMultiAlternatives

subject, from_email, to = 'hello', 'from@example.com', 'to@example.com'
text_content = 'This is an important message.'
html_content = '<p>This is an important message.</p>'
msg = EmailMultiAlternatives(subject, text_content, from_email, [to])
msg.attach_alternative(html_content, "text/html")
msg.send()

By default, the MIME type of the body parameter in an EmailMessage is "text/plain". It is good practice
to leave this alone, because it guarantees that any recipient will be able to read the email, regardless of their mail
client. However, if you are confident that your recipients can handle an alternative content type, you can use the
content_subtype attribute on the EmailMessage class to change the main content type. The major type will
always be "text", but you can change the subtype. For example:

msg = EmailMessage(subject, html_content, from_email, [to])
msg.content_subtype = "html" # Main content is now text/html
msg.send()

3.14.9 Email backends

The actual sending of an email is handled by the email backend.

The email backend class has the following methods:

• open() instantiates a long-lived email-sending connection.

3.14. Sending email 433

https://docs.python.org/3/library/email.compat32-message.html#email.message.Message
https://tools.ietf.org/html/rfc2046.html#section-5.2.1
https://tools.ietf.org/html/rfc2046.html#section-5.2.1
https://bugzilla.gnome.org/show_bug.cgi?id=651197
https://bugzilla.mozilla.org/show_bug.cgi?id=333880
https://bugzilla.mozilla.org/show_bug.cgi?id=333880

Django Documentation, Release 1.10.9.dev20171123183751

• close() closes the current email-sending connection.

• send_messages(email_messages) sends a list of EmailMessage objects. If the connection is not
open, this call will implicitly open the connection, and close the connection afterwards. If the connection is
already open, it will be left open after mail has been sent.

It can also be used as a context manager, which will automatically call open() and close() as needed:

from django.core import mail

with mail.get_connection() as connection:
mail.EmailMessage(

subject1, body1, from1, [to1],
connection=connection,

).send()
mail.EmailMessage(

subject2, body2, from2, [to2],
connection=connection,

).send()

Obtaining an instance of an email backend

The get_connection() function in django.core.mail returns an instance of the email backend that you can
use.

get_connection(backend=None, fail_silently=False, *args, **kwargs)

By default, a call to get_connection() will return an instance of the email backend specified in
EMAIL_BACKEND. If you specify the backend argument, an instance of that backend will be instantiated.

The fail_silently argument controls how the backend should handle errors. If fail_silently is True,
exceptions during the email sending process will be silently ignored.

All other arguments are passed directly to the constructor of the email backend.

Django ships with several email sending backends. With the exception of the SMTP backend (which is the default),
these backends are only useful during testing and development. If you have special email sending requirements, you
can write your own email backend.

SMTP backend

class backends.smtp.EmailBackend(host=None, port=None, username=None, password=None,
use_tls=None, fail_silently=False, use_ssl=None, time-
out=None, ssl_keyfile=None, ssl_certfile=None, **kwargs)

This is the default backend. Email will be sent through a SMTP server.

The value for each argument is retrieved from the matching setting if the argument is None:

• host: EMAIL_HOST

• port: EMAIL_PORT

• username: EMAIL_HOST_USER

• password: EMAIL_HOST_PASSWORD

• use_tls: EMAIL_USE_TLS

• use_ssl: EMAIL_USE_SSL

• timeout: EMAIL_TIMEOUT

434 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

• ssl_keyfile: EMAIL_SSL_KEYFILE

• ssl_certfile: EMAIL_SSL_CERTFILE

The SMTP backend is the default configuration inherited by Django. If you want to specify it explicitly, put the
following in your settings:

EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'

If unspecified, the default timeout will be the one provided by socket.getdefaulttimeout(), which
defaults to None (no timeout).

Console backend

Instead of sending out real emails the console backend just writes the emails that would be sent to the standard output.
By default, the console backend writes to stdout. You can use a different stream-like object by providing the
stream keyword argument when constructing the connection.

To specify this backend, put the following in your settings:

EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

This backend is not intended for use in production – it is provided as a convenience that can be used during develop-
ment.

File backend

The file backend writes emails to a file. A new file is created for each new session that is opened on this backend. The
directory to which the files are written is either taken from the EMAIL_FILE_PATH setting or from the file_path
keyword when creating a connection with get_connection().

To specify this backend, put the following in your settings:

EMAIL_BACKEND = 'django.core.mail.backends.filebased.EmailBackend'
EMAIL_FILE_PATH = '/tmp/app-messages' # change this to a proper location

This backend is not intended for use in production – it is provided as a convenience that can be used during develop-
ment.

In-memory backend

The 'locmem' backend stores messages in a special attribute of the django.core.mail module. The outbox
attribute is created when the first message is sent. It’s a list with an EmailMessage instance for each message that
would be sent.

To specify this backend, put the following in your settings:

EMAIL_BACKEND = 'django.core.mail.backends.locmem.EmailBackend'

This backend is not intended for use in production – it is provided as a convenience that can be used during development
and testing.

3.14. Sending email 435

https://docs.python.org/3/library/socket.html#socket.getdefaulttimeout

Django Documentation, Release 1.10.9.dev20171123183751

Dummy backend

As the name suggests the dummy backend does nothing with your messages. To specify this backend, put the following
in your settings:

EMAIL_BACKEND = 'django.core.mail.backends.dummy.EmailBackend'

This backend is not intended for use in production – it is provided as a convenience that can be used during develop-
ment.

Defining a custom email backend

If you need to change how emails are sent you can write your own email backend. The EMAIL_BACKEND setting in
your settings file is then the Python import path for your backend class.

Custom email backends should subclass BaseEmailBackend that is located in the django.core.mail.
backends.basemodule. A custom email backend must implement the send_messages(email_messages)
method. This method receives a list of EmailMessage instances and returns the number of successfully delivered
messages. If your backend has any concept of a persistent session or connection, you should also implement the
open() and close() methods. Refer to smtp.EmailBackend for a reference implementation.

Sending multiple emails

Establishing and closing an SMTP connection (or any other network connection, for that matter) is an expensive
process. If you have a lot of emails to send, it makes sense to reuse an SMTP connection, rather than creating and
destroying a connection every time you want to send an email.

There are two ways you tell an email backend to reuse a connection.

Firstly, you can use the send_messages() method. send_messages() takes a list of EmailMessage in-
stances (or subclasses), and sends them all using a single connection.

For example, if you have a function called get_notification_email() that returns a list of EmailMessage
objects representing some periodic email you wish to send out, you could send these emails using a single call to
send_messages:

from django.core import mail
connection = mail.get_connection() # Use default email connection
messages = get_notification_email()
connection.send_messages(messages)

In this example, the call to send_messages() opens a connection on the backend, sends the list of messages, and
then closes the connection again.

The second approach is to use the open() and close() methods on the email backend to manually control the
connection. send_messages() will not manually open or close the connection if it is already open, so if you
manually open the connection, you can control when it is closed. For example:

from django.core import mail
connection = mail.get_connection()

Manually open the connection
connection.open()

Construct an email message that uses the connection
email1 = mail.EmailMessage(

436 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

'Hello',
'Body goes here',
'from@example.com',
['to1@example.com'],
connection=connection,

)
email1.send() # Send the email

Construct two more messages
email2 = mail.EmailMessage(

'Hello',
'Body goes here',
'from@example.com',
['to2@example.com'],

)
email3 = mail.EmailMessage(

'Hello',
'Body goes here',
'from@example.com',
['to3@example.com'],

)

Send the two emails in a single call -
connection.send_messages([email2, email3])
The connection was already open so send_messages() doesn't close it.
We need to manually close the connection.
connection.close()

3.14.10 Configuring email for development

There are times when you do not want Django to send emails at all. For example, while developing a website, you
probably don’t want to send out thousands of emails – but you may want to validate that emails will be sent to the
right people under the right conditions, and that those emails will contain the correct content.

The easiest way to configure email for local development is to use the console email backend. This backend redirects
all email to stdout, allowing you to inspect the content of mail.

The file email backend can also be useful during development – this backend dumps the contents of every SMTP
connection to a file that can be inspected at your leisure.

Another approach is to use a “dumb” SMTP server that receives the emails locally and displays them to the terminal,
but does not actually send anything. Python has a built-in way to accomplish this with a single command:

python -m smtpd -n -c DebuggingServer localhost:1025

This command will start a simple SMTP server listening on port 1025 of localhost. This server simply prints to
standard output all email headers and the email body. You then only need to set the EMAIL_HOST and EMAIL_PORT
accordingly. For a more detailed discussion of SMTP server options, see the Python documentation for the smtpd
module.

For information about unit-testing the sending of emails in your application, see the Email services section of the
testing documentation.

3.14. Sending email 437

https://docs.python.org/3/library/smtpd.html#module-smtpd

Django Documentation, Release 1.10.9.dev20171123183751

3.15 Internationalization and localization

3.15.1 Translation

Overview

In order to make a Django project translatable, you have to add a minimal number of hooks to your Python code and
templates. These hooks are called translation strings. They tell Django: “This text should be translated into the end
user’s language, if a translation for this text is available in that language.” It’s your responsibility to mark translatable
strings; the system can only translate strings it knows about.

Django then provides utilities to extract the translation strings into a message file. This file is a convenient way for
translators to provide the equivalent of the translation strings in the target language. Once the translators have filled in
the message file, it must be compiled. This process relies on the GNU gettext toolset.

Once this is done, Django takes care of translating Web apps on the fly in each available language, according to users’
language preferences.

Django’s internationalization hooks are on by default, and that means there’s a bit of i18n-related overhead in certain
places of the framework. If you don’t use internationalization, you should take the two seconds to set USE_I18N
= False in your settings file. Then Django will make some optimizations so as not to load the internationalization
machinery.

Note: There is also an independent but related USE_L10N setting that controls if Django should implement format
localization. See Format localization for more details.

Note: Make sure you’ve activated translation for your project (the fastest way is to check if MIDDLEWARE in-
cludes django.middleware.locale.LocaleMiddleware). If you haven’t yet, see How Django discovers
language preference.

Internationalization: in Python code

Standard translation

Specify a translation string by using the function ugettext(). It’s convention to import this as a shorter alias, _, to
save typing.

Note: Python’s standard library gettext module installs _() into the global namespace, as an alias for
gettext(). In Django, we have chosen not to follow this practice, for a couple of reasons:

1. For international character set (Unicode) support, ugettext() is more useful than gettext(). Sometimes,
you should be using ugettext_lazy() as the default translation method for a particular file. Without _()
in the global namespace, the developer has to think about which is the most appropriate translation function.

2. The underscore character (_) is used to represent “the previous result” in Python’s interactive shell and doctest
tests. Installing a global _() function causes interference. Explicitly importing ugettext() as _() avoids
this problem.

What functions may be aliased as _?

438 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Because of how xgettext (used by makemessages) works, only functions that take a single string argument can
be imported as _:

• gettext()

• gettext_lazy()

• ugettext()

• ugettext_lazy()

In this example, the text "Welcome to my site." is marked as a translation string:

from django.utils.translation import ugettext as _
from django.http import HttpResponse

def my_view(request):
output = _("Welcome to my site.")
return HttpResponse(output)

Obviously, you could code this without using the alias. This example is identical to the previous one:

from django.utils.translation import ugettext
from django.http import HttpResponse

def my_view(request):
output = ugettext("Welcome to my site.")
return HttpResponse(output)

Translation works on computed values. This example is identical to the previous two:

def my_view(request):
words = ['Welcome', 'to', 'my', 'site.']
output = _(' '.join(words))
return HttpResponse(output)

Translation works on variables. Again, here’s an identical example:

def my_view(request):
sentence = 'Welcome to my site.'
output = _(sentence)
return HttpResponse(output)

(The caveat with using variables or computed values, as in the previous two examples, is that Django’s translation-
string-detecting utility, django-admin makemessages, won’t be able to find these strings. More on
makemessages later.)

The strings you pass to _() or ugettext() can take placeholders, specified with Python’s standard named-string
interpolation syntax. Example:

def my_view(request, m, d):
output = _('Today is %(month)s %(day)s.') % {'month': m, 'day': d}
return HttpResponse(output)

This technique lets language-specific translations reorder the placeholder text. For example, an English translation
may be "Today is November 26.", while a Spanish translation may be "Hoy es 26 de Noviembre."
– with the month and the day placeholders swapped.

3.15. Internationalization and localization 439

Django Documentation, Release 1.10.9.dev20171123183751

For this reason, you should use named-string interpolation (e.g., %(day)s) instead of positional interpolation (e.g.,
%s or %d) whenever you have more than a single parameter. If you used positional interpolation, translations wouldn’t
be able to reorder placeholder text.

Comments for translators

If you would like to give translators hints about a translatable string, you can add a comment prefixed with the
Translators keyword on the line preceding the string, e.g.:

def my_view(request):
Translators: This message appears on the home page only
output = ugettext("Welcome to my site.")

The comment will then appear in the resulting .po file associated with the translatable construct located below it and
should also be displayed by most translation tools.

Note: Just for completeness, this is the corresponding fragment of the resulting .po file:

#. Translators: This message appears on the home page only
path/to/python/file.py:123
msgid "Welcome to my site."
msgstr ""

This also works in templates. See Comments for translators in templates for more details.

Marking strings as no-op

Use the function django.utils.translation.ugettext_noop() to mark a string as a translation string
without translating it. The string is later translated from a variable.

Use this if you have constant strings that should be stored in the source language because they are exchanged over
systems or users – such as strings in a database – but should be translated at the last possible point in time, such as
when the string is presented to the user.

Pluralization

Use the function django.utils.translation.ungettext() to specify pluralized messages.

ungettext takes three arguments: the singular translation string, the plural translation string and the number of
objects.

This function is useful when you need your Django application to be localizable to languages where the number and
complexity of plural forms is greater than the two forms used in English (‘object’ for the singular and ‘objects’ for all
the cases where count is different from one, irrespective of its value.)

For example:

from django.utils.translation import ungettext
from django.http import HttpResponse

def hello_world(request, count):
page = ungettext(

'there is %(count)d object',

440 Chapter 3. Using Django

https://www.gnu.org/software/gettext/manual/gettext.html#Plural-forms

Django Documentation, Release 1.10.9.dev20171123183751

'there are %(count)d objects',
count) % {

'count': count,
}
return HttpResponse(page)

In this example the number of objects is passed to the translation languages as the count variable.

Note that pluralization is complicated and works differently in each language. Comparing count to 1 isn’t always
the correct rule. This code looks sophisticated, but will produce incorrect results for some languages:

from django.utils.translation import ungettext
from myapp.models import Report

count = Report.objects.count()
if count == 1:

name = Report._meta.verbose_name
else:

name = Report._meta.verbose_name_plural

text = ungettext(
'There is %(count)d %(name)s available.',
'There are %(count)d %(name)s available.',
count

) % {
'count': count,
'name': name

}

Don’t try to implement your own singular-or-plural logic, it won’t be correct. In a case like this, consider something
like the following:

text = ungettext(
'There is %(count)d %(name)s object available.',
'There are %(count)d %(name)s objects available.',
count

) % {
'count': count,
'name': Report._meta.verbose_name,

}

Note: When using ungettext(), make sure you use a single name for every extrapolated variable included in the
literal. In the examples above, note how we used the name Python variable in both translation strings. This example,
besides being incorrect in some languages as noted above, would fail:

text = ungettext(
'There is %(count)d %(name)s available.',
'There are %(count)d %(plural_name)s available.',
count

) % {
'count': Report.objects.count(),
'name': Report._meta.verbose_name,
'plural_name': Report._meta.verbose_name_plural

}

You would get an error when running django-admin compilemessages:

3.15. Internationalization and localization 441

Django Documentation, Release 1.10.9.dev20171123183751

a format specification for argument 'name', as in 'msgstr[0]', doesn't exist in 'msgid
→˓'

Note: Plural form and po files

Django does not support custom plural equations in po files. As all translation catalogs are merged, only the plural
form for the main Django po file (in django/conf/locale/<lang_code>/LC_MESSAGES/django.po) is
considered. Plural forms in all other po files are ignored. Therefore, you should not use different plural equations in
your project or application po files.

Contextual markers

Sometimes words have several meanings, such as "May" in English, which refers to a month name and to a verb.
To enable translators to translate these words correctly in different contexts, you can use the django.utils.
translation.pgettext() function, or the django.utils.translation.npgettext() function if the
string needs pluralization. Both take a context string as the first variable.

In the resulting .po file, the string will then appear as often as there are different contextual markers for the same
string (the context will appear on the msgctxt line), allowing the translator to give a different translation for each of
them.

For example:

from django.utils.translation import pgettext

month = pgettext("month name", "May")

or:

from django.db import models
from django.utils.translation import pgettext_lazy

class MyThing(models.Model):
name = models.CharField(help_text=pgettext_lazy(

'help text for MyThing model', 'This is the help text'))

will appear in the .po file as:

msgctxt "month name"
msgid "May"
msgstr ""

Contextual markers are also supported by the trans and blocktrans template tags.

Lazy translation

Use the lazy versions of translation functions in django.utils.translation (easily recognizable by the lazy
suffix in their names) to translate strings lazily – when the value is accessed rather than when they’re called.

These functions store a lazy reference to the string – not the actual translation. The translation itself will be done when
the string is used in a string context, such as in template rendering.

This is essential when calls to these functions are located in code paths that are executed at module load time.

442 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

This is something that can easily happen when defining models, forms and model forms, because Django implements
these such that their fields are actually class-level attributes. For that reason, make sure to use lazy translations in the
following cases:

Model fields and relationships verbose_name and help_text option values

For example, to translate the help text of the name field in the following model, do the following:

from django.db import models
from django.utils.translation import ugettext_lazy as _

class MyThing(models.Model):
name = models.CharField(help_text=_('This is the help text'))

You can mark names of ForeignKey , ManyToManyField or OneToOneField relationship as translatable by
using their verbose_name options:

class MyThing(models.Model):
kind = models.ForeignKey(

ThingKind,
on_delete=models.CASCADE,
related_name='kinds',
verbose_name=_('kind'),

)

Just like you would do in verbose_name you should provide a lowercase verbose name text for the relation as
Django will automatically titlecase it when required.

Model verbose names values

It is recommended to always provide explicit verbose_name and verbose_name_plural options rather than
relying on the fallback English-centric and somewhat naïve determination of verbose names Django performs by
looking at the model’s class name:

from django.db import models
from django.utils.translation import ugettext_lazy as _

class MyThing(models.Model):
name = models.CharField(_('name'), help_text=_('This is the help text'))

class Meta:
verbose_name = _('my thing')
verbose_name_plural = _('my things')

Model methods short_description attribute values

For model methods, you can provide translations to Django and the admin site with the short_description
attribute:

from django.db import models
from django.utils.translation import ugettext_lazy as _

class MyThing(models.Model):

3.15. Internationalization and localization 443

Django Documentation, Release 1.10.9.dev20171123183751

kind = models.ForeignKey(
ThingKind,
on_delete=models.CASCADE,
related_name='kinds',
verbose_name=_('kind'),

)

def is_mouse(self):
return self.kind.type == MOUSE_TYPE

is_mouse.short_description = _('Is it a mouse?')

Working with lazy translation objects

The result of a ugettext_lazy() call can be used wherever you would use a unicode string (a str object) in
other Django code, but it may not work with arbitrary Python code. For example, the following won’t work because
the requests library doesn’t handle ugettext_lazy objects:

body = ugettext_lazy("I \u2764 Django") # (unicode :heart:)
requests.post('https://example.com/send', data={'body': body})

You can avoid such problems by casting ugettext_lazy() objects to text strings before passing them to non-
Django code:

requests.post('https://example.com/send', data={'body': str(body)})

Use unicode in place of str on Python 2, or six.text_type to support Python 2 and 3.

If you try to use a ugettext_lazy() result where a bytestring (a bytes object) is expected, things won’t work
as expected since a ugettext_lazy() object doesn’t know how to convert itself to a bytestring. You can’t use a
unicode string inside a bytestring, either, so this is consistent with normal Python behavior. For example, putting a
unicode proxy into a unicode string is fine:

"Hello %s" % ugettext_lazy("people")

But you can’t insert a unicode object into a bytestring and nor can you insert a unicode proxy there:

b"Hello %s" % ugettext_lazy("people")

If you ever see output that looks like "hello <django.utils.functional...>", you have tried to insert
the result of ugettext_lazy() into a bytestring. That’s a bug in your code.

If you don’t like the long ugettext_lazy name, you can just alias it as _ (underscore), like so:

from django.db import models
from django.utils.translation import ugettext_lazy as _

class MyThing(models.Model):
name = models.CharField(help_text=_('This is the help text'))

Using ugettext_lazy() and ungettext_lazy() to mark strings in models and utility functions is a common
operation. When you’re working with these objects elsewhere in your code, you should ensure that you don’t acci-
dentally convert them to strings, because they should be converted as late as possible (so that the correct locale is in
effect). This necessitates the use of the helper function described next.

444 Chapter 3. Using Django

https://docs.python.org/3/library/stdtypes.html#str
https://pypi.python.org/pypi/requests/
https://pythonhosted.org/six/index.html#six.text_type
https://docs.python.org/3/library/stdtypes.html#bytes

Django Documentation, Release 1.10.9.dev20171123183751

Lazy translations and plural

When using lazy translation for a plural string ([u]n[p]gettext_lazy), you generally don’t know the number
argument at the time of the string definition. Therefore, you are authorized to pass a key name instead of an integer as
the number argument. Then number will be looked up in the dictionary under that key during string interpolation.
Here’s example:

from django import forms
from django.utils.translation import ungettext_lazy

class MyForm(forms.Form):
error_message = ungettext_lazy("You only provided %(num)d argument",

"You only provided %(num)d arguments", 'num')

def clean(self):
...
if error:

raise forms.ValidationError(self.error_message % {'num': number})

If the string contains exactly one unnamed placeholder, you can interpolate directly with the number argument:

class MyForm(forms.Form):
error_message = ungettext_lazy(

"You provided %d argument",
"You provided %d arguments",

)

def clean(self):
...
if error:

raise forms.ValidationError(self.error_message % number)

Joining strings: string_concat()

Standard Python string joins (''.join([...])) will not work on lists containing lazy translation objects. Instead,
you can use django.utils.translation.string_concat(), which creates a lazy object that concatenates
its contents and converts them to strings only when the result is included in a string. For example:

from django.utils.translation import string_concat
from django.utils.translation import ugettext_lazy
...
name = ugettext_lazy('John Lennon')
instrument = ugettext_lazy('guitar')
result = string_concat(name, ': ', instrument)

In this case, the lazy translations in result will only be converted to strings when result itself is used in a string
(usually at template rendering time).

Other uses of lazy in delayed translations

For any other case where you would like to delay the translation, but have to pass the translatable string as argument
to another function, you can wrap this function inside a lazy call yourself. For example:

3.15. Internationalization and localization 445

Django Documentation, Release 1.10.9.dev20171123183751

from django.utils import six # Python 3 compatibility
from django.utils.functional import lazy
from django.utils.safestring import mark_safe
from django.utils.translation import ugettext_lazy as _

mark_safe_lazy = lazy(mark_safe, six.text_type)

And then later:

lazy_string = mark_safe_lazy(_("<p>My string!</p>"))

Localized names of languages

get_language_info()

The get_language_info() function provides detailed information about languages:

>>> from django.utils.translation import activate, get_language_info
>>> activate('fr')
>>> li = get_language_info('de')
>>> print(li['name'], li['name_local'], li['name_translated'], li['bidi'])
German Deutsch Allemand False

The name, name_local, and name_translated attributes of the dictionary contain the name of the language in
English, in the language itself, and in your current active language respectively. The bidi attribute is True only for
bi-directional languages.

The source of the language information is the django.conf.locale module. Similar access to this information
is available for template code. See below.

The 'name_translated' attribute was added.

Internationalization: in template code

Translations in Django templates uses two template tags and a slightly different syntax than in Python code. To give
your template access to these tags, put {% load i18n %} toward the top of your template. As with all template
tags, this tag needs to be loaded in all templates which use translations, even those templates that extend from other
templates which have already loaded the i18n tag.

trans template tag

The {% trans %} template tag translates either a constant string (enclosed in single or double quotes) or variable
content:

<title>{% trans "This is the title." %}</title>
<title>{% trans myvar %}</title>

If the noop option is present, variable lookup still takes place but the translation is skipped. This is useful when
“stubbing out” content that will require translation in the future:

<title>{% trans "myvar" noop %}</title>

446 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Internally, inline translations use an ugettext() call.

In case a template var (myvar above) is passed to the tag, the tag will first resolve such variable to a string at run-time
and then look up that string in the message catalogs.

It’s not possible to mix a template variable inside a string within {% trans %}. If your translations require strings
with variables (placeholders), use {% blocktrans %} instead.

If you’d like to retrieve a translated string without displaying it, you can use the following syntax:

{% trans "This is the title" as the_title %}

<title>{{ the_title }}</title>
<meta name="description" content="{{ the_title }}">

In practice you’ll use this to get a string you can use in multiple places in a template or so you can use the output as
an argument for other template tags or filters:

{% trans "starting point" as start %}
{% trans "end point" as end %}
{% trans "La Grande Boucle" as race %}

<h1>
<a href="/" title="{% blocktrans %}Back to '{{ race }}' homepage{% endblocktrans %}

→˓">{{ race }}
</h1>
<p>
{% for stage in tour_stages %}

{% cycle start end %}: {{ stage }}{% if forloop.counter|divisibleby:2 %}
{%
→˓else %}, {% endif %}
{% endfor %}
</p>

{% trans %} also supports contextual markers using the context keyword:

{% trans "May" context "month name" %}

blocktrans template tag

Contrarily to the trans tag, the blocktrans tag allows you to mark complex sentences consisting of literals and
variable content for translation by making use of placeholders:

{% blocktrans %}This string will have {{ value }} inside.{% endblocktrans %}

To translate a template expression – say, accessing object attributes or using template filters – you need to bind the
expression to a local variable for use within the translation block. Examples:

{% blocktrans with amount=article.price %}
That will cost $ {{ amount }}.
{% endblocktrans %}

{% blocktrans with myvar=value|filter %}
This will have {{ myvar }} inside.
{% endblocktrans %}

You can use multiple expressions inside a single blocktrans tag:

3.15. Internationalization and localization 447

Django Documentation, Release 1.10.9.dev20171123183751

{% blocktrans with book_t=book|title author_t=author|title %}
This is {{ book_t }} by {{ author_t }}
{% endblocktrans %}

Note: The previous more verbose format is still supported: {% blocktrans with book|title as
book_t and author|title as author_t %}

Other block tags (for example {% for %} or {% if %}) are not allowed inside a blocktrans tag.

If resolving one of the block arguments fails, blocktrans will fall back to the default language by deactivating the
currently active language temporarily with the deactivate_all() function.

This tag also provides for pluralization. To use it:

• Designate and bind a counter value with the name count. This value will be the one used to select the right
plural form.

• Specify both the singular and plural forms separating them with the {% plural %} tag within the {%
blocktrans %} and {% endblocktrans %} tags.

An example:

{% blocktrans count counter=list|length %}
There is only one {{ name }} object.
{% plural %}
There are {{ counter }} {{ name }} objects.
{% endblocktrans %}

A more complex example:

{% blocktrans with amount=article.price count years=i.length %}
That will cost $ {{ amount }} per year.
{% plural %}
That will cost $ {{ amount }} per {{ years }} years.
{% endblocktrans %}

When you use both the pluralization feature and bind values to local variables in addition to the counter value, keep
in mind that the blocktrans construct is internally converted to an ungettext call. This means the same notes
regarding ungettext variables apply.

Reverse URL lookups cannot be carried out within the blocktrans and should be retrieved (and stored) beforehand:

{% url 'path.to.view' arg arg2 as the_url %}
{% blocktrans %}
This is a URL: {{ the_url }}
{% endblocktrans %}

If you’d like to retrieve a translated string without displaying it, you can use the following syntax:

{% blocktrans asvar the_title %}The title is {{ title }}.{% endblocktrans %}
<title>{{ the_title }}</title>
<meta name="description" content="{{ the_title }}">

In practice you’ll use this to get a string you can use in multiple places in a template or so you can use the output as
an argument for other template tags or filters.

The asvar syntax was added.

448 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

{% blocktrans %} also supports contextual markers using the context keyword:

{% blocktrans with name=user.username context "greeting" %}Hi {{ name }}{%
→˓endblocktrans %}

Another feature {% blocktrans %} supports is the trimmed option. This option will remove newline charac-
ters from the beginning and the end of the content of the {% blocktrans %} tag, replace any whitespace at the
beginning and end of a line and merge all lines into one using a space character to separate them. This is quite useful
for indenting the content of a {% blocktrans %} tag without having the indentation characters end up in the
corresponding entry in the PO file, which makes the translation process easier.

For instance, the following {% blocktrans %} tag:

{% blocktrans trimmed %}
First sentence.
Second paragraph.

{% endblocktrans %}

will result in the entry "First sentence. Second paragraph." in the PO file, compared to "\n First
sentence.\n Second sentence.\n", if the trimmed option had not been specified.

String literals passed to tags and filters

You can translate string literals passed as arguments to tags and filters by using the familiar _() syntax:

{% some_tag _("Page not found") value|yesno:_("yes,no") %}

In this case, both the tag and the filter will see the translated string, so they don’t need to be aware of translations.

Note: In this example, the translation infrastructure will be passed the string "yes,no", not the individual strings
"yes" and "no". The translated string will need to contain the comma so that the filter parsing code knows how
to split up the arguments. For example, a German translator might translate the string "yes,no" as "ja,nein"
(keeping the comma intact).

Comments for translators in templates

Just like with Python code, these notes for translators can be specified using comments, either with the comment tag:

{% comment %}Translators: View verb{% endcomment %}
{% trans "View" %}

{% comment %}Translators: Short intro blurb{% endcomment %}
<p>{% blocktrans %}A multiline translatable
literal.{% endblocktrans %}</p>

or with the {# ... #} one-line comment constructs:

{# Translators: Label of a button that triggers search #}
<button type="submit">{% trans "Go" %}</button>

{# Translators: This is a text of the base template #}
{% blocktrans %}Ambiguous translatable block of text{% endblocktrans %}

3.15. Internationalization and localization 449

Django Documentation, Release 1.10.9.dev20171123183751

Note: Just for completeness, these are the corresponding fragments of the resulting .po file:

#. Translators: View verb
path/to/template/file.html:10
msgid "View"
msgstr ""

#. Translators: Short intro blurb
path/to/template/file.html:13
msgid ""
"A multiline translatable"
"literal."
msgstr ""

...

#. Translators: Label of a button that triggers search
path/to/template/file.html:100
msgid "Go"
msgstr ""

#. Translators: This is a text of the base template
path/to/template/file.html:103
msgid "Ambiguous translatable block of text"
msgstr ""

Switching language in templates

If you want to select a language within a template, you can use the language template tag:

{% load i18n %}

{% get_current_language as LANGUAGE_CODE %}
<!-- Current language: {{ LANGUAGE_CODE }} -->
<p>{% trans "Welcome to our page" %}</p>

{% language 'en' %}
{% get_current_language as LANGUAGE_CODE %}
<!-- Current language: {{ LANGUAGE_CODE }} -->
<p>{% trans "Welcome to our page" %}</p>

{% endlanguage %}

While the first occurrence of “Welcome to our page” uses the current language, the second will always be in English.

Other tags

These tags also require a {% load i18n %}.

get_available_languages

{% get_available_languages as LANGUAGES %} returns a list of tuples in which the first element is the
language code and the second is the language name (translated into the currently active locale).

450 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

get_current_language

{% get_current_language as LANGUAGE_CODE %} returns the current user’s preferred language as a
string. Example: en-us. See How Django discovers language preference.

get_current_language_bidi

{% get_current_language_bidi as LANGUAGE_BIDI %} returns the current locale’s direction. If
True, it’s a right-to-left language, e.g. Hebrew, Arabic. If False it’s a left-to-right language, e.g. English, French,
German, etc.

If you enable the django.template.context_processors.i18n context processor then each
RequestContext will have access to LANGUAGES, LANGUAGE_CODE, and LANGUAGE_BIDI as defined
above.

get_language_info

You can also retrieve information about any of the available languages using provided template tags and filters. To get
information about a single language, use the {% get_language_info %} tag:

{% get_language_info for LANGUAGE_CODE as lang %}
{% get_language_info for "pl" as lang %}

You can then access the information:

Language code: {{ lang.code }}

Name of language: {{ lang.name_local }}

Name in English: {{ lang.name }}

Bi-directional: {{ lang.bidi }}
Name in the active language: {{ lang.name_translated }}

The name_translated attribute was added.

get_language_info_list

You can also use the {% get_language_info_list %} template tag to retrieve information for a list of lan-
guages (e.g. active languages as specified in LANGUAGES). See the section about the set_language redirect view for
an example of how to display a language selector using {% get_language_info_list %}.

In addition to LANGUAGES style list of tuples, {% get_language_info_list %} supports simple lists of
language codes. If you do this in your view:

context = {'available_languages': ['en', 'es', 'fr']}
return render(request, 'mytemplate.html', context)

you can iterate over those languages in the template:

{% get_language_info_list for available_languages as langs %}
{% for lang in langs %} ... {% endfor %}

3.15. Internationalization and localization 451

Django Documentation, Release 1.10.9.dev20171123183751

Template filters

There are also simple filters available for convenience:

• {{ LANGUAGE_CODE|language_name }} (“German”)

• {{ LANGUAGE_CODE|language_name_local }} (“Deutsch”)

• {{ LANGUAGE_CODE|language_bidi }} (False)

• {{ LANGUAGE_CODE|language_name_translated }} (“německy”, when active language is Czech)

The language_name_translated filter was added.

Internationalization: in JavaScript code

Adding translations to JavaScript poses some problems:

• JavaScript code doesn’t have access to a gettext implementation.

• JavaScript code doesn’t have access to .po or .mo files; they need to be delivered by the server.

• The translation catalogs for JavaScript should be kept as small as possible.

Django provides an integrated solution for these problems: It passes the translations into JavaScript, so you can call
gettext, etc., from within JavaScript.

The main solution to these problems is the following JavaScriptCatalog view, which generates a JavaScript
code library with functions that mimic the gettext interface, plus an array of translation strings.

The JavaScriptCatalog view

class JavaScriptCatalog
A view that produces a JavaScript code library with functions that mimic the gettext interface, plus an array
of translation strings.

Attributes

domain
Translation domain containing strings to add in the view output. Defaults to 'djangojs'.

packages
A list of application names among installed applications. Those apps should contain a locale
directory. All those catalogs plus all catalogs found in LOCALE_PATHS (which are always included)
are merged into one catalog. Defaults to None, which means that all available translations from all
INSTALLED_APPS are provided in the JavaScript output.

Example with default values:

from django.views.i18n import JavaScriptCatalog

urlpatterns = [
url(r'^jsi18n/$', JavaScriptCatalog.as_view(), name='javascript-catalog'),

]

Example with custom packages:

452 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

urlpatterns = [
url(r'^jsi18n/myapp/$',

JavaScriptCatalog.as_view(packages=['your.app.label']),
name='javascript-catalog'),

]

If your root URLconf uses i18n_patterns(), JavaScriptCatalog must also be wrapped by
i18n_patterns() for the catalog to be correctly generated.

Example with i18n_patterns():

from django.conf.urls.i18n import i18n_patterns

urlpatterns = i18n_patterns(
url(r'^jsi18n/$', JavaScriptCatalog.as_view(), name='javascript-catalog'),

)

The precedence of translations is such that the packages appearing later in the packages argument have higher
precedence than the ones appearing at the beginning. This is important in the case of clashing translations for the same
literal.

If you use more than one JavaScriptCatalog view on a site and some of them define the same strings, the strings
in the catalog that was loaded last take precedence.

The javascript_catalog view

javascript_catalog(request, domain=’djangojs’, packages=None)

Deprecated since version 1.10: javascript_catalog() is deprecated in favor of JavaScriptCatalog and
will be removed in Django 2.0.

The main solution to these problems is the django.views.i18n.javascript_catalog() view, which sends
out a JavaScript code library with functions that mimic the gettext interface, plus an array of translation strings.
Those translation strings are taken from applications or Django core, according to what you specify in either the
info_dict or the URL. Paths listed in LOCALE_PATHS are also included.

You hook it up like this:

from django.views.i18n import javascript_catalog

js_info_dict = {
'packages': ('your.app.package',),

}

urlpatterns = [
url(r'^jsi18n/$', javascript_catalog, js_info_dict, name='javascript-catalog'),

]

Each string in packages should be in Python dotted-package syntax (the same format as the strings in
INSTALLED_APPS) and should refer to a package that contains a locale directory. If you specify multiple pack-
ages, all those catalogs are merged into one catalog. This is useful if you have JavaScript that uses strings from
different applications.

The precedence of translations is such that the packages appearing later in the packages argument have higher
precedence than the ones appearing at the beginning, this is important in the case of clashing translations for the same
literal.

By default, the view uses the djangojs gettext domain. This can be changed by altering the domain argument.

3.15. Internationalization and localization 453

Django Documentation, Release 1.10.9.dev20171123183751

You can make the view dynamic by putting the packages into the URL pattern:

urlpatterns = [
url(r'^jsi18n/(?P<packages>\S+?)/$', javascript_catalog, name='javascript-catalog

→˓'),
]

With this, you specify the packages as a list of package names delimited by ‘+’ signs in the URL. This is especially use-
ful if your pages use code from different apps and this changes often and you don’t want to pull in one big catalog file.
As a security measure, these values can only be either django.conf or any package from the INSTALLED_APPS
setting.

You can also split the catalogs in multiple URLs and load them as you need in your sites:

js_info_dict_app = {
'packages': ('your.app.package',),

}

js_info_dict_other_app = {
'packages': ('your.other.app.package',),

}

urlpatterns = [
url(r'^jsi18n/app/$', javascript_catalog, js_info_dict_app),
url(r'^jsi18n/other_app/$', javascript_catalog, js_info_dict_other_app),

]

If you use more than one javascript_catalog on a site and some of them define the same strings, the strings in
the catalog that was loaded last take precedence.

Before Django 1.9, the catalogs completely overwrote each other and you could only use one at a time.

The JavaScript translations found in the paths listed in the LOCALE_PATHS setting are also always included. To
keep consistency with the translations lookup order algorithm used for Python and templates, the directories listed in
LOCALE_PATHS have the highest precedence with the ones appearing first having higher precedence than the ones
appearing later.

Using the JavaScript translation catalog

To use the catalog, just pull in the dynamically generated script like this:

<script type="text/javascript" src="{% url 'javascript-catalog' %}"></script>

This uses reverse URL lookup to find the URL of the JavaScript catalog view. When the catalog is loaded, your
JavaScript code can use the following methods:

• gettext

• ngettext

• interpolate

• get_format

• gettext_noop

• pgettext

• npgettext

• pluralidx

454 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

gettext

The gettext function behaves similarly to the standard gettext interface within your Python code:

document.write(gettext('this is to be translated'));

ngettext

The ngettext function provides an interface to pluralize words and phrases:

var object_count = 1 // or 0, or 2, or 3, ...
s = ngettext('literal for the singular case',

'literal for the plural case', object_count);

interpolate

The interpolate function supports dynamically populating a format string. The interpolation syntax is borrowed
from Python, so the interpolate function supports both positional and named interpolation:

• Positional interpolation: obj contains a JavaScript Array object whose elements values are then sequentially
interpolated in their corresponding fmt placeholders in the same order they appear. For example:

fmts = ngettext('There is %s object. Remaining: %s',
'There are %s objects. Remaining: %s', 11);

s = interpolate(fmts, [11, 20]);
// s is 'There are 11 objects. Remaining: 20'

• Named interpolation: This mode is selected by passing the optional boolean named parameter as true. obj
contains a JavaScript object or associative array. For example:

d = {
count: 10,
total: 50

};

fmts = ngettext('Total: %(total)s, there is %(count)s object',
'there are %(count)s of a total of %(total)s objects', d.count);
s = interpolate(fmts, d, true);

You shouldn’t go over the top with string interpolation, though: this is still JavaScript, so the code has to make repeated
regular-expression substitutions. This isn’t as fast as string interpolation in Python, so keep it to those cases where you
really need it (for example, in conjunction with ngettext to produce proper pluralizations).

get_format

The get_format function has access to the configured i18n formatting settings and can retrieve the format string
for a given setting name:

document.write(get_format('DATE_FORMAT'));
// 'N j, Y'

It has access to the following settings:

3.15. Internationalization and localization 455

Django Documentation, Release 1.10.9.dev20171123183751

• DATE_FORMAT

• DATE_INPUT_FORMATS

• DATETIME_FORMAT

• DATETIME_INPUT_FORMATS

• DECIMAL_SEPARATOR

• FIRST_DAY_OF_WEEK

• MONTH_DAY_FORMAT

• NUMBER_GROUPING

• SHORT_DATE_FORMAT

• SHORT_DATETIME_FORMAT

• THOUSAND_SEPARATOR

• TIME_FORMAT

• TIME_INPUT_FORMATS

• YEAR_MONTH_FORMAT

This is useful for maintaining formatting consistency with the Python-rendered values.

gettext_noop

This emulates the gettext function but does nothing, returning whatever is passed to it:

document.write(gettext_noop('this will not be translated'));

This is useful for stubbing out portions of the code that will need translation in the future.

pgettext

The pgettext function behaves like the Python variant (pgettext()), providing a contextually translated word:

document.write(pgettext('month name', 'May'));

npgettext

The npgettext function also behaves like the Python variant (npgettext()), providing a pluralized contextually
translated word:

document.write(npgettext('group', 'party', 1));
// party
document.write(npgettext('group', 'party', 2));
// parties

456 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

pluralidx

The pluralidx function works in a similar way to the pluralize template filter, determining if a given count
should use a plural form of a word or not:

document.write(pluralidx(0));
// true
document.write(pluralidx(1));
// false
document.write(pluralidx(2));
// true

In the simplest case, if no custom pluralization is needed, this returns false for the integer 1 and true for all other
numbers.

However, pluralization is not this simple in all languages. If the language does not support pluralization, an empty
value is provided.

Additionally, if there are complex rules around pluralization, the catalog view will render a conditional expression.
This will evaluate to either a true (should pluralize) or false (should not pluralize) value.

The JSONCatalog view

class JSONCatalog
In order to use another client-side library to handle translations, you may want to take advantage of the
JSONCatalog view. It’s similar to JavaScriptCatalog but returns a JSON response.

See the documentation for JavaScriptCatalog to learn about possible values and use of the domain and
packages attributes.

The response format is as follows:

{
"catalog": {

Translations catalog
},
"formats": {

Language formats for date, time, etc.
},
"plural": "..." # Expression for plural forms, or null.

}

The json_catalog view

json_catalog(request, domain=’djangojs’, packages=None)

Deprecated since version 1.10: json_catalog() is deprecated in favor of JSONCatalog and will be removed
in Django 2.0.

In order to use another client-side library to handle translations, you may want to take advantage of the
json_catalog() view. It’s similar to javascript_catalog() but returns a JSON response.

The JSON object contains i18n formatting settings (those available for get_format), a plural rule (as a plural part of
a GNU gettext Plural-Forms expression), and translation strings. The translation strings are taken from applica-
tions or Django’s own translations, according to what is specified either via urlpatterns arguments or as request
parameters. Paths listed in LOCALE_PATHS are also included.

3.15. Internationalization and localization 457

Django Documentation, Release 1.10.9.dev20171123183751

The view is hooked up to your application and configured in the same fashion as javascript_catalog()
(namely, the domain and packages arguments behave identically):

from django.views.i18n import json_catalog

js_info_dict = {
'packages': ('your.app.package',),

}

urlpatterns = [
url(r'^jsoni18n/$', json_catalog, js_info_dict),

]

The response format is as follows:

{
"catalog": {

Translations catalog
},
"formats": {

Language formats for date, time, etc.
},
"plural": "..." # Expression for plural forms, or null.

}

Note on performance

The various JavaScript/JSON i18n views generate the catalog from .mo files on every request. Since its output is
constant, at least for a given version of a site, it’s a good candidate for caching.

Server-side caching will reduce CPU load. It’s easily implemented with the cache_page() decorator. To trigger
cache invalidation when your translations change, provide a version-dependent key prefix, as shown in the example
below, or map the view at a version-dependent URL:

from django.views.decorators.cache import cache_page
from django.views.i18n import JavaScriptCatalog

The value returned by get_version() must change when translations change.
urlpatterns = [

url(r'^jsi18n/$',
cache_page(86400, key_prefix='js18n-%s' % get_version())(JavaScriptCatalog.as_

→˓view()),
name='javascript-catalog'),

]

Client-side caching will save bandwidth and make your site load faster. If you’re using ETags (USE_ETAGS =
True), you’re already covered. Otherwise, you can apply conditional decorators. In the following example, the cache
is invalidated whenever you restart your application server:

from django.utils import timezone
from django.views.decorators.http import last_modified
from django.views.i18n import JavaScriptCatalog

last_modified_date = timezone.now()

urlpatterns = [
url(r'^jsi18n/$',

458 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

last_modified(lambda req, **kw: last_modified_date)(JavaScriptCatalog.as_
→˓view()),

name='javascript-catalog'),
]

You can even pre-generate the JavaScript catalog as part of your deployment procedure and serve it as a static file.
This radical technique is implemented in django-statici18n.

Internationalization: in URL patterns

Django provides two mechanisms to internationalize URL patterns:

• Adding the language prefix to the root of the URL patterns to make it possible for LocaleMiddleware to
detect the language to activate from the requested URL.

• Making URL patterns themselves translatable via the django.utils.translation.
ugettext_lazy() function.

Warning: Using either one of these features requires that an active language be set for each request; in other
words, you need to have django.middleware.locale.LocaleMiddleware in your MIDDLEWARE set-
ting.

Language prefix in URL patterns

i18n_patterns(*urls, prefix_default_language=True)

This function can be used in a root URLconf and Django will automatically prepend the current active language code
to all URL patterns defined within i18n_patterns().

Setting prefix_default_language to False removes the prefix from the default language
(LANGUAGE_CODE). This can be useful when adding translations to existing site so that the current URLs
won’t change.

Example URL patterns:

from django.conf.urls import include, url
from django.conf.urls.i18n import i18n_patterns

from about import views as about_views
from news import views as news_views
from sitemap.views import sitemap

urlpatterns = [
url(r'^sitemap\.xml$', sitemap, name='sitemap-xml'),

]

news_patterns = ([
url(r'^$', news_views.index, name='index'),
url(r'^category/(?P<slug>[\w-]+)/$', news_views.category, name='category'),
url(r'^(?P<slug>[\w-]+)/$', news_views.details, name='detail'),

], 'news')

urlpatterns += i18n_patterns(
url(r'^about/$', about_views.main, name='about'),

3.15. Internationalization and localization 459

https://django-statici18n.readthedocs.io/en/latest/

Django Documentation, Release 1.10.9.dev20171123183751

url(r'^news/', include(news_patterns, namespace='news')),
)

After defining these URL patterns, Django will automatically add the language prefix to the URL patterns that were
added by the i18n_patterns function. Example:

>>> from django.urls import reverse
>>> from django.utils.translation import activate

>>> activate('en')
>>> reverse('sitemap-xml')
'/sitemap.xml'
>>> reverse('news:index')
'/en/news/'

>>> activate('nl')
>>> reverse('news:detail', kwargs={'slug': 'news-slug'})
'/nl/news/news-slug/'

With prefix_default_language=False and LANGUAGE_CODE='en', the URLs will be:

>>> activate('en')
>>> reverse('news:index')
'/news/'

>>> activate('nl')
>>> reverse('news:index')
'/nl/news/'

The prefix_default_language parameter was added.

Warning: i18n_patterns() is only allowed in a root URLconf. Using it within an included URLconf will
throw an ImproperlyConfigured exception.

In older version, using i18n_patterns in a root URLconf different from ROOT_URLCONF by setting request.
urlconf wasn’t supported.

Warning: Ensure that you don’t have non-prefixed URL patterns that might collide with an automatically-added
language prefix.

Translating URL patterns

URL patterns can also be marked translatable using the ugettext_lazy() function. Example:

from django.conf.urls import include, url
from django.conf.urls.i18n import i18n_patterns
from django.utils.translation import ugettext_lazy as _

from about import views as about_views
from news import views as news_views
from sitemaps.views import sitemap

460 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

urlpatterns = [
url(r'^sitemap\.xml$', sitemap, name='sitemap-xml'),

]

news_patterns = ([
url(r'^$', news_views.index, name='index'),
url(_(r'^category/(?P<slug>[\w-]+)/$'), news_views.category, name='category'),
url(r'^(?P<slug>[\w-]+)/$', news_views.details, name='detail'),

], 'news')

urlpatterns += i18n_patterns(
url(_(r'^about/$'), about_views.main, name='about'),
url(_(r'^news/'), include(news_patterns, namespace='news')),

)

After you’ve created the translations, the reverse() function will return the URL in the active language. Example:

>>> from django.urls import reverse
>>> from django.utils.translation import activate

>>> activate('en')
>>> reverse('news:category', kwargs={'slug': 'recent'})
'/en/news/category/recent/'

>>> activate('nl')
>>> reverse('news:category', kwargs={'slug': 'recent'})
'/nl/nieuws/categorie/recent/'

Warning: In most cases, it’s best to use translated URLs only within a language-code-prefixed block of patterns
(using i18n_patterns()), to avoid the possibility that a carelessly translated URL causes a collision with a
non-translated URL pattern.

Reversing in templates

If localized URLs get reversed in templates they always use the current language. To link to a URL in another language
use the language template tag. It enables the given language in the enclosed template section:

{% load i18n %}

{% get_available_languages as languages %}

{% trans "View this category in:" %}
{% for lang_code, lang_name in languages %}

{% language lang_code %}
{{ lang_name }}
{% endlanguage %}

{% endfor %}

The language tag expects the language code as the only argument.

3.15. Internationalization and localization 461

Django Documentation, Release 1.10.9.dev20171123183751

Localization: how to create language files

Once the string literals of an application have been tagged for later translation, the translation themselves need to be
written (or obtained). Here’s how that works.

Message files

The first step is to create a message file for a new language. A message file is a plain-text file, representing a single
language, that contains all available translation strings and how they should be represented in the given language.
Message files have a .po file extension.

Django comes with a tool, django-admin makemessages, that automates the creation and upkeep of these files.

Gettext utilities

The makemessages command (and compilemessages discussed later) use commands from the GNU gettext
toolset: xgettext, msgfmt, msgmerge and msguniq.

The minimum version of the gettext utilities supported is 0.15.

To create or update a message file, run this command:

django-admin makemessages -l de

...where de is the locale name for the message file you want to create. For example, pt_BR for Brazilian Portuguese,
de_AT for Austrian German or id for Indonesian.

The script should be run from one of two places:

• The root directory of your Django project (the one that contains manage.py).

• The root directory of one of your Django apps.

The script runs over your project source tree or your application source tree and pulls out all strings marked for
translation (see How Django discovers translations and be sure LOCALE_PATHS is configured correctly). It creates
(or updates) a message file in the directory locale/LANG/LC_MESSAGES. In the de example, the file will be
locale/de/LC_MESSAGES/django.po.

When you run makemessages from the root directory of your project, the extracted strings will be automatically
distributed to the proper message files. That is, a string extracted from a file of an app containing a locale directory
will go in a message file under that directory. A string extracted from a file of an app without any locale direc-
tory will either go in a message file under the directory listed first in LOCALE_PATHS or will generate an error if
LOCALE_PATHS is empty.

By default django-admin makemessages examines every file that has the .html or .txt file extension. In
case you want to override that default, use the --extension or -e option to specify the file extensions to examine:

django-admin makemessages -l de -e txt

Separate multiple extensions with commas and/or use -e or --extension multiple times:

django-admin makemessages -l de -e html,txt -e xml

Warning: When creating message files from JavaScript source code you need to use the special ‘djangojs’
domain, not -e js.

462 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Using Jinja2 templates?

makemessages doesn’t understand the syntax of Jinja2 templates. To extract strings from a project containing Jinja2
templates, use Message Extracting from Babel instead.

Here’s an example babel.cfg configuration file:

Extraction from Python source files
[python: **.py]

Extraction from Jinja2 templates
[jinja2: **.jinja]
extensions = jinja2.ext.with_

Make sure you list all extensions you’re using! Otherwise Babel won’t recognize the tags defined by these extensions
and will ignore Jinja2 templates containing them entirely.

Babel provides similar features to makemessages, can replace it in general, and doesn’t depend on gettext. For
more information, read its documentation about working with message catalogs.

No gettext?

If you don’t have the gettext utilities installed, makemessages will create empty files. If that’s the case, either
install the gettext utilities or just copy the English message file (locale/en/LC_MESSAGES/django.po) if
available and use it as a starting point; it’s just an empty translation file.

Working on Windows?

If you’re using Windows and need to install the GNU gettext utilities so makemessages works, see gettext on
Windows for more information.

The format of .po files is straightforward. Each .po file contains a small bit of metadata, such as the translation
maintainer’s contact information, but the bulk of the file is a list of messages – simple mappings between translation
strings and the actual translated text for the particular language.

For example, if your Django app contained a translation string for the text "Welcome to my site.", like so:

_("Welcome to my site.")

...then django-admin makemessageswill have created a .po file containing the following snippet – a message:

#: path/to/python/module.py:23
msgid "Welcome to my site."
msgstr ""

A quick explanation:

• msgid is the translation string, which appears in the source. Don’t change it.

• msgstr is where you put the language-specific translation. It starts out empty, so it’s your responsibility to
change it. Make sure you keep the quotes around your translation.

• As a convenience, each message includes, in the form of a comment line prefixed with # and located above the
msgid line, the filename and line number from which the translation string was gleaned.

3.15. Internationalization and localization 463

http://babel.pocoo.org/en/latest/messages.html#message-extraction
http://babel.pocoo.org/
http://babel.pocoo.org/en/latest/messages.html

Django Documentation, Release 1.10.9.dev20171123183751

Long messages are a special case. There, the first string directly after the msgstr (or msgid) is an empty string. Then
the content itself will be written over the next few lines as one string per line. Those strings are directly concatenated.
Don’t forget trailing spaces within the strings; otherwise, they’ll be tacked together without whitespace!

Mind your charset

Due to the way the gettext tools work internally and because we want to allow non-ASCII source strings in Django’s
core and your applications, you must use UTF-8 as the encoding for your PO files (the default when PO files are
created). This means that everybody will be using the same encoding, which is important when Django processes the
PO files.

To reexamine all source code and templates for new translation strings and update all message files for all languages,
run this:

django-admin makemessages -a

Compiling message files

After you create your message file – and each time you make changes to it – you’ll need to compile it into a more
efficient form, for use by gettext. Do this with the django-admin compilemessages utility.

This tool runs over all available .po files and creates .mo files, which are binary files optimized for use by
gettext. In the same directory from which you ran django-admin makemessages, run django-admin
compilemessages like this:

django-admin compilemessages

That’s it. Your translations are ready for use.

compilemessages now matches the operation of makemessages, scanning the project tree for .po files to
compile.

Working on Windows?

If you’re using Windows and need to install the GNU gettext utilities so django-admin compilemessages
works see gettext on Windows for more information.

.po files: Encoding and BOM usage.

Django only supports .po files encoded in UTF-8 and without any BOM (Byte Order Mark) so if your text editor
adds such marks to the beginning of files by default then you will need to reconfigure it.

Troubleshooting: ugettext() incorrectly detects python-format in strings with percent signs

In some cases, such as strings with a percent sign followed by a space and a string conversion type (e.g. _("10%
interest")), ugettext() incorrectly flags strings with python-format.

If you try to compile message files with incorrectly flagged strings, you’ll get an error message like number of
format specifications in 'msgid' and 'msgstr' does not match or 'msgstr' is not
a valid Python format string, unlike 'msgid'.

To workaround this, you can escape percent signs by adding a second percent sign:

464 Chapter 3. Using Django

https://docs.python.org/3/library/stdtypes.html#old-string-formatting

Django Documentation, Release 1.10.9.dev20171123183751

from django.utils.translation import ugettext as _
output = _("10%% interest)

Or you can use no-python-format so that all percent signs are treated as literals:

xgettext:no-python-format
output = _("10% interest)

Creating message files from JavaScript source code

You create and update the message files the same way as the other Django message files – with the django-admin
makemessages tool. The only difference is you need to explicitly specify what in gettext parlance is known as a
domain in this case the djangojs domain, by providing a -d djangojs parameter, like this:

django-admin makemessages -d djangojs -l de

This would create or update the message file for JavaScript for German. After updating message files, just run
django-admin compilemessages the same way as you do with normal Django message files.

gettext on Windows

This is only needed for people who either want to extract message IDs or compile message files (.po). Translation
work itself just involves editing existing files of this type, but if you want to create your own message files, or want to
test or compile a changed message file, download a precompiled binary installer.

You may also use gettext binaries you have obtained elsewhere, so long as the xgettext --version com-
mand works properly. Do not attempt to use Django translation utilities with a gettext package if the command
xgettext --version entered at a Windows command prompt causes a popup window saying “xgettext.exe has
generated errors and will be closed by Windows”.

Customizing the makemessages command

If you want to pass additional parameters to xgettext, you need to create a custom makemessages command
and override its xgettext_options attribute:

from django.core.management.commands import makemessages

class Command(makemessages.Command):
xgettext_options = makemessages.Command.xgettext_options + ['--keyword=mytrans']

If you need more flexibility, you could also add a new argument to your custom makemessages command:

from django.core.management.commands import makemessages

class Command(makemessages.Command):

def add_arguments(self, parser):
super(Command, self).add_arguments(parser)
parser.add_argument(

'--extra-keyword',
dest='xgettext_keywords',
action='append',

)

3.15. Internationalization and localization 465

http://mlocati.github.io/gettext-iconv-windows/

Django Documentation, Release 1.10.9.dev20171123183751

def handle(self, *args, **options):
xgettext_keywords = options.pop('xgettext_keywords')
if xgettext_keywords:

self.xgettext_options = (
makemessages.Command.xgettext_options[:] +
['--keyword=%s' % kwd for kwd in xgettext_keywords]

)
super(Command, self).handle(*args, **options)

Miscellaneous

The set_language redirect view

set_language(request)

As a convenience, Django comes with a view, django.views.i18n.set_language(), that sets a user’s lan-
guage preference and redirects to a given URL or, by default, back to the previous page.

Activate this view by adding the following line to your URLconf:

url(r'^i18n/', include('django.conf.urls.i18n')),

(Note that this example makes the view available at /i18n/setlang/.)

Warning: Make sure that you don’t include the above URL within i18n_patterns() - it needs to be
language-independent itself to work correctly.

The view expects to be called via the POST method, with a language parameter set in request. If session support is
enabled, the view saves the language choice in the user’s session. Otherwise, it saves the language choice in a cookie
that is by default named django_language. (The name can be changed through the LANGUAGE_COOKIE_NAME
setting.)

After setting the language choice, Django looks for a next parameter in the POST or GET data. If that is found and
Django considers it to be a safe URL (i.e. it doesn’t point to a different host and uses a safe scheme), a redirect to
that URL will be performed. Otherwise, Django may fall back to redirecting the user to the URL from the Referer
header or, if it is not set, to /, depending on the nature of the request:

• For AJAX requests, the fallback will be performed only if the next parameter was set. Otherwise a 204 status
code (No Content) will be returned.

• For non-AJAX requests, the fallback will always be performed.

Returning a 204 status code for AJAX requests when no redirect is specified is new.

Here’s example HTML template code:

{% load i18n %}

<form action="{% url 'set_language' %}" method="post">{% csrf_token %}
<input name="next" type="hidden" value="{{ redirect_to }}" />
<select name="language">

{% get_current_language as LANGUAGE_CODE %}
{% get_available_languages as LANGUAGES %}
{% get_language_info_list for LANGUAGES as languages %}
{% for language in languages %}

466 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

<option value="{{ language.code }}"{% if language.code == LANGUAGE_CODE %}
→˓ selected="selected"{% endif %}>

{{ language.name_local }} ({{ language.code }})
</option>

{% endfor %}
</select>
<input type="submit" value="Go" />

</form>

In this example, Django looks up the URL of the page to which the user will be redirected in the redirect_to
context variable.

Explicitly setting the active language

You may want to set the active language for the current session explicitly. Perhaps a user’s language preference is
retrieved from another system, for example. You’ve already been introduced to django.utils.translation.
activate(). That applies to the current thread only. To persist the language for the entire session, also modify
LANGUAGE_SESSION_KEY in the session:

from django.utils import translation
user_language = 'fr'
translation.activate(user_language)
request.session[translation.LANGUAGE_SESSION_KEY] = user_language

You would typically want to use both: django.utils.translation.activate() will change the language
for this thread, and modifying the session makes this preference persist in future requests.

If you are not using sessions, the language will persist in a cookie, whose name is configured in
LANGUAGE_COOKIE_NAME. For example:

from django.utils import translation
from django import http
from django.conf import settings
user_language = 'fr'
translation.activate(user_language)
response = http.HttpResponse(...)
response.set_cookie(settings.LANGUAGE_COOKIE_NAME, user_language)

Using translations outside views and templates

While Django provides a rich set of i18n tools for use in views and templates, it does not restrict the usage to Django-
specific code. The Django translation mechanisms can be used to translate arbitrary texts to any language that is
supported by Django (as long as an appropriate translation catalog exists, of course). You can load a translation
catalog, activate it and translate text to language of your choice, but remember to switch back to original language,
as activating a translation catalog is done on per-thread basis and such change will affect code running in the same
thread.

For example:

from django.utils import translation

def welcome_translated(language):
cur_language = translation.get_language()
try:

3.15. Internationalization and localization 467

Django Documentation, Release 1.10.9.dev20171123183751

translation.activate(language)
text = translation.ugettext('welcome')

finally:
translation.activate(cur_language)

return text

Calling this function with the value ‘de’ will give you "Willkommen", regardless of LANGUAGE_CODE and lan-
guage set by middleware.

Functions of particular interest are django.utils.translation.get_language() which returns the lan-
guage used in the current thread, django.utils.translation.activate() which activates a translation
catalog for the current thread, and django.utils.translation.check_for_language() which checks
if the given language is supported by Django.

To help write more concise code, there is also a context manager django.utils.translation.override()
that stores the current language on enter and restores it on exit. With it, the above example becomes:

from django.utils import translation

def welcome_translated(language):
with translation.override(language):

return translation.ugettext('welcome')

Language cookie

A number of settings can be used to adjust language cookie options:

• LANGUAGE_COOKIE_NAME

• LANGUAGE_COOKIE_AGE

• LANGUAGE_COOKIE_DOMAIN

• LANGUAGE_COOKIE_PATH

Implementation notes

Specialties of Django translation

Django’s translation machinery uses the standard gettext module that comes with Python. If you know gettext,
you might note these specialties in the way Django does translation:

• The string domain is django or djangojs. This string domain is used to differentiate between different pro-
grams that store their data in a common message-file library (usually /usr/share/locale/). The django
domain is used for Python and template translation strings and is loaded into the global translation catalogs.
The djangojs domain is only used for JavaScript translation catalogs to make sure that those are as small as
possible.

• Django doesn’t use xgettext alone. It uses Python wrappers around xgettext and msgfmt. This is mostly
for convenience.

How Django discovers language preference

Once you’ve prepared your translations – or, if you just want to use the translations that come with Django – you’ll
just need to activate translation for your app.

468 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Behind the scenes, Django has a very flexible model of deciding which language should be used – installation-wide,
for a particular user, or both.

To set an installation-wide language preference, set LANGUAGE_CODE. Django uses this language as the default
translation – the final attempt if no better matching translation is found through one of the methods employed by the
locale middleware (see below).

If all you want is to run Django with your native language all you need to do is set LANGUAGE_CODE and make sure
the corresponding message files and their compiled versions (.mo) exist.

If you want to let each individual user specify which language they prefer, then you also need to use the
LocaleMiddleware. LocaleMiddleware enables language selection based on data from the request. It cus-
tomizes content for each user.

To use LocaleMiddleware, add 'django.middleware.locale.LocaleMiddleware' to your
MIDDLEWARE setting. Because middleware order matters, follow these guidelines:

• Make sure it’s one of the first middlewares installed.

• It should come after SessionMiddleware, because LocaleMiddleware makes use of session data. And
it should come before CommonMiddleware because CommonMiddleware needs an activated language in
order to resolve the requested URL.

• If you use CacheMiddleware, put LocaleMiddleware after it.

For example, your MIDDLEWARE might look like this:

MIDDLEWARE = [
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.locale.LocaleMiddleware',
'django.middleware.common.CommonMiddleware',

]

(For more on middleware, see the middleware documentation.)

LocaleMiddleware tries to determine the user’s language preference by following this algorithm:

• First, it looks for the language prefix in the requested URL. This is only performed when you are using the
i18n_patterns function in your root URLconf. See Internationalization: in URL patterns for more infor-
mation about the language prefix and how to internationalize URL patterns.

• Failing that, it looks for the LANGUAGE_SESSION_KEY key in the current user’s session.

• Failing that, it looks for a cookie.

The name of the cookie used is set by the LANGUAGE_COOKIE_NAME setting. (The default name is
django_language.)

• Failing that, it looks at the Accept-Language HTTP header. This header is sent by your browser and tells
the server which language(s) you prefer, in order by priority. Django tries each language in the header until it
finds one with available translations.

• Failing that, it uses the global LANGUAGE_CODE setting.

Notes:

• In each of these places, the language preference is expected to be in the standard language format, as a string.
For example, Brazilian Portuguese is pt-br.

• If a base language is available but the sublanguage specified is not, Django uses the base language. For example,
if a user specifies de-at (Austrian German) but Django only has de available, Django uses de.

3.15. Internationalization and localization 469

Django Documentation, Release 1.10.9.dev20171123183751

• Only languages listed in the LANGUAGES setting can be selected. If you want to restrict the language selection to
a subset of provided languages (because your application doesn’t provide all those languages), set LANGUAGES
to a list of languages. For example:

LANGUAGES = [
('de', _('German')),
('en', _('English')),

]

This example restricts languages that are available for automatic selection to German and English (and any
sublanguage, like de-ch or en-us).

• If you define a custom LANGUAGES setting, as explained in the previous bullet, you can mark the language
names as translation strings – but use ugettext_lazy() instead of ugettext() to avoid a circular import.

Here’s a sample settings file:

from django.utils.translation import ugettext_lazy as _

LANGUAGES = [
('de', _('German')),
('en', _('English')),

]

Once LocaleMiddleware determines the user’s preference, it makes this preference available as request.
LANGUAGE_CODE for each HttpRequest. Feel free to read this value in your view code. Here’s a simple example:

from django.http import HttpResponse

def hello_world(request, count):
if request.LANGUAGE_CODE == 'de-at':

return HttpResponse("You prefer to read Austrian German.")
else:

return HttpResponse("You prefer to read another language.")

Note that, with static (middleware-less) translation, the language is in settings.LANGUAGE_CODE, while with
dynamic (middleware) translation, it’s in request.LANGUAGE_CODE.

How Django discovers translations

At runtime, Django builds an in-memory unified catalog of literals-translations. To achieve this it looks for translations
by following this algorithm regarding the order in which it examines the different file paths to load the compiled
message files (.mo) and the precedence of multiple translations for the same literal:

1. The directories listed in LOCALE_PATHS have the highest precedence, with the ones appearing first having
higher precedence than the ones appearing later.

2. Then, it looks for and uses if it exists a locale directory in each of the installed apps listed in
INSTALLED_APPS. The ones appearing first have higher precedence than the ones appearing later.

3. Finally, the Django-provided base translation in django/conf/locale is used as a fallback.

See also:

The translations for literals included in JavaScript assets are looked up following a similar but not identical algorithm.
See the javascript_catalog view documentation for more details.

In all cases the name of the directory containing the translation is expected to be named using locale name notation.
E.g. de, pt_BR, es_AR, etc.

470 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

This way, you can write applications that include their own translations, and you can override base translations in your
project. Or, you can just build a big project out of several apps and put all translations into one big common message
file specific to the project you are composing. The choice is yours.

All message file repositories are structured the same way. They are:

• All paths listed in LOCALE_PATHS in your settings file are searched for <language>/LC_MESSAGES/
django.(po|mo)

• $APPPATH/locale/<language>/LC_MESSAGES/django.(po|mo)

• $PYTHONPATH/django/conf/locale/<language>/LC_MESSAGES/django.(po|mo)

To create message files, you use the django-admin makemessages tool. And you use django-admin
compilemessages to produce the binary .mo files that are used by gettext.

You can also run django-admin compilemessages --settings=path.to.settings to make the
compiler process all the directories in your LOCALE_PATHS setting.

Using a non-English base language

Django makes the general assumption that the original strings in a translatable project are written in English. You can
choose another language, but you must be aware of certain limitations:

• gettext only provides two plural forms for the original messages, so you will also need to provide a translation
for the base language to include all plural forms if the plural rules for the base language are different from
English.

• When an English variant is activated and English strings are missing, the fallback language will not be the
LANGUAGE_CODE of the project, but the original strings. For example, an English user visiting a site with
Spanish as the default language and original strings written in Russian will fallback to Russian, not to Spanish.

3.15.2 Format localization

Overview

Django’s formatting system is capable of displaying dates, times and numbers in templates using the format specified
for the current locale. It also handles localized input in forms.

When it’s enabled, two users accessing the same content may see dates, times and numbers formatted in different
ways, depending on the formats for their current locale.

The formatting system is disabled by default. To enable it, it’s necessary to set USE_L10N = True in your settings
file.

Note: The default settings.py file created by django-admin startproject includes USE_L10N =
True for convenience. Note, however, that to enable number formatting with thousand separators it is necessary to
set USE_THOUSAND_SEPARATOR = True in your settings file. Alternatively, you could use intcomma to format
numbers in your template.

Note: There is also an independent but related USE_I18N setting that controls if Django should activate translation.
See Translation for more details.

3.15. Internationalization and localization 471

Django Documentation, Release 1.10.9.dev20171123183751

Locale aware input in forms

When formatting is enabled, Django can use localized formats when parsing dates, times and numbers in forms. That
means it tries different formats for different locales when guessing the format used by the user when inputting data on
forms.

Note: Django uses different formats for displaying data to those it uses for parsing data. Most notably, the formats for
parsing dates can’t use the %a (abbreviated weekday name), %A (full weekday name), %b (abbreviated month name),
%B (full month name), or %p (AM/PM).

To enable a form field to localize input and output data simply use its localize argument:

class CashRegisterForm(forms.Form):
product = forms.CharField()
revenue = forms.DecimalField(max_digits=4, decimal_places=2, localize=True)

Controlling localization in templates

When you have enabled formatting with USE_L10N , Django will try to use a locale specific format whenever it
outputs a value in a template.

However, it may not always be appropriate to use localized values – for example, if you’re outputting JavaScript or
XML that is designed to be machine-readable, you will always want unlocalized values. You may also want to use
localization in selected templates, rather than using localization everywhere.

To allow for fine control over the use of localization, Django provides the l10n template library that contains the
following tags and filters.

Template tags

localize

Enables or disables localization of template variables in the contained block.

This tag allows a more fine grained control of localization than USE_L10N .

To activate or deactivate localization for a template block, use:

{% load l10n %}

{% localize on %}
{{ value }}

{% endlocalize %}

{% localize off %}
{{ value }}

{% endlocalize %}

Note: The value of USE_L10N isn’t respected inside of a {% localize %} block.

See localize and unlocalize for template filters that will do the same job on a per-variable basis.

472 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Template filters

localize

Forces localization of a single value.

For example:

{% load l10n %}

{{ value|localize }}

To disable localization on a single value, use unlocalize. To control localization over a large section of a template,
use the localize template tag.

unlocalize

Forces a single value to be printed without localization.

For example:

{% load l10n %}

{{ value|unlocalize }}

To force localization of a single value, use localize. To control localization over a large section of a template, use
the localize template tag.

Creating custom format files

Django provides format definitions for many locales, but sometimes you might want to create your own, because a
format files doesn’t exist for your locale, or because you want to overwrite some of the values.

To use custom formats, specify the path where you’ll place format files first. To do that, just set your
FORMAT_MODULE_PATH setting to the package where format files will exist, for instance:

FORMAT_MODULE_PATH = [
'mysite.formats',
'some_app.formats',

]

Files are not placed directly in this directory, but in a directory named as the locale, and must be named formats.
py. Be careful not to put sensitive information in these files as values inside can be exposed if you pass the string to
django.utils.formats.get_format() (used by the date template filter).

To customize the English formats, a structure like this would be needed:

mysite/
formats/

__init__.py
en/

__init__.py
formats.py

where formats.py contains custom format definitions. For example:

3.15. Internationalization and localization 473

Django Documentation, Release 1.10.9.dev20171123183751

from __future__ import unicode_literals

THOUSAND_SEPARATOR = '\xa0'

to use a non-breaking space (Unicode 00A0) as a thousand separator, instead of the default for English, a comma.

Limitations of the provided locale formats

Some locales use context-sensitive formats for numbers, which Django’s localization system cannot handle automati-
cally.

Switzerland (German)

The Swiss number formatting depends on the type of number that is being formatted. For monetary values, a comma
is used as the thousand separator and a decimal point for the decimal separator. For all other numbers, a comma is
used as decimal separator and a space as thousand separator. The locale format provided by Django uses the generic
separators, a comma for decimal and a space for thousand separators.

3.15.3 Time zones

Overview

When support for time zones is enabled, Django stores datetime information in UTC in the database, uses time-zone-
aware datetime objects internally, and translates them to the end user’s time zone in templates and forms.

This is handy if your users live in more than one time zone and you want to display datetime information according to
each user’s wall clock.

Even if your website is available in only one time zone, it’s still good practice to store data in UTC in your database.
The main reason is Daylight Saving Time (DST). Many countries have a system of DST, where clocks are moved
forward in spring and backward in autumn. If you’re working in local time, you’re likely to encounter errors twice a
year, when the transitions happen. (The pytz documentation discusses these issues in greater detail.) This probably
doesn’t matter for your blog, but it’s a problem if you over-bill or under-bill your customers by one hour, twice a year,
every year. The solution to this problem is to use UTC in the code and use local time only when interacting with end
users.

Time zone support is disabled by default. To enable it, set USE_TZ = True in your settings file. Installing pytz
is highly recommended, but may not be mandatory depending on your particular database backend, operating system
and time zone. If you encounter an exception querying dates or times, please try installing it before filing a bug. It’s
as simple as:

$ pip install pytz

Note: The default settings.py file created by django-admin startproject includes USE_TZ = True
for convenience.

Note: There is also an independent but related USE_L10N setting that controls whether Django should activate
format localization. See Format localization for more details.

If you’re wrestling with a particular problem, start with the time zone FAQ.

474 Chapter 3. Using Django

http://pytz.sourceforge.net/
http://pytz.sourceforge.net/#problems-with-localtime
http://pytz.sourceforge.net/

Django Documentation, Release 1.10.9.dev20171123183751

Concepts

Naive and aware datetime objects

Python’s datetime.datetime objects have a tzinfo attribute that can be used to store time zone information,
represented as an instance of a subclass of datetime.tzinfo. When this attribute is set and describes an offset, a
datetime object is aware. Otherwise, it’s naive.

You can use is_aware() and is_naive() to determine whether datetimes are aware or naive.

When time zone support is disabled, Django uses naive datetime objects in local time. This is simple and sufficient for
many use cases. In this mode, to obtain the current time, you would write:

import datetime

now = datetime.datetime.now()

When time zone support is enabled (USE_TZ=True), Django uses time-zone-aware datetime objects. If your code
creates datetime objects, they should be aware too. In this mode, the example above becomes:

from django.utils import timezone

now = timezone.now()

Warning: Dealing with aware datetime objects isn’t always intuitive. For instance, the tzinfo argument of
the standard datetime constructor doesn’t work reliably for time zones with DST. Using UTC is generally safe; if
you’re using other time zones, you should review the pytz documentation carefully.

Note: Python’s datetime.time objects also feature a tzinfo attribute, and PostgreSQL has a matching time
with time zone type. However, as PostgreSQL’s docs put it, this type “exhibits properties which lead to ques-
tionable usefulness”.

Django only supports naive time objects and will raise an exception if you attempt to save an aware time object, as a
timezone for a time with no associated date does not make sense.

Interpretation of naive datetime objects

When USE_TZ is True, Django still accepts naive datetime objects, in order to preserve backwards-compatibility.
When the database layer receives one, it attempts to make it aware by interpreting it in the default time zone and raises
a warning.

Unfortunately, during DST transitions, some datetimes don’t exist or are ambiguous. In such situations, pytz raises an
exception. Other tzinfo implementations, such as the local time zone used as a fallback when pytz isn’t installed,
may raise an exception or return inaccurate results. That’s why you should always create aware datetime objects when
time zone support is enabled.

In practice, this is rarely an issue. Django gives you aware datetime objects in the models and forms, and most often,
new datetime objects are created from existing ones through timedelta arithmetic. The only datetime that’s often
created in application code is the current time, and timezone.now() automatically does the right thing.

3.15. Internationalization and localization 475

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.tzinfo
http://pytz.sourceforge.net/
https://docs.python.org/3/library/datetime.html#datetime.time
http://pytz.sourceforge.net/
https://docs.python.org/3/library/datetime.html#datetime.tzinfo
http://pytz.sourceforge.net/
https://docs.python.org/3/library/datetime.html#datetime.timedelta

Django Documentation, Release 1.10.9.dev20171123183751

Default time zone and current time zone

The default time zone is the time zone defined by the TIME_ZONE setting.

The current time zone is the time zone that’s used for rendering.

You should set the current time zone to the end user’s actual time zone with activate(). Otherwise, the default
time zone is used.

Note: As explained in the documentation of TIME_ZONE, Django sets environment variables so that its process runs
in the default time zone. This happens regardless of the value of USE_TZ and of the current time zone.

When USE_TZ is True, this is useful to preserve backwards-compatibility with applications that still rely on local
time. However, as explained above, this isn’t entirely reliable, and you should always work with aware datetimes in
UTC in your own code. For instance, use fromtimestamp() and set the tz parameter to utc.

Selecting the current time zone

The current time zone is the equivalent of the current locale for translations. However, there’s no equivalent of the
Accept-Language HTTP header that Django could use to determine the user’s time zone automatically. Instead,
Django provides time zone selection functions. Use them to build the time zone selection logic that makes sense for
you.

Most websites that care about time zones just ask users in which time zone they live and store this information in the
user’s profile. For anonymous users, they use the time zone of their primary audience or UTC. pytz provides helpers,
like a list of time zones per country, that you can use to pre-select the most likely choices.

Here’s an example that stores the current timezone in the session. (It skips error handling entirely for the sake of
simplicity.)

Add the following middleware to MIDDLEWARE:

import pytz

from django.utils import timezone
from django.utils.deprecation import MiddlewareMixin

class TimezoneMiddleware(MiddlewareMixin):
def process_request(self, request):

tzname = request.session.get('django_timezone')
if tzname:

timezone.activate(pytz.timezone(tzname))
else:

timezone.deactivate()

Create a view that can set the current timezone:

from django.shortcuts import redirect, render

def set_timezone(request):
if request.method == 'POST':

request.session['django_timezone'] = request.POST['timezone']
return redirect('/')

else:
return render(request, 'template.html', {'timezones': pytz.common_timezones})

476 Chapter 3. Using Django

https://docs.python.org/3/library/datetime.html#datetime.datetime.fromtimestamp
http://pytz.sourceforge.net/
http://pytz.sourceforge.net/#helpers

Django Documentation, Release 1.10.9.dev20171123183751

Include a form in template.html that will POST to this view:

{% load tz %}
{% get_current_timezone as TIME_ZONE %}
<form action="{% url 'set_timezone' %}" method="POST">

{% csrf_token %}
<label for="timezone">Time zone:</label>
<select name="timezone">

{% for tz in timezones %}
<option value="{{ tz }}"{% if tz == TIME_ZONE %} selected="selected"{% endif

→˓%}>{{ tz }}</option>
{% endfor %}

</select>
<input type="submit" value="Set" />

</form>

Time zone aware input in forms

When you enable time zone support, Django interprets datetimes entered in forms in the current time zone and returns
aware datetime objects in cleaned_data.

If the current time zone raises an exception for datetimes that don’t exist or are ambiguous because they fall in a DST
transition (the timezones provided by pytz do this), such datetimes will be reported as invalid values.

Time zone aware output in templates

When you enable time zone support, Django converts aware datetime objects to the current time zone when they’re
rendered in templates. This behaves very much like format localization.

Warning: Django doesn’t convert naive datetime objects, because they could be ambiguous, and because your
code should never produce naive datetimes when time zone support is enabled. However, you can force conversion
with the template filters described below.

Conversion to local time isn’t always appropriate – you may be generating output for computers rather than for humans.
The following filters and tags, provided by the tz template tag library, allow you to control the time zone conversions.

Template tags

localtime

Enables or disables conversion of aware datetime objects to the current time zone in the contained block.

This tag has exactly the same effects as the USE_TZ setting as far as the template engine is concerned. It allows a
more fine grained control of conversion.

To activate or deactivate conversion for a template block, use:

{% load tz %}

{% localtime on %}
{{ value }}

{% endlocaltime %}

3.15. Internationalization and localization 477

http://pytz.sourceforge.net/

Django Documentation, Release 1.10.9.dev20171123183751

{% localtime off %}
{{ value }}

{% endlocaltime %}

Note: The value of USE_TZ isn’t respected inside of a {% localtime %} block.

timezone

Sets or unsets the current time zone in the contained block. When the current time zone is unset, the default time zone
applies.

{% load tz %}

{% timezone "Europe/Paris" %}
Paris time: {{ value }}

{% endtimezone %}

{% timezone None %}
Server time: {{ value }}

{% endtimezone %}

get_current_timezone

You can get the name of the current time zone using the get_current_timezone tag:

{% get_current_timezone as TIME_ZONE %}

Alternatively, you can activate the tz() context processor and use the TIME_ZONE context variable.

Template filters

These filters accept both aware and naive datetimes. For conversion purposes, they assume that naive datetimes are in
the default time zone. They always return aware datetimes.

localtime

Forces conversion of a single value to the current time zone.

For example:

{% load tz %}

{{ value|localtime }}

utc

Forces conversion of a single value to UTC.

478 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

For example:

{% load tz %}

{{ value|utc }}

timezone

Forces conversion of a single value to an arbitrary timezone.

The argument must be an instance of a tzinfo subclass or a time zone name. If it is a time zone name, pytz is
required.

For example:

{% load tz %}

{{ value|timezone:"Europe/Paris" }}

Migration guide

Here’s how to migrate a project that was started before Django supported time zones.

Database

PostgreSQL

The PostgreSQL backend stores datetimes as timestamp with time zone. In practice, this means it converts
datetimes from the connection’s time zone to UTC on storage, and from UTC to the connection’s time zone on retrieval.

As a consequence, if you’re using PostgreSQL, you can switch between USE_TZ = False and USE_TZ = True
freely. The database connection’s time zone will be set to TIME_ZONE or UTC respectively, so that Django obtains
correct datetimes in all cases. You don’t need to perform any data conversions.

Other databases

Other backends store datetimes without time zone information. If you switch from USE_TZ = False to USE_TZ
= True, you must convert your data from local time to UTC – which isn’t deterministic if your local time has DST.

Code

The first step is to add USE_TZ = True to your settings file and install pytz (if possible). At this point, things should
mostly work. If you create naive datetime objects in your code, Django makes them aware when necessary.

However, these conversions may fail around DST transitions, which means you aren’t getting the full benefits of time
zone support yet. Also, you’re likely to run into a few problems because it’s impossible to compare a naive datetime
with an aware datetime. Since Django now gives you aware datetimes, you’ll get exceptions wherever you compare a
datetime that comes from a model or a form with a naive datetime that you’ve created in your code.

So the second step is to refactor your code wherever you instantiate datetime objects to make them aware. This can
be done incrementally. django.utils.timezone defines some handy helpers for compatibility code: now(),
is_aware(), is_naive(), make_aware(), and make_naive().

3.15. Internationalization and localization 479

https://docs.python.org/3/library/datetime.html#datetime.tzinfo
http://pytz.sourceforge.net/
http://pytz.sourceforge.net/

Django Documentation, Release 1.10.9.dev20171123183751

Finally, in order to help you locate code that needs upgrading, Django raises a warning when you attempt to save a
naive datetime to the database:

RuntimeWarning: DateTimeField ModelName.field_name received a naive
datetime (2012-01-01 00:00:00) while time zone support is active.

During development, you can turn such warnings into exceptions and get a traceback by adding the following to your
settings file:

import warnings
warnings.filterwarnings(

'error', r"DateTimeField .* received a naive datetime",
RuntimeWarning, r'django\.db\.models\.fields',

)

Fixtures

When serializing an aware datetime, the UTC offset is included, like this:

"2011-09-01T13:20:30+03:00"

For a naive datetime, it obviously isn’t:

"2011-09-01T13:20:30"

For models with DateTimeFields, this difference makes it impossible to write a fixture that works both with and
without time zone support.

Fixtures generated with USE_TZ = False, or before Django 1.4, use the “naive” format. If your project contains
such fixtures, after you enable time zone support, you’ll see RuntimeWarnings when you load them. To get rid of
the warnings, you must convert your fixtures to the “aware” format.

You can regenerate fixtures with loaddata then dumpdata. Or, if they’re small enough, you can simply edit them
to add the UTC offset that matches your TIME_ZONE to each serialized datetime.

FAQ

Setup

1. I don’t need multiple time zones. Should I enable time zone support?

Yes. When time zone support is enabled, Django uses a more accurate model of local time. This shields you
from subtle and unreproducible bugs around Daylight Saving Time (DST) transitions.

In this regard, time zones are comparable to unicode in Python. At first it’s hard. You get encoding and
decoding errors. Then you learn the rules. And some problems disappear – you never get mangled output again
when your application receives non-ASCII input.

When you enable time zone support, you’ll encounter some errors because you’re using naive datetimes where
Django expects aware datetimes. Such errors show up when running tests and they’re easy to fix. You’ll quickly
learn how to avoid invalid operations.

On the other hand, bugs caused by the lack of time zone support are much harder to prevent, diagnose and fix.
Anything that involves scheduled tasks or datetime arithmetic is a candidate for subtle bugs that will bite you
only once or twice a year.

480 Chapter 3. Using Django

https://docs.python.org/3/library/exceptions.html#RuntimeWarning

Django Documentation, Release 1.10.9.dev20171123183751

For these reasons, time zone support is enabled by default in new projects, and you should keep it unless you
have a very good reason not to.

2. I’ve enabled time zone support. Am I safe?

Maybe. You’re better protected from DST-related bugs, but you can still shoot yourself in the foot by carelessly
turning naive datetimes into aware datetimes, and vice-versa.

If your application connects to other systems – for instance, if it queries a Web service – make sure datetimes
are properly specified. To transmit datetimes safely, their representation should include the UTC offset, or their
values should be in UTC (or both!).

Finally, our calendar system contains interesting traps for computers:

>>> import datetime
>>> def one_year_before(value): # DON'T DO THAT!
... return value.replace(year=value.year - 1)
>>> one_year_before(datetime.datetime(2012, 3, 1, 10, 0))
datetime.datetime(2011, 3, 1, 10, 0)
>>> one_year_before(datetime.datetime(2012, 2, 29, 10, 0))
Traceback (most recent call last):
...
ValueError: day is out of range for month

(To implement this function, you must decide whether 2012-02-29 minus one year is 2011-02-28 or 2011-03-01,
which depends on your business requirements.)

3. Should I install pytz?

Yes. Django has a policy of not requiring external dependencies, and for this reason pytz is optional. However,
it’s much safer to install it.

As soon as you activate time zone support, Django needs a definition of the default time zone. When pytz is
available, Django loads this definition from the tz database. This is the most accurate solution. Otherwise, it re-
lies on the difference between local time and UTC, as reported by the operating system, to compute conversions.
This is less reliable, especially around DST transitions.

Furthermore, if you want to support users in more than one time zone, pytz is the reference for time zone
definitions.

4. How do I interact with a database that stores datetimes in local time?

Set the TIME_ZONE option to the appropriate time zone for this database in the DATABASES setting.

This is useful for connecting to a database that doesn’t support time zones and that isn’t managed by Django
when USE_TZ is True.

Troubleshooting

1. My application crashes with TypeError: can't compare offset-naive and
offset-aware datetimes – what’s wrong?

Let’s reproduce this error by comparing a naive and an aware datetime:

>>> import datetime
>>> from django.utils import timezone
>>> naive = datetime.datetime.utcnow()
>>> aware = timezone.now()
>>> naive == aware
Traceback (most recent call last):

3.15. Internationalization and localization 481

http://pytz.sourceforge.net/
https://en.wikipedia.org/wiki/Tz_database

Django Documentation, Release 1.10.9.dev20171123183751

...
TypeError: can't compare offset-naive and offset-aware datetimes

If you encounter this error, most likely your code is comparing these two things:

• a datetime provided by Django – for instance, a value read from a form or a model field. Since you enabled
time zone support, it’s aware.

• a datetime generated by your code, which is naive (or you wouldn’t be reading this).

Generally, the correct solution is to change your code to use an aware datetime instead.

If you’re writing a pluggable application that’s expected to work independently of the value of USE_TZ, you
may find django.utils.timezone.now() useful. This function returns the current date and time as a
naive datetime when USE_TZ = False and as an aware datetime when USE_TZ = True. You can add or
subtract datetime.timedelta as needed.

2. I see lots of RuntimeWarning: DateTimeField received a naive datetime
(YYYY-MM-DD HH:MM:SS) while time zone support is active – is that bad?

When time zone support is enabled, the database layer expects to receive only aware datetimes from your code.
This warning occurs when it receives a naive datetime. This indicates that you haven’t finished porting your
code for time zone support. Please refer to the migration guide for tips on this process.

In the meantime, for backwards compatibility, the datetime is considered to be in the default time zone, which
is generally what you expect.

3. now.date() is yesterday! (or tomorrow)

If you’ve always used naive datetimes, you probably believe that you can convert a datetime to a date by calling
its date() method. You also consider that a date is a lot like a datetime, except that it’s less accurate.

None of this is true in a time zone aware environment:

>>> import datetime
>>> import pytz
>>> paris_tz = pytz.timezone("Europe/Paris")
>>> new_york_tz = pytz.timezone("America/New_York")
>>> paris = paris_tz.localize(datetime.datetime(2012, 3, 3, 1, 30))
This is the correct way to convert between time zones with pytz.
>>> new_york = new_york_tz.normalize(paris.astimezone(new_york_tz))
>>> paris == new_york, paris.date() == new_york.date()
(True, False)
>>> paris - new_york, paris.date() - new_york.date()
(datetime.timedelta(0), datetime.timedelta(1))
>>> paris
datetime.datetime(2012, 3, 3, 1, 30, tzinfo=<DstTzInfo 'Europe/Paris' CET+1:00:00
→˓STD>)
>>> new_york
datetime.datetime(2012, 3, 2, 19, 30, tzinfo=<DstTzInfo 'America/New_York' EST-1
→˓day, 19:00:00 STD>)

As this example shows, the same datetime has a different date, depending on the time zone in which it is
represented. But the real problem is more fundamental.

A datetime represents a point in time. It’s absolute: it doesn’t depend on anything. On the contrary, a date
is a calendaring concept. It’s a period of time whose bounds depend on the time zone in which the date is
considered. As you can see, these two concepts are fundamentally different, and converting a datetime to a date
isn’t a deterministic operation.

What does this mean in practice?

482 Chapter 3. Using Django

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.datetime.date
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.datetime

Django Documentation, Release 1.10.9.dev20171123183751

Generally, you should avoid converting a datetime to date. For instance, you can use the date template
filter to only show the date part of a datetime. This filter will convert the datetime into the current time zone
before formatting it, ensuring the results appear correctly.

If you really need to do the conversion yourself, you must ensure the datetime is converted to the appropriate
time zone first. Usually, this will be the current timezone:

>>> from django.utils import timezone
>>> timezone.activate(pytz.timezone("Asia/Singapore"))
For this example, we just set the time zone to Singapore, but here's how
you would obtain the current time zone in the general case.
>>> current_tz = timezone.get_current_timezone()
Again, this is the correct way to convert between time zones with pytz.
>>> local = current_tz.normalize(paris.astimezone(current_tz))
>>> local
datetime.datetime(2012, 3, 3, 8, 30, tzinfo=<DstTzInfo 'Asia/Singapore'
→˓SGT+8:00:00 STD>)
>>> local.date()
datetime.date(2012, 3, 3)

4. I get an error “Are time zone definitions for your database and pytz installed?”
pytz is installed, so I guess the problem is my database?

If you are using MySQL, see the Time zone definitions section of the MySQL notes for instructions on loading
time zone definitions.

Usage

1. I have a string "2012-02-21 10:28:45" and I know it’s in the "Europe/Helsinki" time zone.
How do I turn that into an aware datetime?

This is exactly what pytz is for.

>>> from django.utils.dateparse import parse_datetime
>>> naive = parse_datetime("2012-02-21 10:28:45")
>>> import pytz
>>> pytz.timezone("Europe/Helsinki").localize(naive, is_dst=None)
datetime.datetime(2012, 2, 21, 10, 28, 45, tzinfo=<DstTzInfo 'Europe/Helsinki'
→˓EET+2:00:00 STD>)

Note that localize is a pytz extension to the tzinfo API. Also, you may want to catch pytz.
InvalidTimeError. The documentation of pytz contains more examples. You should review it before
attempting to manipulate aware datetimes.

2. How can I obtain the local time in the current time zone?

Well, the first question is, do you really need to?

You should only use local time when you’re interacting with humans, and the template layer provides filters and
tags to convert datetimes to the time zone of your choice.

Furthermore, Python knows how to compare aware datetimes, taking into account UTC offsets when necessary.
It’s much easier (and possibly faster) to write all your model and view code in UTC. So, in most circumstances,
the datetime in UTC returned by django.utils.timezone.now() will be sufficient.

For the sake of completeness, though, if you really want the local time in the current time zone, here’s how you
can obtain it:

3.15. Internationalization and localization 483

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date
http://pytz.sourceforge.net/
https://docs.python.org/3/library/datetime.html#datetime.tzinfo
http://pytz.sourceforge.net/#example-usage

Django Documentation, Release 1.10.9.dev20171123183751

>>> from django.utils import timezone
>>> timezone.localtime(timezone.now())
datetime.datetime(2012, 3, 3, 20, 10, 53, 873365, tzinfo=<DstTzInfo 'Europe/Paris
→˓' CET+1:00:00 STD>)

In this example, pytz is installed and the current time zone is "Europe/Paris".

3. How can I see all available time zones?

pytz provides helpers, including a list of current time zones and a list of all available time zones – some of which
are only of historical interest.

3.15.4 Overview

The goal of internationalization and localization is to allow a single Web application to offer its content in languages
and formats tailored to the audience.

Django has full support for translation of text, formatting of dates, times and numbers, and time zones.

Essentially, Django does two things:

• It allows developers and template authors to specify which parts of their apps should be translated or formatted
for local languages and cultures.

• It uses these hooks to localize Web apps for particular users according to their preferences.

Obviously, translation depends on the target language, and formatting usually depends on the target country. This in-
formation is provided by browsers in the Accept-Language header. However, the time zone isn’t readily available.

3.15.5 Definitions

The words “internationalization” and “localization” often cause confusion; here’s a simplified definition:

internationalization Preparing the software for localization. Usually done by developers.

localization Writing the translations and local formats. Usually done by translators.

More details can be found in the W3C Web Internationalization FAQ, the Wikipedia article or the GNU gettext docu-
mentation.

Warning: Translation and formatting are controlled by USE_I18N and USE_L10N settings respectively. How-
ever, both features involve internationalization and localization. The names of the settings are an unfortunate result
of Django’s history.

Here are some other terms that will help us to handle a common language:

locale name A locale name, either a language specification of the form ll or a combined language and country
specification of the form ll_CC. Examples: it, de_AT, es, pt_BR. The language part is always in lower
case and the country part in upper case. The separator is an underscore.

language code Represents the name of a language. Browsers send the names of the languages they accept in the
Accept-Language HTTP header using this format. Examples: it, de-at, es, pt-br. Language codes
are generally represented in lower-case, but the HTTP Accept-Language header is case-insensitive. The
separator is a dash.

message file A message file is a plain-text file, representing a single language, that contains all available translation
strings and how they should be represented in the given language. Message files have a .po file extension.

484 Chapter 3. Using Django

http://pytz.sourceforge.net/
http://pytz.sourceforge.net/
http://pytz.sourceforge.net/#helpers
http://www.w3.org/International/questions/qa-i18n
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://www.gnu.org/software/gettext/manual/gettext.html#Concepts
https://www.gnu.org/software/gettext/manual/gettext.html#Concepts

Django Documentation, Release 1.10.9.dev20171123183751

translation string A literal that can be translated.

format file A format file is a Python module that defines the data formats for a given locale.

3.16 Logging

3.16.1 A quick logging primer

Django uses Python’s builtin logging module to perform system logging. The usage of this module is discussed
in detail in Python’s own documentation. However, if you’ve never used Python’s logging framework (or even if you
have), here’s a quick primer.

The cast of players

A Python logging configuration consists of four parts:

• Loggers

• Handlers

• Filters

• Formatters

Loggers

A logger is the entry point into the logging system. Each logger is a named bucket to which messages can be written
for processing.

A logger is configured to have a log level. This log level describes the severity of the messages that the logger will
handle. Python defines the following log levels:

• DEBUG: Low level system information for debugging purposes

• INFO: General system information

• WARNING: Information describing a minor problem that has occurred.

• ERROR: Information describing a major problem that has occurred.

• CRITICAL: Information describing a critical problem that has occurred.

Each message that is written to the logger is a Log Record. Each log record also has a log level indicating the severity
of that specific message. A log record can also contain useful metadata that describes the event that is being logged.
This can include details such as a stack trace or an error code.

When a message is given to the logger, the log level of the message is compared to the log level of the logger. If the log
level of the message meets or exceeds the log level of the logger itself, the message will undergo further processing.
If it doesn’t, the message will be ignored.

Once a logger has determined that a message needs to be processed, it is passed to a Handler.

3.16. Logging 485

https://docs.python.org/3/library/logging.html#module-logging

Django Documentation, Release 1.10.9.dev20171123183751

Handlers

The handler is the engine that determines what happens to each message in a logger. It describes a particular logging
behavior, such as writing a message to the screen, to a file, or to a network socket.

Like loggers, handlers also have a log level. If the log level of a log record doesn’t meet or exceed the level of the
handler, the handler will ignore the message.

A logger can have multiple handlers, and each handler can have a different log level. In this way, it is possible to
provide different forms of notification depending on the importance of a message. For example, you could install one
handler that forwards ERROR and CRITICAL messages to a paging service, while a second handler logs all messages
(including ERROR and CRITICAL messages) to a file for later analysis.

Filters

A filter is used to provide additional control over which log records are passed from logger to handler.

By default, any log message that meets log level requirements will be handled. However, by installing a filter, you
can place additional criteria on the logging process. For example, you could install a filter that only allows ERROR
messages from a particular source to be emitted.

Filters can also be used to modify the logging record prior to being emitted. For example, you could write a filter that
downgrades ERROR log records to WARNING records if a particular set of criteria are met.

Filters can be installed on loggers or on handlers; multiple filters can be used in a chain to perform multiple filtering
actions.

Formatters

Ultimately, a log record needs to be rendered as text. Formatters describe the exact format of that text. A formatter
usually consists of a Python formatting string containing LogRecord attributes; however, you can also write custom
formatters to implement specific formatting behavior.

3.16.2 Using logging

Once you have configured your loggers, handlers, filters and formatters, you need to place logging calls into your
code. Using the logging framework is very simple. Here’s an example:

import the logging library
import logging

Get an instance of a logger
logger = logging.getLogger(__name__)

def my_view(request, arg1, arg):
...
if bad_mojo:

Log an error message
logger.error('Something went wrong!')

And that’s it! Every time the bad_mojo condition is activated, an error log record will be written.

486 Chapter 3. Using Django

https://docs.python.org/3/library/logging.html#logrecord-attributes

Django Documentation, Release 1.10.9.dev20171123183751

Naming loggers

The call to logging.getLogger() obtains (creating, if necessary) an instance of a logger. The logger instance is
identified by a name. This name is used to identify the logger for configuration purposes.

By convention, the logger name is usually __name__, the name of the python module that contains the logger. This
allows you to filter and handle logging calls on a per-module basis. However, if you have some other way of organizing
your logging messages, you can provide any dot-separated name to identify your logger:

Get an instance of a specific named logger
logger = logging.getLogger('project.interesting.stuff')

The dotted paths of logger names define a hierarchy. The project.interesting logger is considered to be
a parent of the project.interesting.stuff logger; the project logger is a parent of the project.
interesting logger.

Why is the hierarchy important? Well, because loggers can be set to propagate their logging calls to their parents.
In this way, you can define a single set of handlers at the root of a logger tree, and capture all logging calls in the
subtree of loggers. A logging handler defined in the project namespace will catch all logging messages issued on
the project.interesting and project.interesting.stuff loggers.

This propagation can be controlled on a per-logger basis. If you don’t want a particular logger to propagate to its
parents, you can turn off this behavior.

Making logging calls

The logger instance contains an entry method for each of the default log levels:

• logger.debug()

• logger.info()

• logger.warning()

• logger.error()

• logger.critical()

There are two other logging calls available:

• logger.log(): Manually emits a logging message with a specific log level.

• logger.exception(): Creates an ERROR level logging message wrapping the current exception stack
frame.

3.16.3 Configuring logging

Of course, it isn’t enough to just put logging calls into your code. You also need to configure the loggers, handlers,
filters and formatters to ensure that logging output is output in a useful way.

Python’s logging library provides several techniques to configure logging, ranging from a programmatic interface to
configuration files. By default, Django uses the dictConfig format.

In order to configure logging, you use LOGGING to define a dictionary of logging settings. These settings describes
the loggers, handlers, filters and formatters that you want in your logging setup, and the log levels and other properties
that you want those components to have.

By default, the LOGGING setting is merged with Django’s default logging configuration using the following scheme.

3.16. Logging 487

https://docs.python.org/3/library/logging.html#logging.getLogger
https://docs.python.org/3/library/logging.config.html#logging-config-dictschema

Django Documentation, Release 1.10.9.dev20171123183751

If the disable_existing_loggers key in the LOGGING dictConfig is set to True (which is the default) then
all loggers from the default configuration will be disabled. Disabled loggers are not the same as removed; the logger
will still exist, but will silently discard anything logged to it, not even propagating entries to a parent logger. Thus
you should be very careful using 'disable_existing_loggers': True; it’s probably not what you want.
Instead, you can set disable_existing_loggers to False and redefine some or all of the default loggers; or
you can set LOGGING_CONFIG to None and handle logging config yourself .

Logging is configured as part of the general Django setup() function. Therefore, you can be certain that loggers
are always ready for use in your project code.

Examples

The full documentation for dictConfig format is the best source of information about logging configuration dictionar-
ies. However, to give you a taste of what is possible, here are several examples.

First, here’s a simple configuration which writes all logging from the django logger to a local file:

LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'handlers': {

'file': {
'level': 'DEBUG',
'class': 'logging.FileHandler',
'filename': '/path/to/django/debug.log',

},
},
'loggers': {

'django': {
'handlers': ['file'],
'level': 'DEBUG',
'propagate': True,

},
},

}

If you use this example, be sure to change the 'filename' path to a location that’s writable by the user that’s
running the Django application.

Second, here’s an example of how to make the logging system print Django’s logging to the console. It may be useful
during local development.

By default, this config only sends messages of level INFO or higher to the console (same as Django’s default logging
config, except that the default only displays log records when DEBUG=True). Django does not log many such
messages. With this config, however, you can also set the environment variable DJANGO_LOG_LEVEL=DEBUG to
see all of Django’s debug logging which is very verbose as it includes all database queries:

import os

LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'handlers': {

'console': {
'class': 'logging.StreamHandler',

},
},
'loggers': {

488 Chapter 3. Using Django

https://docs.python.org/3/library/logging.config.html#logging-config-dictschema

Django Documentation, Release 1.10.9.dev20171123183751

'django': {
'handlers': ['console'],
'level': os.getenv('DJANGO_LOG_LEVEL', 'INFO'),

},
},

}

Django’s default logging configuration changed. See the release notes for a description of the changes.

Finally, here’s an example of a fairly complex logging setup:

LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {

'verbose': {
'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d

→˓%(message)s'
},
'simple': {

'format': '%(levelname)s %(message)s'
},

},
'filters': {

'special': {
'()': 'project.logging.SpecialFilter',
'foo': 'bar',

},
'require_debug_true': {

'()': 'django.utils.log.RequireDebugTrue',
},

},
'handlers': {

'console': {
'level': 'INFO',
'filters': ['require_debug_true'],
'class': 'logging.StreamHandler',
'formatter': 'simple'

},
'mail_admins': {

'level': 'ERROR',
'class': 'django.utils.log.AdminEmailHandler',
'filters': ['special']

}
},
'loggers': {

'django': {
'handlers': ['console'],
'propagate': True,

},
'django.request': {

'handlers': ['mail_admins'],
'level': 'ERROR',
'propagate': False,

},
'myproject.custom': {

'handlers': ['console', 'mail_admins'],
'level': 'INFO',

3.16. Logging 489

Django Documentation, Release 1.10.9.dev20171123183751

'filters': ['special']
}

}
}

This logging configuration does the following things:

• Identifies the configuration as being in ‘dictConfig version 1’ format. At present, this is the only dictConfig
format version.

• Defines two formatters:

– simple, that just outputs the log level name (e.g., DEBUG) and the log message.

The format string is a normal Python formatting string describing the details that are to be output on
each logging line. The full list of detail that can be output can be found in Formatter Objects.

– verbose, that outputs the log level name, the log message, plus the time, process, thread and module that
generate the log message.

• Defines two filters:

– project.logging.SpecialFilter, using the alias special. If this filter required additional
arguments, they can be provided as additional keys in the filter configuration dictionary. In this case, the
argument foo will be given a value of bar when instantiating SpecialFilter.

– django.utils.log.RequireDebugTrue, which passes on records when DEBUG is True.

• Defines two handlers:

– console, a StreamHandler, which will print any INFO (or higher) message to stderr. This handler uses
the simple output format.

– mail_admins, an AdminEmailHandler, which will email any ERROR (or higher) message to the site
admins. This handler uses the special filter.

• Configures three loggers:

– django, which passes all messages to the console handler.

– django.request, which passes all ERROR messages to the mail_admins handler. In addition, this
logger is marked to not propagate messages. This means that log messages written to django.request
will not be handled by the django logger.

– myproject.custom, which passes all messages at INFO or higher that also pass the special filter to
two handlers – the console, and mail_admins. This means that all INFO level messages (or higher)
will be printed to the console; ERROR and CRITICAL messages will also be output via email.

Custom logging configuration

If you don’t want to use Python’s dictConfig format to configure your logger, you can specify your own configuration
scheme.

The LOGGING_CONFIG setting defines the callable that will be used to configure Django’s loggers. By default, it
points at Python’s logging.config.dictConfig() function. However, if you want to use a different configu-
ration process, you can use any other callable that takes a single argument. The contents of LOGGING will be provided
as the value of that argument when logging is configured.

490 Chapter 3. Using Django

https://docs.python.org/3/library/logging.html#formatter-objects
https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig

Django Documentation, Release 1.10.9.dev20171123183751

Disabling logging configuration

If you don’t want to configure logging at all (or you want to manually configure logging using your own approach),
you can set LOGGING_CONFIG to None. This will disable the configuration process for Django’s default logging.
Here’s an example that disables Django’s logging configuration and then manually configures logging:

settings.py

LOGGING_CONFIG = None

import logging.config
logging.config.dictConfig(...)

Setting LOGGING_CONFIG to None only means that the automatic configuration process is disabled, not logging
itself. If you disable the configuration process, Django will still make logging calls, falling back to whatever default
logging behavior is defined.

3.16.4 Django’s logging extensions

Django provides a number of utilities to handle the unique requirements of logging in Web server environment.

Loggers

Django provides several built-in loggers.

django

django is the catch-all logger. No messages are posted directly to this logger.

django.request

Log messages related to the handling of requests. 5XX responses are raised as ERROR messages; 4XX responses are
raised as WARNING messages.

Messages to this logger have the following extra context:

• status_code: The HTTP response code associated with the request.

• request: The request object that generated the logging message.

django.server

Log messages related to the handling of requests received by the server invoked by the runserver command. HTTP
5XX responses are logged as ERROR messages, 4XX responses are logged as WARNING messages, and everything
else is logged as INFO.

Messages to this logger have the following extra context:

• status_code: The HTTP response code associated with the request.

• request: The request object that generated the logging message.

3.16. Logging 491

Django Documentation, Release 1.10.9.dev20171123183751

django.template

Log messages related to the rendering of templates.

• Missing context variables are logged as DEBUG messages.

• Uncaught exceptions raised during the rendering of an {% include %} are logged as WARNING messages
when debug mode is off (helpful since {% include %} silences the exception and returns an empty string in
that case).

django.db.backends

Messages relating to the interaction of code with the database. For example, every application-level SQL statement
executed by a request is logged at the DEBUG level to this logger.

Messages to this logger have the following extra context:

• duration: The time taken to execute the SQL statement.

• sql: The SQL statement that was executed.

• params: The parameters that were used in the SQL call.

For performance reasons, SQL logging is only enabled when settings.DEBUG is set to True, regardless of the
logging level or handlers that are installed.

This logging does not include framework-level initialization (e.g. SET TIMEZONE) or transaction management
queries (e.g. BEGIN, COMMIT, and ROLLBACK). Turn on query logging in your database if you wish to view all
database queries.

django.security.*

The security loggers will receive messages on any occurrence of SuspiciousOperation. There is a sub-logger
for each sub-type of SuspiciousOperation. The level of the log event depends on where the exception is handled.
Most occurrences are logged as a warning, while any SuspiciousOperation that reaches the WSGI handler
will be logged as an error. For example, when an HTTP Host header is included in a request from a client that
does not match ALLOWED_HOSTS, Django will return a 400 response, and an error message will be logged to the
django.security.DisallowedHost logger.

These log events will reach the ‘django’ logger by default, which mails error events to admins when DEBUG=False.
Requests resulting in a 400 response due to a SuspiciousOperation will not be logged to the django.
request logger, but only to the django.security logger.

To silence a particular type of SuspiciousOperation, you can override that specific logger following this exam-
ple:

'handlers': {
'null': {

'class': 'logging.NullHandler',
},

},
'loggers': {

'django.security.DisallowedHost': {
'handlers': ['null'],
'propagate': False,

},
},

492 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

django.db.backends.schema

Logs the SQL queries that are executed during schema changes to the database by the migrations framework. Note
that it won’t log the queries executed by RunPython. Messages to this logger have params and sql in their extra
context (but unlike django.db.backends, not duration). The values have the same meaning as explained in
django.db.backends.

The extra context was added.

Handlers

Django provides one log handler in addition to those provided by the Python logging module.

class AdminEmailHandler(include_html=False, email_backend=None)
This handler sends an email to the site admins for each log message it receives.

If the log record contains a request attribute, the full details of the request will be included in the email. The
email subject will include the phrase “internal IP” if the client’s IP address is in the INTERNAL_IPS setting;
if not, it will include “EXTERNAL IP”.

If the log record contains stack trace information, that stack trace will be included in the email.

The include_html argument of AdminEmailHandler is used to control whether the traceback email
includes an HTML attachment containing the full content of the debug Web page that would have been produced
if DEBUG were True. To set this value in your configuration, include it in the handler definition for django.
utils.log.AdminEmailHandler, like this:

'handlers': {
'mail_admins': {

'level': 'ERROR',
'class': 'django.utils.log.AdminEmailHandler',
'include_html': True,

}
},

Note that this HTML version of the email contains a full traceback, with names and values of local variables at
each level of the stack, plus the values of your Django settings. This information is potentially very sensitive,
and you may not want to send it over email. Consider using something such as Sentry to get the best of both
worlds – the rich information of full tracebacks plus the security of not sending the information over email. You
may also explicitly designate certain sensitive information to be filtered out of error reports – learn more on
Filtering error reports.

By setting the email_backend argument of AdminEmailHandler, the email backend that is being used
by the handler can be overridden, like this:

'handlers': {
'mail_admins': {

'level': 'ERROR',
'class': 'django.utils.log.AdminEmailHandler',
'email_backend': 'django.core.mail.backends.filebased.EmailBackend',

}
},

By default, an instance of the email backend specified in EMAIL_BACKEND will be used.

send_mail(subject, message, *args, **kwargs)
Sends emails to admin users. To customize this behavior, you can subclass the AdminEmailHandler
class and override this method.

3.16. Logging 493

https://pypi.python.org/pypi/sentry

Django Documentation, Release 1.10.9.dev20171123183751

Filters

Django provides two log filters in addition to those provided by the Python logging module.

class CallbackFilter(callback)
This filter accepts a callback function (which should accept a single argument, the record to be logged), and
calls it for each record that passes through the filter. Handling of that record will not proceed if the callback
returns False.

For instance, to filter out UnreadablePostError (raised when a user cancels an upload) from the admin
emails, you would create a filter function:

from django.http import UnreadablePostError

def skip_unreadable_post(record):
if record.exc_info:

exc_type, exc_value = record.exc_info[:2]
if isinstance(exc_value, UnreadablePostError):

return False
return True

and then add it to your logging config:

'filters': {
'skip_unreadable_posts': {

'()': 'django.utils.log.CallbackFilter',
'callback': skip_unreadable_post,

}
},
'handlers': {

'mail_admins': {
'level': 'ERROR',
'filters': ['skip_unreadable_posts'],
'class': 'django.utils.log.AdminEmailHandler'

}
},

class RequireDebugFalse
This filter will only pass on records when settings.DEBUG is False.

This filter is used as follows in the default LOGGING configuration to ensure that the AdminEmailHandler
only sends error emails to admins when DEBUG is False:

'filters': {
'require_debug_false': {

'()': 'django.utils.log.RequireDebugFalse',
}

},
'handlers': {

'mail_admins': {
'level': 'ERROR',
'filters': ['require_debug_false'],
'class': 'django.utils.log.AdminEmailHandler'

}
},

class RequireDebugTrue
This filter is similar to RequireDebugFalse, except that records are passed only when DEBUG is True.

494 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

3.16.5 Django’s default logging configuration

By default, Django configures the following logging:

When DEBUG is True:

• The django catch-all logger sends all messages at the INFO level or higher to the console.

When DEBUG is False:

• The django logger send messages with ERROR or CRITICAL level to AdminEmailHandler.

Independent of the value of DEBUG:

• The django.server logger sends all messages at the INFO level or higher to the console.

Django’s default logging configuration changed. See the release notes for a description of the changes.

See also Configuring logging to learn how you can complement or replace this default logging configuration.

3.17 Pagination

Django provides a few classes that help you manage paginated data – that is, data that’s split across several pages, with
“Previous/Next” links. These classes live in django/core/paginator.py.

3.17.1 Example

Give Paginator a list of objects, plus the number of items you’d like to have on each page, and it gives you methods
for accessing the items for each page:

>>> from django.core.paginator import Paginator
>>> objects = ['john', 'paul', 'george', 'ringo']
>>> p = Paginator(objects, 2)

>>> p.count
4
>>> p.num_pages
2
>>> type(p.page_range) # `<type 'rangeiterator'>` in Python 2.
<class 'range_iterator'>
>>> p.page_range
range(1, 3)

>>> page1 = p.page(1)
>>> page1
<Page 1 of 2>
>>> page1.object_list
['john', 'paul']

>>> page2 = p.page(2)
>>> page2.object_list
['george', 'ringo']
>>> page2.has_next()
False
>>> page2.has_previous()
True
>>> page2.has_other_pages()
True

3.17. Pagination 495

Django Documentation, Release 1.10.9.dev20171123183751

>>> page2.next_page_number()
Traceback (most recent call last):
...
EmptyPage: That page contains no results
>>> page2.previous_page_number()
1
>>> page2.start_index() # The 1-based index of the first item on this page
3
>>> page2.end_index() # The 1-based index of the last item on this page
4

>>> p.page(0)
Traceback (most recent call last):
...
EmptyPage: That page number is less than 1
>>> p.page(3)
Traceback (most recent call last):
...
EmptyPage: That page contains no results

Note: Note that you can give Paginator a list/tuple, a Django QuerySet, or any other object with a count()
or __len__() method. When determining the number of objects contained in the passed object, Paginator will
first try calling count(), then fallback to using len() if the passed object has no count() method. This allows
objects such as Django’s QuerySet to use a more efficient count() method when available.

3.17.2 Using Paginator in a view

Here’s a slightly more complex example using Paginator in a view to paginate a queryset. We give both the
view and the accompanying template to show how you can display the results. This example assumes you have a
Contacts model that has already been imported.

The view function looks like this:

from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger
from django.shortcuts import render

def listing(request):
contact_list = Contacts.objects.all()
paginator = Paginator(contact_list, 25) # Show 25 contacts per page

page = request.GET.get('page')
try:

contacts = paginator.page(page)
except PageNotAnInteger:

If page is not an integer, deliver first page.
contacts = paginator.page(1)

except EmptyPage:
If page is out of range (e.g. 9999), deliver last page of results.
contacts = paginator.page(paginator.num_pages)

return render(request, 'list.html', {'contacts': contacts})

In the template list.html, you’ll want to include navigation between pages along with any interesting information
from the objects themselves:

496 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

{% for contact in contacts %}
{# Each "contact" is a Contact model object. #}
{{ contact.full_name|upper }}

...

{% endfor %}

<div class="pagination">

{% if contacts.has_previous %}
previous

{% endif %}

Page {{ contacts.number }} of {{ contacts.paginator.num_pages }}.

{% if contacts.has_next %}
next

{% endif %}

</div>

3.17.3 Paginator objects

The Paginator class has this constructor:

class Paginator(object_list, per_page, orphans=0, allow_empty_first_page=True)

Required arguments

object_list A list, tuple, QuerySet, or other sliceable object with a count() or __len__() method. For
consistent pagination, QuerySets should be ordered, e.g. with an order_by() clause or with a default
ordering on the model.

Performance issues paginating large QuerySets

If you’re using a QuerySet with a very large number of items, requesting high page numbers might be slow
on some databases, because the resulting LIMIT/OFFSET query needs to count the number of OFFSET records
which takes longer as the page number gets higher.

per_page The maximum number of items to include on a page, not including orphans (see the orphans optional
argument below).

Optional arguments

orphans Use this when you don’t want to have a last page with very few items. If the last page would normally
have a number of items less than or equal to orphans, then those items will be added to the previous page
(which becomes the last page) instead of leaving the items on a page by themselves. For example, with 23 items,
per_page=10, and orphans=3, there will be two pages; the first page with 10 items and the second (and
last) page with 13 items. orphans defaults to zero, which means pages are never combined and the last page
may have one item.

3.17. Pagination 497

Django Documentation, Release 1.10.9.dev20171123183751

allow_empty_first_page Whether or not the first page is allowed to be empty. If False and object_list
is empty, then an EmptyPage error will be raised.

Methods

Paginator.page(number)
Returns a Page object with the given 1-based index. Raises InvalidPage if the given page number doesn’t
exist.

Attributes

Paginator.count
The total number of objects, across all pages.

Note: When determining the number of objects contained in object_list, Paginator will first try
calling object_list.count(). If object_list has no count() method, then Paginator will
fallback to using len(object_list). This allows objects, such as Django’s QuerySet, to use a more
efficient count() method when available.

Paginator.num_pages
The total number of pages.

Paginator.page_range
A 1-based range iterator of page numbers, e.g. yielding [1, 2, 3, 4].

In older versions, page_range returned a list instead of an iterator.

3.17.4 InvalidPage exceptions

exception InvalidPage
A base class for exceptions raised when a paginator is passed an invalid page number.

The Paginator.page()method raises an exception if the requested page is invalid (i.e., not an integer) or contains
no objects. Generally, it’s enough to catch the InvalidPage exception, but if you’d like more granularity, you can
catch either of the following exceptions:

exception PageNotAnInteger
Raised when page() is given a value that isn’t an integer.

exception EmptyPage
Raised when page() is given a valid value but no objects exist on that page.

Both of the exceptions are subclasses of InvalidPage, so you can handle them both with a simple except
InvalidPage.

3.17.5 Page objects

You usually won’t construct Page objects by hand – you’ll get them using Paginator.page().

class Page(object_list, number, paginator)
A page acts like a sequence of Page.object_list when using len() or iterating it directly.

498 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

Methods

Page.has_next()
Returns True if there’s a next page.

Page.has_previous()
Returns True if there’s a previous page.

Page.has_other_pages()
Returns True if there’s a next or previous page.

Page.next_page_number()
Returns the next page number. Raises InvalidPage if next page doesn’t exist.

Page.previous_page_number()
Returns the previous page number. Raises InvalidPage if previous page doesn’t exist.

Page.start_index()
Returns the 1-based index of the first object on the page, relative to all of the objects in the paginator’s list.
For example, when paginating a list of 5 objects with 2 objects per page, the second page’s start_index()
would return 3.

Page.end_index()
Returns the 1-based index of the last object on the page, relative to all of the objects in the paginator’s list. For
example, when paginating a list of 5 objects with 2 objects per page, the second page’s end_index() would
return 4.

Attributes

Page.object_list
The list of objects on this page.

Page.number
The 1-based page number for this page.

Page.paginator
The associated Paginator object.

3.18 Porting to Python 3

Django 1.5 is the first version of Django to support Python 3. The same code runs both on Python 2 (≥ 2.6.5) and
Python 3 (≥ 3.2), thanks to the six compatibility layer.

This document is primarily targeted at authors of pluggable applications who want to support both Python 2 and 3. It
also describes guidelines that apply to Django’s code.

3.18.1 Philosophy

This document assumes that you are familiar with the changes between Python 2 and Python 3. If you aren’t, read
Python’s official porting guide first. Refreshing your knowledge of unicode handling on Python 2 and 3 will help; the
Pragmatic Unicode presentation is a good resource.

Django uses the Python 2/3 Compatible Source strategy. Of course, you’re free to chose another strategy for your
own code, especially if you don’t need to stay compatible with Python 2. But authors of pluggable applications are
encouraged to use the same porting strategy as Django itself.

3.18. Porting to Python 3 499

https://pythonhosted.org/six/
https://docs.python.org/3/howto/pyporting.html#pyporting-howto
http://nedbatchelder.com/text/unipain.html

Django Documentation, Release 1.10.9.dev20171123183751

Writing compatible code is much easier if you target Python ≥ 2.6. Django 1.5 introduces compatibility tools such as
django.utils.six, which is a customized version of the six module. For convenience, forwards-compatible
aliases were introduced in Django 1.4.2. If your application takes advantage of these tools, it will require Django ≥
1.4.2.

Obviously, writing compatible source code adds some overhead, and that can cause frustration. Django’s developers
have found that attempting to write Python 3 code that’s compatible with Python 2 is much more rewarding than
the opposite. Not only does that make your code more future-proof, but Python 3’s advantages (like the saner string
handling) start shining quickly. Dealing with Python 2 becomes a backwards compatibility requirement, and we as
developers are used to dealing with such constraints.

Porting tools provided by Django are inspired by this philosophy, and it’s reflected throughout this guide.

3.18.2 Porting tips

Unicode literals

This step consists in:

• Adding from __future__ import unicode_literals at the top of your Python modules – it’s best
to put it in each and every module, otherwise you’ll keep checking the top of your files to see which mode is in
effect;

• Removing the u prefix before unicode strings;

• Adding a b prefix before bytestrings.

Performing these changes systematically guarantees backwards compatibility.

However, Django applications generally don’t need bytestrings, since Django only exposes unicode interfaces to the
programmer. Python 3 discourages using bytestrings, except for binary data or byte-oriented interfaces. Python 2
makes bytestrings and unicode strings effectively interchangeable, as long as they only contain ASCII data. Take
advantage of this to use unicode strings wherever possible and avoid the b prefixes.

Note: Python 2’s u prefix is a syntax error in Python 3.2 but it will be allowed again in Python 3.3 thanks to PEP
414. Thus, this transformation is optional if you target Python ≥ 3.3. It’s still recommended, per the “write Python 3
code” philosophy.

String handling

Python 2’s unicode type was renamed str in Python 3, str() was renamed bytes, and basestring disappeared. six
provides tools to deal with these changes.

Django also contains several string related classes and functions in the django.utils.encoding and django.
utils.safestring modules. Their names used the words str, which doesn’t mean the same thing in Python
2 and Python 3, and unicode, which doesn’t exist in Python 3. In order to avoid ambiguity and confusion these
concepts were renamed bytes and text.

Here are the name changes in django.utils.encoding:

Old name New name
smart_str smart_bytes
smart_unicode smart_text
force_unicode force_text

500 Chapter 3. Using Django

https://pythonhosted.org/six/index.html#module-six
https://www.python.org/dev/peps/pep-0414
https://www.python.org/dev/peps/pep-0414
https://docs.python.org/2/library/functions.html#unicode
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/2/library/functions.html#basestring
https://pythonhosted.org/six/

Django Documentation, Release 1.10.9.dev20171123183751

For backwards compatibility, the old names still work on Python 2. Under Python 3, smart_str is an alias for
smart_text.

For forwards compatibility, the new names work as of Django 1.4.2.

Note: django.utils.encoding was deeply refactored in Django 1.5 to provide a more consistent API. Check
its documentation for more information.

django.utils.safestring is mostly used via the mark_safe() and mark_for_escaping() functions,
which didn’t change. In case you’re using the internals, here are the name changes:

Old name New name
EscapeString EscapeBytes
EscapeUnicode EscapeText
SafeString SafeBytes
SafeUnicode SafeText

For backwards compatibility, the old names still work on Python 2. Under Python 3, EscapeString and
SafeString are aliases for EscapeText and SafeText respectively.

For forwards compatibility, the new names work as of Django 1.4.2.

__str__() and __unicode__() methods

In Python 2, the object model specifies __str__() and __unicode__() methods. If these methods exist, they must
return str (bytes) and unicode (text) respectively.

The print statement and the str built-in call __str__() to determine the human-readable representation of an
object. The unicode built-in calls __unicode__() if it exists, and otherwise falls back to __str__() and decodes
the result with the system encoding. Conversely, the Model base class automatically derives __str__() from
__unicode__() by encoding to UTF-8.

In Python 3, there’s simply __str__(), which must return str (text).

(It is also possible to define __bytes__(), but Django applications have little use for that method, because they
hardly ever deal with bytes.)

Django provides a simple way to define __str__() and __unicode__() methods that work on Python 2 and 3:
you must define a __str__() method returning text and to apply the python_2_unicode_compatible()
decorator.

On Python 3, the decorator is a no-op. On Python 2, it defines appropriate __unicode__() and __str__() methods
(replacing the original __str__() method in the process). Here’s an example:

from __future__ import unicode_literals
from django.utils.encoding import python_2_unicode_compatible

@python_2_unicode_compatible
class MyClass(object):

def __str__(self):
return "Instance of my class"

This technique is the best match for Django’s porting philosophy.

For forwards compatibility, this decorator is available as of Django 1.4.2.

Finally, note that __repr__() must return a str on all versions of Python.

3.18. Porting to Python 3 501

https://docs.python.org/3/reference/datamodel.html#object.__str__
https://docs.python.org/2/reference/datamodel.html#object.__unicode__
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/reference/datamodel.html#object.__str__
https://docs.python.org/2/reference/datamodel.html#object.__unicode__
https://docs.python.org/3/reference/datamodel.html#object.__str__
https://docs.python.org/3/reference/datamodel.html#object.__str__
https://docs.python.org/2/reference/datamodel.html#object.__unicode__
https://docs.python.org/3/reference/datamodel.html#object.__str__
https://docs.python.org/3/reference/datamodel.html#object.__bytes__
https://docs.python.org/3/reference/datamodel.html#object.__str__
https://docs.python.org/2/reference/datamodel.html#object.__unicode__
https://docs.python.org/3/reference/datamodel.html#object.__str__
https://docs.python.org/2/reference/datamodel.html#object.__unicode__
https://docs.python.org/3/reference/datamodel.html#object.__str__
https://docs.python.org/3/reference/datamodel.html#object.__str__
https://docs.python.org/3/reference/datamodel.html#object.__repr__

Django Documentation, Release 1.10.9.dev20171123183751

dict and dict-like classes

dict.keys(), dict.items() and dict.values() return lists in Python 2 and iterators in Python 3.
QueryDict and the dict-like classes defined in django.utils.datastructures behave likewise in Python
3.

six provides compatibility functions to work around this change: iterkeys(), iteritems(), and
itervalues(). It also contains an undocumented iterlists function that works well for django.utils.
datastructures.MultiValueDict and its subclasses.

HttpRequest and HttpResponse objects

According to PEP 3333:

• headers are always str objects,

• input and output streams are always bytes objects.

Specifically, HttpResponse.content contains bytes, which may become an issue if you compare it with a
str in your tests. The preferred solution is to rely on assertContains() and assertNotContains().
These methods accept a response and a unicode string as arguments.

3.18.3 Coding guidelines

The following guidelines are enforced in Django’s source code. They’re also recommended for third-party applications
that follow the same porting strategy.

Syntax requirements

Unicode

In Python 3, all strings are considered Unicode by default. The unicode type from Python 2 is called str in Python
3, and str becomes bytes.

You mustn’t use the u prefix before a unicode string literal because it’s a syntax error in Python 3.2. You must prefix
byte strings with b.

In order to enable the same behavior in Python 2, every module must import unicode_literals from
__future__:

from __future__ import unicode_literals

my_string = "This is an unicode literal"
my_bytestring = b"This is a bytestring"

If you need a byte string literal under Python 2 and a unicode string literal under Python 3, use the str builtin:

str('my string')

In Python 3, there aren’t any automatic conversions between str and bytes, and the codecs module became more
strict. str.encode() always returns bytes, and bytes.decode always returns str. As a consequence, the
following pattern is sometimes necessary:

value = value.encode('ascii', 'ignore').decode('ascii')

Be cautious if you have to index bytestrings.

502 Chapter 3. Using Django

https://docs.python.org/3/library/stdtypes.html#dict.keys
https://docs.python.org/3/library/stdtypes.html#dict.items
https://docs.python.org/3/library/stdtypes.html#dict.values
https://docs.python.org/3/library/stdtypes.html#dict
https://pythonhosted.org/six/
https://pythonhosted.org/six/index.html#six.iterkeys
https://pythonhosted.org/six/index.html#six.iteritems
https://pythonhosted.org/six/index.html#six.itervalues
https://www.python.org/dev/peps/pep-3333
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/codecs.html#module-codecs
https://docs.python.org/3/library/stdtypes.html#str.encode
https://docs.python.org/3/howto/pyporting.html#text-versus-binary-data

Django Documentation, Release 1.10.9.dev20171123183751

Exceptions

When you capture exceptions, use the as keyword:

try:
...

except MyException as exc:
...

This older syntax was removed in Python 3:

try:
...

except MyException, exc: # Don't do that!
...

The syntax to reraise an exception with a different traceback also changed. Use six.reraise().

Magic methods

Use the patterns below to handle magic methods renamed in Python 3.

Iterators

class MyIterator(six.Iterator):
def __iter__(self):

return self # implement some logic here

def __next__(self):
raise StopIteration # implement some logic here

Boolean evaluation

class MyBoolean(object):

def __bool__(self):
return True # implement some logic here

def __nonzero__(self): # Python 2 compatibility
return type(self).__bool__(self)

Division

class MyDivisible(object):

def __truediv__(self, other):
return self / other # implement some logic here

def __div__(self, other): # Python 2 compatibility
return type(self).__truediv__(self, other)

3.18. Porting to Python 3 503

https://pythonhosted.org/six/index.html#six.reraise

Django Documentation, Release 1.10.9.dev20171123183751

def __itruediv__(self, other):
return self // other # implement some logic here

def __idiv__(self, other): # Python 2 compatibility
return type(self).__itruediv__(self, other)

Special methods are looked up on the class and not on the instance to reflect the behavior of the Python interpreter.

Writing compatible code with six

six is the canonical compatibility library for supporting Python 2 and 3 in a single codebase. Read its documentation!

A customized version of six is bundled with Django as of version 1.4.2. You can import it as django.
utils.six.

Here are the most common changes required to write compatible code.

String handling

The basestring and unicode types were removed in Python 3, and the meaning of str changed. To test these
types, use the following idioms:

isinstance(myvalue, six.string_types) # replacement for basestring
isinstance(myvalue, six.text_type) # replacement for unicode
isinstance(myvalue, bytes) # replacement for str

Python ≥ 2.6 provides bytes as an alias for str, so you don’t need six.binary_type.

long

The long type no longer exists in Python 3. 1L is a syntax error. Use six.integer_types check if a value is an
integer or a long:

isinstance(myvalue, six.integer_types) # replacement for (int, long)

xrange

If you use xrange on Python 2, import six.moves.range and use that instead. You can also import six.
moves.xrange (it’s equivalent to six.moves.range) but the first technique allows you to simply drop the
import when dropping support for Python 2.

Moved modules

Some modules were renamed in Python 3. The django.utils.six.moves module (based on the six.moves
module) provides a compatible location to import them.

504 Chapter 3. Using Django

https://pythonhosted.org/six/
https://pythonhosted.org/six/index.html#six.binary_type
https://pythonhosted.org/six/index.html#six.integer_types
https://pythonhosted.org/six/index.html#module-six.moves
https://pythonhosted.org/six/index.html#module-six.moves

Django Documentation, Release 1.10.9.dev20171123183751

PY2

If you need different code in Python 2 and Python 3, check six.PY2:

if six.PY2:
compatibility code for Python 2

This is a last resort solution when six doesn’t provide an appropriate function.

Django customized version of six

The version of six bundled with Django (django.utils.six) includes a few customizations for internal use only.

3.19 Security in Django

This document is an overview of Django’s security features. It includes advice on securing a Django-powered site.

3.19.1 Cross site scripting (XSS) protection

XSS attacks allow a user to inject client side scripts into the browsers of other users. This is usually achieved by
storing the malicious scripts in the database where it will be retrieved and displayed to other users, or by getting users
to click a link which will cause the attacker’s JavaScript to be executed by the user’s browser. However, XSS attacks
can originate from any untrusted source of data, such as cookies or Web services, whenever the data is not sufficiently
sanitized before including in a page.

Using Django templates protects you against the majority of XSS attacks. However, it is important to understand what
protections it provides and its limitations.

Django templates escape specific characters which are particularly dangerous to HTML. While this protects users
from most malicious input, it is not entirely foolproof. For example, it will not protect the following:

<style class={{ var }}>...</style>

If var is set to 'class1 onmouseover=javascript:func()', this can result in unauthorized JavaScript
execution, depending on how the browser renders imperfect HTML. (Quoting the attribute value would fix this case.)

It is also important to be particularly careful when using is_safe with custom template tags, the safe template tag,
mark_safe, and when autoescape is turned off.

In addition, if you are using the template system to output something other than HTML, there may be entirely separate
characters and words which require escaping.

You should also be very careful when storing HTML in the database, especially when that HTML is retrieved and
displayed.

3.19.2 Cross site request forgery (CSRF) protection

CSRF attacks allow a malicious user to execute actions using the credentials of another user without that user’s knowl-
edge or consent.

Django has built-in protection against most types of CSRF attacks, providing you have enabled and used it where
appropriate. However, as with any mitigation technique, there are limitations. For example, it is possible to disable

3.19. Security in Django 505

https://pythonhosted.org/six/index.html#six.PY2
https://pythonhosted.org/six/index.html#module-six

Django Documentation, Release 1.10.9.dev20171123183751

the CSRF module globally or for particular views. You should only do this if you know what you are doing. There are
other limitations if your site has subdomains that are outside of your control.

CSRF protection works by checking for a secret in each POST request. This ensures that a malicious user cannot
simply “replay” a form POST to your website and have another logged in user unwittingly submit that form. The
malicious user would have to know the secret, which is user specific (using a cookie).

When deployed with HTTPS, CsrfViewMiddleware will check that the HTTP referer header is set to a URL
on the same origin (including subdomain and port). Because HTTPS provides additional security, it is imperative to
ensure connections use HTTPS where it is available by forwarding insecure connection requests and using HSTS for
supported browsers.

Be very careful with marking views with the csrf_exempt decorator unless it is absolutely necessary.

3.19.3 SQL injection protection

SQL injection is a type of attack where a malicious user is able to execute arbitrary SQL code on a database. This can
result in records being deleted or data leakage.

By using Django’s querysets, the resulting SQL will be properly escaped by the underlying database driver. However,
Django also gives developers power to write raw queries or execute custom sql. These capabilities should be used
sparingly and you should always be careful to properly escape any parameters that the user can control. In addition,
you should exercise caution when using extra() and RawSQL.

3.19.4 Clickjacking protection

Clickjacking is a type of attack where a malicious site wraps another site in a frame. This attack can result in an
unsuspecting user being tricked into performing unintended actions on the target site.

Django contains clickjacking protection in the form of the X-Frame-Options middleware which in a support-
ing browser can prevent a site from being rendered inside a frame. It is possible to disable the protection on a per view
basis or to configure the exact header value sent.

The middleware is strongly recommended for any site that does not need to have its pages wrapped in a frame by third
party sites, or only needs to allow that for a small section of the site.

3.19.5 SSL/HTTPS

It is always better for security to deploy your site behind HTTPS. Without this, it is possible for malicious network
users to sniff authentication credentials or any other information transferred between client and server, and in some
cases – active network attackers – to alter data that is sent in either direction.

If you want the protection that HTTPS provides, and have enabled it on your server, there are some additional steps
you may need:

• If necessary, set SECURE_PROXY_SSL_HEADER, ensuring that you have understood the warnings there thor-
oughly. Failure to do this can result in CSRF vulnerabilities, and failure to do it correctly can also be dangerous!

• Set SECURE_SSL_REDIRECT to True, so that requests over HTTP are redirected to HTTPS.

Please note the caveats under SECURE_PROXY_SSL_HEADER. For the case of a reverse proxy, it may be
easier or more secure to configure the main Web server to do the redirect to HTTPS.

• Use ‘secure’ cookies.

If a browser connects initially via HTTP, which is the default for most browsers, it is possible for ex-
isting cookies to be leaked. For this reason, you should set your SESSION_COOKIE_SECURE and

506 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

CSRF_COOKIE_SECURE settings to True. This instructs the browser to only send these cookies over HTTPS
connections. Note that this will mean that sessions will not work over HTTP, and the CSRF protection will
prevent any POST data being accepted over HTTP (which will be fine if you are redirecting all HTTP traffic to
HTTPS).

• Use HTTP Strict Transport Security (HSTS)

HSTS is an HTTP header that informs a browser that all future connections to a particular site should always use
HTTPS. Combined with redirecting requests over HTTP to HTTPS, this will ensure that connections always en-
joy the added security of SSL provided one successful connection has occurred. HSTS may either be configured
with SECURE_HSTS_SECONDS and SECURE_HSTS_INCLUDE_SUBDOMAINS or on the Web server.

3.19.6 Host header validation

Django uses the Host header provided by the client to construct URLs in certain cases. While these values are
sanitized to prevent Cross Site Scripting attacks, a fake Host value can be used for Cross-Site Request Forgery, cache
poisoning attacks, and poisoning links in emails.

Because even seemingly-secure web server configurations are susceptible to fake Host headers, Django vali-
dates Host headers against the ALLOWED_HOSTS setting in the django.http.HttpRequest.get_host()
method.

This validation only applies via get_host(); if your code accesses the Host header directly from request.
META you are bypassing this security protection.

For more details see the full ALLOWED_HOSTS documentation.

Warning: Previous versions of this document recommended configuring your web server to ensure it validates
incoming HTTP Host headers. While this is still recommended, in many common web servers a configuration
that seems to validate the Host header may not in fact do so. For instance, even if Apache is configured such
that your Django site is served from a non-default virtual host with the ServerName set, it is still possible for an
HTTP request to match this virtual host and supply a fake Host header. Thus, Django now requires that you set
ALLOWED_HOSTS explicitly rather than relying on web server configuration.

Additionally, Django requires you to explicitly enable support for the X-Forwarded-Host header (via the
USE_X_FORWARDED_HOST setting) if your configuration requires it.

3.19.7 Session security

Similar to the CSRF limitations requiring a site to be deployed such that untrusted users don’t have access to any
subdomains, django.contrib.sessions also has limitations. See the session topic guide section on security
for details.

3.19.8 User-uploaded content

Note: Consider serving static files from a cloud service or CDN to avoid some of these issues.

• If your site accepts file uploads, it is strongly advised that you limit these uploads in your Web server configu-
ration to a reasonable size in order to prevent denial of service (DOS) attacks. In Apache, this can be easily set
using the LimitRequestBody directive.

3.19. Security in Django 507

https://httpd.apache.org/docs/2.4/mod/core.html#limitrequestbody

Django Documentation, Release 1.10.9.dev20171123183751

• If you are serving your own static files, be sure that handlers like Apache’s mod_php, which would execute
static files as code, are disabled. You don’t want users to be able to execute arbitrary code by uploading and
requesting a specially crafted file.

• Django’s media upload handling poses some vulnerabilities when that media is served in ways that do not
follow security best practices. Specifically, an HTML file can be uploaded as an image if that file contains a
valid PNG header followed by malicious HTML. This file will pass verification of the library that Django uses
for ImageField image processing (Pillow). When this file is subsequently displayed to a user, it may be
displayed as HTML depending on the type and configuration of your web server.

No bulletproof technical solution exists at the framework level to safely validate all user uploaded file content,
however, there are some other steps you can take to mitigate these attacks:

1. One class of attacks can be prevented by always serving user uploaded content from a distinct top-level or
second-level domain. This prevents any exploit blocked by same-origin policy protections such as cross
site scripting. For example, if your site runs on example.com, you would want to serve uploaded content
(the MEDIA_URL setting) from something like usercontent-example.com. It’s not sufficient to
serve content from a subdomain like usercontent.example.com.

2. Beyond this, applications may choose to define a whitelist of allowable file extensions for user uploaded
files and configure the web server to only serve such files.

3.19.9 Additional security topics

While Django provides good security protection out of the box, it is still important to properly deploy your application
and take advantage of the security protection of the Web server, operating system and other components.

• Make sure that your Python code is outside of the Web server’s root. This will ensure that your Python code is
not accidentally served as plain text (or accidentally executed).

• Take care with any user uploaded files.

• Django does not throttle requests to authenticate users. To protect against brute-force attacks against the authen-
tication system, you may consider deploying a Django plugin or Web server module to throttle these requests.

• Keep your SECRET_KEY a secret.

• It is a good idea to limit the accessibility of your caching system and database using a firewall.

• Take a look at the Open Web Application Security Project (OWASP) Top 10 list which identifies some common
vulnerabilities in web applications. While Django has tools to address some of the issues, other issues must be
accounted for in the design of your project.

3.20 Performance and optimization

This document provides an overview of techniques and tools that can help get your Django code running more effi-
ciently - faster, and using fewer system resources.

3.20.1 Introduction

Generally one’s first concern is to write code that works, whose logic functions as required to produce the expected
output. Sometimes, however, this will not be enough to make the code work as efficiently as one would like.

In this case, what’s needed is something - and in practice, often a collection of things - to improve the code’s perfor-
mance without, or only minimally, affecting its behavior.

508 Chapter 3. Using Django

https://en.wikipedia.org/wiki/Same-origin_policy
https://www.owasp.org/index.php/Top_10_2013-Top_10

Django Documentation, Release 1.10.9.dev20171123183751

3.20.2 General approaches

What are you optimizing for?

It’s important to have a clear idea what you mean by ‘performance’. There is not just one metric of it.

Improved speed might be the most obvious aim for a program, but sometimes other performance improvements might
be sought, such as lower memory consumption or fewer demands on the database or network.

Improvements in one area will often bring about improved performance in another, but not always; sometimes one
can even be at the expense of another. For example, an improvement in a program’s speed might cause it to use more
memory. Even worse, it can be self-defeating - if the speed improvement is so memory-hungry that the system starts
to run out of memory, you’ll have done more harm than good.

There are other trade-offs to bear in mind. Your own time is a valuable resource, more precious than CPU time. Some
improvements might be too difficult to be worth implementing, or might affect the portability or maintainability of the
code. Not all performance improvements are worth the effort.

So, you need to know what performance improvements you are aiming for, and you also need to know that you have
a good reason for aiming in that direction - and for that you need:

Performance benchmarking

It’s no good just guessing or assuming where the inefficiencies lie in your code.

Django tools

django-debug-toolbar is a very handy tool that provides insights into what your code is doing and how much time it
spends doing it. In particular it can show you all the SQL queries your page is generating, and how long each one has
taken.

Third-party panels are also available for the toolbar, that can (for example) report on cache performance and template
rendering times.

Third-party services

There are a number of free services that will analyze and report on the performance of your site’s pages from the
perspective of a remote HTTP client, in effect simulating the experience of an actual user.

These can’t report on the internals of your code, but can provide a useful insight into your site’s overall performance,
including aspects that can’t be adequately measured from within Django environment. Examples include:

• Yahoo’s Yslow

• Google PageSpeed

There are also several paid-for services that perform a similar analysis, including some that are Django-aware and can
integrate with your codebase to profile its performance far more comprehensively.

Get things right from the start

Some work in optimization involves tackling performance shortcomings, but some of the work can simply be built in to
what you’d do anyway, as part of the good practices you should adopt even before you start thinking about improving
performance.

3.20. Performance and optimization 509

https://github.com/django-debug-toolbar/django-debug-toolbar/
http://yslow.org/
https://developers.google.com/speed/pagespeed/

Django Documentation, Release 1.10.9.dev20171123183751

In this respect Python is an excellent language to work with, because solutions that look elegant and feel right usually
are the best performing ones. As with most skills, learning what “looks right” takes practice, but one of the most useful
guidelines is:

Work at the appropriate level

Django offers many different ways of approaching things, but just because it’s possible to do something in a certain
way doesn’t mean that it’s the most appropriate way to do it. For example, you might find that you could calculate the
same thing - the number of items in a collection, perhaps - in a QuerySet, in Python, or in a template.

However, it will almost always be faster to do this work at lower rather than higher levels. At higher levels the system
has to deal with objects through multiple levels of abstraction and layers of machinery.

That is, the database can typically do things faster than Python can, which can do them faster than the template
language can:

QuerySet operation on the database
fast, because that's what databases are good at
my_bicycles.count()

counting Python objects
slower, because it requires a database query anyway, and processing
of the Python objects
len(my_bicycles)

Django template filter
slower still, because it will have to count them in Python anyway,
and because of template language overheads
{{ my_bicycles|length }}

Generally speaking, the most appropriate level for the job is the lowest-level one that it is comfortable to code for.

Note: The example above is merely illustrative.

Firstly, in a real-life case you need to consider what is happening before and after your count to work out what’s
an optimal way of doing it in that particular context. The database optimization documents describes a case where
counting in the template would be better.

Secondly, there are other options to consider: in a real-life case, {{ my_bicycles.count }}, which invokes the
QuerySet count() method directly from the template, might be the most appropriate choice.

3.20.3 Caching

Often it is expensive (that is, resource-hungry and slow) to compute a value, so there can be huge benefit in saving the
value to a quickly accessible cache, ready for the next time it’s required.

It’s a sufficiently significant and powerful technique that Django includes a comprehensive caching framework, as well
as other smaller pieces of caching functionality.

The caching framework

Django’s caching framework offers very significant opportunities for performance gains, by saving dynamic content
so that it doesn’t need to be calculated for each request.

510 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

For convenience, Django offers different levels of cache granularity: you can cache the output of specific views, or
only the pieces that are difficult to produce, or even an entire site.

Implementing caching should not be regarded as an alternative to improving code that’s performing poorly because it
has been written badly. It’s one of the final steps towards producing well-performing code, not a shortcut.

cached_property

It’s common to have to call a class instance’s method more than once. If that function is expensive, then doing so can
be wasteful.

Using the cached_property decorator saves the value returned by a property; the next time the function is called
on that instance, it will return the saved value rather than re-computing it. Note that this only works on methods that
take self as their only argument and that it changes the method to a property.

Certain Django components also have their own caching functionality; these are discussed below in the sections related
to those components.

3.20.4 Understanding laziness

Laziness is a strategy complementary to caching. Caching avoids recomputation by saving results; laziness delays
computation until it’s actually required.

Laziness allows us to refer to things before they are instantiated, or even before it’s possible to instantiate them. This
has numerous uses.

For example, lazy translation can be used before the target language is even known, because it doesn’t take place until
the translated string is actually required, such as in a rendered template.

Laziness is also a way to save effort by trying to avoid work in the first place. That is, one aspect of laziness is not
doing anything until it has to be done, because it may not turn out to be necessary after all. Laziness can therefore have
performance implications, and the more expensive the work concerned, the more there is to gain through laziness.

Python provides a number of tools for lazy evaluation, particularly through the generator and generator expression
constructs. It’s worth reading up on laziness in Python to discover opportunities for making use of lazy patterns in
your code.

Laziness in Django

Django is itself quite lazy. A good example of this can be found in the evaluation of QuerySets. QuerySets are lazy.
Thus a QuerySet can be created, passed around and combined with other QuerySets, without actually incurring
any trips to the database to fetch the items it describes. What gets passed around is the QuerySet object, not the
collection of items that - eventually - will be required from the database.

On the other hand, certain operations will force the evaluation of a QuerySet. Avoiding the premature evaluation of a
QuerySet can save making an expensive and unnecessary trip to the database.

Django also offers a keep_lazy() decorator. This allows a function that has been called with a lazy argument to
behave lazily itself, only being evaluated when it needs to be. Thus the lazy argument - which could be an expensive
one - will not be called upon for evaluation until it’s strictly required.

3.20. Performance and optimization 511

https://docs.python.org/3/glossary.html#term-generator
https://docs.python.org/3/glossary.html#term-generator-expression

Django Documentation, Release 1.10.9.dev20171123183751

3.20.5 Databases

Database optimization

Django’s database layer provides various ways to help developers get the best performance from their databases. The
database optimization documentation gathers together links to the relevant documentation and adds various tips that
outline the steps to take when attempting to optimize your database usage.

Other database-related tips

Enabling Persistent connections can speed up connections to the database accounts for a significant part of the request
processing time.

This helps a lot on virtualized hosts with limited network performance, for example.

3.20.6 HTTP performance

Middleware

Django comes with a few helpful pieces of middleware that can help optimize your site’s performance. They include:

ConditionalGetMiddleware

Adds support for modern browsers to conditionally GET responses based on the ETag and Last-Modified head-
ers.

GZipMiddleware

Compresses responses for all modern browsers, saving bandwidth and transfer time. Note that GZipMiddleware is
currently considered a security risk, and is vulnerable to attacks that nullify the protection provided by TLS/SSL. See
the warning in GZipMiddleware for more information.

Sessions

Using cached sessions

Using cached sessions may be a way to increase performance by eliminating the need to load session data from a
slower storage source like the database and instead storing frequently used session data in memory.

Static files

Static files, which by definition are not dynamic, make an excellent target for optimization gains.

512 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

CachedStaticFilesStorage

By taking advantage of web browsers’ caching abilities, you can eliminate network hits entirely for a given file after
the initial download.

CachedStaticFilesStorage appends a content-dependent tag to the filenames of static files to make it safe for
browsers to cache them long-term without missing future changes - when a file changes, so will the tag, so browsers
will reload the asset automatically.

“Minification”

Several third-party Django tools and packages provide the ability to “minify” HTML, CSS, and JavaScript. They
remove unnecessary whitespace, newlines, and comments, and shorten variable names, and thus reduce the size of the
documents that your site publishes.

3.20.7 Template performance

Note that:

• using {% block %} is faster than using {% include %}

• heavily-fragmented templates, assembled from many small pieces, can affect performance

The cached template loader

Enabling the cached template loader often improves performance drastically, as it avoids compiling each
template every time it needs to be rendered.

3.20.8 Using different versions of available software

It can sometimes be worth checking whether different and better-performing versions of the software that you’re using
are available.

These techniques are targeted at more advanced users who want to push the boundaries of performance of an already
well-optimized Django site.

However, they are not magic solutions to performance problems, and they’re unlikely to bring better than marginal
gains to sites that don’t already do the more basic things the right way.

Note: It’s worth repeating: reaching for alternatives to software you’re already using is never the first answer to
performance problems. When you reach this level of optimization, you need a formal benchmarking solution.

Newer is often - but not always - better

It’s fairly rare for a new release of well-maintained software to be less efficient, but the maintainers can’t anticipate
every possible use-case - so while being aware that newer versions are likely to perform better, don’t simply assume
that they always will.

This is true of Django itself. Successive releases have offered a number of improvements across the system, but you
should still check the real-world performance of your application, because in some cases you may find that changes
mean it performs worse rather than better.

3.20. Performance and optimization 513

Django Documentation, Release 1.10.9.dev20171123183751

Newer versions of Python, and also of Python packages, will often perform better too - but measure, rather than
assume.

Note: Unless you’ve encountered an unusual performance problem in a particular version, you’ll generally find better
features, reliability, and security in a new release and that these benefits are far more significant than any performance
you might win or lose.

Alternatives to Django’s template language

For nearly all cases, Django’s built-in template language is perfectly adequate. However, if the bottlenecks in your
Django project seem to lie in the template system and you have exhausted other opportunities to remedy this, a third-
party alternative may be the answer.

Jinja2 can offer performance improvements, particularly when it comes to speed.

Alternative template systems vary in the extent to which they share Django’s templating language.

Note: If you experience performance issues in templates, the first thing to do is to understand exactly why. Using an
alternative template system may prove faster, but the same gains may also be available without going to that trouble -
for example, expensive processing and logic in your templates could be done more efficiently in your views.

Alternative software implementations

It may be worth checking whether Python software you’re using has been provided in a different implementation that
can execute the same code faster.

However: most performance problems in well-written Django sites aren’t at the Python execution level, but rather in
inefficient database querying, caching, and templates. If you’re relying on poorly-written Python code, your perfor-
mance problems are unlikely to be solved by having it execute faster.

Using an alternative implementation may introduce compatibility, deployment, portability, or maintenance issues.
It goes without saying that before adopting a non-standard implementation you should ensure it provides sufficient
performance gains for your application to outweigh the potential risks.

With these caveats in mind, you should be aware of:

PyPy

PyPy is an implementation of Python in Python itself (the ‘standard’ Python implementation is in C). PyPy can offer
substantial performance gains, typically for heavyweight applications.

A key aim of the PyPy project is compatibility with existing Python APIs and libraries. Django is compatible, but you
will need to check the compatibility of other libraries you rely on.

C implementations of Python libraries

Some Python libraries are also implemented in C, and can be much faster. They aim to offer the same APIs. Note that
compatibility issues and behavior differences are not unknown (and not always immediately evident).

514 Chapter 3. Using Django

http://jinja.pocoo.org/docs/
http://pypy.org/
http://pypy.org/compat.html

Django Documentation, Release 1.10.9.dev20171123183751

3.21 Serializing Django objects

Django’s serialization framework provides a mechanism for “translating” Django models into other formats. Usually
these other formats will be text-based and used for sending Django data over a wire, but it’s possible for a serializer to
handle any format (text-based or not).

See also:

If you just want to get some data from your tables into a serialized form, you could use the dumpdata management
command.

3.21.1 Serializing data

At the highest level, serializing data is a very simple operation:

from django.core import serializers
data = serializers.serialize("xml", SomeModel.objects.all())

The arguments to the serialize function are the format to serialize the data to (see Serialization formats) and a
QuerySet to serialize. (Actually, the second argument can be any iterator that yields Django model instances, but
it’ll almost always be a QuerySet).

django.core.serializers.get_serializer(format)

You can also use a serializer object directly:

XMLSerializer = serializers.get_serializer("xml")
xml_serializer = XMLSerializer()
xml_serializer.serialize(queryset)
data = xml_serializer.getvalue()

This is useful if you want to serialize data directly to a file-like object (which includes an HttpResponse):

with open("file.xml", "w") as out:
xml_serializer.serialize(SomeModel.objects.all(), stream=out)

Note: Calling get_serializer() with an unknown format will raise a django.core.serializers.
SerializerDoesNotExist exception.

Subset of fields

If you only want a subset of fields to be serialized, you can specify a fields argument to the serializer:

from django.core import serializers
data = serializers.serialize('xml', SomeModel.objects.all(), fields=('name','size'))

In this example, only the name and size attributes of each model will be serialized. The primary key is always
serialized as the pk element in the resulting output; it never appears in the fields part.

Note: Depending on your model, you may find that it is not possible to deserialize a model that only serializes a
subset of its fields. If a serialized object doesn’t specify all the fields that are required by a model, the deserializer will
not be able to save deserialized instances.

3.21. Serializing Django objects 515

Django Documentation, Release 1.10.9.dev20171123183751

Inherited models

If you have a model that is defined using an abstract base class, you don’t have to do anything special to serialize that
model. Just call the serializer on the object (or objects) that you want to serialize, and the output will be a complete
representation of the serialized object.

However, if you have a model that uses multi-table inheritance, you also need to serialize all of the base classes for the
model. This is because only the fields that are locally defined on the model will be serialized. For example, consider
the following models:

class Place(models.Model):
name = models.CharField(max_length=50)

class Restaurant(Place):
serves_hot_dogs = models.BooleanField(default=False)

If you only serialize the Restaurant model:

data = serializers.serialize('xml', Restaurant.objects.all())

the fields on the serialized output will only contain the serves_hot_dogs attribute. The name attribute of the base
class will be ignored.

In order to fully serialize your Restaurant instances, you will need to serialize the Place models as well:

all_objects = list(Restaurant.objects.all()) + list(Place.objects.all())
data = serializers.serialize('xml', all_objects)

3.21.2 Deserializing data

Deserializing data is also a fairly simple operation:

for obj in serializers.deserialize("xml", data):
do_something_with(obj)

As you can see, the deserialize function takes the same format argument as serialize, a string or stream of
data, and returns an iterator.

However, here it gets slightly complicated. The objects returned by the deserialize iterator aren’t simple Django
objects. Instead, they are special DeserializedObject instances that wrap a created – but unsaved – object and
any associated relationship data.

Calling DeserializedObject.save() saves the object to the database.

Note: If the pk attribute in the serialized data doesn’t exist or is null, a new instance will be saved to the database.

This ensures that deserializing is a non-destructive operation even if the data in your serialized representation doesn’t
match what’s currently in the database. Usually, working with these DeserializedObject instances looks some-
thing like:

for deserialized_object in serializers.deserialize("xml", data):
if object_should_be_saved(deserialized_object):

deserialized_object.save()

In other words, the usual use is to examine the deserialized objects to make sure that they are “appropriate” for saving
before doing so. Of course, if you trust your data source you could just save the object and move on.

516 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

The Django object itself can be inspected as deserialized_object.object. If fields in the serialized data do
not exist on a model, a DeserializationError will be raised unless the ignorenonexistent argument is
passed in as True:

serializers.deserialize("xml", data, ignorenonexistent=True)

3.21.3 Serialization formats

Django supports a number of serialization formats, some of which require you to install third-party Python modules:

Identi-
fier

Information

xml Serializes to and from a simple XML dialect.
json Serializes to and from JSON.
yaml Serializes to YAML (YAML Ain’t a Markup Language). This serializer is only available if PyYAML

is installed.

XML

The basic XML serialization format is quite simple:

<?xml version="1.0" encoding="utf-8"?>
<django-objects version="1.0">

<object pk="123" model="sessions.session">
<field type="DateTimeField" name="expire_date">2013-01-16T08:16:59.

→˓844560+00:00</field>
<!-- ... -->

</object>
</django-objects>

The whole collection of objects that is either serialized or de-serialized is represented by a <django-objects>-tag
which contains multiple <object>-elements. Each such object has two attributes: “pk” and “model”, the latter being
represented by the name of the app (“sessions”) and the lowercase name of the model (“session”) separated by a dot.

Each field of the object is serialized as a <field>-element sporting the fields “type” and “name”. The text content
of the element represents the value that should be stored.

Foreign keys and other relational fields are treated a little bit differently:

<object pk="27" model="auth.permission">
<!-- ... -->
<field to="contenttypes.contenttype" name="content_type" rel="ManyToOneRel">9</

→˓field>
<!-- ... -->

</object>

In this example we specify that the auth.Permission object with the PK 27 has a foreign key to the content-
types.ContentType instance with the PK 9.

ManyToMany-relations are exported for the model that binds them. For instance, the auth.User model has such a
relation to the auth.Permission model:

<object pk="1" model="auth.user">
<!-- ... -->
<field to="auth.permission" name="user_permissions" rel="ManyToManyRel">

<object pk="46"></object>

3.21. Serializing Django objects 517

http://json.org/
http://www.pyyaml.org/

Django Documentation, Release 1.10.9.dev20171123183751

<object pk="47"></object>
</field>

</object>

This example links the given user with the permission models with PKs 46 and 47.

Control characters

If the content to be serialized contains control characters that are not accepted in the XML 1.0 standard, the serialization
will fail with a ValueError exception. Read also the W3C’s explanation of HTML, XHTML, XML and Control
Codes.

JSON

When staying with the same example data as before it would be serialized as JSON in the following way:

[
{

"pk": "4b678b301dfd8a4e0dad910de3ae245b",
"model": "sessions.session",
"fields": {

"expire_date": "2013-01-16T08:16:59.844Z",
...

}
}

]

The formatting here is a bit simpler than with XML. The whole collection is just represented as an array and the
objects are represented by JSON objects with three properties: “pk”, “model” and “fields”. “fields” is again an object
containing each field’s name and value as property and property-value respectively.

Foreign keys just have the PK of the linked object as property value. ManyToMany-relations are serialized for the
model that defines them and are represented as a list of PKs.

Be aware that not all Django output can be passed unmodified to json. For example, if you have some custom type
in an object to be serialized, you’ll have to write a custom json encoder for it. Something like this will work:

from django.utils.encoding import force_text
from django.core.serializers.json import DjangoJSONEncoder

class LazyEncoder(DjangoJSONEncoder):
def default(self, obj):

if isinstance(obj, YourCustomType):
return force_text(obj)

return super(LazyEncoder, self).default(obj)

Also note that GeoDjango provides a customized GeoJSON serializer.

DjangoJSONEncoder

class django.core.serializers.json.DjangoJSONEncoder

The JSON serializer uses DjangoJSONEncoder for encoding. A subclass of JSONEncoder, it handles these
additional types:

518 Chapter 3. Using Django

https://docs.python.org/3/library/exceptions.html#ValueError
http://www.w3.org/International/questions/qa-controls
http://www.w3.org/International/questions/qa-controls
https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/json.html#json.JSONEncoder

Django Documentation, Release 1.10.9.dev20171123183751

datetime A string of the form YYYY-MM-DDTHH:mm:ss.sssZ or YYYY-MM-DDTHH:mm:ss.sss+HH:MM
as defined in ECMA-262.

date A string of the form YYYY-MM-DD as defined in ECMA-262.

time A string of the form HH:MM:ss.sss as defined in ECMA-262.

Decimal, Promise (django.utils.functional.lazy() objects), UUID A string representation of the
object.

Support for Promise was added.

YAML

YAML serialization looks quite similar to JSON. The object list is serialized as a sequence mappings with the keys
“pk”, “model” and “fields”. Each field is again a mapping with the key being name of the field and the value the value:

- fields: {expire_date: !!timestamp '2013-01-16 08:16:59.844560+00:00'}
model: sessions.session
pk: 4b678b301dfd8a4e0dad910de3ae245b

Referential fields are again just represented by the PK or sequence of PKs.

3.21.4 Natural keys

The default serialization strategy for foreign keys and many-to-many relations is to serialize the value of the primary
key(s) of the objects in the relation. This strategy works well for most objects, but it can cause difficulty in some
circumstances.

Consider the case of a list of objects that have a foreign key referencing ContentType. If you’re going to serialize
an object that refers to a content type, then you need to have a way to refer to that content type to begin with. Since
ContentType objects are automatically created by Django during the database synchronization process, the primary
key of a given content type isn’t easy to predict; it will depend on how and when migrate was executed. This is true
for all models which automatically generate objects, notably including Permission, Group, and User.

Warning: You should never include automatically generated objects in a fixture or other serialized data. By
chance, the primary keys in the fixture may match those in the database and loading the fixture will have no effect.
In the more likely case that they don’t match, the fixture loading will fail with an IntegrityError.

There is also the matter of convenience. An integer id isn’t always the most convenient way to refer to an object;
sometimes, a more natural reference would be helpful.

It is for these reasons that Django provides natural keys. A natural key is a tuple of values that can be used to uniquely
identify an object instance without using the primary key value.

Deserialization of natural keys

Consider the following two models:

from django.db import models

class Person(models.Model):
first_name = models.CharField(max_length=100)
last_name = models.CharField(max_length=100)

3.21. Serializing Django objects 519

https://docs.python.org/3/library/datetime.html#datetime.datetime
http://www.ecma-international.org/ecma-262/5.1/#sec-15.9.1.15
https://docs.python.org/3/library/datetime.html#datetime.date
http://www.ecma-international.org/ecma-262/5.1/#sec-15.9.1.15
https://docs.python.org/3/library/datetime.html#datetime.time
http://www.ecma-international.org/ecma-262/5.1/#sec-15.9.1.15
https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/uuid.html#uuid.UUID

Django Documentation, Release 1.10.9.dev20171123183751

birthdate = models.DateField()

class Meta:
unique_together = (('first_name', 'last_name'),)

class Book(models.Model):
name = models.CharField(max_length=100)
author = models.ForeignKey(Person, on_delete=models.CASCADE)

Ordinarily, serialized data for Book would use an integer to refer to the author. For example, in JSON, a Book might
be serialized as:

...
{

"pk": 1,
"model": "store.book",
"fields": {

"name": "Mostly Harmless",
"author": 42

}
}
...

This isn’t a particularly natural way to refer to an author. It requires that you know the primary key value for the
author; it also requires that this primary key value is stable and predictable.

However, if we add natural key handling to Person, the fixture becomes much more humane. To add natural key
handling, you define a default Manager for Person with a get_by_natural_key() method. In the case of a
Person, a good natural key might be the pair of first and last name:

from django.db import models

class PersonManager(models.Manager):
def get_by_natural_key(self, first_name, last_name):

return self.get(first_name=first_name, last_name=last_name)

class Person(models.Model):
objects = PersonManager()

first_name = models.CharField(max_length=100)
last_name = models.CharField(max_length=100)

birthdate = models.DateField()

class Meta:
unique_together = (('first_name', 'last_name'),)

Now books can use that natural key to refer to Person objects:

...
{

"pk": 1,
"model": "store.book",
"fields": {

"name": "Mostly Harmless",
"author": ["Douglas", "Adams"]

}

520 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

}
...

When you try to load this serialized data, Django will use the get_by_natural_key() method to resolve
["Douglas", "Adams"] into the primary key of an actual Person object.

Note: Whatever fields you use for a natural key must be able to uniquely identify an object. This will usually mean
that your model will have a uniqueness clause (either unique=True on a single field, or unique_together over
multiple fields) for the field or fields in your natural key. However, uniqueness doesn’t need to be enforced at the
database level. If you are certain that a set of fields will be effectively unique, you can still use those fields as a natural
key.

Deserialization of objects with no primary key will always check whether the model’s manager has a
get_by_natural_key() method and if so, use it to populate the deserialized object’s primary key.

Serialization of natural keys

So how do you get Django to emit a natural key when serializing an object? Firstly, you need to add another method
– this time to the model itself:

class Person(models.Model):
objects = PersonManager()

first_name = models.CharField(max_length=100)
last_name = models.CharField(max_length=100)

birthdate = models.DateField()

def natural_key(self):
return (self.first_name, self.last_name)

class Meta:
unique_together = (('first_name', 'last_name'),)

That method should always return a natural key tuple – in this example, (first name, last name).
Then, when you call serializers.serialize(), you provide use_natural_foreign_keys=True or
use_natural_primary_keys=True arguments:

>>> serializers.serialize('json', [book1, book2], indent=2,
... use_natural_foreign_keys=True, use_natural_primary_keys=True)

When use_natural_foreign_keys=True is specified, Django will use the natural_key() method to se-
rialize any foreign key reference to objects of the type that defines the method.

When use_natural_primary_keys=True is specified, Django will not provide the primary key in the serial-
ized data of this object since it can be calculated during deserialization:

...
{

"model": "store.person",
"fields": {

"first_name": "Douglas",
"last_name": "Adams",
"birth_date": "1952-03-11",

}

3.21. Serializing Django objects 521

Django Documentation, Release 1.10.9.dev20171123183751

}
...

This can be useful when you need to load serialized data into an existing database and you cannot guarantee that the
serialized primary key value is not already in use, and do not need to ensure that deserialized objects retain the same
primary keys.

If you are using dumpdata to generate serialized data, use the dumpdata --natural-foreign and
dumpdata --natural-primary command line flags to generate natural keys.

Note: You don’t need to define both natural_key() and get_by_natural_key(). If you don’t want Django
to output natural keys during serialization, but you want to retain the ability to load natural keys, then you can opt to
not implement the natural_key() method.

Conversely, if (for some strange reason) you want Django to output natural keys during serialization, but not be able
to load those key values, just don’t define the get_by_natural_key() method.

Dependencies during serialization

Since natural keys rely on database lookups to resolve references, it is important that the data exists before it is
referenced. You can’t make a “forward reference” with natural keys – the data you’re referencing must exist before
you include a natural key reference to that data.

To accommodate this limitation, calls to dumpdata that use the dumpdata --natural-foreign option will
serialize any model with a natural_key() method before serializing standard primary key objects.

However, this may not always be enough. If your natural key refers to another object (by using a foreign key or natural
key to another object as part of a natural key), then you need to be able to ensure that the objects on which a natural
key depends occur in the serialized data before the natural key requires them.

To control this ordering, you can define dependencies on your natural_key() methods. You do this by setting a
dependencies attribute on the natural_key() method itself.

For example, let’s add a natural key to the Book model from the example above:

class Book(models.Model):
name = models.CharField(max_length=100)
author = models.ForeignKey(Person, on_delete=models.CASCADE)

def natural_key(self):
return (self.name,) + self.author.natural_key()

The natural key for a Book is a combination of its name and its author. This means that Person must be serialized
before Book. To define this dependency, we add one extra line:

def natural_key(self):
return (self.name,) + self.author.natural_key()

natural_key.dependencies = ['example_app.person']

This definition ensures that all Person objects are serialized before any Book objects. In turn, any object referencing
Book will be serialized after both Person and Book have been serialized.

522 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

3.22 Django settings

A Django settings file contains all the configuration of your Django installation. This document explains how settings
work and which settings are available.

3.22.1 The basics

A settings file is just a Python module with module-level variables.

Here are a couple of example settings:

ALLOWED_HOSTS = ['www.example.com']
DEBUG = False
DEFAULT_FROM_EMAIL = 'webmaster@example.com'

Note: If you set DEBUG to False, you also need to properly set the ALLOWED_HOSTS setting.

Because a settings file is a Python module, the following apply:

• It doesn’t allow for Python syntax errors.

• It can assign settings dynamically using normal Python syntax. For example:

MY_SETTING = [str(i) for i in range(30)]

• It can import values from other settings files.

3.22.2 Designating the settings

DJANGO_SETTINGS_MODULE

When you use Django, you have to tell it which settings you’re using. Do this by using an environment variable,
DJANGO_SETTINGS_MODULE.

The value of DJANGO_SETTINGS_MODULE should be in Python path syntax, e.g. mysite.settings. Note that
the settings module should be on the Python import search path.

The django-admin utility

When using django-admin, you can either set the environment variable once, or explicitly pass in the settings module
each time you run the utility.

Example (Unix Bash shell):

export DJANGO_SETTINGS_MODULE=mysite.settings
django-admin runserver

Example (Windows shell):

set DJANGO_SETTINGS_MODULE=mysite.settings
django-admin runserver

Use the --settings command-line argument to specify the settings manually:

3.22. Django settings 523

http://www.diveintopython.net/getting_to_know_python/everything_is_an_object.html

Django Documentation, Release 1.10.9.dev20171123183751

django-admin runserver --settings=mysite.settings

On the server (mod_wsgi)

In your live server environment, you’ll need to tell your WSGI application what settings file to use. Do that with
os.environ:

import os

os.environ['DJANGO_SETTINGS_MODULE'] = 'mysite.settings'

Read the Django mod_wsgi documentation for more information and other common elements to a Django WSGI
application.

3.22.3 Default settings

A Django settings file doesn’t have to define any settings if it doesn’t need to. Each setting has a sensible default value.
These defaults live in the module django/conf/global_settings.py.

Here’s the algorithm Django uses in compiling settings:

• Load settings from global_settings.py.

• Load settings from the specified settings file, overriding the global settings as necessary.

Note that a settings file should not import from global_settings, because that’s redundant.

Seeing which settings you’ve changed

There’s an easy way to view which of your settings deviate from the default settings. The command python
manage.py diffsettings displays differences between the current settings file and Django’s default settings.

For more, see the diffsettings documentation.

3.22.4 Using settings in Python code

In your Django apps, use settings by importing the object django.conf.settings. Example:

from django.conf import settings

if settings.DEBUG:
Do something

Note that django.conf.settings isn’t a module – it’s an object. So importing individual settings is not possible:

from django.conf.settings import DEBUG # This won't work.

Also note that your code should not import from either global_settings or your own settings file. django.
conf.settings abstracts the concepts of default settings and site-specific settings; it presents a single interface. It
also decouples the code that uses settings from the location of your settings.

524 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

3.22.5 Altering settings at runtime

You shouldn’t alter settings in your applications at runtime. For example, don’t do this in a view:

from django.conf import settings

settings.DEBUG = True # Don't do this!

The only place you should assign to settings is in a settings file.

3.22.6 Security

Because a settings file contains sensitive information, such as the database password, you should make every attempt
to limit access to it. For example, change its file permissions so that only you and your Web server’s user can read it.
This is especially important in a shared-hosting environment.

3.22.7 Available settings

For a full list of available settings, see the settings reference.

3.22.8 Creating your own settings

There’s nothing stopping you from creating your own settings, for your own Django apps. Just follow these guidelines:

• Setting names must be all uppercase.

• Don’t reinvent an already-existing setting.

For settings that are sequences, Django itself uses lists, but this is only a convention.

3.22.9 Using settings without setting DJANGO_SETTINGS_MODULE

In some cases, you might want to bypass the DJANGO_SETTINGS_MODULE environment variable. For example, if
you’re using the template system by itself, you likely don’t want to have to set up an environment variable pointing to
a settings module.

In these cases, you can configure Django’s settings manually. Do this by calling:

django.conf.settings.configure(default_settings, **settings)

Example:

from django.conf import settings

settings.configure(DEBUG=True)

Pass configure() as many keyword arguments as you’d like, with each keyword argument representing a setting
and its value. Each argument name should be all uppercase, with the same name as the settings described above. If a
particular setting is not passed to configure() and is needed at some later point, Django will use the default setting
value.

Configuring Django in this fashion is mostly necessary – and, indeed, recommended – when you’re using a piece of
the framework inside a larger application.

3.22. Django settings 525

Django Documentation, Release 1.10.9.dev20171123183751

Consequently, when configured via settings.configure(), Django will not make any modifications to the
process environment variables (see the documentation of TIME_ZONE for why this would normally occur). It’s
assumed that you’re already in full control of your environment in these cases.

Custom default settings

If you’d like default values to come from somewhere other than django.conf.global_settings, you can pass
in a module or class that provides the default settings as the default_settings argument (or as the first positional
argument) in the call to configure().

In this example, default settings are taken from myapp_defaults, and the DEBUG setting is set to True, regardless
of its value in myapp_defaults:

from django.conf import settings
from myapp import myapp_defaults

settings.configure(default_settings=myapp_defaults, DEBUG=True)

The following example, which uses myapp_defaults as a positional argument, is equivalent:

settings.configure(myapp_defaults, DEBUG=True)

Normally, you will not need to override the defaults in this fashion. The Django defaults are sufficiently tame that you
can safely use them. Be aware that if you do pass in a new default module, it entirely replaces the Django defaults,
so you must specify a value for every possible setting that might be used in that code you are importing. Check in
django.conf.settings.global_settings for the full list.

Either configure() or DJANGO_SETTINGS_MODULE is required

If you’re not setting the DJANGO_SETTINGS_MODULE environment variable, you must call configure() at some
point before using any code that reads settings.

If you don’t set DJANGO_SETTINGS_MODULE and don’t call configure(), Django will raise an ImportError
exception the first time a setting is accessed.

If you set DJANGO_SETTINGS_MODULE, access settings values somehow, then call configure(), Django will
raise a RuntimeError indicating that settings have already been configured. There is a property just for this purpose:

For example:

from django.conf import settings
if not settings.configured:

settings.configure(myapp_defaults, DEBUG=True)

Also, it’s an error to call configure() more than once, or to call configure() after any setting has been
accessed.

It boils down to this: Use exactly one of either configure() or DJANGO_SETTINGS_MODULE. Not both, and
not neither.

Calling django.setup() is required for “standalone” Django usage

If you’re using components of Django “standalone” – for example, writing a Python script which loads some Django
templates and renders them, or uses the ORM to fetch some data – there’s one more step you’ll need in addition to
configuring settings.

526 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

After you’ve either set DJANGO_SETTINGS_MODULE or called configure(), you’ll need to call django.
setup() to load your settings and populate Django’s application registry. For example:

import django
from django.conf import settings
from myapp import myapp_defaults

settings.configure(default_settings=myapp_defaults, DEBUG=True)
django.setup()

Now this script or any imported module can use any part of Django it needs.
from myapp import models

Note that calling django.setup() is only necessary if your code is truly standalone. When invoked by your Web
server, or through django-admin, Django will handle this for you.

django.setup() may only be called once.

Therefore, avoid putting reusable application logic in standalone scripts so that you have to import from the script
elsewhere in your application. If you can’t avoid that, put the call to django.setup() inside an if block:

if __name__ == '__main__':
import django
django.setup()

See also:

The Settings Reference Contains the complete list of core and contrib app settings.

3.23 Signals

Django includes a “signal dispatcher” which helps allow decoupled applications get notified when actions occur else-
where in the framework. In a nutshell, signals allow certain senders to notify a set of receivers that some action has
taken place. They’re especially useful when many pieces of code may be interested in the same events.

Django provides a set of built-in signals that let user code get notified by Django itself of certain actions. These include
some useful notifications:

• django.db.models.signals.pre_save & django.db.models.signals.post_save

Sent before or after a model’s save() method is called.

• django.db.models.signals.pre_delete & django.db.models.signals.post_delete

Sent before or after a model’s delete() method or queryset’s delete() method is called.

• django.db.models.signals.m2m_changed

Sent when a ManyToManyField on a model is changed.

• django.core.signals.request_started & django.core.signals.request_finished

Sent when Django starts or finishes an HTTP request.

See the built-in signal documentation for a complete list, and a complete explanation of each signal.

You can also define and send your own custom signals; see below.

3.23. Signals 527

Django Documentation, Release 1.10.9.dev20171123183751

3.23.1 Listening to signals

To receive a signal, register a receiver function using the Signal.connect() method. The receiver function is
called when the signal is sent.

Signal.connect(receiver, sender=None, weak=True, dispatch_uid=None)

Parameters

• receiver – The callback function which will be connected to this signal. See Receiver
functions for more information.

• sender – Specifies a particular sender to receive signals from. See Connecting to signals
sent by specific senders for more information.

• weak – Django stores signal handlers as weak references by default. Thus, if your receiver
is a local function, it may be garbage collected. To prevent this, pass weak=False when
you call the signal’s connect() method.

• dispatch_uid – A unique identifier for a signal receiver in cases where duplicate signals
may be sent. See Preventing duplicate signals for more information.

Let’s see how this works by registering a signal that gets called after each HTTP request is finished. We’ll be connect-
ing to the request_finished signal.

Receiver functions

First, we need to define a receiver function. A receiver can be any Python function or method:

def my_callback(sender, **kwargs):
print("Request finished!")

Notice that the function takes a sender argument, along with wildcard keyword arguments (**kwargs); all signal
handlers must take these arguments.

We’ll look at senders a bit later, but right now look at the **kwargs argument. All signals send keyword arguments,
and may change those keyword arguments at any time. In the case of request_finished, it’s documented as
sending no arguments, which means we might be tempted to write our signal handling as my_callback(sender).
This would be wrong – in fact, Django will throw an error if you do so. That’s because at any point arguments could

get added to the signal and your receiver must be able to handle those new arguments.

Connecting receiver functions

There are two ways you can connect a receiver to a signal. You can take the manual connect route:

from django.core.signals import request_finished

request_finished.connect(my_callback)

Alternatively, you can use a receiver() decorator:

receiver(signal)

Parameters signal – A signal or a list of signals to connect a function to.

Here’s how you connect with the decorator:

528 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

from django.core.signals import request_finished
from django.dispatch import receiver

@receiver(request_finished)
def my_callback(sender, **kwargs):

print("Request finished!")

Now, our my_callback function will be called each time a request finishes.

Where should this code live?

Strictly speaking, signal handling and registration code can live anywhere you like, although it’s recommended to
avoid the application’s root module and its models module to minimize side-effects of importing code.

In practice, signal handlers are usually defined in a signals submodule of the application they relate to. Sig-
nal receivers are connected in the ready() method of your application configuration class. If you’re using the
receiver() decorator, simply import the signals submodule inside ready().

Note: The ready() method may be executed more than once during testing, so you may want to guard your signals
from duplication, especially if you’re planning to send them within tests.

Connecting to signals sent by specific senders

Some signals get sent many times, but you’ll only be interested in receiving a certain subset of those signals. For
example, consider the django.db.models.signals.pre_save signal sent before a model gets saved. Most
of the time, you don’t need to know when any model gets saved – just when one specific model is saved.

In these cases, you can register to receive signals sent only by particular senders. In the case of django.db.
models.signals.pre_save, the sender will be the model class being saved, so you can indicate that you only
want signals sent by some model:

from django.db.models.signals import pre_save
from django.dispatch import receiver
from myapp.models import MyModel

@receiver(pre_save, sender=MyModel)
def my_handler(sender, **kwargs):

...

The my_handler function will only be called when an instance of MyModel is saved.

Different signals use different objects as their senders; you’ll need to consult the built-in signal documentation for
details of each particular signal.

Preventing duplicate signals

In some circumstances, the code connecting receivers to signals may run multiple times. This can cause your receiver
function to be registered more than once, and thus called multiple times for a single signal event.

If this behavior is problematic (such as when using signals to send an email whenever a model is saved), pass a unique
identifier as the dispatch_uid argument to identify your receiver function. This identifier will usually be a string,

3.23. Signals 529

Django Documentation, Release 1.10.9.dev20171123183751

although any hashable object will suffice. The end result is that your receiver function will only be bound to the signal
once for each unique dispatch_uid value:

from django.core.signals import request_finished

request_finished.connect(my_callback, dispatch_uid="my_unique_identifier")

3.23.2 Defining and sending signals

Your applications can take advantage of the signal infrastructure and provide its own signals.

Defining signals

class Signal(providing_args=list)

All signals are django.dispatch.Signal instances. The providing_args is a list of the names of argu-
ments the signal will provide to listeners. This is purely documentational, however, as there is nothing that checks that
the signal actually provides these arguments to its listeners.

For example:

import django.dispatch

pizza_done = django.dispatch.Signal(providing_args=["toppings", "size"])

This declares a pizza_done signal that will provide receivers with toppings and size arguments.

Remember that you’re allowed to change this list of arguments at any time, so getting the API right on the first try isn’t
necessary.

Sending signals

There are two ways to send signals in Django.

Signal.send(sender, **kwargs)

Signal.send_robust(sender, **kwargs)

To send a signal, call either Signal.send() (all built-in signals use this) or Signal.send_robust(). You
must provide the sender argument (which is a class most of the time) and may provide as many other keyword
arguments as you like.

For example, here’s how sending our pizza_done signal might look:

class PizzaStore(object):
...

def send_pizza(self, toppings, size):
pizza_done.send(sender=self.__class__, toppings=toppings, size=size)
...

Both send() and send_robust() return a list of tuple pairs [(receiver, response), ...], represent-
ing the list of called receiver functions and their response values.

send() differs from send_robust() in how exceptions raised by receiver functions are handled. send() does
not catch any exceptions raised by receivers; it simply allows errors to propagate. Thus not all receivers may be
notified of a signal in the face of an error.

530 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

send_robust() catches all errors derived from Python’s Exception class, and ensures all receivers are notified
of the signal. If an error occurs, the error instance is returned in the tuple pair for the receiver that raised the error.

The tracebacks are present on the __traceback__ attribute of the errors returned when calling send_robust().

3.23.3 Disconnecting signals

Signal.disconnect(receiver=None, sender=None, dispatch_uid=None)

To disconnect a receiver from a signal, call Signal.disconnect(). The arguments are as described in Signal.
connect(). The method returns True if a receiver was disconnected and False if not.

The receiver argument indicates the registered receiver to disconnect. It may be None if dispatch_uid is used
to identify the receiver.

Deprecated since version 1.9: The weak argument is deprecated as it has no effect. It will be removed in Django 2.0.

3.24 System check framework

The system check framework is a set of static checks for validating Django projects. It detects common problems and
provides hints for how to fix them. The framework is extensible so you can easily add your own checks.

Checks can be triggered explicitly via the check command. Checks are triggered implicitly before most commands,
including runserver and migrate. For performance reasons, checks are not run as part of the WSGI stack that
is used in deployment. If you need to run system checks on your deployment server, trigger them explicitly using
check.

Serious errors will prevent Django commands (such as runserver) from running at all. Minor problems are reported
to the console. If you have inspected the cause of a warning and are happy to ignore it, you can hide specific warnings
using the SILENCED_SYSTEM_CHECKS setting in your project settings file.

A full list of all checks that can be raised by Django can be found in the System check reference.

3.24.1 Writing your own checks

The framework is flexible and allows you to write functions that perform any other kind of check you may require.
The following is an example stub check function:

from django.core.checks import Error, register

@register()
def example_check(app_configs, **kwargs):

errors = []
... your check logic here
if check_failed:

errors.append(
Error(

'an error',
hint='A hint.',
obj=checked_object,
id='myapp.E001',

)
)

return errors

3.24. System check framework 531

Django Documentation, Release 1.10.9.dev20171123183751

The check function must accept an app_configs argument; this argument is the list of applications that should be
inspected. If None, the check must be run on all installed apps in the project. The **kwargs argument is required
for future expansion.

Messages

The function must return a list of messages. If no problems are found as a result of the check, the check function must
return an empty list.

The warnings and errors raised by the check method must be instances of CheckMessage. An instance of
CheckMessage encapsulates a single reportable error or warning. It also provides context and hints applicable
to the message, and a unique identifier that is used for filtering purposes.

The concept is very similar to messages from the message framework or the logging framework. Messages are tagged
with a level indicating the severity of the message.

There are also shortcuts to make creating messages with common levels easier. When using these classes you can omit
the level argument because it is implied by the class name.

• Debug

• Info

• Warning

• Error

• Critical

Registering and labeling checks

Lastly, your check function must be registered explicitly with system check registry. Checks should be registered in a
file that’s loaded when your application is loaded; for example, in the AppConfig.ready() method.

register(*tags)(function)

You can pass as many tags to register as you want in order to label your check. Tagging checks is useful since it
allows you to run only a certain group of checks. For example, to register a compatibility check, you would make the
following call:

from django.core.checks import register, Tags

@register(Tags.compatibility)
def my_check(app_configs, **kwargs):

... perform compatibility checks and collect errors
return errors

You can register “deployment checks” that are only relevant to a production settings file like this:

@register(Tags.security, deploy=True)
def my_check(app_configs, **kwargs):

...

These checks will only be run if the check --deploy option is used.

You can also use register as a function rather than a decorator by passing a callable object (usually a function) as
the first argument to register.

The code below is equivalent to the code above:

532 Chapter 3. Using Django

Django Documentation, Release 1.10.9.dev20171123183751

def my_check(app_configs, **kwargs):
...

register(my_check, Tags.security, deploy=True)

Field, model, manager, and database checks

In some cases, you won’t need to register your check function – you can piggyback on an existing registration.

Fields, models, model managers, and database backends all implement a check() method that is already registered
with the check framework. If you want to add extra checks, you can extend the implementation on the base class,
perform any extra checks you need, and append any messages to those generated by the base class. It’s recommended
that you delegate each check to separate methods.

Database backend checks were added.

Consider an example where you are implementing a custom field named RangedIntegerField. This field adds
min and max arguments to the constructor of IntegerField. You may want to add a check to ensure that users
provide a min value that is less than or equal to the max value. The following code snippet shows how you can
implement this check:

from django.core import checks
from django.db import models

class RangedIntegerField(models.IntegerField):
def __init__(self, min=None, max=None, **kwargs):

super(RangedIntegerField, self).__init__(**kwargs)
self.min = min
self.max = max

def check(self, **kwargs):
Call the superclass
errors = super(RangedIntegerField, self).check(**kwargs)

Do some custom checks and add messages to `errors`:
errors.extend(self._check_min_max_values(**kwargs))

Return all errors and warnings
return errors

def _check_min_max_values(self, **kwargs):
if (self.min is not None and

self.max is not None and
self.min > self.max):

return [
checks.Error(

'min greater than max.',
hint='Decrease min or increase max.',
obj=self,
id='myapp.E001',

)
]

When no error, return an empty list
return []

If you wanted to add checks to a model manager, you would take the same approach on your subclass of Manager.

If you want to add a check to a model class, the approach is almost the same: the only difference is that the check is a

3.24. System check framework 533

Django Documentation, Release 1.10.9.dev20171123183751

classmethod, not an instance method:

class MyModel(models.Model):
@classmethod
def check(cls, **kwargs):

errors = super(MyModel, cls).check(**kwargs)
... your own checks ...
return errors

Writing tests

Messages are comparable. That allows you to easily write tests:

from django.core.checks import Error
errors = checked_object.check()
expected_errors = [

Error(
'an error',
hint='A hint.',
obj=checked_object,
id='myapp.E001',

)
]
self.assertEqual(errors, expected_errors)

3.25 External packages

Django ships with a variety of extra, optional tools that solve common problems (contrib.*). For easier mainte-
nance and to trim the size of the codebase, a few of those applications have been moved out to separate projects.

3.25.1 Localflavor

django-localflavor is a collection of utilities for particular countries and cultures.

• GitHub

• Documentation

• PyPI

3.25.2 Comments

django-contrib-comments can be used to attach comments to any model, so you can use it for comments on
blog entries, photos, book chapters, or anything else. Most users will be better served with a custom solution, or a
hosted product like Disqus.

• GitHub

• Documentation

• PyPI

534 Chapter 3. Using Django

https://github.com/django/django-localflavor
https://django-localflavor.readthedocs.io/
https://pypi.python.org/pypi/django-localflavor
https://github.com/django/django-contrib-comments
https://django-contrib-comments.readthedocs.io/
https://pypi.python.org/pypi/django-contrib-comments

Django Documentation, Release 1.10.9.dev20171123183751

3.25.3 Formtools

django-formtools is a collection of assorted utilities to work with forms.

• GitHub

• Documentation

• PyPI

3.25. External packages 535

https://github.com/django/django-formtools
https://django-formtools.readthedocs.io/
https://pypi.python.org/pypi/django-formtools

Django Documentation, Release 1.10.9.dev20171123183751

536 Chapter 3. Using Django

CHAPTER 4

“How-to” guides

Here you’ll find short answers to “How do I....?” types of questions. These how-to guides don’t cover topics in depth
– you’ll find that material in the Using Django and the API Reference. However, these guides will help you quickly
accomplish common tasks.

4.1 Authentication using REMOTE_USER

This document describes how to make use of external authentication sources (where the Web server sets the
REMOTE_USER environment variable) in your Django applications. This type of authentication solution is typically
seen on intranet sites, with single sign-on solutions such as IIS and Integrated Windows Authentication or Apache and
mod_authnz_ldap, CAS, Cosign, WebAuth, mod_auth_sspi, etc.

When the Web server takes care of authentication it typically sets the REMOTE_USER environment variable for
use in the underlying application. In Django, REMOTE_USER is made available in the request.META attribute.
Django can be configured to make use of the REMOTE_USER value using the RemoteUserMiddleware or
PersistentRemoteUserMiddleware, and RemoteUserBackend classes found in django.contrib.
auth.

4.1.1 Configuration

First, you must add the django.contrib.auth.middleware.RemoteUserMiddleware to the
MIDDLEWARE setting after the django.contrib.auth.middleware.AuthenticationMiddleware:

MIDDLEWARE = [
'...',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.auth.middleware.RemoteUserMiddleware',
'...',

]

Next, you must replace the ModelBackend with RemoteUserBackend in the AUTHENTICATION_BACKENDS
setting:

537

https://httpd.apache.org/docs/2.2/mod/mod_authnz_ldap.html
https://www.apereo.org/projects/cas
http://weblogin.org
https://www.stanford.edu/services/webauth/
http://sourceforge.net/projects/mod-auth-sspi

Django Documentation, Release 1.10.9.dev20171123183751

AUTHENTICATION_BACKENDS = [
'django.contrib.auth.backends.RemoteUserBackend',

]

With this setup, RemoteUserMiddleware will detect the username in request.META['REMOTE_USER']
and will authenticate and auto-login that user using the RemoteUserBackend.

Be aware that this particular setup disables authentication with the default ModelBackend. This means that if
the REMOTE_USER value is not set then the user is unable to log in, even using Django’s admin interface. Adding
'django.contrib.auth.backends.ModelBackend' to the AUTHENTICATION_BACKENDS list will use
ModelBackend as a fallback if REMOTE_USER is absent, which will solve these issues.

Django’s user management, such as the views in contrib.admin and the createsuperuser management
command, doesn’t integrate with remote users. These interfaces work with users stored in the database regardless of
AUTHENTICATION_BACKENDS.

Note: Since the RemoteUserBackend inherits from ModelBackend, you will still have all of the same permis-
sions checking that is implemented in ModelBackend.

Users with is_active=False won’t be allowed to authenticate. Use AllowAllUsersRemoteUserBackend
if you want to allow them to.

In older versions, inactive users weren’t rejected as described above.

If your authentication mechanism uses a custom HTTP header and not REMOTE_USER, you can subclass
RemoteUserMiddleware and set the header attribute to the desired request.META key. For example:

from django.contrib.auth.middleware import RemoteUserMiddleware

class CustomHeaderMiddleware(RemoteUserMiddleware):
header = 'HTTP_AUTHUSER'

Warning: Be very careful if using a RemoteUserMiddleware subclass with a custom HTTP header. You
must be sure that your front-end web server always sets or strips that header based on the appropriate authen-
tication checks, never permitting an end-user to submit a fake (or “spoofed”) header value. Since the HTTP
headers X-Auth-User and X-Auth_User (for example) both normalize to the HTTP_X_AUTH_USER key in
request.META, you must also check that your web server doesn’t allow a spoofed header using underscores in
place of dashes.

This warning doesn’t apply to RemoteUserMiddleware in its default configuration with header =
'REMOTE_USER', since a key that doesn’t start with HTTP_ in request.META can only be set by your WSGI
server, not directly from an HTTP request header.

If you need more control, you can create your own authentication backend that inherits from RemoteUserBackend
and override one or more of its attributes and methods.

4.1.2 Using REMOTE_USER on login pages only

The RemoteUserMiddleware authentication middleware assumes that the HTTP request header REMOTE_USER
is present with all authenticated requests. That might be expected and practical when Basic HTTP Auth with
htpasswd or other simple mechanisms are used, but with Negotiate (GSSAPI/Kerberos) or other resource inten-
sive authentication methods, the authentication in the front-end HTTP server is usually only set up for one or a few

538 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

login URLs, and after successful authentication, the application is supposed to maintain the authenticated session
itself.

PersistentRemoteUserMiddleware provides support for this use case. It will maintain the authenticated ses-
sion until explicit logout by the user. The class can be used as a drop-in replacement of RemoteUserMiddleware
in the documentation above.

4.2 Writing custom django-admin commands

Applications can register their own actions with manage.py. For example, you might want to add a manage.
py action for a Django app that you’re distributing. In this document, we will be building a custom closepoll
command for the polls application from the tutorial.

To do this, just add a management/commands directory to the application. Django will register a manage.py
command for each Python module in that directory whose name doesn’t begin with an underscore. For example:

polls/
__init__.py
models.py
management/

__init__.py
commands/

__init__.py
_private.py
closepoll.py

tests.py
views.py

On Python 2, be sure to include __init__.py files in both the management and management/commands
directories as done above or your command will not be detected.

In this example, the closepoll command will be made available to any project that includes the polls application
in INSTALLED_APPS.

The _private.py module will not be available as a management command.

The closepoll.py module has only one requirement – it must define a class Command that extends
BaseCommand or one of its subclasses.

Standalone scripts

Custom management commands are especially useful for running standalone scripts or for scripts that are periodically
executed from the UNIX crontab or from Windows scheduled tasks control panel.

To implement the command, edit polls/management/commands/closepoll.py to look like this:

from django.core.management.base import BaseCommand, CommandError
from polls.models import Question as Poll

class Command(BaseCommand):
help = 'Closes the specified poll for voting'

def add_arguments(self, parser):
parser.add_argument('poll_id', nargs='+', type=int)

def handle(self, *args, **options):

4.2. Writing custom django-admin commands 539

Django Documentation, Release 1.10.9.dev20171123183751

for poll_id in options['poll_id']:
try:

poll = Poll.objects.get(pk=poll_id)
except Poll.DoesNotExist:

raise CommandError('Poll "%s" does not exist' % poll_id)

poll.opened = False
poll.save()

self.stdout.write(self.style.SUCCESS('Successfully closed poll "%s"' %
→˓poll_id))

Note: When you are using management commands and wish to provide console output, you should write to self.
stdout and self.stderr, instead of printing to stdout and stderr directly. By using these proxies, it be-
comes much easier to test your custom command. Note also that you don’t need to end messages with a newline
character, it will be added automatically, unless you specify the ending parameter:

self.stdout.write("Unterminated line", ending='')

The new custom command can be called using python manage.py closepoll <poll_id>.

The handle() method takes one or more poll_ids and sets poll.opened to False for each one. If the user
referenced any nonexistent polls, a CommandError is raised. The poll.opened attribute does not exist in the
tutorial and was added to polls.models.Question for this example.

4.2.1 Accepting optional arguments

The same closepoll could be easily modified to delete a given poll instead of closing it by accepting additional
command line options. These custom options can be added in the add_arguments() method like this:

class Command(BaseCommand):
def add_arguments(self, parser):

Positional arguments
parser.add_argument('poll_id', nargs='+', type=int)

Named (optional) arguments
parser.add_argument(

'--delete',
action='store_true',
dest='delete',
default=False,
help='Delete poll instead of closing it',

)

def handle(self, *args, **options):
...
if options['delete']:

poll.delete()
...

The option (delete in our example) is available in the options dict parameter of the handle method. See the
argparse Python documentation for more about add_argument usage.

In addition to being able to add custom command line options, all management commands can accept some default
options such as --verbosity and --traceback.

540 Chapter 4. “How-to” guides

https://docs.python.org/3/library/argparse.html#module-argparse

Django Documentation, Release 1.10.9.dev20171123183751

4.2.2 Management commands and locales

By default, the BaseCommand.execute() method deactivates translations because some commands shipped with
Django perform several tasks (for example, user-facing content rendering and database population) that require a
project-neutral string language.

If, for some reason, your custom management command needs to use a fixed locale, you should manually activate and
deactivate it in your handle() method using the functions provided by the I18N support code:

from django.core.management.base import BaseCommand, CommandError
from django.utils import translation

class Command(BaseCommand):
...
can_import_settings = True

def handle(self, *args, **options):

Activate a fixed locale, e.g. Russian
translation.activate('ru')

Or you can activate the LANGUAGE_CODE # chosen in the settings:
from django.conf import settings
translation.activate(settings.LANGUAGE_CODE)

Your command logic here
...

translation.deactivate()

Another need might be that your command simply should use the locale set in settings and Django should be kept
from deactivating it. You can achieve it by using the BaseCommand.leave_locale_alone option.

When working on the scenarios described above though, take into account that system management commands typi-
cally have to be very careful about running in non-uniform locales, so you might need to:

• Make sure the USE_I18N setting is always True when running the command (this is a good example of the
potential problems stemming from a dynamic runtime environment that Django commands avoid offhand by
deactivating translations).

• Review the code of your command and the code it calls for behavioral differences when locales are changed and
evaluate its impact on predictable behavior of your command.

4.2.3 Testing

Information on how to test custom management commands can be found in the testing docs.

4.2.4 Command objects

class BaseCommand

The base class from which all management commands ultimately derive.

Use this class if you want access to all of the mechanisms which parse the command-line arguments and work out
what code to call in response; if you don’t need to change any of that behavior, consider using one of its subclasses.

Subclassing the BaseCommand class requires that you implement the handle() method.

4.2. Writing custom django-admin commands 541

Django Documentation, Release 1.10.9.dev20171123183751

Attributes

All attributes can be set in your derived class and can be used in BaseCommand’s subclasses.

BaseCommand.can_import_settings
A boolean indicating whether the command needs to be able to import Django settings; if True, execute()
will verify that this is possible before proceeding. Default value is True.

BaseCommand.help
A short description of the command, which will be printed in the help message when the user runs the command
python manage.py help <command>.

BaseCommand.missing_args_message
If your command defines mandatory positional arguments, you can customize the message error returned in the
case of missing arguments. The default is output by argparse (“too few arguments”).

BaseCommand.output_transaction
A boolean indicating whether the command outputs SQL statements; if True, the output will automatically be
wrapped with BEGIN; and COMMIT;. Default value is False.

BaseCommand.requires_migrations_checks
A boolean; if True, the command prints a warning if the set of migrations on disk don’t match the migrations
in the database. A warning doesn’t prevent the command from executing. Default value is False.

BaseCommand.requires_system_checks
A boolean; if True, the entire Django project will be checked for potential problems prior to executing the
command. Default value is True.

BaseCommand.leave_locale_alone
A boolean indicating whether the locale set in settings should be preserved during the execution of the command
instead of being forcibly set to ‘en-us’.

Default value is False.

Make sure you know what you are doing if you decide to change the value of this option in your custom
command if it creates database content that is locale-sensitive and such content shouldn’t contain any translations
(like it happens e.g. with django.contrib.auth permissions) as making the locale differ from the de facto
default ‘en-us’ might cause unintended effects. See the Management commands and locales section above for
further details.

This option can’t be False when the can_import_settings option is set to False too because attempt-
ing to set the locale needs access to settings. This condition will generate a CommandError.

BaseCommand.style
An instance attribute that helps create colored output when writing to stdout or stderr. For example:

self.stdout.write(self.style.SUCCESS('...'))

See Syntax coloring to learn how to modify the color palette and to see the available styles (use uppercased
versions of the “roles” described in that section).

If you pass the --no-color option when running your command, all self.style() calls will return the
original string uncolored.

Methods

BaseCommand has a few methods that can be overridden but only the handle() method must be implemented.

Implementing a constructor in a subclass

542 Chapter 4. “How-to” guides

https://docs.python.org/3/library/argparse.html#module-argparse

Django Documentation, Release 1.10.9.dev20171123183751

If you implement __init__ in your subclass of BaseCommand, you must call BaseCommand’s __init__:

class Command(BaseCommand):
def __init__(self, *args, **kwargs):

super(Command, self).__init__(*args, **kwargs)
...

BaseCommand.add_arguments(parser)
Entry point to add parser arguments to handle command line arguments passed to the command. Custom com-
mands should override this method to add both positional and optional arguments accepted by the command.
Calling super() is not needed when directly subclassing BaseCommand.

BaseCommand.get_version()
Returns the Django version, which should be correct for all built-in Django commands. User-supplied com-
mands can override this method to return their own version.

BaseCommand.execute(*args, **options)
Tries to execute this command, performing system checks if needed (as controlled by the
requires_system_checks attribute). If the command raises a CommandError, it’s intercepted
and printed to stderr.

Calling a management command in your code

execute() should not be called directly from your code to execute a command. Use call_command() instead.

BaseCommand.handle(*args, **options)
The actual logic of the command. Subclasses must implement this method.

It may return a Unicode string which will be printed to stdout (wrapped by BEGIN; and COMMIT; if
output_transaction is True).

BaseCommand.check(app_configs=None, tags=None, display_num_errors=False)
Uses the system check framework to inspect the entire Django project for potential problems. Serious problems
are raised as a CommandError; warnings are output to stderr; minor notifications are output to stdout.

If app_configs and tags are both None, all system checks are performed. tags can be a list of check
tags, like compatibility or models.

BaseCommand subclasses

class AppCommand

A management command which takes one or more installed application labels as arguments, and does something with
each of them.

Rather than implementing handle(), subclasses must implement handle_app_config(), which will be called
once for each application.

AppCommand.handle_app_config(app_config, **options)
Perform the command’s actions for app_config, which will be an AppConfig instance corresponding to
an application label given on the command line.

class LabelCommand

A management command which takes one or more arbitrary arguments (labels) on the command line, and does some-
thing with each of them.

4.2. Writing custom django-admin commands 543

Django Documentation, Release 1.10.9.dev20171123183751

Rather than implementing handle(), subclasses must implement handle_label(), which will be called once
for each label.

LabelCommand.label
A string describing the arbitrary arguments passed to the command. The string is used in the usage text and
error messages of the command. Defaults to 'label'.

LabelCommand.handle_label(label, **options)
Perform the command’s actions for label, which will be the string as given on the command line.

Command exceptions

exception CommandError

Exception class indicating a problem while executing a management command.

If this exception is raised during the execution of a management command from a command line console, it will be
caught and turned into a nicely-printed error message to the appropriate output stream (i.e., stderr); as a result, raising
this exception (with a sensible description of the error) is the preferred way to indicate that something has gone wrong
in the execution of a command.

If a management command is called from code through call_command(), it’s up to you to catch the exception
when needed.

4.3 Writing custom model fields

4.3.1 Introduction

The model reference documentation explains how to use Django’s standard field classes – CharField, DateField,
etc. For many purposes, those classes are all you’ll need. Sometimes, though, the Django version won’t meet your
precise requirements, or you’ll want to use a field that is entirely different from those shipped with Django.

Django’s built-in field types don’t cover every possible database column type – only the common types, such as
VARCHAR and INTEGER. For more obscure column types, such as geographic polygons or even user-created types
such as PostgreSQL custom types, you can define your own Django Field subclasses.

Alternatively, you may have a complex Python object that can somehow be serialized to fit into a standard database
column type. This is another case where a Field subclass will help you use your object with your models.

Our example object

Creating custom fields requires a bit of attention to detail. To make things easier to follow, we’ll use a consistent
example throughout this document: wrapping a Python object representing the deal of cards in a hand of Bridge.
Don’t worry, you don’t have to know how to play Bridge to follow this example. You only need to know that 52
cards are dealt out equally to four players, who are traditionally called north, east, south and west. Our class looks
something like this:

class Hand(object):
"""A hand of cards (bridge style)"""

def __init__(self, north, east, south, west):
Input parameters are lists of cards ('Ah', '9s', etc.)
self.north = north
self.east = east
self.south = south

544 Chapter 4. “How-to” guides

https://www.postgresql.org/docs/current/static/sql-createtype.html
https://en.wikipedia.org/wiki/Contract_bridge

Django Documentation, Release 1.10.9.dev20171123183751

self.west = west

... (other possibly useful methods omitted) ...

This is just an ordinary Python class, with nothing Django-specific about it. We’d like to be able to do things like this
in our models (we assume the hand attribute on the model is an instance of Hand):

example = MyModel.objects.get(pk=1)
print(example.hand.north)

new_hand = Hand(north, east, south, west)
example.hand = new_hand
example.save()

We assign to and retrieve from the hand attribute in our model just like any other Python class. The trick is to tell
Django how to handle saving and loading such an object.

In order to use the Hand class in our models, we do not have to change this class at all. This is ideal, because it means
you can easily write model support for existing classes where you cannot change the source code.

Note: You might only be wanting to take advantage of custom database column types and deal with the data as
standard Python types in your models; strings, or floats, for example. This case is similar to our Hand example and
we’ll note any differences as we go along.

4.3.2 Background theory

Database storage

The simplest way to think of a model field is that it provides a way to take a normal Python object – string, boolean,
datetime, or something more complex like Hand – and convert it to and from a format that is useful when dealing
with the database (and serialization, but, as we’ll see later, that falls out fairly naturally once you have the database
side under control).

Fields in a model must somehow be converted to fit into an existing database column type. Different databases
provide different sets of valid column types, but the rule is still the same: those are the only types you have to work
with. Anything you want to store in the database must fit into one of those types.

Normally, you’re either writing a Django field to match a particular database column type, or there’s a fairly straight-
forward way to convert your data to, say, a string.

For our Hand example, we could convert the card data to a string of 104 characters by concatenating all the cards
together in a pre-determined order – say, all the north cards first, then the east, south and west cards. So Hand objects
can be saved to text or character columns in the database.

What does a field class do?

All of Django’s fields (and when we say fields in this document, we always mean model fields and not form fields) are
subclasses of django.db.models.Field. Most of the information that Django records about a field is common
to all fields – name, help text, uniqueness and so forth. Storing all that information is handled by Field. We’ll get
into the precise details of what Field can do later on; for now, suffice it to say that everything descends from Field
and then customizes key pieces of the class behavior.

It’s important to realize that a Django field class is not what is stored in your model attributes. The model attributes
contain normal Python objects. The field classes you define in a model are actually stored in the Meta class when

4.3. Writing custom model fields 545

Django Documentation, Release 1.10.9.dev20171123183751

the model class is created (the precise details of how this is done are unimportant here). This is because the field
classes aren’t necessary when you’re just creating and modifying attributes. Instead, they provide the machinery for
converting between the attribute value and what is stored in the database or sent to the serializer.

Keep this in mind when creating your own custom fields. The Django Field subclass you write provides the ma-
chinery for converting between your Python instances and the database/serializer values in various ways (there are
differences between storing a value and using a value for lookups, for example). If this sounds a bit tricky, don’t worry
– it will become clearer in the examples below. Just remember that you will often end up creating two classes when
you want a custom field:

• The first class is the Python object that your users will manipulate. They will assign it to the model attribute,
they will read from it for displaying purposes, things like that. This is the Hand class in our example.

• The second class is the Field subclass. This is the class that knows how to convert your first class back and
forth between its permanent storage form and the Python form.

4.3.3 Writing a field subclass

When planning your Field subclass, first give some thought to which existing Field class your new field is most
similar to. Can you subclass an existing Django field and save yourself some work? If not, you should subclass the
Field class, from which everything is descended.

Initializing your new field is a matter of separating out any arguments that are specific to your case from the common
arguments and passing the latter to the __init__() method of Field (or your parent class).

In our example, we’ll call our field HandField. (It’s a good idea to call your Field subclass
<Something>Field, so it’s easily identifiable as a Field subclass.) It doesn’t behave like any existing field,
so we’ll subclass directly from Field:

from django.db import models

class HandField(models.Field):

description = "A hand of cards (bridge style)"

def __init__(self, *args, **kwargs):
kwargs['max_length'] = 104
super(HandField, self).__init__(*args, **kwargs)

Our HandField accepts most of the standard field options (see the list below), but we ensure it has a fixed length,
since it only needs to hold 52 card values plus their suits; 104 characters in total.

Note: Many of Django’s model fields accept options that they don’t do anything with. For example, you can pass both
editable and auto_now to a django.db.models.DateField and it will simply ignore the editable
parameter (auto_now being set implies editable=False). No error is raised in this case.

This behavior simplifies the field classes, because they don’t need to check for options that aren’t necessary. They just
pass all the options to the parent class and then don’t use them later on. It’s up to you whether you want your fields to
be more strict about the options they select, or to use the simpler, more permissive behavior of the current fields.

The Field.__init__() method takes the following parameters:

• verbose_name

• name

• primary_key

546 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

• max_length

• unique

• blank

• null

• db_index

• rel: Used for related fields (like ForeignKey). For advanced use only.

• default

• editable

• serialize: If False, the field will not be serialized when the model is passed to Django’s serializers.
Defaults to True.

• unique_for_date

• unique_for_month

• unique_for_year

• choices

• help_text

• db_column

• db_tablespace: Only for index creation, if the backend supports tablespaces. You can usually ignore this
option.

• auto_created: True if the field was automatically created, as for the OneToOneField used by model
inheritance. For advanced use only.

All of the options without an explanation in the above list have the same meaning they do for normal Django fields.
See the field documentation for examples and details.

Field deconstruction

The counterpoint to writing your __init__() method is writing the deconstruct() method. This method tells
Django how to take an instance of your new field and reduce it to a serialized form - in particular, what arguments to
pass to __init__() to re-create it.

If you haven’t added any extra options on top of the field you inherited from, then there’s no need to write a new
deconstruct() method. If, however, you’re changing the arguments passed in __init__() (like we are in
HandField), you’ll need to supplement the values being passed.

The contract of deconstruct() is simple; it returns a tuple of four items: the field’s attribute name, the full import
path of the field class, the positional arguments (as a list), and the keyword arguments (as a dict). Note this is different
from the deconstruct() method for custom classes which returns a tuple of three things.

As a custom field author, you don’t need to care about the first two values; the base Field class has all the code to
work out the field’s attribute name and import path. You do, however, have to care about the positional and keyword
arguments, as these are likely the things you are changing.

For example, in our HandField class we’re always forcibly setting max_length in __init__(). The
deconstruct() method on the base Field class will see this and try to return it in the keyword arguments;
thus, we can drop it from the keyword arguments for readability:

4.3. Writing custom model fields 547

Django Documentation, Release 1.10.9.dev20171123183751

from django.db import models

class HandField(models.Field):

def __init__(self, *args, **kwargs):
kwargs['max_length'] = 104
super(HandField, self).__init__(*args, **kwargs)

def deconstruct(self):
name, path, args, kwargs = super(HandField, self).deconstruct()
del kwargs["max_length"]
return name, path, args, kwargs

If you add a new keyword argument, you need to write code to put its value into kwargs yourself:

from django.db import models

class CommaSepField(models.Field):
"Implements comma-separated storage of lists"

def __init__(self, separator=",", *args, **kwargs):
self.separator = separator
super(CommaSepField, self).__init__(*args, **kwargs)

def deconstruct(self):
name, path, args, kwargs = super(CommaSepField, self).deconstruct()
Only include kwarg if it's not the default
if self.separator != ",":

kwargs['separator'] = self.separator
return name, path, args, kwargs

More complex examples are beyond the scope of this document, but remember - for any configuration of your Field
instance, deconstruct() must return arguments that you can pass to __init__ to reconstruct that state.

Pay extra attention if you set new default values for arguments in the Field superclass; you want to make sure they’re
always included, rather than disappearing if they take on the old default value.

In addition, try to avoid returning values as positional arguments; where possible, return values as keyword arguments
for maximum future compatibility. Of course, if you change the names of things more often than their position in the
constructor’s argument list, you might prefer positional, but bear in mind that people will be reconstructing your field
from the serialized version for quite a while (possibly years), depending how long your migrations live for.

You can see the results of deconstruction by looking in migrations that include the field, and you can test deconstruction
in unit tests by just deconstructing and reconstructing the field:

name, path, args, kwargs = my_field_instance.deconstruct()
new_instance = MyField(*args, **kwargs)
self.assertEqual(my_field_instance.some_attribute, new_instance.some_attribute)

Changing a custom field’s base class

You can’t change the base class of a custom field because Django won’t detect the change and make a migration for
it. For example, if you start with:

class CustomCharField(models.CharField):
...

548 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

and then decide that you want to use TextField instead, you can’t change the subclass like this:

class CustomCharField(models.TextField):
...

Instead, you must create a new custom field class and update your models to reference it:

class CustomCharField(models.CharField):
...

class CustomTextField(models.TextField):
...

As discussed in removing fields, you must retain the original CustomCharField class as long as you have migra-
tions that reference it.

Documenting your custom field

As always, you should document your field type, so users will know what it is. In addition to providing a docstring for
it, which is useful for developers, you can also allow users of the admin app to see a short description of the field type
via the django.contrib.admindocs application. To do this simply provide descriptive text in a description class
attribute of your custom field. In the above example, the description displayed by the admindocs application for a
HandField will be ‘A hand of cards (bridge style)’.

In the django.contrib.admindocs display, the field description is interpolated with field.__dict__
which allows the description to incorporate arguments of the field. For example, the description for CharField
is:

description = _("String (up to %(max_length)s)")

Useful methods

Once you’ve created your Field subclass, you might consider overriding a few standard methods, depending on your
field’s behavior. The list of methods below is in approximately decreasing order of importance, so start from the top.

Custom database types

Say you’ve created a PostgreSQL custom type called mytype. You can subclass Field and implement the
db_type() method, like so:

from django.db import models

class MytypeField(models.Field):
def db_type(self, connection):

return 'mytype'

Once you have MytypeField, you can use it in any model, just like any other Field type:

class Person(models.Model):
name = models.CharField(max_length=80)
something_else = MytypeField()

If you aim to build a database-agnostic application, you should account for differences in database column types.
For example, the date/time column type in PostgreSQL is called timestamp, while the same column in MySQL

4.3. Writing custom model fields 549

Django Documentation, Release 1.10.9.dev20171123183751

is called datetime. The simplest way to handle this in a db_type() method is to check the connection.
settings_dict['ENGINE'] attribute.

For example:

class MyDateField(models.Field):
def db_type(self, connection):

if connection.settings_dict['ENGINE'] == 'django.db.backends.mysql':
return 'datetime'

else:
return 'timestamp'

The db_type() and rel_db_type() methods are called by Django when the framework constructs the CREATE
TABLE statements for your application – that is, when you first create your tables. The methods are also called when
constructing a WHERE clause that includes the model field – that is, when you retrieve data using QuerySet methods
like get(), filter(), and exclude() and have the model field as an argument. They are not called at any other
time, so it can afford to execute slightly complex code, such as the connection.settings_dict check in the
above example.

Some database column types accept parameters, such as CHAR(25), where the parameter 25 represents the max-
imum column length. In cases like these, it’s more flexible if the parameter is specified in the model rather
than being hard-coded in the db_type() method. For example, it wouldn’t make much sense to have a
CharMaxlength25Field, shown here:

This is a silly example of hard-coded parameters.
class CharMaxlength25Field(models.Field):

def db_type(self, connection):
return 'char(25)'

In the model:
class MyModel(models.Model):

...
my_field = CharMaxlength25Field()

The better way of doing this would be to make the parameter specifiable at run time – i.e., when the class is instantiated.
To do that, just implement Field.__init__(), like so:

This is a much more flexible example.
class BetterCharField(models.Field):

def __init__(self, max_length, *args, **kwargs):
self.max_length = max_length
super(BetterCharField, self).__init__(*args, **kwargs)

def db_type(self, connection):
return 'char(%s)' % self.max_length

In the model:
class MyModel(models.Model):

...
my_field = BetterCharField(25)

Finally, if your column requires truly complex SQL setup, return None from db_type(). This will cause Django’s
SQL creation code to skip over this field. You are then responsible for creating the column in the right table in some
other way, of course, but this gives you a way to tell Django to get out of the way.

The rel_db_type()method is called by fields such as ForeignKey and OneToOneField that point to another
field to determine their database column data types. For example, if you have an UnsignedAutoField, you also
need the foreign keys that point to that field to use the same data type:

550 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

MySQL unsigned integer (range 0 to 4294967295).
class UnsignedAutoField(models.AutoField):

def db_type(self, connection):
return 'integer UNSIGNED AUTO_INCREMENT'

def rel_db_type(self, connection):
return 'integer UNSIGNED'

The rel_db_type() method was added.

Converting values to Python objects

If your custom Field class deals with data structures that are more complex than strings, dates, integers, or floats,
then you may need to override from_db_value() and to_python().

If present for the field subclass, from_db_value() will be called in all circumstances when the data is loaded from
the database, including in aggregates and values() calls.

to_python() is called by deserialization and during the clean() method used from forms.

As a general rule, to_python() should deal gracefully with any of the following arguments:

• An instance of the correct type (e.g., Hand in our ongoing example).

• A string

• None (if the field allows null=True)

In our HandField class, we’re storing the data as a VARCHAR field in the database, so we need to be able to process
strings and None in the from_db_value(). In to_python(), we need to also handle Hand instances:

import re

from django.core.exceptions import ValidationError
from django.db import models
from django.utils.translation import ugettext_lazy as _

def parse_hand(hand_string):
"""Takes a string of cards and splits into a full hand."""
p1 = re.compile('.{26}')
p2 = re.compile('..')
args = [p2.findall(x) for x in p1.findall(hand_string)]
if len(args) != 4:

raise ValidationError(_("Invalid input for a Hand instance"))
return Hand(*args)

class HandField(models.Field):
...

def from_db_value(self, value, expression, connection, context):
if value is None:

return value
return parse_hand(value)

def to_python(self, value):
if isinstance(value, Hand):

return value

if value is None:

4.3. Writing custom model fields 551

Django Documentation, Release 1.10.9.dev20171123183751

return value

return parse_hand(value)

Notice that we always return a Hand instance from these methods. That’s the Python object type we want to store in
the model’s attribute.

For to_python(), if anything goes wrong during value conversion, you should raise a ValidationError ex-
ception.

Converting Python objects to query values

Since using a database requires conversion in both ways, if you override to_python() you also have to override
get_prep_value() to convert Python objects back to query values.

For example:

class HandField(models.Field):
...

def get_prep_value(self, value):
return ''.join([''.join(l) for l in (value.north,

value.east, value.south, value.west)])

Warning: If your custom field uses the CHAR, VARCHAR or TEXT types for MySQL, you must make sure
that get_prep_value() always returns a string type. MySQL performs flexible and unexpected matching
when a query is performed on these types and the provided value is an integer, which can cause queries to in-
clude unexpected objects in their results. This problem cannot occur if you always return a string type from
get_prep_value().

Converting query values to database values

Some data types (for example, dates) need to be in a specific format before they can be used by a database backend.
get_db_prep_value() is the method where those conversions should be made. The specific connection that will
be used for the query is passed as the connection parameter. This allows you to use backend-specific conversion
logic if it is required.

For example, Django uses the following method for its BinaryField:

def get_db_prep_value(self, value, connection, prepared=False):
value = super(BinaryField, self).get_db_prep_value(value, connection, prepared)
if value is not None:

return connection.Database.Binary(value)
return value

In case your custom field needs a special conversion when being saved that is not the same as the conversion used for
normal query parameters, you can override get_db_prep_save().

Preprocessing values before saving

If you want to preprocess the value just before saving, you can use pre_save(). For example, Django’s
DateTimeField uses this method to set the attribute correctly in the case of auto_now or auto_now_add.

552 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

If you do override this method, you must return the value of the attribute at the end. You should also update the model’s
attribute if you make any changes to the value so that code holding references to the model will always see the correct
value.

Specifying the form field for a model field

To customize the form field used by ModelForm, you can override formfield().

The form field class can be specified via the form_class and choices_form_class arguments; the latter is
used if the field has choices specified, the former otherwise. If these arguments are not provided, CharField or
TypedChoiceField will be used.

All of the kwargs dictionary is passed directly to the form field’s __init__() method. Normally, all you need to
do is set up a good default for the form_class (and maybe choices_form_class) argument and then delegate
further handling to the parent class. This might require you to write a custom form field (and even a form widget). See
the forms documentation for information about this.

Continuing our ongoing example, we can write the formfield() method as:

class HandField(models.Field):
...

def formfield(self, **kwargs):
This is a fairly standard way to set up some defaults
while letting the caller override them.
defaults = {'form_class': MyFormField}
defaults.update(kwargs)
return super(HandField, self).formfield(**defaults)

This assumes we’ve imported a MyFormField field class (which has its own default widget). This document doesn’t
cover the details of writing custom form fields.

Emulating built-in field types

If you have created a db_type() method, you don’t need to worry about get_internal_type() – it won’t be
used much. Sometimes, though, your database storage is similar in type to some other field, so you can use that other
field’s logic to create the right column.

For example:

class HandField(models.Field):
...

def get_internal_type(self):
return 'CharField'

No matter which database backend we are using, this will mean that migrate and other SQL commands create the
right column type for storing a string.

If get_internal_type() returns a string that is not known to Django for the database backend you are using –
that is, it doesn’t appear in django.db.backends.<db_name>.base.DatabaseWrapper.data_types
– the string will still be used by the serializer, but the default db_type() method will return None. See the docu-
mentation of db_type() for reasons why this might be useful. Putting a descriptive string in as the type of the field
for the serializer is a useful idea if you’re ever going to be using the serializer output in some other place, outside of
Django.

4.3. Writing custom model fields 553

Django Documentation, Release 1.10.9.dev20171123183751

Converting field data for serialization

To customize how the values are serialized by a serializer, you can override value_to_string(). Using
value_from_object() is the best way to get the field’s value prior to serialization. For example, since our
HandField uses strings for its data storage anyway, we can reuse some existing conversion code:

class HandField(models.Field):
...

def value_to_string(self, obj):
value = self.value_from_object(obj)
return self.get_prep_value(value)

Some general advice

Writing a custom field can be a tricky process, particularly if you’re doing complex conversions between your Python
types and your database and serialization formats. Here are a couple of tips to make things go more smoothly:

1. Look at the existing Django fields (in django/db/models/fields/__init__.py) for inspiration. Try
to find a field that’s similar to what you want and extend it a little bit, instead of creating an entirely new field
from scratch.

2. Put a __str__() (__unicode__() on Python 2) method on the class you’re wrapping up as a field. There
are a lot of places where the default behavior of the field code is to call force_text() on the value. (In our
examples in this document, value would be a Hand instance, not a HandField). So if your __str__()
method (__unicode__() on Python 2) automatically converts to the string form of your Python object, you
can save yourself a lot of work.

4.3.4 Writing a FileField subclass

In addition to the above methods, fields that deal with files have a few other special requirements which must be
taken into account. The majority of the mechanics provided by FileField, such as controlling database storage and
retrieval, can remain unchanged, leaving subclasses to deal with the challenge of supporting a particular type of file.

Django provides a File class, which is used as a proxy to the file’s contents and operations. This can be subclassed
to customize how the file is accessed, and what methods are available. It lives at django.db.models.fields.
files, and its default behavior is explained in the file documentation.

Once a subclass of File is created, the new FileField subclass must be told to use it. To do so, simply assign the
new File subclass to the special attr_class attribute of the FileField subclass.

A few suggestions

In addition to the above details, there are a few guidelines which can greatly improve the efficiency and readability of
the field’s code.

1. The source for Django’s own ImageField (in django/db/models/fields/files.py) is a great ex-
ample of how to subclass FileField to support a particular type of file, as it incorporates all of the techniques
described above.

2. Cache file attributes wherever possible. Since files may be stored in remote storage systems, retrieving them
may cost extra time, or even money, that isn’t always necessary. Once a file is retrieved to obtain some data
about its content, cache as much of that data as possible to reduce the number of times the file must be retrieved
on subsequent calls for that information.

554 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

4.4 Custom Lookups

Django offers a wide variety of built-in lookups for filtering (for example, exact and icontains). This documen-
tation explains how to write custom lookups and how to alter the working of existing lookups. For the API references
of lookups, see the Lookup API reference.

4.4.1 A simple lookup example

Let’s start with a simple custom lookup. We will write a custom lookup ne which works opposite to exact.
Author.objects.filter(name__ne='Jack') will translate to the SQL:

"author"."name" <> 'Jack'

This SQL is backend independent, so we don’t need to worry about different databases.

There are two steps to making this work. Firstly we need to implement the lookup, then we need to tell Django about
it. The implementation is quite straightforward:

from django.db.models import Lookup

class NotEqual(Lookup):
lookup_name = 'ne'

def as_sql(self, compiler, connection):
lhs, lhs_params = self.process_lhs(compiler, connection)
rhs, rhs_params = self.process_rhs(compiler, connection)
params = lhs_params + rhs_params
return '%s <> %s' % (lhs, rhs), params

To register the NotEqual lookup we will just need to call register_lookup on the field class we want the
lookup to be available. In this case, the lookup makes sense on all Field subclasses, so we register it with Field
directly:

from django.db.models.fields import Field
Field.register_lookup(NotEqual)

Lookup registration can also be done using a decorator pattern:

from django.db.models.fields import Field

@Field.register_lookup
class NotEqualLookup(Lookup):

...

We can now use foo__ne for any field foo. You will need to ensure that this registration happens before you try to
create any querysets using it. You could place the implementation in a models.py file, or register the lookup in the
ready() method of an AppConfig.

Taking a closer look at the implementation, the first required attribute is lookup_name. This allows the ORM to
understand how to interpret name__ne and use NotEqual to generate the SQL. By convention, these names are
always lowercase strings containing only letters, but the only hard requirement is that it must not contain the string
__.

We then need to define the as_sql method. This takes a SQLCompiler object, called compiler, and the active
database connection. SQLCompiler objects are not documented, but the only thing we need to know about them
is that they have a compile() method which returns a tuple containing an SQL string, and the parameters to be

4.4. Custom Lookups 555

Django Documentation, Release 1.10.9.dev20171123183751

interpolated into that string. In most cases, you don’t need to use it directly and can pass it on to process_lhs()
and process_rhs().

A Lookup works against two values, lhs and rhs, standing for left-hand side and right-hand side. The left-hand
side is usually a field reference, but it can be anything implementing the query expression API. The right-hand is the
value given by the user. In the example Author.objects.filter(name__ne='Jack'), the left-hand side is
a reference to the name field of the Author model, and 'Jack' is the right-hand side.

We call process_lhs and process_rhs to convert them into the values we need for SQL using the compiler
object described before. These methods return tuples containing some SQL and the parameters to be interpolated
into that SQL, just as we need to return from our as_sql method. In the above example, process_lhs re-
turns ('"author"."name"', []) and process_rhs returns ('"%s"', ['Jack']). In this example
there were no parameters for the left hand side, but this would depend on the object we have, so we still need to
include them in the parameters we return.

Finally we combine the parts into an SQL expression with <>, and supply all the parameters for the query. We then
return a tuple containing the generated SQL string and the parameters.

4.4.2 A simple transformer example

The custom lookup above is great, but in some cases you may want to be able to chain lookups together.
For example, let’s suppose we are building an application where we want to make use of the abs() opera-
tor. We have an Experiment model which records a start value, end value, and the change (start - end). We
would like to find all experiments where the change was equal to a certain amount (Experiment.objects.
filter(change__abs=27)), or where it did not exceed a certain amount (Experiment.objects.
filter(change__abs__lt=27)).

Note: This example is somewhat contrived, but it nicely demonstrates the range of functionality which is possible in
a database backend independent manner, and without duplicating functionality already in Django.

We will start by writing a AbsoluteValue transformer. This will use the SQL function ABS() to transform the
value before comparison:

from django.db.models import Transform

class AbsoluteValue(Transform):
lookup_name = 'abs'
function = 'ABS'

Next, let’s register it for IntegerField:

from django.db.models import IntegerField
IntegerField.register_lookup(AbsoluteValue)

We can now run the queries we had before. Experiment.objects.filter(change__abs=27) will gener-
ate the following SQL:

SELECT ... WHERE ABS("experiments"."change") = 27

By using Transform instead of Lookup it means we are able to chain further lookups afterwards. So
Experiment.objects.filter(change__abs__lt=27) will generate the following SQL:

SELECT ... WHERE ABS("experiments"."change") < 27

556 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

Note that in case there is no other lookup specified, Django interprets change__abs=27 as
change__abs__exact=27.

When looking for which lookups are allowable after the Transform has been applied, Django uses the
output_field attribute. We didn’t need to specify this here as it didn’t change, but supposing we were apply-
ing AbsoluteValue to some field which represents a more complex type (for example a point relative to an origin,
or a complex number) then we may have wanted to specify that the transform returns a FloatField type for further
lookups. This can be done by adding an output_field attribute to the transform:

from django.db.models import FloatField, Transform

class AbsoluteValue(Transform):
lookup_name = 'abs'
function = 'ABS'

@property
def output_field(self):

return FloatField()

This ensures that further lookups like abs__lte behave as they would for a FloatField.

4.4.3 Writing an efficient abs__lt lookup

When using the above written abs lookup, the SQL produced will not use indexes efficiently in some cases. In par-
ticular, when we use change__abs__lt=27, this is equivalent to change__gt=-27 AND change__lt=27.
(For the lte case we could use the SQL BETWEEN).

So we would like Experiment.objects.filter(change__abs__lt=27) to generate the following SQL:

SELECT .. WHERE "experiments"."change" < 27 AND "experiments"."change" > -27

The implementation is:

from django.db.models import Lookup

class AbsoluteValueLessThan(Lookup):
lookup_name = 'lt'

def as_sql(self, compiler, connection):
lhs, lhs_params = compiler.compile(self.lhs.lhs)
rhs, rhs_params = self.process_rhs(compiler, connection)
params = lhs_params + rhs_params + lhs_params + rhs_params
return '%s < %s AND %s > -%s' % (lhs, rhs, lhs, rhs), params

AbsoluteValue.register_lookup(AbsoluteValueLessThan)

There are a couple of notable things going on. First, AbsoluteValueLessThan isn’t calling process_lhs().
Instead it skips the transformation of the lhs done by AbsoluteValue and uses the original lhs. That is, we want
to get "experiments"."change" not ABS("experiments"."change"). Referring directly to self.
lhs.lhs is safe as AbsoluteValueLessThan can be accessed only from the AbsoluteValue lookup, that is
the lhs is always an instance of AbsoluteValue.

Notice also that as both sides are used multiple times in the query the params need to contain lhs_params and
rhs_params multiple times.

The final query does the inversion (27 to -27) directly in the database. The reason for doing this is that if the self.
rhs is something else than a plain integer value (for example an F() reference) we can’t do the transformations in
Python.

4.4. Custom Lookups 557

Django Documentation, Release 1.10.9.dev20171123183751

Note: In fact, most lookups with __abs could be implemented as range queries like this, and on most database
backends it is likely to be more sensible to do so as you can make use of the indexes. However with PostgreSQL you
may want to add an index on abs(change) which would allow these queries to be very efficient.

4.4.4 A bilateral transformer example

The AbsoluteValue example we discussed previously is a transformation which applies to the left-hand side of
the lookup. There may be some cases where you want the transformation to be applied to both the left-hand side and
the right-hand side. For instance, if you want to filter a queryset based on the equality of the left and right-hand side
insensitively to some SQL function.

Let’s examine the simple example of case-insensitive transformation here. This transformation isn’t very useful in
practice as Django already comes with a bunch of built-in case-insensitive lookups, but it will be a nice demonstration
of bilateral transformations in a database-agnostic way.

We define an UpperCase transformer which uses the SQL function UPPER() to transform the values before com-
parison. We define bilateral = True to indicate that this transformation should apply to both lhs and rhs:

from django.db.models import Transform

class UpperCase(Transform):
lookup_name = 'upper'
function = 'UPPER'
bilateral = True

Next, let’s register it:

from django.db.models import CharField, TextField
CharField.register_lookup(UpperCase)
TextField.register_lookup(UpperCase)

Now, the queryset Author.objects.filter(name__upper="doe") will generate a case insensitive query
like this:

SELECT ... WHERE UPPER("author"."name") = UPPER('doe')

4.4.5 Writing alternative implementations for existing lookups

Sometimes different database vendors require different SQL for the same operation. For this example we will rewrite
a custom implementation for MySQL for the NotEqual operator. Instead of <> we will be using != operator. (Note
that in reality almost all databases support both, including all the official databases supported by Django).

We can change the behavior on a specific backend by creating a subclass of NotEqual with a as_mysql method:

class MySQLNotEqual(NotEqual):
def as_mysql(self, compiler, connection):

lhs, lhs_params = self.process_lhs(compiler, connection)
rhs, rhs_params = self.process_rhs(compiler, connection)
params = lhs_params + rhs_params
return '%s != %s' % (lhs, rhs), params

Field.register_lookup(MySQLNotEqual)

558 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

We can then register it with Field. It takes the place of the original NotEqual class as it has the same
lookup_name.

When compiling a query, Django first looks for as_%s % connection.vendor methods, and then falls back to
as_sql. The vendor names for the in-built backends are sqlite, postgresql, oracle and mysql.

4.4.6 How Django determines the lookups and transforms which are used

In some cases you may wish to dynamically change which Transform or Lookup is returned based on the name
passed in, rather than fixing it. As an example, you could have a field which stores coordinates or an arbitrary dimen-
sion, and wish to allow a syntax like .filter(coords__x7=4) to return the objects where the 7th coordinate has
value 4. In order to do this, you would override get_lookup with something like:

class CoordinatesField(Field):
def get_lookup(self, lookup_name):

if lookup_name.startswith('x'):
try:

dimension = int(lookup_name[1:])
except ValueError:

pass
else:

return get_coordinate_lookup(dimension)
return super(CoordinatesField, self).get_lookup(lookup_name)

You would then define get_coordinate_lookup appropriately to return a Lookup subclass which handles the
relevant value of dimension.

There is a similarly named method called get_transform(). get_lookup() should always return a Lookup
subclass, and get_transform() a Transform subclass. It is important to remember that Transform objects
can be further filtered on, and Lookup objects cannot.

When filtering, if there is only one lookup name remaining to be resolved, we will look for a Lookup. If there are
multiple names, it will look for a Transform. In the situation where there is only one name and a Lookup is not
found, we look for a Transform and then the exact lookup on that Transform. All call sequences always end
with a Lookup. To clarify:

• .filter(myfield__mylookup) will call myfield.get_lookup('mylookup').

• .filter(myfield__mytransform__mylookup) will call myfield.
get_transform('mytransform'), and then mytransform.get_lookup('mylookup').

• .filter(myfield__mytransform) will first call myfield.get_lookup('mytransform'),
which will fail, so it will fall back to calling myfield.get_transform('mytransform') and then
mytransform.get_lookup('exact').

4.5 Custom template tags and filters

Django’s template language comes with a wide variety of built-in tags and filters designed to address the presentation
logic needs of your application. Nevertheless, you may find yourself needing functionality that is not covered by the
core set of template primitives. You can extend the template engine by defining custom tags and filters using Python,
and then make them available to your templates using the {% load %} tag.

4.5. Custom template tags and filters 559

Django Documentation, Release 1.10.9.dev20171123183751

4.5.1 Code layout

The most common place to specify custom template tags and filters is inside a Django app. If they relate to an existing
app, it makes sense to bundle them there; otherwise, they can be added to a new app. When a Django app is added to
INSTALLED_APPS, any tags it defines in the conventional location described below are automatically made available
to load within templates.

The app should contain a templatetags directory, at the same level as models.py, views.py, etc. If this
doesn’t already exist, create it - don’t forget the __init__.py file to ensure the directory is treated as a Python
package.

Development server won’t automatically restart

After adding the templatetags module, you will need to restart your server before you can use the tags or filters
in templates.

Your custom tags and filters will live in a module inside the templatetags directory. The name of the module file
is the name you’ll use to load the tags later, so be careful to pick a name that won’t clash with custom tags and filters
in another app.

For example, if your custom tags/filters are in a file called poll_extras.py, your app layout might look like this:

polls/
__init__.py
models.py
templatetags/

__init__.py
poll_extras.py

views.py

And in your template you would use the following:

{% load poll_extras %}

The app that contains the custom tags must be in INSTALLED_APPS in order for the {% load %} tag to work.
This is a security feature: It allows you to host Python code for many template libraries on a single host machine
without enabling access to all of them for every Django installation.

There’s no limit on how many modules you put in the templatetags package. Just keep in mind that a {% load
%} statement will load tags/filters for the given Python module name, not the name of the app.

To be a valid tag library, the module must contain a module-level variable named register that is a template.
Library instance, in which all the tags and filters are registered. So, near the top of your module, put the following:

from django import template

register = template.Library()

Alternatively, template tag modules can be registered through the 'libraries' argument to DjangoTemplates.
This is useful if you want to use a different label from the template tag module name when loading template tags. It
also enables you to register tags without installing an application.

Behind the scenes

For a ton of examples, read the source code for Django’s default filters and tags. They’re in django/template/
defaultfilters.py and django/template/defaulttags.py, respectively.

560 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

For more information on the load tag, read its documentation.

4.5.2 Writing custom template filters

Custom filters are just Python functions that take one or two arguments:

• The value of the variable (input) – not necessarily a string.

• The value of the argument – this can have a default value, or be left out altogether.

For example, in the filter {{ var|foo:"bar" }}, the filter foo would be passed the variable var and the argu-
ment "bar".

Since the template language doesn’t provide exception handling, any exception raised from a template filter will be
exposed as a server error. Thus, filter functions should avoid raising exceptions if there is a reasonable fallback value
to return. In case of input that represents a clear bug in a template, raising an exception may still be better than silent
failure which hides the bug.

Here’s an example filter definition:

def cut(value, arg):
"""Removes all values of arg from the given string"""
return value.replace(arg, '')

And here’s an example of how that filter would be used:

{{ somevariable|cut:"0" }}

Most filters don’t take arguments. In this case, just leave the argument out of your function. Example:

def lower(value): # Only one argument.
"""Converts a string into all lowercase"""
return value.lower()

Registering custom filters

django.template.Library.filter()

Once you’ve written your filter definition, you need to register it with your Library instance, to make it available to
Django’s template language:

register.filter('cut', cut)
register.filter('lower', lower)

The Library.filter() method takes two arguments:

1. The name of the filter – a string.

2. The compilation function – a Python function (not the name of the function as a string).

You can use register.filter() as a decorator instead:

@register.filter(name='cut')
def cut(value, arg):

return value.replace(arg, '')

@register.filter

4.5. Custom template tags and filters 561

Django Documentation, Release 1.10.9.dev20171123183751

def lower(value):
return value.lower()

If you leave off the name argument, as in the second example above, Django will use the function’s name as the filter
name.

Finally, register.filter() also accepts three keyword arguments, is_safe, needs_autoescape, and
expects_localtime. These arguments are described in filters and auto-escaping and filters and time zones below.

Template filters that expect strings

django.template.defaultfilters.stringfilter()

If you’re writing a template filter that only expects a string as the first argument, you should use the decorator
stringfilter. This will convert an object to its string value before being passed to your function:

from django import template
from django.template.defaultfilters import stringfilter

register = template.Library()

@register.filter
@stringfilter
def lower(value):

return value.lower()

This way, you’ll be able to pass, say, an integer to this filter, and it won’t cause an AttributeError (because
integers don’t have lower() methods).

Filters and auto-escaping

When writing a custom filter, give some thought to how the filter will interact with Django’s auto-escaping behavior.
Note that three types of strings can be passed around inside the template code:

• Raw strings are the native Python str or unicode types. On output, they’re escaped if auto-escaping is in
effect and presented unchanged, otherwise.

• Safe strings are strings that have been marked safe from further escaping at output time. Any necessary escaping
has already been done. They’re commonly used for output that contains raw HTML that is intended to be
interpreted as-is on the client side.

Internally, these strings are of type SafeBytes or SafeText. They share a common base class of
SafeData, so you can test for them using code like:

if isinstance(value, SafeData):
Do something with the "safe" string.
...

Template filter code falls into one of two situations:

1. Your filter does not introduce any HTML-unsafe characters (<, >, ', " or &) into the result that were not already
present. In this case, you can let Django take care of all the auto-escaping handling for you. All you need to do
is set the is_safe flag to True when you register your filter function, like so:

@register.filter(is_safe=True)
def myfilter(value):

return value

562 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

This flag tells Django that if a “safe” string is passed into your filter, the result will still be “safe” and if a
non-safe string is passed in, Django will automatically escape it, if necessary.

You can think of this as meaning “this filter is safe – it doesn’t introduce any possibility of unsafe HTML.”

The reason is_safe is necessary is because there are plenty of normal string operations that will turn a
SafeData object back into a normal str or unicode object and, rather than try to catch them all, which
would be very difficult, Django repairs the damage after the filter has completed.

For example, suppose you have a filter that adds the string xx to the end of any input. Since this introduces
no dangerous HTML characters to the result (aside from any that were already present), you should mark your
filter with is_safe:

@register.filter(is_safe=True)
def add_xx(value):

return '%sxx' % value

When this filter is used in a template where auto-escaping is enabled, Django will escape the output whenever
the input is not already marked as “safe”.

By default, is_safe is False, and you can omit it from any filters where it isn’t required.

Be careful when deciding if your filter really does leave safe strings as safe. If you’re removing characters, you
might inadvertently leave unbalanced HTML tags or entities in the result. For example, removing a > from the
input might turn <a> into <a, which would need to be escaped on output to avoid causing problems. Similarly,
removing a semicolon (;) can turn & into &, which is no longer a valid entity and thus needs further
escaping. Most cases won’t be nearly this tricky, but keep an eye out for any problems like that when reviewing
your code.

Marking a filter is_safe will coerce the filter’s return value to a string. If your filter should return a boolean or
other non-string value, marking it is_safe will probably have unintended consequences (such as converting
a boolean False to the string ‘False’).

2. Alternatively, your filter code can manually take care of any necessary escaping. This is necessary when you’re
introducing new HTML markup into the result. You want to mark the output as safe from further escaping so
that your HTML markup isn’t escaped further, so you’ll need to handle the input yourself.

To mark the output as a safe string, use django.utils.safestring.mark_safe().

Be careful, though. You need to do more than just mark the output as safe. You need to ensure it really is safe,
and what you do depends on whether auto-escaping is in effect. The idea is to write filters that can operate in
templates where auto-escaping is either on or off in order to make things easier for your template authors.

In order for your filter to know the current auto-escaping state, set the needs_autoescape flag to True
when you register your filter function. (If you don’t specify this flag, it defaults to False). This flag tells Django
that your filter function wants to be passed an extra keyword argument, called autoescape, that is True if
auto-escaping is in effect and False otherwise. It is recommended to set the default of the autoescape
parameter to True, so that if you call the function from Python code it will have escaping enabled by default.

For example, let’s write a filter that emphasizes the first character of a string:

from django import template
from django.utils.html import conditional_escape
from django.utils.safestring import mark_safe

register = template.Library()

@register.filter(needs_autoescape=True)
def initial_letter_filter(text, autoescape=True):

first, other = text[0], text[1:]
if autoescape:

4.5. Custom template tags and filters 563

Django Documentation, Release 1.10.9.dev20171123183751

esc = conditional_escape
else:

esc = lambda x: x
result = '%s%s' % (esc(first), esc(other))
return mark_safe(result)

The needs_autoescape flag and the autoescape keyword argument mean that our function will know
whether automatic escaping is in effect when the filter is called. We use autoescape to decide whether the
input data needs to be passed through django.utils.html.conditional_escape or not. (In the latter
case, we just use the identity function as the “escape” function.) The conditional_escape() function is
like escape() except it only escapes input that is not a SafeData instance. If a SafeData instance is
passed to conditional_escape(), the data is returned unchanged.

Finally, in the above example, we remember to mark the result as safe so that our HTML is inserted directly into
the template without further escaping.

There’s no need to worry about the is_safe flag in this case (although including it wouldn’t hurt anything).
Whenever you manually handle the auto-escaping issues and return a safe string, the is_safe flag won’t
change anything either way.

Warning: Avoiding XSS vulnerabilities when reusing built-in filters

Django’s built-in filters have autoescape=True by default in order to get the proper autoescaping behavior and
avoid a cross-site script vulnerability.

In older versions of Django, be careful when reusing Django’s built-in filters as autoescape defaults to None.
You’ll need to pass autoescape=True to get autoescaping.

For example, if you wanted to write a custom filter called urlize_and_linebreaks that combined the
urlize and linebreaksbr filters, the filter would look like:

from django.template.defaultfilters import linebreaksbr, urlize

@register.filter(needs_autoescape=True)
def urlize_and_linebreaks(text, autoescape=True):

return linebreaksbr(
urlize(text, autoescape=autoescape),
autoescape=autoescape

)

Then:
{{ comment|urlize_and_linebreaks }}

would be equivalent to:

{{ comment|urlize|linebreaksbr }}

Filters and time zones

If you write a custom filter that operates on datetime objects, you’ll usually register it with the
expects_localtime flag set to True:

@register.filter(expects_localtime=True)
def businesshours(value):

try:
return 9 <= value.hour < 17

564 Chapter 4. “How-to” guides

https://docs.python.org/3/library/datetime.html#datetime.datetime

Django Documentation, Release 1.10.9.dev20171123183751

except AttributeError:
return ''

When this flag is set, if the first argument to your filter is a time zone aware datetime, Django will convert it to the
current time zone before passing it to your filter when appropriate, according to rules for time zones conversions in
templates.

4.5.3 Writing custom template tags

Tags are more complex than filters, because tags can do anything. Django provides a number of shortcuts that make
writing most types of tags easier. First we’ll explore those shortcuts, then explain how to write a tag from scratch for
those cases when the shortcuts aren’t powerful enough.

Simple tags

django.template.Library.simple_tag()

Many template tags take a number of arguments – strings or template variables – and return a result after doing some
processing based solely on the input arguments and some external information. For example, a current_time tag
might accept a format string and return the time as a string formatted accordingly.

To ease the creation of these types of tags, Django provides a helper function, simple_tag. This function, which is
a method of django.template.Library, takes a function that accepts any number of arguments, wraps it in a
render function and the other necessary bits mentioned above and registers it with the template system.

Our current_time function could thus be written like this:

import datetime
from django import template

register = template.Library()

@register.simple_tag
def current_time(format_string):

return datetime.datetime.now().strftime(format_string)

A few things to note about the simple_tag helper function:

• Checking for the required number of arguments, etc., has already been done by the time our function is called,
so we don’t need to do that.

• The quotes around the argument (if any) have already been stripped away, so we just receive a plain string.

• If the argument was a template variable, our function is passed the current value of the variable, not the variable
itself.

Unlike other tag utilities, simple_tag passes its output through conditional_escape() if the template con-
text is in autoescape mode, to ensure correct HTML and protect you from XSS vulnerabilities.

If additional escaping is not desired, you will need to use mark_safe() if you are absolutely sure that your
code does not contain XSS vulnerabilities. For building small HTML snippets, use of format_html() instead
of mark_safe() is strongly recommended.

Auto-escaping for simple_tag as described in the previous two paragraphs was added.

If your template tag needs to access the current context, you can use the takes_context argument when registering
your tag:

4.5. Custom template tags and filters 565

Django Documentation, Release 1.10.9.dev20171123183751

@register.simple_tag(takes_context=True)
def current_time(context, format_string):

timezone = context['timezone']
return your_get_current_time_method(timezone, format_string)

Note that the first argument must be called context.

For more information on how the takes_context option works, see the section on inclusion tags.

If you need to rename your tag, you can provide a custom name for it:

register.simple_tag(lambda x: x - 1, name='minusone')

@register.simple_tag(name='minustwo')
def some_function(value):

return value - 2

simple_tag functions may accept any number of positional or keyword arguments. For example:

@register.simple_tag
def my_tag(a, b, *args, **kwargs):

warning = kwargs['warning']
profile = kwargs['profile']
...
return ...

Then in the template any number of arguments, separated by spaces, may be passed to the template tag. Like in
Python, the values for keyword arguments are set using the equal sign (“=”) and must be provided after the positional
arguments. For example:

{% my_tag 123 "abcd" book.title warning=message|lower profile=user.profile %}

It’s possible to store the tag results in a template variable rather than directly outputting it. This is done by using the
as argument followed by the variable name. Doing so enables you to output the content yourself where you see fit:

{% current_time "%Y-%m-%d %I:%M %p" as the_time %}
<p>The time is {{ the_time }}.</p>

Inclusion tags

django.template.Library.inclusion_tag()

Another common type of template tag is the type that displays some data by rendering another template. For example,
Django’s admin interface uses custom template tags to display the buttons along the bottom of the “add/change” form
pages. Those buttons always look the same, but the link targets change depending on the object being edited – so
they’re a perfect case for using a small template that is filled with details from the current object. (In the admin’s case,
this is the submit_row tag.)

These sorts of tags are called “inclusion tags”.

Writing inclusion tags is probably best demonstrated by example. Let’s write a tag that outputs a list of choices for a
given Poll object, such as was created in the tutorials. We’ll use the tag like this:

{% show_results poll %}

...and the output will be something like this:

566 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

First choice
Second choice
Third choice

First, define the function that takes the argument and produces a dictionary of data for the result. The important point
here is we only need to return a dictionary, not anything more complex. This will be used as a template context for the
template fragment. Example:

def show_results(poll):
choices = poll.choice_set.all()
return {'choices': choices}

Next, create the template used to render the tag’s output. This template is a fixed feature of the tag: the tag writer
specifies it, not the template designer. Following our example, the template is very simple:

{% for choice in choices %}

 {{ choice }}
{% endfor %}

Now, create and register the inclusion tag by calling the inclusion_tag() method on a Library object. Fol-
lowing our example, if the above template is in a file called results.html in a directory that’s searched by the
template loader, we’d register the tag like this:

Here, register is a django.template.Library instance, as before
@register.inclusion_tag('results.html')
def show_results(poll):

...

Alternatively it is possible to register the inclusion tag using a django.template.Template instance:

from django.template.loader import get_template
t = get_template('results.html')
register.inclusion_tag(t)(show_results)

...when first creating the function.

Sometimes, your inclusion tags might require a large number of arguments, making it a pain for template authors to
pass in all the arguments and remember their order. To solve this, Django provides a takes_context option for
inclusion tags. If you specify takes_context in creating a template tag, the tag will have no required arguments,
and the underlying Python function will have one argument – the template context as of when the tag was called.

For example, say you’re writing an inclusion tag that will always be used in a context that contains home_link and
home_title variables that point back to the main page. Here’s what the Python function would look like:

@register.inclusion_tag('link.html', takes_context=True)
def jump_link(context):

return {
'link': context['home_link'],
'title': context['home_title'],

}

Note that the first parameter to the function must be called context.

4.5. Custom template tags and filters 567

Django Documentation, Release 1.10.9.dev20171123183751

In that register.inclusion_tag() line, we specified takes_context=True and the name of the template.
Here’s what the template link.html might look like:

Jump directly to {{ title }}.

Then, any time you want to use that custom tag, load its library and call it without any arguments, like so:

{% jump_link %}

Note that when you’re using takes_context=True, there’s no need to pass arguments to the template tag. It
automatically gets access to the context.

The takes_context parameter defaults to False. When it’s set to True, the tag is passed the context object, as
in this example. That’s the only difference between this case and the previous inclusion_tag example.

inclusion_tag functions may accept any number of positional or keyword arguments. For example:

@register.inclusion_tag('my_template.html')
def my_tag(a, b, *args, **kwargs):

warning = kwargs['warning']
profile = kwargs['profile']
...
return ...

Then in the template any number of arguments, separated by spaces, may be passed to the template tag. Like in
Python, the values for keyword arguments are set using the equal sign (“=”) and must be provided after the positional
arguments. For example:

{% my_tag 123 "abcd" book.title warning=message|lower profile=user.profile %}

Assignment tags

django.template.Library.assignment_tag()

Deprecated since version 1.9: simple_tag can now store results in a template variable and should be used instead.

To ease the creation of tags setting a variable in the context, Django provides a helper function, assignment_tag.
This function works the same way as simple_tag() except that it stores the tag’s result in a specified context
variable instead of directly outputting it.

Our earlier current_time function could thus be written like this:

@register.assignment_tag
def get_current_time(format_string):

return datetime.datetime.now().strftime(format_string)

You may then store the result in a template variable using the as argument followed by the variable name, and output
it yourself where you see fit:

{% get_current_time "%Y-%m-%d %I:%M %p" as the_time %}
<p>The time is {{ the_time }}.</p>

Advanced custom template tags

Sometimes the basic features for custom template tag creation aren’t enough. Don’t worry, Django gives you complete
access to the internals required to build a template tag from the ground up.

568 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

A quick overview

The template system works in a two-step process: compiling and rendering. To define a custom template tag, you
specify how the compilation works and how the rendering works.

When Django compiles a template, it splits the raw template text into ‘’nodes’‘. Each node is an instance of django.
template.Node and has a render() method. A compiled template is, simply, a list of Node objects. When you
call render() on a compiled template object, the template calls render() on each Node in its node list, with the
given context. The results are all concatenated together to form the output of the template.

Thus, to define a custom template tag, you specify how the raw template tag is converted into a Node (the compilation
function), and what the node’s render() method does.

Writing the compilation function

For each template tag the template parser encounters, it calls a Python function with the tag contents and the parser
object itself. This function is responsible for returning a Node instance based on the contents of the tag.

For example, let’s write a full implementation of our simple template tag, {% current_time %}, that displays
the current date/time, formatted according to a parameter given in the tag, in strftime() syntax. It’s a good idea
to decide the tag syntax before anything else. In our case, let’s say the tag should be used like this:

<p>The time is {% current_time "%Y-%m-%d %I:%M %p" %}.</p>

The parser for this function should grab the parameter and create a Node object:

from django import template

def do_current_time(parser, token):
try:

split_contents() knows not to split quoted strings.
tag_name, format_string = token.split_contents()

except ValueError:
raise template.TemplateSyntaxError(

"%r tag requires a single argument" % token.contents.split()[0]
)

if not (format_string[0] == format_string[-1] and format_string[0] in ('"', "'")):
raise template.TemplateSyntaxError(

"%r tag's argument should be in quotes" % tag_name
)

return CurrentTimeNode(format_string[1:-1])

Notes:

• parser is the template parser object. We don’t need it in this example.

• token.contents is a string of the raw contents of the tag. In our example, it’s 'current_time
"%Y-%m-%d %I:%M %p"'.

• The token.split_contents() method separates the arguments on spaces while keeping quoted strings
together. The more straightforward token.contents.split() wouldn’t be as robust, as it would
naively split on all spaces, including those within quoted strings. It’s a good idea to always use token.
split_contents().

• This function is responsible for raising django.template.TemplateSyntaxError, with helpful mes-
sages, for any syntax error.

4.5. Custom template tags and filters 569

https://docs.python.org/3/library/time.html#time.strftime

Django Documentation, Release 1.10.9.dev20171123183751

• The TemplateSyntaxError exceptions use the tag_name variable. Don’t hard-code the tag’s name in
your error messages, because that couples the tag’s name to your function. token.contents.split()[0]
will ‘’always” be the name of your tag – even when the tag has no arguments.

• The function returns a CurrentTimeNodewith everything the node needs to know about this tag. In this case,
it just passes the argument – "%Y-%m-%d %I:%M %p". The leading and trailing quotes from the template tag
are removed in format_string[1:-1].

• The parsing is very low-level. The Django developers have experimented with writing small frameworks on
top of this parsing system, using techniques such as EBNF grammars, but those experiments made the template
engine too slow. It’s low-level because that’s fastest.

Writing the renderer

The second step in writing custom tags is to define a Node subclass that has a render() method.

Continuing the above example, we need to define CurrentTimeNode:

import datetime
from django import template

class CurrentTimeNode(template.Node):
def __init__(self, format_string):

self.format_string = format_string

def render(self, context):
return datetime.datetime.now().strftime(self.format_string)

Notes:

• __init__() gets the format_string from do_current_time(). Always pass any op-
tions/parameters/arguments to a Node via its __init__().

• The render() method is where the work actually happens.

• render() should generally fail silently, particularly in a production environment. In some cases however,
particularly if context.template.engine.debug is True, this method may raise an exception to make
debugging easier. For example, several core tags raise django.template.TemplateSyntaxError if
they receive the wrong number or type of arguments.

Ultimately, this decoupling of compilation and rendering results in an efficient template system, because a template
can render multiple contexts without having to be parsed multiple times.

Auto-escaping considerations

The output from template tags is not automatically run through the auto-escaping filters (with the exception of
simple_tag() as described above). However, there are still a couple of things you should keep in mind when
writing a template tag.

If the render() function of your template stores the result in a context variable (rather than returning the result in a
string), it should take care to call mark_safe() if appropriate. When the variable is ultimately rendered, it will be
affected by the auto-escape setting in effect at the time, so content that should be safe from further escaping needs to
be marked as such.

Also, if your template tag creates a new context for performing some sub-rendering, set the auto-escape attribute to
the current context’s value. The __init__ method for the Context class takes a parameter called autoescape
that you can use for this purpose. For example:

570 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

from django.template import Context

def render(self, context):
...
new_context = Context({'var': obj}, autoescape=context.autoescape)
... Do something with new_context ...

This is not a very common situation, but it’s useful if you’re rendering a template yourself. For example:

def render(self, context):
t = context.template.engine.get_template('small_fragment.html')
return t.render(Context({'var': obj}, autoescape=context.autoescape))

If we had neglected to pass in the current context.autoescape value to our new Context in this example, the
results would have always been automatically escaped, which may not be the desired behavior if the template tag is
used inside a {% autoescape off %} block.

Thread-safety considerations

Once a node is parsed, its render method may be called any number of times. Since Django is sometimes run in
multi-threaded environments, a single node may be simultaneously rendering with different contexts in response to
two separate requests. Therefore, it’s important to make sure your template tags are thread safe.

To make sure your template tags are thread safe, you should never store state information on the node itself. For ex-
ample, Django provides a builtin cycle template tag that cycles among a list of given strings each time it’s rendered:

{% for o in some_list %}
<tr class="{% cycle 'row1' 'row2' %}">

...
</tr>

{% endfor %}

A naive implementation of CycleNode might look something like this:

import itertools
from django import template

class CycleNode(template.Node):
def __init__(self, cyclevars):

self.cycle_iter = itertools.cycle(cyclevars)

def render(self, context):
return next(self.cycle_iter)

But, suppose we have two templates rendering the template snippet from above at the same time:

1. Thread 1 performs its first loop iteration, CycleNode.render() returns ‘row1’

2. Thread 2 performs its first loop iteration, CycleNode.render() returns ‘row2’

3. Thread 1 performs its second loop iteration, CycleNode.render() returns ‘row1’

4. Thread 2 performs its second loop iteration, CycleNode.render() returns ‘row2’

The CycleNode is iterating, but it’s iterating globally. As far as Thread 1 and Thread 2 are concerned, it’s always
returning the same value. This is obviously not what we want!

4.5. Custom template tags and filters 571

Django Documentation, Release 1.10.9.dev20171123183751

To address this problem, Django provides a render_context that’s associated with the context of the template
that is currently being rendered. The render_context behaves like a Python dictionary, and should be used to
store Node state between invocations of the render method.

Let’s refactor our CycleNode implementation to use the render_context:

class CycleNode(template.Node):
def __init__(self, cyclevars):

self.cyclevars = cyclevars

def render(self, context):
if self not in context.render_context:

context.render_context[self] = itertools.cycle(self.cyclevars)
cycle_iter = context.render_context[self]
return next(cycle_iter)

Note that it’s perfectly safe to store global information that will not change throughout the life of the Node as an
attribute. In the case of CycleNode, the cyclevars argument doesn’t change after the Node is instantiated, so we
don’t need to put it in the render_context. But state information that is specific to the template that is currently
being rendered, like the current iteration of the CycleNode, should be stored in the render_context.

Note: Notice how we used self to scope the CycleNode specific information within the render_context.
There may be multiple CycleNodes in a given template, so we need to be careful not to clobber another node’s state
information. The easiest way to do this is to always use self as the key into render_context. If you’re keeping
track of several state variables, make render_context[self] a dictionary.

Registering the tag

Finally, register the tag with your module’s Library instance, as explained in writing custom template filters above.
Example:

register.tag('current_time', do_current_time)

The tag() method takes two arguments:

1. The name of the template tag – a string. If this is left out, the name of the compilation function will be used.

2. The compilation function – a Python function (not the name of the function as a string).

As with filter registration, it is also possible to use this as a decorator:

@register.tag(name="current_time")
def do_current_time(parser, token):

...

@register.tag
def shout(parser, token):

...

If you leave off the name argument, as in the second example above, Django will use the function’s name as the tag
name.

572 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

Passing template variables to the tag

Although you can pass any number of arguments to a template tag using token.split_contents(), the argu-
ments are all unpacked as string literals. A little more work is required in order to pass dynamic content (a template
variable) to a template tag as an argument.

While the previous examples have formatted the current time into a string and returned the string, suppose you wanted
to pass in a DateTimeField from an object and have the template tag format that date-time:

<p>This post was last updated at {% format_time blog_entry.date_updated "%Y-%m-%d %I:
→˓%M %p" %}.</p>

Initially, token.split_contents() will return three values:

1. The tag name format_time.

2. The string 'blog_entry.date_updated' (without the surrounding quotes).

3. The formatting string '"%Y-%m-%d %I:%M %p"'. The return value from split_contents() will in-
clude the leading and trailing quotes for string literals like this.

Now your tag should begin to look like this:

from django import template

def do_format_time(parser, token):
try:

split_contents() knows not to split quoted strings.
tag_name, date_to_be_formatted, format_string = token.split_contents()

except ValueError:
raise template.TemplateSyntaxError(

"%r tag requires exactly two arguments" % token.contents.split()[0]
)

if not (format_string[0] == format_string[-1] and format_string[0] in ('"', "'")):
raise template.TemplateSyntaxError(

"%r tag's argument should be in quotes" % tag_name
)

return FormatTimeNode(date_to_be_formatted, format_string[1:-1])

You also have to change the renderer to retrieve the actual contents of the date_updated property of the
blog_entry object. This can be accomplished by using the Variable() class in django.template.

To use the Variable class, simply instantiate it with the name of the variable to be resolved, and then call
variable.resolve(context). So, for example:

class FormatTimeNode(template.Node):
def __init__(self, date_to_be_formatted, format_string):

self.date_to_be_formatted = template.Variable(date_to_be_formatted)
self.format_string = format_string

def render(self, context):
try:

actual_date = self.date_to_be_formatted.resolve(context)
return actual_date.strftime(self.format_string)

except template.VariableDoesNotExist:
return ''

Variable resolution will throw a VariableDoesNotExist exception if it cannot resolve the string passed to it in
the current context of the page.

4.5. Custom template tags and filters 573

Django Documentation, Release 1.10.9.dev20171123183751

Setting a variable in the context

The above examples simply output a value. Generally, it’s more flexible if your template tags set template variables
instead of outputting values. That way, template authors can reuse the values that your template tags create.

To set a variable in the context, just use dictionary assignment on the context object in the render() method. Here’s
an updated version of CurrentTimeNode that sets a template variable current_time instead of outputting it:

import datetime
from django import template

class CurrentTimeNode2(template.Node):
def __init__(self, format_string):

self.format_string = format_string
def render(self, context):

context['current_time'] = datetime.datetime.now().strftime(self.format_string)
return ''

Note that render() returns the empty string. render() should always return string output. If all the template tag
does is set a variable, render() should return the empty string.

Here’s how you’d use this new version of the tag:

{% current_time "%Y-%M-%d %I:%M %p" %}<p>The time is {{ current_time }}.</p>

Variable scope in context

Any variable set in the context will only be available in the same block of the template in which it was assigned.
This behavior is intentional; it provides a scope for variables so that they don’t conflict with context in other blocks.

But, there’s a problem with CurrentTimeNode2: The variable name current_time is hard-coded. This
means you’ll need to make sure your template doesn’t use {{ current_time }} anywhere else, because the
{% current_time %} will blindly overwrite that variable’s value. A cleaner solution is to make the template tag
specify the name of the output variable, like so:

{% current_time "%Y-%M-%d %I:%M %p" as my_current_time %}
<p>The current time is {{ my_current_time }}.</p>

To do that, you’ll need to refactor both the compilation function and Node class, like so:

import re

class CurrentTimeNode3(template.Node):
def __init__(self, format_string, var_name):

self.format_string = format_string
self.var_name = var_name

def render(self, context):
context[self.var_name] = datetime.datetime.now().strftime(self.format_string)
return ''

def do_current_time(parser, token):
This version uses a regular expression to parse tag contents.
try:

Splitting by None == splitting by spaces.
tag_name, arg = token.contents.split(None, 1)

except ValueError:
raise template.TemplateSyntaxError(

574 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

"%r tag requires arguments" % token.contents.split()[0]
)

m = re.search(r'(.*?) as (\w+)', arg)
if not m:

raise template.TemplateSyntaxError("%r tag had invalid arguments" % tag_name)
format_string, var_name = m.groups()
if not (format_string[0] == format_string[-1] and format_string[0] in ('"', "'")):

raise template.TemplateSyntaxError(
"%r tag's argument should be in quotes" % tag_name

)
return CurrentTimeNode3(format_string[1:-1], var_name)

The difference here is that do_current_time() grabs the format string and the variable name, passing both to
CurrentTimeNode3.

Finally, if you only need to have a simple syntax for your custom context-updating template tag, consider using the
simple_tag() shortcut, which supports assigning the tag results to a template variable.

Parsing until another block tag

Template tags can work in tandem. For instance, the standard {% comment %} tag hides everything until {%
endcomment %}. To create a template tag such as this, use parser.parse() in your compilation function.

Here’s how a simplified {% comment %} tag might be implemented:

def do_comment(parser, token):
nodelist = parser.parse(('endcomment',))
parser.delete_first_token()
return CommentNode()

class CommentNode(template.Node):
def render(self, context):

return ''

Note: The actual implementation of {% comment %} is slightly different in that it allows broken tem-
plate tags to appear between {% comment %} and {% endcomment %}. It does so by calling parser.
skip_past('endcomment') instead of parser.parse(('endcomment',)) followed by parser.
delete_first_token(), thus avoiding the generation of a node list.

parser.parse() takes a tuple of names of block tags ‘’to parse until’‘. It returns an instance of django.
template.NodeList, which is a list of all Node objects that the parser encountered ‘’before” it encountered any
of the tags named in the tuple.

In "nodelist = parser.parse(('endcomment',))" in the above example, nodelist is a list of
all nodes between the {% comment %} and {% endcomment %}, not counting {% comment %} and {%
endcomment %} themselves.

After parser.parse() is called, the parser hasn’t yet “consumed” the {% endcomment %} tag, so the code
needs to explicitly call parser.delete_first_token().

CommentNode.render() simply returns an empty string. Anything between {% comment %} and {%
endcomment %} is ignored.

4.5. Custom template tags and filters 575

Django Documentation, Release 1.10.9.dev20171123183751

Parsing until another block tag, and saving contents

In the previous example, do_comment() discarded everything between {% comment %} and {% endcomment
%}. Instead of doing that, it’s possible to do something with the code between block tags.

For example, here’s a custom template tag, {% upper %}, that capitalizes everything between itself and {%
endupper %}.

Usage:

{% upper %}This will appear in uppercase, {{ your_name }}.{% endupper %}

As in the previous example, we’ll use parser.parse(). But this time, we pass the resulting nodelist to the
Node:

def do_upper(parser, token):
nodelist = parser.parse(('endupper',))
parser.delete_first_token()
return UpperNode(nodelist)

class UpperNode(template.Node):
def __init__(self, nodelist):

self.nodelist = nodelist
def render(self, context):

output = self.nodelist.render(context)
return output.upper()

The only new concept here is the self.nodelist.render(context) in UpperNode.render().

For more examples of complex rendering, see the source code of {% for %} in django/template/
defaulttags.py and {% if %} in django/template/smartif.py.

4.6 Writing a custom storage system

If you need to provide custom file storage – a common example is storing files on some remote system – you can do
so by defining a custom storage class. You’ll need to follow these steps:

1. Your custom storage system must be a subclass of django.core.files.storage.Storage:

from django.core.files.storage import Storage

class MyStorage(Storage):
...

2. Django must be able to instantiate your storage system without any arguments. This means that any settings
should be taken from django.conf.settings:

from django.conf import settings
from django.core.files.storage import Storage

class MyStorage(Storage):
def __init__(self, option=None):

if not option:
option = settings.CUSTOM_STORAGE_OPTIONS

...

576 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

3. Your storage class must implement the _open() and _save() methods, along with any other methods ap-
propriate to your storage class. See below for more on these methods.

In addition, if your class provides local file storage, it must override the path() method.

4. Your storage class must be deconstructible so it can be serialized when it’s used on a field in a migration.
As long as your field has arguments that are themselves serializable, you can use the django.utils.
deconstruct.deconstructible class decorator for this (that’s what Django uses on FileSystemStor-
age).

By default, the following methods raise NotImplementedError and will typically have to be overridden:

• Storage.delete()

• Storage.exists()

• Storage.listdir()

• Storage.size()

• Storage.url()

Note however that not all these methods are required and may be deliberately omitted. As it happens, it is possible to
leave each method unimplemented and still have a working Storage.

By way of example, if listing the contents of certain storage backends turns out to be expensive, you might decide not
to implement Storage.listdir.

Another example would be a backend that only handles writing to files. In this case, you would not need to implement
any of the above methods.

Ultimately, which of these methods are implemented is up to you. Leaving some methods unimplemented will result
in a partial (possibly broken) interface.

You’ll also usually want to use hooks specifically designed for custom storage objects. These are:

_open(name, mode=’rb’)

Required.

Called by Storage.open(), this is the actual mechanism the storage class uses to open the file. This must return
a File object, though in most cases, you’ll want to return some subclass here that implements logic specific to the
backend storage system.

_save(name, content)

Called by Storage.save(). The name will already have gone through get_valid_name() and
get_available_name(), and the content will be a File object itself.

Should return the actual name of name of the file saved (usually the name passed in, but if the storage needs to change
the file name return the new name instead).

get_valid_name(name)

Returns a filename suitable for use with the underlying storage system. The name argument passed to this method is
either the original filename sent to the server or, if upload_to is a callable, the filename returned by that method
after any path information is removed. Override this to customize how non-standard characters are converted to safe
filenames.

In older versions, this method was not called when upload_to was a callable.

The code provided on Storage retains only alpha-numeric characters, periods and underscores from the original
filename, removing everything else.

get_available_name(name, max_length=None)

4.6. Writing a custom storage system 577

Django Documentation, Release 1.10.9.dev20171123183751

Returns a filename that is available in the storage mechanism, possibly taking the provided filename into account. The
name argument passed to this method will have already cleaned to a filename valid for the storage system, according
to the get_valid_name() method described above.

The length of the filename will not exceed max_length, if provided. If a free unique filename cannot be found, a
SuspiciousFileOperation exception is raised.

If a file with name already exists, an underscore plus a random 7 character alphanumeric string is appended to the
filename before the extension.

4.7 Deploying Django

Django’s chock-full of shortcuts to make Web developer’s lives easier, but all those tools are of no use if you can’t
easily deploy your sites. Since Django’s inception, ease of deployment has been a major goal.

4.7.1 How to deploy with WSGI

Django’s primary deployment platform is WSGI, the Python standard for web servers and applications.

Django’s startproject management command sets up a simple default WSGI configuration for you, which you
can tweak as needed for your project, and direct any WSGI-compliant application server to use.

Django includes getting-started documentation for the following WSGI servers:

How to use Django with Apache and mod_wsgi

Deploying Django with Apache and mod_wsgi is a tried and tested way to get Django into production.

mod_wsgi is an Apache module which can host any Python WSGI application, including Django. Django will work
with any version of Apache which supports mod_wsgi.

The official mod_wsgi documentation is fantastic; it’s your source for all the details about how to use mod_wsgi.
You’ll probably want to start with the installation and configuration documentation.

Basic configuration

Once you’ve got mod_wsgi installed and activated, edit your Apache server’s httpd.conf file and add the following. If
you are using a version of Apache older than 2.4, replace Require all granted with Allow from all and
also add the line Order deny,allow above it.

WSGIScriptAlias / /path/to/mysite.com/mysite/wsgi.py
WSGIPythonHome /path/to/venv
WSGIPythonPath /path/to/mysite.com

<Directory /path/to/mysite.com/mysite>
<Files wsgi.py>
Require all granted
</Files>
</Directory>

The first bit in the WSGIScriptAlias line is the base URL path you want to serve your application at (/ indicates
the root url), and the second is the location of a “WSGI file” – see below – on your system, usually inside of your
project package (mysite in this example). This tells Apache to serve any request below the given URL using the
WSGI application defined in that file.

578 Chapter 4. “How-to” guides

http://www.wsgi.org
https://httpd.apache.org/
http://www.modwsgi.org/
http://www.wsgi.org
https://modwsgi.readthedocs.io/
https://modwsgi.readthedocs.io/en/develop/installation.html
https://wiki.apache.org/httpd/DistrosDefaultLayout

Django Documentation, Release 1.10.9.dev20171123183751

If you install your project’s Python dependencies inside a virtualenv, add the path to the virtualenv using
WSGIPythonHome. See the mod_wsgi virtualenv guide for more details.

The WSGIPythonPath line ensures that your project package is available for import on the Python path; in other
words, that import mysite works.

The <Directory> piece just ensures that Apache can access your wsgi.py file.

Next we’ll need to ensure this wsgi.py with a WSGI application object exists. As of Django version 1.4,
startproject will have created one for you; otherwise, you’ll need to create it. See the WSGI overview docu-
mentation for the default contents you should put in this file, and what else you can add to it.

Warning: If multiple Django sites are run in a single mod_wsgi process, all of them will use the settings of
whichever one happens to run first. This can be solved by changing:

os.environ.setdefault("DJANGO_SETTINGS_MODULE", "{{ project_name }}.settings")

in wsgi.py, to:

os.environ["DJANGO_SETTINGS_MODULE"] = "{{ project_name }}.settings"

or by using mod_wsgi daemon mode and ensuring that each site runs in its own daemon process.

Fixing UnicodeEncodeError for file uploads

If you get a UnicodeEncodeError when uploading files with file names that contain non-ASCII characters, make
sure Apache is configured to accept non-ASCII file names:

export LANG='en_US.UTF-8'
export LC_ALL='en_US.UTF-8'

A common location to put this configuration is /etc/apache2/envvars.

See the Files section of the Unicode reference guide for details.

Using mod_wsgi daemon mode

“Daemon mode” is the recommended mode for running mod_wsgi (on non-Windows platforms). To create the
required daemon process group and delegate the Django instance to run in it, you will need to add appropriate
WSGIDaemonProcess and WSGIProcessGroup directives. A further change required to the above configu-
ration if you use daemon mode is that you can’t use WSGIPythonPath; instead you should use the python-path
option to WSGIDaemonProcess, for example:

WSGIDaemonProcess example.com python-home=/path/to/venv python-path=/path/to/mysite.
→˓com
WSGIProcessGroup example.com

If you want to serve your project in a subdirectory (https://example.com/mysite in this example), you can
add WSGIScriptAlias to the configuration above:

WSGIScriptAlias /mysite /path/to/mysite.com/mysite/wsgi.py process-group=example.com

See the official mod_wsgi documentation for details on setting up daemon mode.

4.7. Deploying Django 579

https://virtualenv.pypa.io/
https://modwsgi.readthedocs.io/en/develop/user-guides/virtual-environments.html
https://modwsgi.readthedocs.io/en/develop/user-guides/quick-configuration-guide.html#delegation-to-daemon-process

Django Documentation, Release 1.10.9.dev20171123183751

Serving files

Django doesn’t serve files itself; it leaves that job to whichever Web server you choose.

We recommend using a separate Web server – i.e., one that’s not also running Django – for serving media. Here are
some good choices:

• Nginx

• A stripped-down version of Apache

If, however, you have no option but to serve media files on the same Apache VirtualHost as Django, you can set
up Apache to serve some URLs as static media, and others using the mod_wsgi interface to Django.

This example sets up Django at the site root, but serves robots.txt, favicon.ico, and anything in the /
static/ and /media/ URL space as a static file. All other URLs will be served using mod_wsgi:

Alias /robots.txt /path/to/mysite.com/static/robots.txt
Alias /favicon.ico /path/to/mysite.com/static/favicon.ico

Alias /media/ /path/to/mysite.com/media/
Alias /static/ /path/to/mysite.com/static/

<Directory /path/to/mysite.com/static>
Require all granted
</Directory>

<Directory /path/to/mysite.com/media>
Require all granted
</Directory>

WSGIScriptAlias / /path/to/mysite.com/mysite/wsgi.py

<Directory /path/to/mysite.com/mysite>
<Files wsgi.py>
Require all granted
</Files>
</Directory>

If you are using a version of Apache older than 2.4, replace Require all granted with Allow from all
and also add the line Order deny,allow above it.

Serving the admin files

When django.contrib.staticfiles is in INSTALLED_APPS, the Django development server automati-
cally serves the static files of the admin app (and any other installed apps). This is however not the case when you
use any other server arrangement. You’re responsible for setting up Apache, or whichever Web server you’re using, to
serve the admin files.

The admin files live in (django/contrib/admin/static/admin) of the Django distribution.

We strongly recommend using django.contrib.staticfiles to handle the admin files (along with a Web
server as outlined in the previous section; this means using the collectstatic management command to collect
the static files in STATIC_ROOT, and then configuring your Web server to serve STATIC_ROOT at STATIC_URL),
but here are three other approaches:

1. Create a symbolic link to the admin static files from within your document root (this may require
+FollowSymLinks in your Apache configuration).

580 Chapter 4. “How-to” guides

http://wiki.nginx.org/Main
https://httpd.apache.org/

Django Documentation, Release 1.10.9.dev20171123183751

2. Use an Alias directive, as demonstrated above, to alias the appropriate URL (probably STATIC_URL +
admin/) to the actual location of the admin files.

3. Copy the admin static files so that they live within your Apache document root.

Authenticating against Django’s user database from Apache

Django provides a handler to allow Apache to authenticate users directly against Django’s authentication backends.
See the mod_wsgi authentication documentation.

Authenticating against Django’s user database from Apache

Since keeping multiple authentication databases in sync is a common problem when dealing with Apache, you can
configure Apache to authenticate against Django’s authentication system directly. This requires Apache version >=
2.2 and mod_wsgi >= 2.0. For example, you could:

• Serve static/media files directly from Apache only to authenticated users.

• Authenticate access to a Subversion repository against Django users with a certain permission.

• Allow certain users to connect to a WebDAV share created with mod_dav.

Note: If you have installed a custom user model and want to use this default auth handler, it must support an
is_active attribute. If you want to use group based authorization, your custom user must have a relation named
‘groups’, referring to a related object that has a ‘name’ field. You can also specify your own custom mod_wsgi auth
handler if your custom cannot conform to these requirements.

Authentication with mod_wsgi

Note: The use of WSGIApplicationGroup %{GLOBAL} in the configurations below presumes that your
Apache instance is running only one Django application. If you are running more than one Django application,
please refer to the Defining Application Groups section of the mod_wsgi docs for more information about this setting.

Make sure that mod_wsgi is installed and activated and that you have followed the steps to setup Apache with
mod_wsgi.

Next, edit your Apache configuration to add a location that you want only authenticated users to be able to view:

WSGIScriptAlias / /path/to/mysite.com/mysite/wsgi.py
WSGIPythonPath /path/to/mysite.com

WSGIProcessGroup %{GLOBAL}
WSGIApplicationGroup %{GLOBAL}

<Location "/secret">
AuthType Basic
AuthName "Top Secret"
Require valid-user
AuthBasicProvider wsgi
WSGIAuthUserScript /path/to/mysite.com/mysite/wsgi.py

</Location>

4.7. Deploying Django 581

http://subversion.apache.org/
https://httpd.apache.org/docs/2.2/mod/mod_dav.html
https://modwsgi.readthedocs.io/en/develop/user-guides/configuration-guidelines.html#defining-application-groups

Django Documentation, Release 1.10.9.dev20171123183751

The WSGIAuthUserScript directive tells mod_wsgi to execute the check_password function in speci-
fied wsgi script, passing the user name and password that it receives from the prompt. In this example, the
WSGIAuthUserScript is the same as the WSGIScriptAlias that defines your application that is created by
django-admin startproject.

Using Apache 2.2 with authentication

Make sure that mod_auth_basic and mod_authz_user are loaded.

These might be compiled statically into Apache, or you might need to use LoadModule to load them dynamically in
your httpd.conf:

LoadModule auth_basic_module modules/mod_auth_basic.so
LoadModule authz_user_module modules/mod_authz_user.so

Finally, edit your WSGI script mysite.wsgi to tie Apache’s authentication to your site’s authentication mechanisms
by importing the check_password function:

import os

os.environ['DJANGO_SETTINGS_MODULE'] = 'mysite.settings'

from django.contrib.auth.handlers.modwsgi import check_password

from django.core.handlers.wsgi import WSGIHandler
application = WSGIHandler()

Requests beginning with /secret/ will now require a user to authenticate.

The mod_wsgi access control mechanisms documentation provides additional details and information about alternative
methods of authentication.

Authorization with mod_wsgi and Django groups

mod_wsgi also provides functionality to restrict a particular location to members of a group.

In this case, the Apache configuration should look like this:

WSGIScriptAlias / /path/to/mysite.com/mysite/wsgi.py

WSGIProcessGroup %{GLOBAL}
WSGIApplicationGroup %{GLOBAL}

<Location "/secret">
AuthType Basic
AuthName "Top Secret"
AuthBasicProvider wsgi
WSGIAuthUserScript /path/to/mysite.com/mysite/wsgi.py
WSGIAuthGroupScript /path/to/mysite.com/mysite/wsgi.py
Require group secret-agents
Require valid-user

</Location>

To support the WSGIAuthGroupScript directive, the same WSGI script mysite.wsgi must also import the
groups_for_user function which returns a list groups the given user belongs to.

582 Chapter 4. “How-to” guides

https://modwsgi.readthedocs.io/en/develop/user-guides/access-control-mechanisms.html

Django Documentation, Release 1.10.9.dev20171123183751

from django.contrib.auth.handlers.modwsgi import check_password, groups_for_user

Requests for /secret/ will now also require user to be a member of the “secret-agents” group.

How to use Django with Gunicorn

Gunicorn (‘Green Unicorn’) is a pure-Python WSGI server for UNIX. It has no dependencies and is easy to install and
use.

Installing Gunicorn

Installing gunicorn is as easy as pip install gunicorn. For more details, see the gunicorn documentation.

Running Django in Gunicorn as a generic WSGI application

When Gunicorn is installed, a gunicorn command is available which starts the Gunicorn server process. At its
simplest, gunicorn just needs to be called with the location of a module containing a WSGI application object named
application. So for a typical Django project, invoking gunicorn would look like:

gunicorn myproject.wsgi

This will start one process running one thread listening on 127.0.0.1:8000. It requires that your project be on
the Python path; the simplest way to ensure that is to run this command from the same directory as your manage.py
file.

See Gunicorn’s deployment documentation for additional tips.

How to use Django with uWSGI

uWSGI is a fast, self-healing and developer/sysadmin-friendly application container server coded in pure C.

See also:

The uWSGI docs offer a tutorial covering Django, nginx, and uWSGI (one possible deployment setup of many). The
docs below are focused on how to integrate Django with uWSGI.

Prerequisite: uWSGI

The uWSGI wiki describes several installation procedures. Using pip, the Python package manager, you can install
any uWSGI version with a single command. For example:

Install current stable version.
$ pip install uwsgi

Or install LTS (long term support).
$ pip install https://projects.unbit.it/downloads/uwsgi-lts.tar.gz

4.7. Deploying Django 583

http://gunicorn.org/
http://docs.gunicorn.org/en/latest/install.html
http://docs.gunicorn.org/en/latest/deploy.html
https://projects.unbit.it/uwsgi/
https://uwsgi.readthedocs.io/en/latest/tutorials/Django_and_nginx.html
https://uwsgi-docs.readthedocs.io/en/latest/Install.html

Django Documentation, Release 1.10.9.dev20171123183751

Warning: Some distributions, including Debian and Ubuntu, ship an outdated version of uWSGI that does
not conform to the WSGI specification. Versions prior to 1.2.6 do not call close on the response object after
handling a request. In those cases the request_finished signal isn’t sent. This can result in idle connections
to database and memcache servers.

uWSGI model

uWSGI operates on a client-server model. Your Web server (e.g., nginx, Apache) communicates with a django-uwsgi
“worker” process to serve dynamic content. See uWSGI’s background documentation for more detail.

Configuring and starting the uWSGI server for Django

uWSGI supports multiple ways to configure the process. See uWSGI’s configuration documentation and examples.

Here’s an example command to start a uWSGI server:

uwsgi --chdir=/path/to/your/project \
--module=mysite.wsgi:application \
--env DJANGO_SETTINGS_MODULE=mysite.settings \
--master --pidfile=/tmp/project-master.pid \
--socket=127.0.0.1:49152 \ # can also be a file
--processes=5 \ # number of worker processes
--uid=1000 --gid=2000 \ # if root, uwsgi can drop privileges
--harakiri=20 \ # respawn processes taking more than 20 seconds
--max-requests=5000 \ # respawn processes after serving 5000 requests
--vacuum \ # clear environment on exit
--home=/path/to/virtual/env \ # optional path to a virtualenv
--daemonize=/var/log/uwsgi/yourproject.log # background the process

This assumes you have a top-level project package named mysite, and within it a module mysite/wsgi.
py that contains a WSGI application object. This is the layout you’ll have if you ran django-admin
startproject mysite (using your own project name in place of mysite) with a recent version of Django.
If this file doesn’t exist, you’ll need to create it. See the How to deploy with WSGI documentation for the default
contents you should put in this file and what else you can add to it.

The Django-specific options here are:

• chdir: The path to the directory that needs to be on Python’s import path – i.e., the directory containing the
mysite package.

• module: The WSGI module to use – probably the mysite.wsgi module that startproject creates.

• env: Should probably contain at least DJANGO_SETTINGS_MODULE.

• home: Optional path to your project virtualenv.

Example ini configuration file:

[uwsgi]
chdir=/path/to/your/project
module=mysite.wsgi:application
master=True
pidfile=/tmp/project-master.pid
vacuum=True
max-requests=5000
daemonize=/var/log/uwsgi/yourproject.log

584 Chapter 4. “How-to” guides

https://projects.unbit.it/uwsgi/wiki/Background
https://uwsgi.readthedocs.io/en/latest/Configuration.html
https://projects.unbit.it/uwsgi/wiki/Example

Django Documentation, Release 1.10.9.dev20171123183751

Example ini configuration file usage:

uwsgi --ini uwsgi.ini

Fixing UnicodeEncodeError for file uploads

If you get a UnicodeEncodeError when uploading files with file names that contain non-ASCII characters, make
sure uWSGI is configured to accept non-ASCII file names by adding this to your uwsgi.ini:

env = LANG=en_US.UTF-8

See the Files section of the Unicode reference guide for details.

See the uWSGI docs on managing the uWSGI process for information on starting, stopping and reloading the uWSGI
workers.

The application object

The key concept of deploying with WSGI is the application callable which the application server uses to com-
municate with your code. It’s commonly provided as an object named application in a Python module accessible
to the server.

The startproject command creates a file <project_name>/wsgi.py that contains such an application
callable.

It’s used both by Django’s development server and in production WSGI deployments.

WSGI servers obtain the path to the application callable from their configuration. Django’s built-in server,
namely the runserver command, reads it from the WSGI_APPLICATION setting. By default, it’s set to
<project_name>.wsgi.application, which points to the application callable in <project_name>/
wsgi.py.

Configuring the settings module

When the WSGI server loads your application, Django needs to import the settings module — that’s where your entire
application is defined.

Django uses the DJANGO_SETTINGS_MODULE environment variable to locate the appropriate settings module. It
must contain the dotted path to the settings module. You can use a different value for development and production; it
all depends on how you organize your settings.

If this variable isn’t set, the default wsgi.py sets it to mysite.settings, where mysite is the name of your
project. That’s how runserver discovers the default settings file by default.

Note: Since environment variables are process-wide, this doesn’t work when you run multiple Django sites in the
same process. This happens with mod_wsgi.

To avoid this problem, use mod_wsgi’s daemon mode with each site in its own daemon process, or override
the value from the environment by enforcing os.environ["DJANGO_SETTINGS_MODULE"] = "mysite.
settings" in your wsgi.py.

4.7. Deploying Django 585

https://uwsgi-docs.readthedocs.io/en/latest/Management.html

Django Documentation, Release 1.10.9.dev20171123183751

Applying WSGI middleware

To apply WSGI middleware you can simply wrap the application object. For instance you could add these lines at the
bottom of wsgi.py:

from helloworld.wsgi import HelloWorldApplication
application = HelloWorldApplication(application)

You could also replace the Django WSGI application with a custom WSGI application that later delegates to the Django
WSGI application, if you want to combine a Django application with a WSGI application of another framework.

Note: Some third-party WSGI middleware do not call close on the response object after handling a request. In
those cases the request_finished signal isn’t sent. This can result in idle connections to database and memcache
servers.

4.7.2 Deployment checklist

The Internet is a hostile environment. Before deploying your Django project, you should take some time to review
your settings, with security, performance, and operations in mind.

Django includes many security features. Some are built-in and always enabled. Others are optional because they
aren’t always appropriate, or because they’re inconvenient for development. For example, forcing HTTPS may not be
suitable for all websites, and it’s impractical for local development.

Performance optimizations are another category of trade-offs with convenience. For instance, caching is useful in
production, less so for local development. Error reporting needs are also widely different.

The following checklist includes settings that:

• must be set properly for Django to provide the expected level of security;

• are expected to be different in each environment;

• enable optional security features;

• enable performance optimizations;

• provide error reporting.

Many of these settings are sensitive and should be treated as confidential. If you’re releasing the source code for your
project, a common practice is to publish suitable settings for development, and to use a private settings module for
production.

Run manage.py check --deploy

Some of the checks described below can be automated using the check --deploy option. Be sure to run it against
your production settings file as described in the option’s documentation.

Critical settings

SECRET_KEY

The secret key must be a large random value and it must be kept secret.

586 Chapter 4. “How-to” guides

https://www.python.org/dev/peps/pep-3333/#middleware-components-that-play-both-sides

Django Documentation, Release 1.10.9.dev20171123183751

Make sure that the key used in production isn’t used anywhere else and avoid committing it to source control. This
reduces the number of vectors from which an attacker may acquire the key.

Instead of hardcoding the secret key in your settings module, consider loading it from an environment variable:

import os
SECRET_KEY = os.environ['SECRET_KEY']

or from a file:

with open('/etc/secret_key.txt') as f:
SECRET_KEY = f.read().strip()

DEBUG

You must never enable debug in production.

You’re certainly developing your project with DEBUG = True, since this enables handy features like full tracebacks
in your browser.

For a production environment, though, this is a really bad idea, because it leaks lots of information about your project:
excerpts of your source code, local variables, settings, libraries used, etc.

Environment-specific settings

ALLOWED_HOSTS

When DEBUG = False, Django doesn’t work at all without a suitable value for ALLOWED_HOSTS.

This setting is required to protect your site against some CSRF attacks. If you use a wildcard, you must perform your
own validation of the Host HTTP header, or otherwise ensure that you aren’t vulnerable to this category of attacks.

You should also configure the Web server that sits in front of Django to validate the host. It should respond with a
static error page or ignore requests for incorrect hosts instead of forwarding the request to Django. This way you’ll
avoid spurious errors in your Django logs (or emails if you have error reporting configured that way). For example, on
nginx you might setup a default server to return “444 No Response” on an unrecognized host:

server {
listen 80 default_server;
return 444;

}

CACHES

If you’re using a cache, connection parameters may be different in development and in production. Django defaults to
per-process local-memory caching which may not be desirable.

Cache servers often have weak authentication. Make sure they only accept connections from your application servers.

If you’re using Memcached, consider using cached sessions to improve performance.

4.7. Deploying Django 587

Django Documentation, Release 1.10.9.dev20171123183751

DATABASES

Database connection parameters are probably different in development and in production.

Database passwords are very sensitive. You should protect them exactly like SECRET_KEY .

For maximum security, make sure database servers only accept connections from your application servers.

If you haven’t set up backups for your database, do it right now!

EMAIL_BACKEND and related settings

If your site sends emails, these values need to be set correctly.

By default, Django sends email from webmaster@localhost and root@localhost. However, some mail providers
reject email from these addresses. To use different sender addresses, modify the DEFAULT_FROM_EMAIL and
SERVER_EMAIL settings.

STATIC_ROOT and STATIC_URL

Static files are automatically served by the development server. In production, you must define a STATIC_ROOT
directory where collectstatic will copy them.

See Managing static files (e.g. images, JavaScript, CSS) for more information.

MEDIA_ROOT and MEDIA_URL

Media files are uploaded by your users. They’re untrusted! Make sure your web server never attempts to interpret
them. For instance, if a user uploads a .php file, the web server shouldn’t execute it.

Now is a good time to check your backup strategy for these files.

HTTPS

Any website which allows users to log in should enforce site-wide HTTPS to avoid transmitting access tokens in clear.
In Django, access tokens include the login/password, the session cookie, and password reset tokens. (You can’t do
much to protect password reset tokens if you’re sending them by email.)

Protecting sensitive areas such as the user account or the admin isn’t sufficient, because the same session cookie is
used for HTTP and HTTPS. Your web server must redirect all HTTP traffic to HTTPS, and only transmit HTTPS
requests to Django.

Once you’ve set up HTTPS, enable the following settings.

CSRF_COOKIE_SECURE

Set this to True to avoid transmitting the CSRF cookie over HTTP accidentally.

SESSION_COOKIE_SECURE

Set this to True to avoid transmitting the session cookie over HTTP accidentally.

588 Chapter 4. “How-to” guides

mailto:webmaster@localhost
mailto:root@localhost

Django Documentation, Release 1.10.9.dev20171123183751

Performance optimizations

Setting DEBUG = False disables several features that are only useful in development. In addition, you can tune the
following settings.

CONN_MAX_AGE

Enabling persistent database connections can result in a nice speed-up when connecting to the database accounts for
a significant part of the request processing time.

This helps a lot on virtualized hosts with limited network performance.

TEMPLATES

Enabling the cached template loader often improves performance drastically, as it avoids compiling each template
every time it needs to be rendered. See the template loaders docs for more information.

Error reporting

By the time you push your code to production, it’s hopefully robust, but you can’t rule out unexpected errors. Thank-
fully, Django can capture errors and notify you accordingly.

LOGGING

Review your logging configuration before putting your website in production, and check that it works as expected as
soon as you have received some traffic.

See Logging for details on logging.

ADMINS and MANAGERS

ADMINS will be notified of 500 errors by email.

MANAGERS will be notified of 404 errors. IGNORABLE_404_URLS can help filter out spurious reports.

See Error reporting for details on error reporting by email.

Error reporting by email doesn’t scale very well

Consider using an error monitoring system such as Sentry before your inbox is flooded by reports. Sentry can also
aggregate logs.

Customize the default error views

Django includes default views and templates for several HTTP error codes. You may want to override the default
templates by creating the following templates in your root template directory: 404.html, 500.html, 403.html,
and 400.html. The default views should suffice for 99% of Web applications, but if you desire to customize them,
see these instructions which also contain details about the default templates:

• The 404 (page not found) view

4.7. Deploying Django 589

https://docs.getsentry.com/

Django Documentation, Release 1.10.9.dev20171123183751

• The 500 (server error) view

• The 403 (HTTP Forbidden) view

• The 400 (bad request) view

Python Options

It’s strongly recommended that you invoke the Python process running your Django application using the -R option
or with the PYTHONHASHSEED environment variable set to random. This option is enabled by default starting with
Python 3.3.

These options help protect your site from denial-of-service (DoS) attacks triggered by carefully crafted inputs. Such
an attack can drastically increase CPU usage by causing worst-case performance when creating dict instances. See
oCERT advisory #2011-003 for more information.

If you’re new to deploying Django and/or Python, we’d recommend you try mod_wsgi first. In most cases it’ll be the
easiest, fastest, and most stable deployment choice.

4.8 Upgrading Django to a newer version

While it can be a complex process at times, upgrading to the latest Django version has several benefits:

• New features and improvements are added.

• Bugs are fixed.

• Older version of Django will eventually no longer receive security updates. (see Supported versions).

• Upgrading as each new Django release is available makes future upgrades less painful by keeping your code
base up to date.

Here are some things to consider to help make your upgrade process as smooth as possible.

4.8.1 Required Reading

If it’s your first time doing an upgrade, it is useful to read the guide on the different release processes.

Afterwards, you should familiarize yourself with the changes that were made in the new Django version(s):

• Read the release notes for each ‘final’ release from the one after your current Django version, up to and including
the version to which you plan to upgrade.

• Look at the deprecation timeline for the relevant versions.

Pay particular attention to backwards incompatible changes to get a clear idea of what will be needed for a successful
upgrade.

4.8.2 Dependencies

In most cases it will be necessary to upgrade to the latest version of your Django-related dependencies as well. If
the Django version was recently released or if some of your dependencies are not well-maintained, some of your
dependencies may not yet support the new Django version. In these cases you may have to wait until new versions of
your dependencies are released.

590 Chapter 4. “How-to” guides

https://docs.python.org/2/using/cmdline.html#cmdoption-R
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONHASHSEED
http://www.ocert.org/advisories/ocert-2011-003.html

Django Documentation, Release 1.10.9.dev20171123183751

4.8.3 Resolving deprecation warnings

Before upgrading, it’s a good idea to resolve any deprecation warnings raised by your project while using your current
version of Django. Fixing these warnings before upgrading ensures that you’re informed about areas of the code that
need altering.

In Python, deprecation warnings are silenced by default. You must turn them on using the -Wall Python command
line option or the PYTHONWARNINGS environment variable. For example, to show warnings while running tests:

$ python -Wall manage.py test

If you’re not using the Django test runner, you may need to also ensure that any console output is not captured which
would hide deprecation warnings. For example, if you use py.test:

$ PYTHONWARNINGS=all py.test tests --capture=no

Resolve any deprecation warnings with your current version of Django before continuing the upgrade process.

Third party applications might use deprecated APIs in order to support multiple versions of Django, so deprecation
warnings in packages you’ve installed don’t necessarily indicate a problem. If a package doesn’t support the latest
version of Django, consider raising an issue or sending a pull request for it.

4.8.4 Installation

Once you’re ready, it is time to install the new Django version. If you are using virtualenv and it is a major upgrade,
you might want to set up a new environment with all the dependencies first.

Exactly which steps you will need to take depends on your installation process. The most convenient way is to use pip
with the --upgrade or -U flag:

$ pip install -U Django

pip also automatically uninstalls the previous version of Django.

If you use some other installation process, you might have to manually uninstall the old Django version and should
look at the complete installation instructions.

4.8.5 Testing

When the new environment is set up, run the full test suite for your application. Again, it’s useful to turn on deprecation
warnings on so they’re shown in the test output (you can also use the flag if you test your app manually using manage.
py runserver):

$ python -Wall manage.py test

After you have run the tests, fix any failures. While you have the release notes fresh in your mind, it may also be a
good time to take advantage of new features in Django by refactoring your code to eliminate any deprecation warnings.

4.8.6 Deployment

When you are sufficiently confident your app works with the new version of Django, you’re ready to go ahead and
deploy your upgraded Django project.

If you are using caching provided by Django, you should consider clearing your cache after upgrading. Otherwise
you may run into problems, for example, if you are caching pickled objects as these objects are not guaranteed to be

4.8. Upgrading Django to a newer version 591

https://docs.python.org/3/using/cmdline.html#envvar-PYTHONWARNINGS
https://virtualenv.pypa.io/
https://pip.pypa.io/
https://pip.pypa.io/

Django Documentation, Release 1.10.9.dev20171123183751

pickle-compatible across Django versions. A past instance of incompatibility was caching pickled HttpResponse
objects, either directly or indirectly via the cache_page() decorator.

4.9 Error reporting

When you’re running a public site you should always turn off the DEBUG setting. That will make your server run
much faster, and will also prevent malicious users from seeing details of your application that can be revealed by the
error pages.

However, running with DEBUG set to False means you’ll never see errors generated by your site – everyone will just
see your public error pages. You need to keep track of errors that occur in deployed sites, so Django can be configured
to create reports with details about those errors.

4.9.1 Email reports

Server errors

When DEBUG is False, Django will email the users listed in the ADMINS setting whenever your code raises an
unhandled exception and results in an internal server error (HTTP status code 500). This gives the administrators
immediate notification of any errors. The ADMINS will get a description of the error, a complete Python traceback,
and details about the HTTP request that caused the error.

Note: In order to send email, Django requires a few settings telling it how to connect to your mail server. At the
very least, you’ll need to specify EMAIL_HOST and possibly EMAIL_HOST_USER and EMAIL_HOST_PASSWORD,
though other settings may be also required depending on your mail server’s configuration. Consult the Django settings
documentation for a full list of email-related settings.

By default, Django will send email from root@localhost. However, some mail providers reject all email from this
address. To use a different sender address, modify the SERVER_EMAIL setting.

To activate this behavior, put the email addresses of the recipients in the ADMINS setting.

See also:

Server error emails are sent using the logging framework, so you can customize this behavior by customizing your
logging configuration.

404 errors

Django can also be configured to email errors about broken links (404 “page not found” errors). Django sends emails
about 404 errors when:

• DEBUG is False;

• Your MIDDLEWARE setting includes django.middleware.common.
BrokenLinkEmailsMiddleware.

If those conditions are met, Django will email the users listed in the MANAGERS setting whenever your code raises
a 404 and the request has a referer. It doesn’t bother to email for 404s that don’t have a referer – those are usually
just people typing in broken URLs or broken Web bots. It also ignores 404s when the referer is equal to the requested
URL, since this behavior is from broken Web bots too.

In older versions, 404s were not ignored when the referer was equal to the requested URL.

592 Chapter 4. “How-to” guides

mailto:root@localhost

Django Documentation, Release 1.10.9.dev20171123183751

Note: BrokenLinkEmailsMiddleware must appear before other middleware that intercepts 404 errors, such
as LocaleMiddleware or FlatpageFallbackMiddleware. Put it towards the top of your MIDDLEWARE
setting.

You can tell Django to stop reporting particular 404s by tweaking the IGNORABLE_404_URLS setting. It should be
a list of compiled regular expression objects. For example:

import re
IGNORABLE_404_URLS = [

re.compile(r'\.(php|cgi)$'),
re.compile(r'^/phpmyadmin/'),

]

In this example, a 404 to any URL ending with .php or .cgi will not be reported. Neither will any URL starting
with /phpmyadmin/.

The following example shows how to exclude some conventional URLs that browsers and crawlers often request:

import re
IGNORABLE_404_URLS = [

re.compile(r'^/apple-touch-icon.*\.png$'),
re.compile(r'^/favicon\.ico$'),
re.compile(r'^/robots\.txt$'),

]

(Note that these are regular expressions, so we put a backslash in front of periods to escape them.)

If you’d like to customize the behavior of django.middleware.common.BrokenLinkEmailsMiddleware
further (for example to ignore requests coming from web crawlers), you should subclass it and override its methods.

See also:

404 errors are logged using the logging framework. By default, these log records are ignored, but you can use them
for error reporting by writing a handler and configuring logging appropriately.

4.9.2 Filtering error reports

Warning: Filtering sensitive data is a hard problem, and it’s nearly impossible to guarantee that sensitive data
won’t leak into an error report. Therefore, error reports should only be available to trusted team members and you
should avoid transmitting error reports unencrypted over the Internet (such as through email).

Filtering sensitive information

Error reports are really helpful for debugging errors, so it is generally useful to record as much relevant information
about those errors as possible. For example, by default Django records the full traceback for the exception raised, each
traceback frame’s local variables, and the HttpRequest’s attributes.

However, sometimes certain types of information may be too sensitive and thus may not be appropriate to be kept
track of, for example a user’s password or credit card number. So in addition to filtering out settings that appear to
be sensitive as described in the DEBUG documentation, Django offers a set of function decorators to help you control
which information should be filtered out of error reports in a production environment (that is, where DEBUG is set to
False): sensitive_variables() and sensitive_post_parameters().

4.9. Error reporting 593

https://en.wikipedia.org/wiki/Stack_trace
https://en.wikipedia.org/wiki/Stack_frame

Django Documentation, Release 1.10.9.dev20171123183751

sensitive_variables(*variables)
If a function (either a view or any regular callback) in your code uses local variables susceptible to contain
sensitive information, you may prevent the values of those variables from being included in error reports using
the sensitive_variables decorator:

from django.views.decorators.debug import sensitive_variables

@sensitive_variables('user', 'pw', 'cc')
def process_info(user):

pw = user.pass_word
cc = user.credit_card_number
name = user.name
...

In the above example, the values for the user, pw and cc variables will be hidden and replaced with stars
(**********) in the error reports, whereas the value of the name variable will be disclosed.

To systematically hide all local variables of a function from error logs, do not provide any argument to the
sensitive_variables decorator:

@sensitive_variables()
def my_function():

...

When using multiple decorators

If the variable you want to hide is also a function argument (e.g. ‘user’ in the following example), and if the
decorated function has multiple decorators, then make sure to place @sensitive_variables at the top
of the decorator chain. This way it will also hide the function argument as it gets passed through the other
decorators:

@sensitive_variables('user', 'pw', 'cc')
@some_decorator
@another_decorator
def process_info(user):

...

sensitive_post_parameters(*parameters)
If one of your views receives an HttpRequest object with POST parameters susceptible to contain sen-
sitive information, you may prevent the values of those parameters from being included in the error reports using
the sensitive_post_parameters decorator:

from django.views.decorators.debug import sensitive_post_parameters

@sensitive_post_parameters('pass_word', 'credit_card_number')
def record_user_profile(request):

UserProfile.create(
user=request.user,
password=request.POST['pass_word'],
credit_card=request.POST['credit_card_number'],
name=request.POST['name'],

)
...

In the above example, the values for the pass_word and credit_card_number POST parameters will be
hidden and replaced with stars (**********) in the request’s representation inside the error reports, whereas the

594 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

value of the name parameter will be disclosed.

To systematically hide all POST parameters of a request in error reports, do not provide any argument to the
sensitive_post_parameters decorator:

@sensitive_post_parameters()
def my_view(request):

...

All POST parameters are systematically filtered out of error reports for certain django.contrib.
auth.views views (login, password_reset_confirm, password_change, and add_view and
user_change_password in the auth admin) to prevent the leaking of sensitive information such as user
passwords.

Custom error reports

All sensitive_variables() and sensitive_post_parameters() do is, respectively, annotate the dec-
orated function with the names of sensitive variables and annotate the HttpRequest object with the names
of sensitive POST parameters, so that this sensitive information can later be filtered out of reports when an er-
ror occurs. The actual filtering is done by Django’s default error reporter filter: django.views.debug.
SafeExceptionReporterFilter. This filter uses the decorators’ annotations to replace the corresponding
values with stars (**********) when the error reports are produced. If you wish to override or customize this
default behavior for your entire site, you need to define your own filter class and tell Django to use it via the
DEFAULT_EXCEPTION_REPORTER_FILTER setting:

DEFAULT_EXCEPTION_REPORTER_FILTER = 'path.to.your.CustomExceptionReporterFilter'

You may also control in a more granular way which filter to use within any given view by setting the HttpRequest’s
exception_reporter_filter attribute:

def my_view(request):
if request.user.is_authenticated:

request.exception_reporter_filter = CustomExceptionReporterFilter()
...

Your custom filter class needs to inherit from django.views.debug.SafeExceptionReporterFilter
and may override the following methods:

class SafeExceptionReporterFilter

SafeExceptionReporterFilter.is_active(request)
Returns True to activate the filtering operated in the other methods. By default the filter is active if DEBUG is
False.

SafeExceptionReporterFilter.get_post_parameters(request)
Returns the filtered dictionary of POST parameters. By default it replaces the values of sensitive parameters
with stars (**********).

SafeExceptionReporterFilter.get_traceback_frame_variables(request, tb_frame)
Returns the filtered dictionary of local variables for the given traceback frame. By default it replaces the values
of sensitive variables with stars (**********).

See also:

You can also set up custom error reporting by writing a custom piece of exception middleware. If you do write custom
error handling, it’s a good idea to emulate Django’s built-in error handling and only report/log errors if DEBUG is
False.

4.9. Error reporting 595

Django Documentation, Release 1.10.9.dev20171123183751

4.10 Providing initial data for models

It’s sometimes useful to pre-populate your database with hard-coded data when you’re first setting up an app. You can
provide initial data with fixtures or migrations.

4.10.1 Providing initial data with fixtures

A fixture is a collection of data that Django knows how to import into a database. The most straightforward way of
creating a fixture if you’ve already got some data is to use the manage.py dumpdata command. Or, you can
write fixtures by hand; fixtures can be written as JSON, XML or YAML (with PyYAML installed) documents. The
serialization documentation has more details about each of these supported serialization formats.

As an example, though, here’s what a fixture for a simple Person model might look like in JSON:

[
{
"model": "myapp.person",
"pk": 1,
"fields": {

"first_name": "John",
"last_name": "Lennon"

}
},
{
"model": "myapp.person",
"pk": 2,
"fields": {
"first_name": "Paul",
"last_name": "McCartney"

}
}

]

And here’s that same fixture as YAML:

- model: myapp.person
pk: 1
fields:
first_name: John
last_name: Lennon

- model: myapp.person
pk: 2
fields:
first_name: Paul
last_name: McCartney

You’ll store this data in a fixtures directory inside your app.

Loading data is easy: just call manage.py loaddata <fixturename>, where <fixturename> is the name
of the fixture file you’ve created. Each time you run loaddata, the data will be read from the fixture and re-loaded
into the database. Note this means that if you change one of the rows created by a fixture and then run loaddata
again, you’ll wipe out any changes you’ve made.

596 Chapter 4. “How-to” guides

http://www.pyyaml.org/

Django Documentation, Release 1.10.9.dev20171123183751

Where Django finds fixture files

By default, Django looks in the fixtures directory inside each app for fixtures. You can set the FIXTURE_DIRS
setting to a list of additional directories where Django should look.

When running manage.py loaddata, you can also specify a path to a fixture file, which overrides searching the
usual directories.

See also:

Fixtures are also used by the testing framework to help set up a consistent test environment.

4.10.2 Providing initial data with migrations

If you want to automatically load initial data for an app, don’t use fixtures. Instead, create a migration for your
application with RunPython or RunSQL operations.

4.11 Running Django on Jython

Jython is an implementation of Python that runs on the Java platform (JVM). This document will get you up and
running with Django on top of Jython.

4.11.1 Installing Jython

Django works with Jython versions 2.7b2 and higher. See the Jython website for download and installation instruc-
tions.

4.11.2 Creating a servlet container

If you just want to experiment with Django, skip ahead to the next section; Django includes a lightweight Web server
you can use for testing, so you won’t need to set up anything else until you’re ready to deploy Django in production.

If you want to use Django on a production site, use a Java servlet container, such as Apache Tomcat. Full JavaEE
applications servers such as GlassFish or JBoss are also OK, if you need the extra features they include.

4.11.3 Installing Django

The next step is to install Django itself. This is exactly the same as installing Django on standard Python, so see
Remove any old versions of Django and Install the Django code for instructions.

4.11.4 Installing Jython platform support libraries

The django-jython project contains database backends and management commands for Django/Jython development.
Note that the builtin Django backends won’t work on top of Jython.

To install it, follow the installation instructions detailed on the project website. Also, read the database backends
documentation there.

4.11. Running Django on Jython 597

http://www.jython.org/
http://www.jython.org/
https://tomcat.apache.org/
https://glassfish.java.net/
https://www.jboss.org/
https://github.com/beachmachine/django-jython
https://pythonhosted.org/django-jython/quickstart.html#install
https://pythonhosted.org/django-jython/database-backends.html

Django Documentation, Release 1.10.9.dev20171123183751

4.11.5 Differences with Django on Jython

At this point, Django on Jython should behave nearly identically to Django running on standard Python. However, are
a few differences to keep in mind:

• Remember to use the jython command instead of python. The documentation uses python for consistency,
but if you’re using Jython you’ll want to mentally replace python with jython every time it occurs.

• Similarly, you’ll need to use the JYTHONPATH environment variable instead of PYTHONPATH.

• Any part of Django that requires Pillow will not work.

4.12 Integrating Django with a legacy database

While Django is best suited for developing new applications, it’s quite possible to integrate it into legacy databases.
Django includes a couple of utilities to automate as much of this process as possible.

This document assumes you know the Django basics, as covered in the tutorial.

Once you’ve got Django set up, you’ll follow this general process to integrate with an existing database.

4.12.1 Give Django your database parameters

You’ll need to tell Django what your database connection parameters are, and what the name of the database is. Do
that by editing the DATABASES setting and assigning values to the following keys for the 'default' connection:

• NAME

• ENGINE

• USER

• PASSWORD

• HOST

• PORT

4.12.2 Auto-generate the models

Django comes with a utility called inspectdb that can create models by introspecting an existing database. You can
view the output by running this command:

$ python manage.py inspectdb

Save this as a file by using standard Unix output redirection:

$ python manage.py inspectdb > models.py

This feature is meant as a shortcut, not as definitive model generation. See the documentation of inspectdb
for more information.

Once you’ve cleaned up your models, name the file models.py and put it in the Python package that holds your app.
Then add the app to your INSTALLED_APPS setting.

By default, inspectdb creates unmanaged models. That is, managed = False in the model’s Meta class tells
Django not to manage each table’s creation, modification, and deletion:

598 Chapter 4. “How-to” guides

https://pillow.readthedocs.io/en/latest/

Django Documentation, Release 1.10.9.dev20171123183751

class Person(models.Model):
id = models.IntegerField(primary_key=True)
first_name = models.CharField(max_length=70)
class Meta:

managed = False
db_table = 'CENSUS_PERSONS'

If you do want to allow Django to manage the table’s lifecycle, you’ll need to change the managed option above to
True (or simply remove it because True is its default value).

4.12.3 Install the core Django tables

Next, run the migrate command to install any extra needed database records such as admin permissions and content
types:

$ python manage.py migrate

4.12.4 Test and tweak

Those are the basic steps – from here you’ll want to tweak the models Django generated until they work the way you’d
like. Try accessing your data via the Django database API, and try editing objects via Django’s admin site, and edit
the models file accordingly.

4.13 Outputting CSV with Django

This document explains how to output CSV (Comma Separated Values) dynamically using Django views. To do this,
you can either use the Python CSV library or the Django template system.

4.13.1 Using the Python CSV library

Python comes with a CSV library, csv. The key to using it with Django is that the csv module’s CSV-creation
capability acts on file-like objects, and Django’s HttpResponse objects are file-like objects.

Here’s an example:

import csv
from django.http import HttpResponse

def some_view(request):
Create the HttpResponse object with the appropriate CSV header.
response = HttpResponse(content_type='text/csv')
response['Content-Disposition'] = 'attachment; filename="somefilename.csv"'

writer = csv.writer(response)
writer.writerow(['First row', 'Foo', 'Bar', 'Baz'])
writer.writerow(['Second row', 'A', 'B', 'C', '"Testing"', "Here's a quote"])

return response

The code and comments should be self-explanatory, but a few things deserve a mention:

4.13. Outputting CSV with Django 599

https://docs.python.org/3/library/csv.html#module-csv
https://docs.python.org/3/library/csv.html#module-csv

Django Documentation, Release 1.10.9.dev20171123183751

• The response gets a special MIME type, text/csv. This tells browsers that the document is a CSV file, rather
than an HTML file. If you leave this off, browsers will probably interpret the output as HTML, which will result
in ugly, scary gobbledygook in the browser window.

• The response gets an additional Content-Disposition header, which contains the name of the CSV file.
This filename is arbitrary; call it whatever you want. It’ll be used by browsers in the “Save as...” dialog, etc.

• Hooking into the CSV-generation API is easy: Just pass response as the first argument to csv.writer.
The csv.writer function expects a file-like object, and HttpResponse objects fit the bill.

• For each row in your CSV file, call writer.writerow, passing it an iterable object such as a list or tuple.

• The CSV module takes care of quoting for you, so you don’t have to worry about escaping strings with quotes
or commas in them. Just pass writerow() your raw strings, and it’ll do the right thing.

Handling Unicode on Python 2

Python 2’s csv module does not support Unicode input. Since Django uses Unicode internally this means strings read
from sources such as HttpRequest are potentially problematic. There are a few options for handling this:

• Manually encode all Unicode objects to a compatible encoding.

• Use the UnicodeWriter class provided in the csv module’s examples section.

• Use the python-unicodecsv module, which aims to be a drop-in replacement for csv that gracefully handles
Unicode.

For more information, see the Python documentation of the csv module.

Streaming large CSV files

When dealing with views that generate very large responses, you might want to consider using Django’s
StreamingHttpResponse instead. For example, by streaming a file that takes a long time to generate you can
avoid a load balancer dropping a connection that might have otherwise timed out while the server was generating the
response.

In this example, we make full use of Python generators to efficiently handle the assembly and transmission of a large
CSV file:

import csv

from django.utils.six.moves import range
from django.http import StreamingHttpResponse

class Echo(object):
"""An object that implements just the write method of the file-like
interface.
"""
def write(self, value):

"""Write the value by returning it, instead of storing in a buffer."""
return value

def some_streaming_csv_view(request):
"""A view that streams a large CSV file."""
Generate a sequence of rows. The range is based on the maximum number of
rows that can be handled by a single sheet in most spreadsheet
applications.
rows = (["Row {}".format(idx), str(idx)] for idx in range(65536))

600 Chapter 4. “How-to” guides

https://docs.python.org/3/library/csv.html#module-csv
https://docs.python.org/2/library/csv.html#examples
https://github.com/jdunck/python-unicodecsv
https://docs.python.org/3/library/csv.html#module-csv
https://docs.python.org/3/library/csv.html#module-csv

Django Documentation, Release 1.10.9.dev20171123183751

pseudo_buffer = Echo()
writer = csv.writer(pseudo_buffer)
response = StreamingHttpResponse((writer.writerow(row) for row in rows),

content_type="text/csv")
response['Content-Disposition'] = 'attachment; filename="somefilename.csv"'
return response

4.13.2 Using the template system

Alternatively, you can use the Django template system to generate CSV. This is lower-level than using the convenient
Python csv module, but the solution is presented here for completeness.

The idea here is to pass a list of items to your template, and have the template output the commas in a for loop.

Here’s an example, which generates the same CSV file as above:

from django.http import HttpResponse
from django.template import loader, Context

def some_view(request):
Create the HttpResponse object with the appropriate CSV header.
response = HttpResponse(content_type='text/csv')
response['Content-Disposition'] = 'attachment; filename="somefilename.csv"'

The data is hard-coded here, but you could load it from a database or
some other source.
csv_data = (

('First row', 'Foo', 'Bar', 'Baz'),
('Second row', 'A', 'B', 'C', '"Testing"', "Here's a quote"),

)

t = loader.get_template('my_template_name.txt')
c = Context({

'data': csv_data,
})
response.write(t.render(c))
return response

The only difference between this example and the previous example is that this one uses template loading instead of
the CSV module. The rest of the code – such as the content_type='text/csv' – is the same.

Then, create the template my_template_name.txt, with this template code:

{% for row in data %}"{{ row.0|addslashes }}", "{{ row.1|addslashes }}", "{{ row.
→˓2|addslashes }}", "{{ row.3|addslashes }}", "{{ row.4|addslashes }}"
{% endfor %}

This template is quite basic. It just iterates over the given data and displays a line of CSV for each row. It uses the
addslashes template filter to ensure there aren’t any problems with quotes.

4.13.3 Other text-based formats

Notice that there isn’t very much specific to CSV here – just the specific output format. You can use either of these
techniques to output any text-based format you can dream of. You can also use a similar technique to generate arbitrary
binary data; see Outputting PDFs with Django for an example.

4.13. Outputting CSV with Django 601

https://docs.python.org/3/library/csv.html#module-csv

Django Documentation, Release 1.10.9.dev20171123183751

4.14 Outputting PDFs with Django

This document explains how to output PDF files dynamically using Django views. This is made possible by the
excellent, open-source ReportLab Python PDF library.

The advantage of generating PDF files dynamically is that you can create customized PDFs for different purposes –
say, for different users or different pieces of content.

For example, Django was used at kusports.com to generate customized, printer-friendly NCAA tournament brackets,
as PDF files, for people participating in a March Madness contest.

4.14.1 Install ReportLab

The ReportLab library is available on PyPI. A user guide (not coincidentally, a PDF file) is also available for download.
You can install ReportLab with pip:

$ pip install reportlab

Test your installation by importing it in the Python interactive interpreter:

>>> import reportlab

If that command doesn’t raise any errors, the installation worked.

4.14.2 Write your view

The key to generating PDFs dynamically with Django is that the ReportLab API acts on file-like objects, and Django’s
HttpResponse objects are file-like objects.

Here’s a “Hello World” example:

from reportlab.pdfgen import canvas
from django.http import HttpResponse

def some_view(request):
Create the HttpResponse object with the appropriate PDF headers.
response = HttpResponse(content_type='application/pdf')
response['Content-Disposition'] = 'attachment; filename="somefilename.pdf"'

Create the PDF object, using the response object as its "file."
p = canvas.Canvas(response)

Draw things on the PDF. Here's where the PDF generation happens.
See the ReportLab documentation for the full list of functionality.
p.drawString(100, 100, "Hello world.")

Close the PDF object cleanly, and we're done.
p.showPage()
p.save()
return response

The code and comments should be self-explanatory, but a few things deserve a mention:

• The response gets a special MIME type, application/pdf. This tells browsers that the document is a PDF
file, rather than an HTML file. If you leave this off, browsers will probably interpret the output as HTML, which
would result in ugly, scary gobbledygook in the browser window.

602 Chapter 4. “How-to” guides

http://www.reportlab.com/opensource/
http://www.kusports.com/
https://pypi.python.org/pypi/reportlab
http://www.reportlab.com/docs/reportlab-userguide.pdf

Django Documentation, Release 1.10.9.dev20171123183751

• The response gets an additional Content-Disposition header, which contains the name of the PDF file.
This filename is arbitrary: Call it whatever you want. It’ll be used by browsers in the “Save as...” dialog, etc.

• The Content-Disposition header starts with 'attachment; ' in this example. This forces Web
browsers to pop-up a dialog box prompting/confirming how to handle the document even if a default is set on
the machine. If you leave off 'attachment;', browsers will handle the PDF using whatever program/plugin
they’ve been configured to use for PDFs. Here’s what that code would look like:

response['Content-Disposition'] = 'filename="somefilename.pdf"'

• Hooking into the ReportLab API is easy: Just pass response as the first argument to canvas.Canvas. The
Canvas class expects a file-like object, and HttpResponse objects fit the bill.

• Note that all subsequent PDF-generation methods are called on the PDF object (in this case, p) – not on
response.

• Finally, it’s important to call showPage() and save() on the PDF file.

Note: ReportLab is not thread-safe. Some of our users have reported odd issues with building PDF-generating Django
views that are accessed by many people at the same time.

4.14.3 Complex PDFs

If you’re creating a complex PDF document with ReportLab, consider using the io library as a temporary holding
place for your PDF file. This library provides a file-like object interface that is particularly efficient. Here’s the above
“Hello World” example rewritten to use io:

from io import BytesIO
from reportlab.pdfgen import canvas
from django.http import HttpResponse

def some_view(request):
Create the HttpResponse object with the appropriate PDF headers.
response = HttpResponse(content_type='application/pdf')
response['Content-Disposition'] = 'attachment; filename="somefilename.pdf"'

buffer = BytesIO()

Create the PDF object, using the BytesIO object as its "file."
p = canvas.Canvas(buffer)

Draw things on the PDF. Here's where the PDF generation happens.
See the ReportLab documentation for the full list of functionality.
p.drawString(100, 100, "Hello world.")

Close the PDF object cleanly.
p.showPage()
p.save()

Get the value of the BytesIO buffer and write it to the response.
pdf = buffer.getvalue()
buffer.close()
response.write(pdf)
return response

4.14. Outputting PDFs with Django 603

https://docs.python.org/3/library/io.html#module-io
https://docs.python.org/3/library/io.html#module-io

Django Documentation, Release 1.10.9.dev20171123183751

4.14.4 Other formats

Notice that there isn’t a lot in these examples that’s PDF-specific – just the bits using reportlab. You can use a
similar technique to generate any arbitrary format that you can find a Python library for. Also see Outputting CSV with
Django for another example and some techniques you can use when generated text-based formats.

See also:

Django Packages provides a comparison of packages that help generate PDF files from Django.

4.15 Managing static files (e.g. images, JavaScript, CSS)

Websites generally need to serve additional files such as images, JavaScript, or CSS. In Django, we refer to these files
as “static files”. Django provides django.contrib.staticfiles to help you manage them.

This page describes how you can serve these static files.

4.15.1 Configuring static files

1. Make sure that django.contrib.staticfiles is included in your INSTALLED_APPS.

2. In your settings file, define STATIC_URL, for example:

STATIC_URL = '/static/'

3. In your templates, either hardcode the url like /static/my_app/example.jpg or, preferably, use
the static template tag to build the URL for the given relative path by using the configured
STATICFILES_STORAGE storage (this makes it much easier when you want to switch to a content deliv-
ery network (CDN) for serving static files).

{% load static %}

4. Store your static files in a folder called static in your app. For example my_app/static/my_app/
example.jpg.

Serving the files

In addition to these configuration steps, you’ll also need to actually serve the static files.

During development, if you use django.contrib.staticfiles, this will be done automatically by
runserver when DEBUG is set to True (see django.contrib.staticfiles.views.serve()).

This method is grossly inefficient and probably insecure, so it is unsuitable for production.

See Deploying static files for proper strategies to serve static files in production environments.

Your project will probably also have static assets that aren’t tied to a particular app. In addition to using a static/
directory inside your apps, you can define a list of directories (STATICFILES_DIRS) in your settings file where
Django will also look for static files. For example:

STATICFILES_DIRS = [
os.path.join(BASE_DIR, "static"),
'/var/www/static/',

]

604 Chapter 4. “How-to” guides

https://djangopackages.org/grids/g/pdf/

Django Documentation, Release 1.10.9.dev20171123183751

See the documentation for the STATICFILES_FINDERS setting for details on how staticfiles finds your files.

Static file namespacing

Now we might be able to get away with putting our static files directly in my_app/static/ (rather than creating
another my_app subdirectory), but it would actually be a bad idea. Django will use the first static file it finds whose
name matches, and if you had a static file with the same name in a different application, Django would be unable to
distinguish between them. We need to be able to point Django at the right one, and the easiest way to ensure this is by
namespacing them. That is, by putting those static files inside another directory named for the application itself.

4.15.2 Serving static files during development

If you use django.contrib.staticfiles as explained above, runserver will do this automatically when
DEBUG is set to True. If you don’t have django.contrib.staticfiles in INSTALLED_APPS, you can still
manually serve static files using the django.contrib.staticfiles.views.serve() view.

This is not suitable for production use! For some common deployment strategies, see Deploying static files.

For example, if your STATIC_URL is defined as /static/, you can do this by adding the following snippet to your
urls.py:

from django.conf import settings
from django.conf.urls.static import static

urlpatterns = [
... the rest of your URLconf goes here ...

] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)

Note: This helper function works only in debug mode and only if the given prefix is local (e.g. /static/) and not
a URL (e.g. http://static.example.com/).

Also this helper function only serves the actual STATIC_ROOT folder; it doesn’t perform static files discovery like
django.contrib.staticfiles.

4.15.3 Serving files uploaded by a user during development

During development, you can serve user-uploaded media files from MEDIA_ROOT using the django.contrib.
staticfiles.views.serve() view.

This is not suitable for production use! For some common deployment strategies, see Deploying static files.

For example, if your MEDIA_URL is defined as /media/, you can do this by adding the following snippet to your
urls.py:

from django.conf import settings
from django.conf.urls.static import static

urlpatterns = [
... the rest of your URLconf goes here ...

] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

4.15. Managing static files (e.g. images, JavaScript, CSS) 605

Django Documentation, Release 1.10.9.dev20171123183751

Note: This helper function works only in debug mode and only if the given prefix is local (e.g. /media/) and not a
URL (e.g. http://media.example.com/).

4.15.4 Testing

When running tests that use actual HTTP requests instead of the built-in testing client (i.e. when using the built-in
LiveServerTestCase) the static assets need to be served along the rest of the content so the test environment
reproduces the real one as faithfully as possible, but LiveServerTestCase has only very basic static file-serving
functionality: It doesn’t know about the finders feature of the staticfiles application and assumes the static
content has already been collected under STATIC_ROOT.

Because of this, staticfiles ships its own django.contrib.staticfiles.testing.
StaticLiveServerTestCase, a subclass of the built-in one that has the ability to transparently serve all
the assets during execution of these tests in a way very similar to what we get at development time with DEBUG =
True, i.e. without having to collect them using collectstatic first.

4.15.5 Deployment

django.contrib.staticfiles provides a convenience management command for gathering static files in a
single directory so you can serve them easily.

1. Set the STATIC_ROOT setting to the directory from which you’d like to serve these files, for example:

STATIC_ROOT = "/var/www/example.com/static/"

2. Run the collectstatic management command:

$ python manage.py collectstatic

This will copy all files from your static folders into the STATIC_ROOT directory.

3. Use a web server of your choice to serve the files. Deploying static files covers some common deployment
strategies for static files.

4.15.6 Learn more

This document has covered the basics and some common usage patterns. For complete details on all the settings,
commands, template tags, and other pieces included in django.contrib.staticfiles, see the staticfiles ref-
erence.

4.16 Deploying static files

See also:

For an introduction to the use of django.contrib.staticfiles, see Managing static files (e.g. images,
JavaScript, CSS).

606 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

4.16.1 Serving static files in production

The basic outline of putting static files into production is simple: run the collectstatic command when static
files change, then arrange for the collected static files directory (STATIC_ROOT) to be moved to the static file server
and served. Depending on STATICFILES_STORAGE, files may need to be moved to a new location manually or the
post_process method of the Storage class might take care of that.

Of course, as with all deployment tasks, the devil’s in the details. Every production setup will be a bit different, so
you’ll need to adapt the basic outline to fit your needs. Below are a few common patterns that might help.

Serving the site and your static files from the same server

If you want to serve your static files from the same server that’s already serving your site, the process may look
something like:

• Push your code up to the deployment server.

• On the server, run collectstatic to copy all the static files into STATIC_ROOT.

• Configure your web server to serve the files in STATIC_ROOT under the URL STATIC_URL. For example,
here’s how to do this with Apache and mod_wsgi.

You’ll probably want to automate this process, especially if you’ve got multiple web servers. There’s any number of
ways to do this automation, but one option that many Django developers enjoy is Fabric.

Below, and in the following sections, we’ll show off a few example fabfiles (i.e. Fabric scripts) that automate these
file deployment options. The syntax of a fabfile is fairly straightforward but won’t be covered here; consult Fabric’s
documentation, for a complete explanation of the syntax.

So, a fabfile to deploy static files to a couple of web servers might look something like:

from fabric.api import *

Hosts to deploy onto
env.hosts = ['www1.example.com', 'www2.example.com']

Where your project code lives on the server
env.project_root = '/home/www/myproject'

def deploy_static():
with cd(env.project_root):

run('./manage.py collectstatic -v0 --noinput')

Serving static files from a dedicated server

Most larger Django sites use a separate Web server – i.e., one that’s not also running Django – for serving static files.
This server often runs a different type of web server – faster but less full-featured. Some common choices are:

• Nginx

• A stripped-down version of Apache

Configuring these servers is out of scope of this document; check each server’s respective documentation for instruc-
tions.

Since your static file server won’t be running Django, you’ll need to modify the deployment strategy to look something
like:

• When your static files change, run collectstatic locally.

4.16. Deploying static files 607

http://fabfile.org/
http://docs.fabfile.org/
http://docs.fabfile.org/
http://wiki.nginx.org/Main
https://httpd.apache.org/

Django Documentation, Release 1.10.9.dev20171123183751

• Push your local STATIC_ROOT up to the static file server into the directory that’s being served. rsync is a
common choice for this step since it only needs to transfer the bits of static files that have changed.

Here’s how this might look in a fabfile:

from fabric.api import *
from fabric.contrib import project

Where the static files get collected locally. Your STATIC_ROOT setting.
env.local_static_root = '/path/to/static'

Where the static files should go remotely
env.remote_static_root = '/home/www/static.example.com'

@roles('static')
def deploy_static():

local('./manage.py collectstatic')
project.rsync_project(

remote_dir=env.remote_static_root,
local_dir=env.local_static_root,
delete=True,

)

Serving static files from a cloud service or CDN

Another common tactic is to serve static files from a cloud storage provider like Amazon’s S3 and/or a CDN (content
delivery network). This lets you ignore the problems of serving static files and can often make for faster-loading Web
pages (especially when using a CDN).

When using these services, the basic workflow would look a bit like the above, except that instead of using rsync to
transfer your static files to the server you’d need to transfer the static files to the storage provider or CDN.

There’s any number of ways you might do this, but if the provider has an API a custom file storage backend will
make the process incredibly simple. If you’ve written or are using a 3rd party custom storage backend, you can tell
collectstatic to use it by setting STATICFILES_STORAGE to the storage engine.

For example, if you’ve written an S3 storage backend in myproject.storage.S3Storage you could use it
with:

STATICFILES_STORAGE = 'myproject.storage.S3Storage'

Once that’s done, all you have to do is run collectstatic and your static files would be pushed through your
storage package up to S3. If you later needed to switch to a different storage provider, it could be as simple as
changing your STATICFILES_STORAGE setting.

For details on how you’d write one of these backends, see Writing a custom storage system. There are 3rd party apps
available that provide storage backends for many common file storage APIs. A good starting point is the overview at
djangopackages.com.

4.16.2 Learn more

For complete details on all the settings, commands, template tags, and other pieces included in django.contrib.
staticfiles, see the staticfiles reference.

608 Chapter 4. “How-to” guides

https://rsync.samba.org/
https://www.djangopackages.com/grids/g/storage-backends/
https://www.djangopackages.com/grids/g/storage-backends/

Django Documentation, Release 1.10.9.dev20171123183751

4.17 How to install Django on Windows

This document will guide you through installing Python 3.5 and Django on Windows. It also provides instructions
for installing virtualenv and virtualenvwrapper, which make it easier to work on Python projects. This is meant as
a beginner’s guide for users working on Django projects and does not reflect how Django should be installed when
developing patches for Django itself.

The steps in this guide have been tested with Windows 7, 8, and 10. In other versions, the steps would be similar. You
will need to be familiar with using the Windows command prompt.

4.17.1 Install Python

Django is a Python web framework, thus requiring Python to be installed on your machine. At the time of writing,
Python 3.5 is the latest version.

To install Python on your machine go to https://python.org/downloads/. The website should offer you a download
button for the latest Python version. Download the executable installer and run it. Check the box next to Add Python
3.5 to PATH and then click Install Now.

After installation, open the command prompt and check that the Python version matches the version you installed by
executing:

python --version

4.17.2 About pip

pip is a package manage for Python. It makes installing and uninstalling Python packages (such as Django!) very
easy. For the rest of the installation, we’ll use pip to install Python packages from the command line.

To install pip on your machine, go to https://pip.pypa.io/en/latest/installing/, and follow the Installing with
get-pip.py instructions.

4.17.3 Install virtualenv and virtualenvwrapper

virtualenv and virtualenvwrapper provide a dedicated environment for each Django project you create. While not
mandatory, this is considered a best practice and will save you time in the future when you’re ready to deploy your
project. Simply type:

pip install virtualenvwrapper-win

Then create a virtual environment for your project:

mkvirtualenv myproject

The virtual environment will be activated automatically and you’ll see “(myproject)” next to the command prompt to
designate that. If you start a new command prompt, you’ll need to activate the environment again using:

workon myproject

4.17. How to install Django on Windows 609

https://pypi.python.org/pypi/virtualenv
https://pypi.python.org/pypi/virtualenvwrapper-win
https://python.org/downloads/
https://pypi.python.org/pypi/pip
https://pip.pypa.io/en/latest/installing/
https://pypi.python.org/pypi/virtualenv
https://pypi.python.org/pypi/virtualenvwrapper-win

Django Documentation, Release 1.10.9.dev20171123183751

4.17.4 Install Django

Django can be installed easily using pip within your virtual environment.

In the command prompt, ensure your virtual environment is active, and execute the following command:

pip install django

This will download and install the latest Django release.

After the installation has completed, you can verify your Django installation by executing django-admin
--version in the command prompt.

See Get your database running for information on database installation with Django.

4.17.5 Common pitfalls

• If django-admin only displays the help text no matter what arguments it is given, there is probably a problem
with the file association in Windows. Check if there is more than one environment variable set for running
Python scripts in PATH. This usually occurs when there is more than one Python version installed.

• If you are connecting to the internet behind a proxy, there might be problem in running the command pip
install django. Set the environment variables for proxy configuration in the command prompt as follows:

set http_proxy=http://username:password@proxyserver:proxyport
set https_proxy=https://username:password@proxyserver:proxyport

4.18 Writing database migrations

This document explains how to structure and write database migrations for different scenarios you might encounter.
For introductory material on migrations, see the topic guide.

4.18.1 Data migrations and multiple databases

When using multiple databases, you may need to figure out whether or not to run a migration against a particular
database. For example, you may want to only run a migration on a particular database.

In order to do that you can check the database connection’s alias inside a RunPython operation by looking at the
schema_editor.connection.alias attribute:

from django.db import migrations

def forwards(apps, schema_editor):
if not schema_editor.connection.alias == 'default':

return
Your migration code goes here

class Migration(migrations.Migration):

dependencies = [
Dependencies to other migrations

]

operations = [

610 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

migrations.RunPython(forwards),
]

You can also provide hints that will be passed to the allow_migrate() method of database routers as **hints:

myapp/dbrouters.py

class MyRouter(object):

def allow_migrate(self, db, app_label, model_name=None, **hints):
if 'target_db' in hints:

return db == hints['target_db']
return True

Then, to leverage this in your migrations, do the following:

from django.db import migrations

def forwards(apps, schema_editor):
Your migration code goes here
...

class Migration(migrations.Migration):

dependencies = [
Dependencies to other migrations

]

operations = [
migrations.RunPython(forwards, hints={'target_db': 'default'}),

]

If your RunPython or RunSQL operation only affects one model, it’s good practice to pass model_name as a hint
to make it as transparent as possible to the router. This is especially important for reusable and third-party apps.

4.18.2 Migrations that add unique fields

Applying a “plain” migration that adds a unique non-nullable field to a table with existing rows will raise an error
because the value used to populate existing rows is generated only once, thus breaking the unique constraint.

Therefore, the following steps should be taken. In this example, we’ll add a non-nullable UUIDField with a default
value. Modify the respective field according to your needs.

• Add the field on your model with default=uuid.uuid4 and unique=True arguments (choose an appro-
priate default for the type of the field you’re adding).

• Run the makemigrations command. This should generate a migration with an AddField operation.

• Generate two empty migration files for the same app by running makemigrations myapp --empty
twice. We’ve renamed the migration files to give them meaningful names in the examples below.

• Copy the AddField operation from the auto-generated migration (the first of the three new files) to the last
migration and change AddField to AlterField. For example:

0006_remove_uuid_null.py

-*- coding: utf-8 -*-
Generated by Django A.B on YYYY-MM-DD HH:MM
from __future__ import unicode_literals

4.18. Writing database migrations 611

Django Documentation, Release 1.10.9.dev20171123183751

from django.db import migrations, models
import uuid

class Migration(migrations.Migration):

dependencies = [
('myapp', '0005_populate_uuid_values'),

]

operations = [
migrations.AlterField(

model_name='mymodel',
name='uuid',
field=models.UUIDField(default=uuid.uuid4, unique=True),

),
]

• Edit the first migration file. The generated migration class should look similar to this:

0004_add_uuid_field.py

class Migration(migrations.Migration):

dependencies = [
('myapp', '0003_auto_20150129_1705'),

]

operations = [
migrations.AddField(

model_name='mymodel',
name='uuid',
field=models.UUIDField(default=uuid.uuid4, unique=True),

),
]

Change unique=True to null=True – this will create the intermediary null field and defer creating the
unique constraint until we’ve populated unique values on all the rows.

• In the first empty migration file, add a RunPython or RunSQL operation to generate a unique value (UUID in
the example) for each existing row. For example:

0005_populate_uuid_values.py

-*- coding: utf-8 -*-
Generated by Django A.B on YYYY-MM-DD HH:MM
from __future__ import unicode_literals

from django.db import migrations, models
import uuid

def gen_uuid(apps, schema_editor):
MyModel = apps.get_model('myapp', 'MyModel')
for row in MyModel.objects.all():

row.uuid = uuid.uuid4()
row.save()

class Migration(migrations.Migration):

dependencies = [
('myapp', '0004_add_uuid_field'),

612 Chapter 4. “How-to” guides

Django Documentation, Release 1.10.9.dev20171123183751

]

operations = [
omit reverse_code=... if you don't want the migration to be reversible.
migrations.RunPython(gen_uuid, reverse_code=migrations.RunPython.noop),

]

• Now you can apply the migrations as usual with the migrate command.

Note there is a race condition if you allow objects to be created while this migration is running. Objects created
after the AddField and before RunPython will have their original uuid’s overwritten.

Non-atomic migrations

On databases that support DDL transactions (SQLite and PostgreSQL), migrations will run inside a transaction by
default. For use cases such as performing data migrations on large tables, you may want to prevent a migration from
running in a transaction by setting the atomic attribute to False:

from django.db import migrations

class Migration(migrations.Migration):
atomic = False

Within such a migration, all operations are run without a transaction. It’s possible to execute parts of the migration
inside a transaction using atomic() or by passing atomic=True to RunPython.

Here’s an example of a non-atomic data migration that updates a large table in smaller batches:

import uuid

from django.db import migrations, transaction

def gen_uuid(apps, schema_editor):
MyModel = apps.get_model('myapp', 'MyModel')
while MyModel.objects.filter(uuid__isnull=True).exists():

with transaction.atomic():
for row in MyModel.objects.filter(uuid__isnull=True)[:1000]:

row.uuid = uuid.uuid4()
row.save()

class Migration(migrations.Migration):
atomic = False

operations = [
migrations.RunPython(gen_uuid),

]

The atomic attribute doesn’t have an effect on databases that don’t support DDL transactions (e.g. MySQL, Oracle).

4.18.3 Controlling the order of migrations

Django determines the order in which migrations should be applied not by the filename of each migration, but by
building a graph using two properties on the Migration class: dependencies and run_before.

If you’ve used the makemigrations command you’ve probably already seen dependencies in action because
auto-created migrations have this defined as part of their creation process.

The dependencies property is declared like this:

4.18. Writing database migrations 613

Django Documentation, Release 1.10.9.dev20171123183751

from django.db import migrations

class Migration(migrations.Migration):

dependencies = [
('myapp', '0123_the_previous_migration'),

]

Usually this will be enough, but from time to time you may need to ensure that your migration runs before other
migrations. This is useful, for example, to make third-party apps’ migrations run after your AUTH_USER_MODEL
replacement.

To achieve this, place all migrations that should depend on yours in the run_before attribute on your Migration
class:

class Migration(migrations.Migration):
...

run_before = [
('third_party_app', '0001_do_awesome'),

]

Prefer using dependencies over run_before when possible. You should only use run_before if it is un-
desirable or impractical to specify dependencies in the migration which you want to run after the one you are
writing.

4.18.4 Migrating data between third-party apps

You can use a data migration to move data from one third-party application to another.

If you plan to remove the old app later, you’ll need to set the dependencies property based on whether or not the
old app is installed. Otherwise, you’ll have missing dependencies once you uninstall the old app. Similarly, you’ll need
to catch LookupError in the apps.get_model() call that retrieves models from the old app. This approach
allows you to deploy your project anywhere without first installing and then uninstalling the old app.

Here’s a sample migration:

myapp/migrations/0124_move_old_app_to_new_app.py

from django.apps import apps as global_apps
from django.db import migrations

def forwards(apps, schema_editor):
try:

OldModel = apps.get_model('old_app', 'OldModel')
except LookupError:

The old app isn't installed.
return

NewModel = apps.get_model('new_app', 'NewModel')
NewModel.objects.bulk_create(

NewModel(new_attribute=old_object.old_attribute)
for old_object in OldModel.objects.all()

)

class Migration(migrations.Migration):
operations = [

migrations.RunPython(forwards, migrations.RunPython.noop),

614 Chapter 4. “How-to” guides

https://docs.python.org/3/library/exceptions.html#LookupError

Django Documentation, Release 1.10.9.dev20171123183751

]
dependencies = [

('myapp', '0123_the_previous_migration'),
('new_app', '0001_initial'),

]

if global_apps.is_installed('old_app'):
dependencies.append(('old_app', '0001_initial'))

Also consider what you want to happen when the migration is unapplied. You could either do nothing (as in the
example above) or remove some or all of the data from the new application. Adjust the second argument of the
RunPython operation accordingly.

4.18.5 Changing an unmanaged model to managed

If you want to change an unmanaged model (managed=False) to managed, you must remove managed=False
and generate a migration before making other schema-related changes to the model, since schema changes that appear
in the migration that contains the operation to change Meta.managed may not be applied.

See also:

The Django community aggregator, where we aggregate content from the global Django community. Many writers in
the aggregator write this sort of how-to material.

4.18. Writing database migrations 615

https://www.djangoproject.com/community/

Django Documentation, Release 1.10.9.dev20171123183751

616 Chapter 4. “How-to” guides

CHAPTER 5

Django FAQ

5.1 FAQ: General

5.1.1 Why does this project exist?

Django grew from a very practical need: World Online, a newspaper Web operation, is responsible for building
intensive Web applications on journalism deadlines. In the fast-paced newsroom, World Online often has only a
matter of hours to take a complicated Web application from concept to public launch.

At the same time, the World Online Web developers have consistently been perfectionists when it comes to following
best practices of Web development.

In fall 2003, the World Online developers (Adrian Holovaty and Simon Willison) ditched PHP and began using Python
to develop its websites. As they built intensive, richly interactive sites such as Lawrence.com, they began to extract a
generic Web development framework that let them build Web applications more and more quickly. They tweaked this
framework constantly, adding improvements over two years.

In summer 2005, World Online decided to open-source the resulting software, Django. Django would not be possible
without a whole host of open-source projects – Apache, Python, and PostgreSQL to name a few – and we’re thrilled
to be able to give something back to the open-source community.

5.1.2 What does “Django” mean, and how do you pronounce it?

Django is named after Django Reinhardt, a jazz manouche guitarist from the 1930s to early 1950s. To this day, he’s
considered one of the best guitarists of all time.

Listen to his music. You’ll like it.

Django is pronounced JANG-oh. Rhymes with FANG-oh. The “D” is silent.

We’ve also recorded an audio clip of the pronunciation.

617

https://httpd.apache.org/
https://www.python.org/
https://www.postgresql.org/
https://en.wikipedia.org/wiki/Django_Reinhardt
http://red-bean.com/~adrian/django_pronunciation.mp3

Django Documentation, Release 1.10.9.dev20171123183751

5.1.3 Is Django stable?

Yes, it’s quite stable. Companies like Disqus, Instagram, Pinterest, and Mozilla have been using Django for many
years. Sites built on Django have weathered traffic spikes of over 50 thousand hits per second.

5.1.4 Does Django scale?

Yes. Compared to development time, hardware is cheap, and so Django is designed to take advantage of as much
hardware as you can throw at it.

Django uses a “shared-nothing” architecture, which means you can add hardware at any level – database servers,
caching servers or Web/application servers.

The framework cleanly separates components such as its database layer and application layer. And it ships with a
simple-yet-powerful cache framework.

5.1.5 Who’s behind this?

Django was originally developed at World Online, the Web department of a newspaper in Lawrence, Kansas, USA.
Django’s now run by an international team of volunteers.

5.1.6 Which sites use Django?

DjangoSites.org features a constantly growing list of Django-powered sites.

5.1.7 Django appears to be a MVC framework, but you call the Controller the “view”,
and the View the “template”. How come you don’t use the standard names?

Well, the standard names are debatable.

In our interpretation of MVC, the “view” describes the data that gets presented to the user. It’s not necessarily how
the data looks, but which data is presented. The view describes which data you see, not how you see it. It’s a subtle
distinction.

So, in our case, a “view” is the Python callback function for a particular URL, because that callback function describes
which data is presented.

Furthermore, it’s sensible to separate content from presentation – which is where templates come in. In Django, a
“view” describes which data is presented, but a view normally delegates to a template, which describes how the data
is presented.

Where does the “controller” fit in, then? In Django’s case, it’s probably the framework itself: the machinery that sends
a request to the appropriate view, according to the Django URL configuration.

If you’re hungry for acronyms, you might say that Django is a “MTV” framework – that is, “model”, “template”, and
“view.” That breakdown makes much more sense.

At the end of the day, of course, it comes down to getting stuff done. And, regardless of how things are named, Django
gets stuff done in a way that’s most logical to us.

618 Chapter 5. Django FAQ

https://djangosites.org

Django Documentation, Release 1.10.9.dev20171123183751

5.1.8 <Framework X> does <feature Y> – why doesn’t Django?

We’re well aware that there are other awesome Web frameworks out there, and we’re not averse to borrowing ideas
where appropriate. However, Django was developed precisely because we were unhappy with the status quo, so please
be aware that “because <Framework X> does it” is not going to be sufficient reason to add a given feature to Django.

5.1.9 Why did you write all of Django from scratch, instead of using other Python
libraries?

When Django was originally written a couple of years ago, Adrian and Simon spent quite a bit of time exploring the
various Python Web frameworks available.

In our opinion, none of them were completely up to snuff.

We’re picky. You might even call us perfectionists. (With deadlines.)

Over time, we stumbled across open-source libraries that did things we’d already implemented. It was reassuring to
see other people solving similar problems in similar ways, but it was too late to integrate outside code: We’d already
written, tested and implemented our own framework bits in several production settings – and our own code met our
needs delightfully.

In most cases, however, we found that existing frameworks/tools inevitably had some sort of fundamental, fatal flaw
that made us squeamish. No tool fit our philosophies 100%.

Like we said: We’re picky.

We’ve documented our philosophies on the design philosophies page.

5.1.10 Is Django a content-management-system (CMS)?

No, Django is not a CMS, or any sort of “turnkey product” in and of itself. It’s a Web framework; it’s a programming
tool that lets you build websites.

For example, it doesn’t make much sense to compare Django to something like Drupal, because Django is something
you use to create things like Drupal.

Of course, Django’s automatic admin site is fantastic and timesaving – but the admin site is one module of Django the
framework. Furthermore, although Django has special conveniences for building “CMS-y” apps, that doesn’t mean
it’s not just as appropriate for building “non-CMS-y” apps (whatever that means!).

5.1.11 How can I download the Django documentation to read it offline?

The Django docs are available in the docs directory of each Django tarball release. These docs are in reST (reStruc-
turedText) format, and each text file corresponds to a Web page on the official Django site.

Because the documentation is stored in revision control, you can browse documentation changes just like you can
browse code changes.

Technically, the docs on Django’s site are generated from the latest development versions of those reST documents,
so the docs on the Django site may offer more information than the docs that come with the latest Django release.

5.1.12 How do I cite Django?

It’s difficult to give an official citation format, for two reasons: citation formats can vary wildly between publications,
and citation standards for software are still a matter of some debate.

5.1. FAQ: General 619

https://drupal.org/
https://github.com/django/django/tree/master/docs/

Django Documentation, Release 1.10.9.dev20171123183751

For example, APA style, would dictate something like:

Django (Version 1.5) [Computer Software]. (2013). Retrieved from https://
→˓djangoproject.com.

However, the only true guide is what your publisher will accept, so get a copy of those guidelines and fill in the gaps
as best you can.

If your referencing style guide requires a publisher name, use “Django Software Foundation”.

If you need a publishing location, use “Lawrence, Kansas”.

If you need a web address, use https://djangoproject.com.

If you need a name, just use “Django”, without any tagline.

If you need a publication date, use the year of release of the version you’re referencing (e.g., 2013 for v1.5)

5.2 FAQ: Installation

5.2.1 How do I get started?

1. Download the code.

2. Install Django (read the installation guide).

3. Walk through the tutorial.

4. Check out the rest of the documentation, and ask questions if you run into trouble.

5.2.2 What are Django’s prerequisites?

Django requires Python. See the table in the next question for the versions of Python that work with each version of
Django. Other Python libraries may be required for some uses, but you’ll receive an error about it as they’re needed.

For a development environment – if you just want to experiment with Django – you don’t need to have a separate Web
server installed; Django comes with its own lightweight development server. For a production environment, Django
follows the WSGI spec, PEP 3333, which means it can run on a variety of server platforms. See Deploying Django
for some popular alternatives.

If you want to use Django with a database, which is probably the case, you’ll also need a database engine. PostgreSQL
is recommended, because we’re PostgreSQL fans, and MySQL, SQLite 3, and Oracle are also supported.

5.2.3 What Python version can I use with Django?

Django version Python versions
1.8 2.7, 3.2 (until the end of 2016), 3.3, 3.4, 3.5
1.9, 1.10 2.7, 3.4, 3.5
1.11 2.7, 3.4, 3.5, 3.6
2.0 3.5+

For each version of Python, only the latest micro release (A.B.C) is officially supported. You can find the latest micro
version for each series on the Python download page.

Typically, we will support a Python version up to and including the first Django LTS release whose security support
ends after security support for that version of Python ends. For example, Python 3.3 security support ends September

620 Chapter 5. Django FAQ

http://www.apastyle.org
https://djangoproject.com
https://www.djangoproject.com/download/
https://www.djangoproject.com/community/
https://www.python.org/dev/peps/pep-3333
https://www.postgresql.org/
https://www.mysql.com/
https://www.sqlite.org/
http://www.oracle.com/
https://www.python.org/downloads/

Django Documentation, Release 1.10.9.dev20171123183751

2017 and Django 1.8 LTS security support ends April 2018. Therefore Django 1.8 is the last version to support Python
3.3.

5.2.4 What Python version should I use with Django?

As of Django 1.6, Python 3 support is considered stable and you can safely use it in production. See also Porting to
Python 3. However, the community is still in the process of migrating third-party packages and applications to Python
3.

If you’re starting a new project, and the dependencies you plan to use work on Python 3, you should use Python 3. If
they don’t, consider contributing to the porting efforts, or stick to Python 2.

Since newer versions of Python are often faster, have more features, and are better supported, all else being equal, we
recommend that you use the latest 2.x.y or 3.x.y release.

You don’t lose anything in Django by using an older release, but you don’t take advantage of the improvements and
optimizations in newer Python releases. Third-party applications for use with Django are, of course, free to set their
own version requirements.

5.2.5 Should I use the stable version or development version?

Generally, if you’re using code in production, you should be using a stable release. The Django project publishes a
full stable release every nine months or so, with bugfix updates in between. These stable releases contain the API that
is covered by our backwards compatibility guarantees; if you write code against stable releases, you shouldn’t have
any problems upgrading when the next official version is released.

5.3 FAQ: Using Django

5.3.1 Why do I get an error about importing DJANGO_SETTINGS_MODULE?

Make sure that:

• The environment variable DJANGO_SETTINGS_MODULE is set to a fully-qualified Python module (i.e.
“mysite.settings”).

• Said module is on sys.path (import mysite.settings should work).

• The module doesn’t contain syntax errors (of course).

5.3.2 I can’t stand your template language. Do I have to use it?

We happen to think our template engine is the best thing since chunky bacon, but we recognize that choosing a template
language runs close to religion. There’s nothing about Django that requires using the template language, so if you’re
attached to Jinja2, Mako, or whatever, feel free to use those.

5.3.3 Do I have to use your model/database layer?

Nope. Just like the template system, the model/database layer is decoupled from the rest of the framework.

The one exception is: If you use a different database library, you won’t get to use Django’s automatically-generated
admin site. That app is coupled to the Django database layer.

5.3. FAQ: Using Django 621

Django Documentation, Release 1.10.9.dev20171123183751

5.3.4 How do I use image and file fields?

Using a FileField or an ImageField in a model takes a few steps:

1. In your settings file, you’ll need to define MEDIA_ROOT as the full path to a directory where you’d like Django
to store uploaded files. (For performance, these files are not stored in the database.) Define MEDIA_URL as the
base public URL of that directory. Make sure that this directory is writable by the Web server’s user account.

2. Add the FileField or ImageField to your model, defining the upload_to option to specify a subdirec-
tory of MEDIA_ROOT to use for uploaded files.

3. All that will be stored in your database is a path to the file (relative to MEDIA_ROOT). You’ll most likely
want to use the convenience url attribute provided by Django. For example, if your ImageField is called
mug_shot, you can get the absolute path to your image in a template with {{ object.mug_shot.url
}}.

5.3.5 How do I make a variable available to all my templates?

Sometimes your templates just all need the same thing. A common example would be dynamically-generated menus.
At first glance, it seems logical to simply add a common dictionary to the template context.

The correct solution is to use a RequestContext. Details on how to do this are here: Using RequestContext.

5.4 FAQ: Getting Help

5.4.1 How do I do X? Why doesn’t Y work? Where can I go to get help?

If this FAQ doesn’t contain an answer to your question, you might want to try the django-users mailing list. Feel free
to ask any question related to installing, using, or debugging Django.

If you prefer IRC, the #django IRC channel on the Freenode IRC network is an active community of helpful individuals
who may be able to solve your problem.

5.4.2 Why hasn’t my message appeared on django-users?

django-users has a lot of subscribers. This is good for the community, as it means many people are available to
contribute answers to questions. Unfortunately, it also means that django-users is an attractive target for spammers.

In order to combat the spam problem, when you join the django-users mailing list, we manually moderate the first
message you send to the list. This means that spammers get caught, but it also means that your first question to the list
might take a little longer to get answered. We apologize for any inconvenience that this policy may cause.

5.4.3 Nobody on django-users answered my question! What should I do?

Try making your question more specific, or provide a better example of your problem.

As with most open-source mailing lists, the folks on django-users are volunteers. If nobody has answered your
question, it may be because nobody knows the answer, it may be because nobody can understand the question, or it
may be that everybody that can help is busy. One thing you might try is to ask the question on IRC – visit the #django
IRC channel on the Freenode IRC network.

You might notice we have a second mailing list, called django-developers – but please don’t email support questions
to this mailing list. This list is for discussion of the development of Django itself. Asking a tech support question there
is considered quite impolite.

622 Chapter 5. Django FAQ

irc://irc.freenode.net/django
irc://irc.freenode.net/django
irc://irc.freenode.net/django

Django Documentation, Release 1.10.9.dev20171123183751

5.4.4 I think I’ve found a bug! What should I do?

Detailed instructions on how to handle a potential bug can be found in our Guide to contributing to Django.

5.4.5 I think I’ve found a security problem! What should I do?

If you think you’ve found a security problem with Django, please send a message to security@djangoproject.com. This
is a private list only open to long-time, highly trusted Django developers, and its archives are not publicly readable.

Due to the sensitive nature of security issues, we ask that if you think you have found a security problem, please don’t
send a message to one of the public mailing lists. Django has a policy for handling security issues; while a defect is
outstanding, we would like to minimize any damage that could be inflicted through public knowledge of that defect.

5.5 FAQ: Databases and models

5.5.1 How can I see the raw SQL queries Django is running?

Make sure your Django DEBUG setting is set to True. Then, just do this:

>>> from django.db import connection
>>> connection.queries
[{'sql': 'SELECT polls_polls.id, polls_polls.question, polls_polls.pub_date FROM
→˓polls_polls',
'time': '0.002'}]

connection.queries is only available if DEBUG is True. It’s a list of dictionaries in order of query execution.
Each dictionary has the following:

``sql`` -- The raw SQL statement
``time`` -- How long the statement took to execute, in seconds.

connection.queries includes all SQL statements – INSERTs, UPDATES, SELECTs, etc. Each time your app
hits the database, the query will be recorded.

If you are using multiple databases, you can use the same interface on each member of the connections dictionary:

>>> from django.db import connections
>>> connections['my_db_alias'].queries

If you need to clear the query list manually at any point in your functions, just call reset_queries(), like this:

from django.db import reset_queries
reset_queries()

5.5.2 Can I use Django with a pre-existing database?

Yes. See Integrating with a legacy database.

5.5.3 If I make changes to a model, how do I update the database?

Take a look at Django’s support for schema migrations.

5.5. FAQ: Databases and models 623

mailto:security@djangoproject.com

Django Documentation, Release 1.10.9.dev20171123183751

If you don’t mind clearing data, your project’s manage.py utility has a flush option to reset the database to the
state it was in immediately after migrate was executed.

5.5.4 Do Django models support multiple-column primary keys?

No. Only single-column primary keys are supported.

But this isn’t an issue in practice, because there’s nothing stopping you from adding other constraints (using the
unique_together model option or creating the constraint directly in your database), and enforcing the uniqueness
at that level. Single-column primary keys are needed for things such as the admin interface to work; e.g., you need a
simple way of being able to specify an object to edit or delete.

5.5.5 Does Django support NoSQL databases?

NoSQL databases are not officially supported by Django itself. There are, however, a number of side project and forks
which allow NoSQL functionality in Django, like Django non-rel.

You can also take a look on the wiki page which discusses some alternatives.

5.5.6 How do I add database-specific options to my CREATE TABLE statements,
such as specifying MyISAM as the table type?

We try to avoid adding special cases in the Django code to accommodate all the database-specific options such as table
type, etc. If you’d like to use any of these options, create a migration with a RunSQL operation that contains ALTER
TABLE statements that do what you want to do.

For example, if you’re using MySQL and want your tables to use the MyISAM table type, use the following SQL:

ALTER TABLE myapp_mytable ENGINE=MyISAM;

5.6 FAQ: The admin

5.6.1 I can’t log in. When I enter a valid username and password, it just brings up
the login page again, with no error messages.

The login cookie isn’t being set correctly, because the domain of the cookie sent out by Django doesn’t match the
domain in your browser. Try setting the SESSION_COOKIE_DOMAIN setting to match your domain. For example,
if you’re going to “https://www.example.com/admin/” in your browser, set SESSION_COOKIE_DOMAIN = 'www.
example.com'.

5.6.2 I can’t log in. When I enter a valid username and password, it brings up the
login page again, with a “Please enter a correct username and password”
error.

If you’re sure your username and password are correct, make sure your user account has is_active and is_staff
set to True. The admin site only allows access to users with those two fields both set to True.

624 Chapter 5. Django FAQ

http://django-nonrel.org/
https://code.djangoproject.com/wiki/NoSqlSupport
https://www.example.com/admin/

Django Documentation, Release 1.10.9.dev20171123183751

5.6.3 How do I automatically set a field’s value to the user who last edited the object
in the admin?

The ModelAdmin class provides customization hooks that allow you to transform an object as it saved, using details
from the request. By extracting the current user from the request, and customizing the save_model() hook, you
can update an object to reflect the user that edited it. See the documentation on ModelAdmin methods for an example.

5.6.4 How do I limit admin access so that objects can only be edited by the users
who created them?

The ModelAdmin class also provides customization hooks that allow you to control the visibility and editability
of objects in the admin. Using the same trick of extracting the user from the request, the get_queryset() and
has_change_permission() can be used to control the visibility and editability of objects in the admin.

5.6.5 My admin-site CSS and images showed up fine using the development server,
but they’re not displaying when using mod_wsgi.

See serving the admin files in the “How to use Django with mod_wsgi” documentation.

5.6.6 My “list_filter” contains a ManyToManyField, but the filter doesn’t display.

Django won’t bother displaying the filter for a ManyToManyField if there are fewer than two related objects.

For example, if your list_filter includes sites, and there’s only one site in your database, it won’t display a
“Site” filter. In that case, filtering by site would be meaningless.

5.6.7 Some objects aren’t appearing in the admin.

Inconsistent row counts may be caused by missing foreign key values or a foreign key field incorrectly set to
null=False. If you have a record with a ForeignKey pointing to a non-existent object and that foreign key
is included is list_display , the record will not be shown in the admin changelist because the Django model is
declaring an integrity constraint that is not implemented at the database level.

5.6.8 How can I customize the functionality of the admin interface?

You’ve got several options. If you want to piggyback on top of an add/change form that Django automatically gen-
erates, you can attach arbitrary JavaScript modules to the page via the model’s class Admin js parameter. That
parameter is a list of URLs, as strings, pointing to JavaScript modules that will be included within the admin form via
a <script> tag.

If you want more flexibility than simply tweaking the auto-generated forms, feel free to write custom views for the
admin. The admin is powered by Django itself, and you can write custom views that hook into the authentication
system, check permissions and do whatever else they need to do.

If you want to customize the look-and-feel of the admin interface, read the next question.

5.6. FAQ: The admin 625

Django Documentation, Release 1.10.9.dev20171123183751

5.6.9 The dynamically-generated admin site is ugly! How can I change it?

We like it, but if you don’t agree, you can modify the admin site’s presentation by editing the CSS stylesheet and/or
associated image files. The site is built using semantic HTML and plenty of CSS hooks, so any changes you’d like to
make should be possible by editing the stylesheet.

5.6.10 What browsers are supported for using the admin?

The admin provides a fully-functional experience to YUI’s A-grade browsers, with the notable exception of IE6, which
is not supported.

There may be minor stylistic differences between supported browsers—for example, some browsers may not support
rounded corners. These are considered acceptable variations in rendering.

5.7 FAQ: Contributing code

5.7.1 How can I get started contributing code to Django?

Thanks for asking! We’ve written an entire document devoted to this question. It’s titled Contributing to Django.

5.7.2 I submitted a bug fix in the ticket system several weeks ago. Why are you
ignoring my patch?

Don’t worry: We’re not ignoring you!

It’s important to understand there is a difference between “a ticket is being ignored” and “a ticket has not been at-
tended to yet.” Django’s ticket system contains hundreds of open tickets, of various degrees of impact on end-user
functionality, and Django’s developers have to review and prioritize.

On top of that: the people who work on Django are all volunteers. As a result, the amount of time that we have to
work on the framework is limited and will vary from week to week depending on our spare time. If we’re busy, we
may not be able to spend as much time on Django as we might want.

The best way to make sure tickets do not get hung up on the way to checkin is to make it dead easy, even for someone
who may not be intimately familiar with that area of the code, to understand the problem and verify the fix:

• Are there clear instructions on how to reproduce the bug? If this touches a dependency (such as Pillow), a
contrib module, or a specific database, are those instructions clear enough even for someone not familiar with
it?

• If there are several patches attached to the ticket, is it clear what each one does, which ones can be ignored and
which matter?

• Does the patch include a unit test? If not, is there a very clear explanation why not? A test expresses succinctly
what the problem is, and shows that the patch actually fixes it.

If your patch stands no chance of inclusion in Django, we won’t ignore it – we’ll just close the ticket. So if your ticket
is still open, it doesn’t mean we’re ignoring you; it just means we haven’t had time to look at it yet.

5.7.3 When and how might I remind the core team of a patch I care about?

A polite, well-timed message to the mailing list is one way to get attention. To determine the right time, you need to
keep an eye on the schedule. If you post your message when the core developers are trying to hit a feature deadline or

626 Chapter 5. Django FAQ

https://github.com/yui/yui3/wiki/Graded-Browser-Support

Django Documentation, Release 1.10.9.dev20171123183751

manage a planning phase, you’re not going to get the sort of attention you require. However, if you draw attention to a
ticket when the core developers are paying particular attention to bugs – just before a bug fixing sprint, or in the lead
up to a beta release for example – you’re much more likely to get a productive response.

Gentle IRC reminders can also work – again, strategically timed if possible. During a bug sprint would be a very good
time, for example.

Another way to get traction is to pull several related tickets together. When the core developers sit down to fix a bug
in an area they haven’t touched for a while, it can take a few minutes to remember all the fine details of how that area
of code works. If you collect several minor bug fixes together into a similarly themed group, you make an attractive
target, as the cost of coming up to speed on an area of code can be spread over multiple tickets.

Please refrain from emailing core developers personally, or repeatedly raising the same issue over and over. This sort
of behavior will not gain you any additional attention – certainly not the attention that you need in order to get your
pet bug addressed.

5.7.4 But I’ve reminded you several times and you keep ignoring my patch!

Seriously - we’re not ignoring you. If your patch stands no chance of inclusion in Django, we’ll close the ticket. For
all the other tickets, we need to prioritize our efforts, which means that some tickets will be addressed before others.

One of the criteria that is used to prioritize bug fixes is the number of people that will likely be affected by a given
bug. Bugs that have the potential to affect many people will generally get priority over those that are edge cases.

Another reason that bugs might be ignored for while is if the bug is a symptom of a larger problem. While we can
spend time writing, testing and applying lots of little patches, sometimes the right solution is to rebuild. If a rebuild or
refactor of a particular component has been proposed or is underway, you may find that bugs affecting that component
will not get as much attention. Again, this is just a matter of prioritizing scarce resources. By concentrating on the
rebuild, we can close all the little bugs at once, and hopefully prevent other little bugs from appearing in the future.

Whatever the reason, please keep in mind that while you may hit a particular bug regularly, it doesn’t necessarily
follow that every single Django user will hit the same bug. Different users use Django in different ways, stressing
different parts of the code under different conditions. When we evaluate the relative priorities, we are generally trying
to consider the needs of the entire community, not just the severity for one particular user. This doesn’t mean that we
think your problem is unimportant – just that in the limited time we have available, we will always err on the side of
making 10 people happy rather than making 1 person happy.

5.8 Troubleshooting

This page contains some advice about errors and problems commonly encountered during the development of Django
applications.

5.8.1 Problems running django-admin

“command not found: django-admin“

django-admin should be on your system path if you installed Django via python setup.py. If it’s not on your
path, you can find it in site-packages/django/bin, where site-packages is a directory within your
Python installation. Consider symlinking to django-admin from some place on your path, such as /usr/local/
bin.

If django-admin doesn’t work but django-admin.py does, you’re probably using a version of Django that
doesn’t match the version of this documentation. django-admin is new in Django 1.7.

5.8. Troubleshooting 627

Django Documentation, Release 1.10.9.dev20171123183751

Mac OS X permissions

If you’re using Mac OS X, you may see the message “permission denied” when you try to run django-admin. This
is because, on Unix-based systems like OS X, a file must be marked as “executable” before it can be run as a program.
To do this, open Terminal.app and navigate (using the cd command) to the directory where django-admin is installed,
then run the command sudo chmod +x django-admin.

5.8.2 Miscellaneous

I’m getting a UnicodeDecodeError. What am I doing wrong?

This class of errors happen when a bytestring containing non-ASCII sequences is transformed into a Unicode string
and the specified encoding is incorrect. The output generally looks like this:

UnicodeDecodeError: 'ascii' codec can't decode byte 0x?? in position ?:
ordinal not in range(128)

The resolution mostly depends on the context, however here are two common pitfalls producing this error:

• Your system locale may be a default ASCII locale, like the “C” locale on UNIX-like systems (can be checked
by the locale command). If it’s the case, please refer to your system documentation to learn how you can
change this to a UTF-8 locale.

• You created raw bytestrings, which is easy to do on Python 2:

my_string = 'café'

Either use the u'' prefix or even better, add the from __future__ import unicode_literals line
at the top of your file so that your code will be compatible with Python 3.2 which doesn’t support the u'' prefix.

Related resources:

• Unicode in Django

• https://wiki.python.org/moin/UnicodeDecodeError

628 Chapter 5. Django FAQ

https://wiki.python.org/moin/UnicodeDecodeError

CHAPTER 6

API Reference

6.1 Applications

Django contains a registry of installed applications that stores configuration and provides introspection. It also main-
tains a list of available models.

This registry is simply called apps and it’s available in django.apps:

>>> from django.apps import apps
>>> apps.get_app_config('admin').verbose_name
'Admin'

6.1.1 Projects and applications

The term project describes a Django web application. The project Python package is defined primarily by a set-
tings module, but it usually contains other things. For example, when you run django-admin startproject
mysite you’ll get a mysite project directory that contains a mysite Python package with settings.py,
urls.py, and wsgi.py. The project package is often extended to include things like fixtures, CSS, and templates
which aren’t tied to a particular application.

A project’s root directory (the one that contains manage.py) is usually the container for all of a project’s applica-
tions which aren’t installed separately.

The term application describes a Python package that provides some set of features. Applications may be reused in
various projects.

Applications include some combination of models, views, templates, template tags, static files, URLs, middleware,
etc. They’re generally wired into projects with the INSTALLED_APPS setting and optionally with other mechanisms
such as URLconfs, the MIDDLEWARE setting, or template inheritance.

It is important to understand that a Django application is just a set of code that interacts with various parts of the
framework. There’s no such thing as an Application object. However, there’s a few places where Django needs
to interact with installed applications, mainly for configuration and also for introspection. That’s why the application
registry maintains metadata in an AppConfig instance for each installed application.

629

Django Documentation, Release 1.10.9.dev20171123183751

There’s no restriction that a project package can’t also be considered an application and have models, etc. (which
would require adding it to INSTALLED_APPS).

6.1.2 Configuring applications

To configure an application, subclass AppConfig and put the dotted path to that subclass in INSTALLED_APPS.

When INSTALLED_APPS simply contains the dotted path to an application module, Django checks for a
default_app_config variable in that module.

If it’s defined, it’s the dotted path to the AppConfig subclass for that application.

If there is no default_app_config, Django uses the base AppConfig class.

default_app_config allows applications that predate Django 1.7 such as django.contrib.admin to opt-in
to AppConfig features without requiring users to update their INSTALLED_APPS.

New applications should avoid default_app_config. Instead they should require the dotted path to the appro-
priate AppConfig subclass to be configured explicitly in INSTALLED_APPS.

For application authors

If you’re creating a pluggable app called “Rock ’n’ roll”, here’s how you would provide a proper name for the admin:

rock_n_roll/apps.py

from django.apps import AppConfig

class RockNRollConfig(AppConfig):
name = 'rock_n_roll'
verbose_name = "Rock ’n’ roll"

You can make your application load this AppConfig subclass by default as follows:

rock_n_roll/__init__.py

default_app_config = 'rock_n_roll.apps.RockNRollConfig'

That will cause RockNRollConfig to be used when INSTALLED_APPS just contains 'rock_n_roll'. This
allows you to make use of AppConfig features without requiring your users to update their INSTALLED_APPS
setting. Besides this use case, it’s best to avoid using default_app_config and instead specify the app config
class in INSTALLED_APPS as described next.

Of course, you can also tell your users to put 'rock_n_roll.apps.RockNRollConfig' in their
INSTALLED_APPS setting. You can even provide several different AppConfig subclasses with different behaviors
and allow your users to choose one via their INSTALLED_APPS setting.

The recommended convention is to put the configuration class in a submodule of the application called apps. How-
ever, this isn’t enforced by Django.

You must include the name attribute for Django to determine which application this configuration applies to. You can
define any attributes documented in the AppConfig API reference.

Note: If your code imports the application registry in an application’s __init__.py, the name apps will clash
with the apps submodule. The best practice is to move that code to a submodule and import it. A workaround is to
import the registry under a different name:

630 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

from django.apps import apps as django_apps

For application users

If you’re using “Rock ’n’ roll” in a project called anthology, but you want it to show up as “Jazz Manouche”
instead, you can provide your own configuration:

anthology/apps.py

from rock_n_roll.apps import RockNRollConfig

class JazzManoucheConfig(RockNRollConfig):
verbose_name = "Jazz Manouche"

anthology/settings.py

INSTALLED_APPS = [
'anthology.apps.JazzManoucheConfig',
...

]

Again, defining project-specific configuration classes in a submodule called apps is a convention, not a requirement.

6.1.3 Application configuration

class AppConfig
Application configuration objects store metadata for an application. Some attributes can be configured in
AppConfig subclasses. Others are set by Django and read-only.

Configurable attributes

AppConfig.name
Full Python path to the application, e.g. 'django.contrib.admin'.

This attribute defines which application the configuration applies to. It must be set in all AppConfig sub-
classes.

It must be unique across a Django project.

AppConfig.label
Short name for the application, e.g. 'admin'

This attribute allows relabeling an application when two applications have conflicting labels. It defaults to the
last component of name. It should be a valid Python identifier.

It must be unique across a Django project.

AppConfig.verbose_name
Human-readable name for the application, e.g. “Administration”.

This attribute defaults to label.title().

AppConfig.path
Filesystem path to the application directory, e.g. '/usr/lib/python3.4/dist-packages/django/
contrib/admin'.

6.1. Applications 631

Django Documentation, Release 1.10.9.dev20171123183751

In most cases, Django can automatically detect and set this, but you can also provide an explicit override as a
class attribute on your AppConfig subclass. In a few situations this is required; for instance if the app package
is a namespace package with multiple paths.

Read-only attributes

AppConfig.module
Root module for the application, e.g. <module 'django.contrib.admin' from 'django/
contrib/admin/__init__.pyc'>.

AppConfig.models_module
Module containing the models, e.g. <module 'django.contrib.admin.models' from
'django/contrib/admin/models.pyc'>.

It may be None if the application doesn’t contain a models module. Note that the database related signals
such as pre_migrate and post_migrate are only emitted for applications that have a models module.

Methods

AppConfig.get_models()
Returns an iterable of Model classes for this application.

AppConfig.get_model(model_name)
Returns the Model with the given model_name. Raises LookupError if no such model exists in this
application. model_name is case-insensitive.

AppConfig.ready()
Subclasses can override this method to perform initialization tasks such as registering signals. It is called as
soon as the registry is fully populated.

Although you can’t import models at the module-level where AppConfig classes are defined, you can import
them in ready(), using either an import statement or get_model().

If you’re registering model signals, you can refer to the sender by its string label instead of using the model
class itself.

Example:

from django.db.models.signals import pre_save

def ready(self):
importing model classes
from .models import MyModel # or...
MyModel = self.get_model('MyModel')

registering signals with the model's string label
pre_save.connect(receiver, sender='app_label.MyModel')

Warning: Although you can access model classes as described above, avoid interacting with the database in
your ready() implementation. This includes model methods that execute queries (save(), delete(),
manager methods etc.), and also raw SQL queries via django.db.connection. Your ready()
method will run during startup of every management command. For example, even though the test database
configuration is separate from the production settings, manage.py testwould still execute some queries
against your production database!

632 Chapter 6. API Reference

https://docs.python.org/3/library/exceptions.html#LookupError

Django Documentation, Release 1.10.9.dev20171123183751

Note: In the usual initialization process, the ready method is only called once by Django. But in some corner
cases, particularly in tests which are fiddling with installed applications, readymight be called more than once.
In that case, either write idempotent methods, or put a flag on your AppConfig classes to prevent re-running
code which should be executed exactly one time.

Namespace packages as apps (Python 3.3+)

Python versions 3.3 and later support Python packages without an __init__.py file. These packages are known as
“namespace packages” and may be spread across multiple directories at different locations on sys.path (see PEP
420).

Django applications require a single base filesystem path where Django (depending on configuration) will search for
templates, static assets, etc. Thus, namespace packages may only be Django applications if one of the following is
true:

1. The namespace package actually has only a single location (i.e. is not spread across more than one directory.)

2. The AppConfig class used to configure the application has a path class attribute, which is the absolute
directory path Django will use as the single base path for the application.

If neither of these conditions is met, Django will raise ImproperlyConfigured.

6.1.4 Application registry

apps
The application registry provides the following public API. Methods that aren’t listed below are considered
private and may change without notice.

apps.ready
Boolean attribute that is set to True after the registry is fully populated and all AppConfig.ready() meth-
ods are called.

apps.get_app_configs()
Returns an iterable of AppConfig instances.

apps.get_app_config(app_label)
Returns an AppConfig for the application with the given app_label. Raises LookupError if no such
application exists.

apps.is_installed(app_name)
Checks whether an application with the given name exists in the registry. app_name is the full name of the
app, e.g. 'django.contrib.admin'.

apps.get_model(app_label, model_name)
Returns the Model with the given app_label and model_name. As a shortcut, this method also accepts a
single argument in the form app_label.model_name. model_name is case-insensitive.

Raises LookupError if no such application or model exists. Raises ValueError when called with a single
argument that doesn’t contain exactly one dot.

6.1. Applications 633

https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0420
https://docs.python.org/3/library/exceptions.html#LookupError
https://docs.python.org/3/library/exceptions.html#LookupError
https://docs.python.org/3/library/exceptions.html#ValueError

Django Documentation, Release 1.10.9.dev20171123183751

6.1.5 Initialization process

How applications are loaded

When Django starts, django.setup() is responsible for populating the application registry.

setup(set_prefix=True)
Configures Django by:

• Loading the settings.

• Setting up logging.

• If set_prefix is True, setting the URL resolver script prefix to FORCE_SCRIPT_NAME if defined, or
/ otherwise.

• Initializing the application registry.

The ability to set the URL resolver script prefix is new.

This function is called automatically:

• When running an HTTP server via Django’s WSGI support.

• When invoking a management command.

It must be called explicitly in other cases, for instance in plain Python scripts.

The application registry is initialized in three stages. At each stage, Django processes all applications in the order of
INSTALLED_APPS.

1. First Django imports each item in INSTALLED_APPS.

If it’s an application configuration class, Django imports the root package of the application, defined by its name
attribute. If it’s a Python package, Django creates a default application configuration.

At this stage, your code shouldn’t import any models!

In other words, your applications’ root packages and the modules that define your application configuration
classes shouldn’t import any models, even indirectly.

Strictly speaking, Django allows importing models once their application configuration is loaded. However, in
order to avoid needless constraints on the order of INSTALLED_APPS, it’s strongly recommended not import
any models at this stage.

Once this stage completes, APIs that operate on application configurations such as get_app_config()
become usable.

2. Then Django attempts to import the models submodule of each application, if there is one.

You must define or import all models in your application’s models.py or models/__init__.py. Other-
wise, the application registry may not be fully populated at this point, which could cause the ORM to malfunc-
tion.

Once this stage completes, APIs that operate on models such as get_model() become usable.

3. Finally Django runs the ready() method of each application configuration.

Troubleshooting

Here are some common problems that you may encounter during initialization:

634 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• AppRegistryNotReady: This happens when importing an application configuration or a models module
triggers code that depends on the app registry.

For example, ugettext() uses the app registry to look up translation catalogs in applications. To translate
at import time, you need ugettext_lazy() instead. (Using ugettext() would be a bug, because the
translation would happen at import time, rather than at each request depending on the active language.)

Executing database queries with the ORM at import time in models modules will also trigger this exception.
The ORM cannot function properly until all models are available.

Another common culprit is django.contrib.auth.get_user_model(). Use the
AUTH_USER_MODEL setting to reference the User model at import time.

This exception also happens if you forget to call django.setup() in a standalone Python script.

• ImportError: cannot import name ... This happens if the import sequence ends up in a loop.

To eliminate such problems, you should minimize dependencies between your models modules and do as little
work as possible at import time. To avoid executing code at import time, you can move it into a function and
cache its results. The code will be executed when you first need its results. This concept is known as “lazy
evaluation”.

• django.contrib.admin automatically performs autodiscovery of admin modules in installed applica-
tions. To prevent it, change your INSTALLED_APPS to contain 'django.contrib.admin.apps.
SimpleAdminConfig' instead of 'django.contrib.admin'.

6.2 System check framework

The system check framework is a set of static checks for validating Django projects. It detects common problems and
provides hints for how to fix them. The framework is extensible so you can easily add your own checks.

For details on how to add your own checks and integrate them with Django’s system checks, see the System check
topic guide.

6.2.1 API Reference

CheckMessage

class CheckMessage(level, msg, hint=None, obj=None, id=None)

The warnings and errors raised by system checks must be instances of CheckMessage. An instance encapsulates a
single reportable error or warning. It also provides context and hints applicable to the message, and a unique identifier
that is used for filtering purposes.

Constructor arguments are:

level The severity of the message. Use one of the predefined values: DEBUG, INFO, WARNING, ERROR,
CRITICAL. If the level is greater or equal to ERROR, then Django will prevent management commands from
executing. Messages with level lower than ERROR (i.e. warnings) are reported to the console, but can be
silenced.

msg A short (less than 80 characters) string describing the problem. The string should not contain newlines.

hint A single-line string providing a hint for fixing the problem. If no hint can be provided, or the hint is self-evident
from the error message, the hint can be omitted, or a value of None can be used.

obj Optional. An object providing context for the message (for example, the model where the problem was discov-
ered). The object should be a model, field, or manager or any other object that defines __str__ method (on

6.2. System check framework 635

Django Documentation, Release 1.10.9.dev20171123183751

Python 2 you need to define __unicode__ method). The method is used while reporting all messages and its
result precedes the message.

id Optional string. A unique identifier for the issue. Identifiers should follow the pattern applabel.X001, where
X is one of the letters CEWID, indicating the message severity (C for criticals, E for errors and so). The number
can be allocated by the application, but should be unique within that application.

There are subclasses to make creating messages with common levels easier. When using them you can omit the level
argument because it is implied by the class name.

class Debug(msg, hint=None, obj=None, id=None)

class Info(msg, hint=None, obj=None, id=None)

class Warning(msg, hint=None obj=None, id=None)

class Error(msg, hint=None, obj=None, id=None)

class Critical(msg, hint=None, obj=None, id=None)

6.2.2 Builtin checks

Builtin tags

Django’s system checks are organized using the following tags:

• models: Checks governing model, field and manager definitions.

• signals: Checks on signal declarations and handler registrations.

• admin: Checks of any admin site declarations.

• compatibility: Flagging potential problems with version upgrades.

• security: Checks security related configuration.

• templates: Checks template related configuration.

• caches: Checks cache related configuration.

• urls: Checks URL configuration.

• database: Checks database-related configuration issues. Database checks are not run by default because they
do more than static code analysis as regular checks do. They are only run by the migrate command or if you
specify the database tag when calling the check command.

The database tag was added.

Some checks may be registered with multiple tags.

Core system checks

Models

• models.E001: <swappable> is not of the form app_label.app_name.

• models.E002: <SETTING> references <model>, which has not been installed, or is abstract.

• models.E003: The model has two many-to-many relations through the intermediate model <app_label>.
<model>.

• models.E004: id can only be used as a field name if the field also sets primary_key=True.

636 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• models.E005: The field <field name> from parent model <model> clashes with the field <field
name> from parent model <model>.

• models.E006: The field clashes with the field <field name> from model <model>.

• models.E007: Field <field name> has column name <column name> that is used by another field.

• models.E008: index_together must be a list or tuple.

• models.E009: All index_together elements must be lists or tuples.

• models.E010: unique_together must be a list or tuple.

• models.E011: All unique_together elements must be lists or tuples.

• models.E012: index_together/unique_together refers to the non-existent field <field name>.

• models.E013: index_together/unique_together refers to a ManyToManyField <field
name>, but ManyToManyFields are not supported for that option.

• models.E014: ordering must be a tuple or list (even if you want to order by only one field).

• models.E015: ordering refers to the non-existent field <field name>.

• models.E016: index_together/unique_together refers to field <field_name> which is not local
to model <model>.

• models.E017: Proxy model <model> contains model fields.

• models.E018: Autogenerated column name too long for field <field>. Maximum length is <maximum
length> for database <alias>.

• models.E019: Autogenerated column name too long for M2M field <M2M field>. Maximum length is
<maximum length> for database <alias>.

• models.E020: The <model>.check() class method is currently overridden.

• models.E021: ordering and order_with_respect_to cannot be used together.

• models.E022: <function> contains a lazy reference to <app label>.<model>, but app <app
label> isn’t installed or doesn’t provide model <model>.

Fields

• fields.E001: Field names must not end with an underscore.

• fields.E002: Field names must not contain "__".

• fields.E003: pk is a reserved word that cannot be used as a field name.

• fields.E004: choices must be an iterable (e.g., a list or tuple).

• fields.E005: choices must be an iterable returning (actual value, human readable name) tu-
ples.

• fields.E006: db_index must be None, True or False.

• fields.E007: Primary keys must not have null=True.

• fields.E100: AutoFields must set primary_key=True.

• fields.E110: BooleanFields do not accept null values.

• fields.E120: CharFields must define a max_length attribute.

• fields.E121: max_length must be a positive integer.

6.2. System check framework 637

Django Documentation, Release 1.10.9.dev20171123183751

• fields.W122: max_length is ignored when used with IntegerField.

• fields.E130: DecimalFields must define a decimal_places attribute.

• fields.E131: decimal_places must be a non-negative integer.

• fields.E132: DecimalFields must define a max_digits attribute.

• fields.E133: max_digits must be a non-negative integer.

• fields.E134: max_digits must be greater or equal to decimal_places.

• fields.E140: FilePathFields must have either allow_files or allow_folders set to True.

• fields.E150: GenericIPAddressFields cannot accept blank values if null values are not allowed, as blank
values are stored as nulls.

• fields.E160: The options auto_now, auto_now_add, and default are mutually exclusive. Only one of
these options may be present.

• fields.W161: Fixed default value provided.

• fields.E900: IPAddressField has been removed except for support in historical migrations.

• fields.W900: IPAddressField has been deprecated. Support for it (except in historical migrations) will be
removed in Django 1.9. This check appeared in Django 1.7 and 1.8.

• fields.W901: CommaSeparatedIntegerField has been deprecated. Support for it (except in historical
migrations) will be removed in Django 2.0.

File Fields

• fields.E200: unique is not a valid argument for a FileField.

• fields.E201: primary_key is not a valid argument for a FileField.

• fields.E210: Cannot use ImageField because Pillow is not installed.

Related Fields

• fields.E300: Field defines a relation with model <model>, which is either not installed, or is abstract.

• fields.E301: Field defines a relation with the model <model> which has been swapped out.

• fields.E302: Accessor for field <field name> clashes with field <field name>.

• fields.E303: Reverse query name for field <field name> clashes with field <field name>.

• fields.E304: Field name <field name> clashes with accessor for <field name>.

• fields.E305: Field name <field name> clashes with reverse query name for <field name>.

• fields.E306: Related name must be a valid Python identifier or end with a '+'.

• fields.E307: The field <app label>.<model>.<field name> was declared with a lazy reference to
<app label>.<model>, but app <app label> isn’t installed or doesn’t provide model <model>.

• fields.E310: No subset of the fields <field1>, <field2>, ... on model <model> is unique. Add
unique=True on any of those fields or add at least a subset of them to a unique_together constraint.

• fields.E311: <model> must set unique=True because it is referenced by a ForeignKey.

• fields.E320: Field specifies on_delete=SET_NULL, but cannot be null.

638 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• fields.E321: The field specifies on_delete=SET_DEFAULT, but has no default value.

• fields.E330: ManyToManyFields cannot be unique.

• fields.E331: Field specifies a many-to-many relation through model <model>, which has not been installed.

• fields.E332: Many-to-many fields with intermediate tables must not be symmetrical.

• fields.E333: The model is used as an intermediate model by <model>, but it has more than two foreign
keys to <model>, which is ambiguous. You must specify which two foreign keys Django should use via the
through_fields keyword argument.

• fields.E334: The model is used as an intermediate model by <model>, but it has more than one foreign
key from <model>, which is ambiguous. You must specify which foreign key Django should use via the
through_fields keyword argument.

• fields.E335: The model is used as an intermediate model by <model>, but it has more than one foreign
key to <model>, which is ambiguous. You must specify which foreign key Django should use via the
through_fields keyword argument.

• fields.E336: The model is used as an intermediary model by <model>, but it does not have foreign key to
<model> or <model>.

• fields.E337: Field specifies through_fields but does not provide the names of the two link fields that
should be used for the relation through <model>.

• fields.E338: The intermediary model <through model> has no field <field name>.

• fields.E339: <model>.<field name> is not a foreign key to <model>.

• fields.W340: null has no effect on ManyToManyField.

• fields.W341: ManyToManyField does not support validators.

• fields.W342: Setting unique=True on a ForeignKey has the same effect as using a OneToOneField.

Signals

• signals.E001: <handler> was connected to the <signal> signal with a lazy reference to the sender <app
label>.<model>, but app <app label> isn’t installed or doesn’t provide model <model>.

Backwards Compatibility

The following checks are performed to warn the user of any potential problems that might occur as a result of a version
upgrade.

• 1_6.W001: Some project unit tests may not execute as expected. This check was removed in Django 1.8 due to
false positives.

• 1_6.W002: BooleanField does not have a default value. This check was removed in Django 1.8 due to false
positives.

• 1_7.W001: Django 1.7 changed the global defaults for the MIDDLEWARE_CLASSES. django.
contrib.sessions.middleware.SessionMiddleware, django.contrib.auth.
middleware.AuthenticationMiddleware, and django.contrib.messages.middleware.
MessageMiddleware were removed from the defaults. If your project needs these middleware then you
should configure this setting. This check was removed in Django 1.9.

• 1_8.W001: The standalone TEMPLATE_* settings were deprecated in Django 1.8 and the TEMPLATES dictio-
nary takes precedence. You must put the values of the following settings into your defaults TEMPLATES dict:

6.2. System check framework 639

Django Documentation, Release 1.10.9.dev20171123183751

TEMPLATE_DIRS, TEMPLATE_CONTEXT_PROCESSORS, TEMPLATE_DEBUG, TEMPLATE_LOADERS,
TEMPLATE_STRING_IF_INVALID.

• 1_10.W001: The MIDDLEWARE_CLASSES setting is deprecated in Django 1.10 and the MIDDLEWARE setting
takes precedence. Since you’ve set MIDDLEWARE, the value of MIDDLEWARE_CLASSES is ignored.

Admin

Admin checks are all performed as part of the admin tag.

The following checks are performed on any ModelAdmin (or subclass) that is registered with the admin site:

• admin.E001: The value of raw_id_fields must be a list or tuple.

• admin.E002: The value of raw_id_fields[n] refers to <field name>, which is not an attribute of
<model>.

• admin.E003: The value of raw_id_fields[n] must be a foreign key or a many-to-many field.

• admin.E004: The value of fields must be a list or tuple.

• admin.E005: Both fieldsets and fields are specified.

• admin.E006: The value of fields contains duplicate field(s).

• admin.E007: The value of fieldsets must be a list or tuple.

• admin.E008: The value of fieldsets[n] must be a list or tuple.

• admin.E009: The value of fieldsets[n] must be of length 2.

• admin.E010: The value of fieldsets[n][1] must be a dictionary.

• admin.E011: The value of fieldsets[n][1] must contain the key fields.

• admin.E012: There are duplicate field(s) in fieldsets[n][1].

• admin.E013: fields[n]/fieldsets[n][m] cannot include the ManyToManyField <field
name>, because that field manually specifies a relationship model.

• admin.E014: The value of exclude must be a list or tuple.

• admin.E015: The value of exclude contains duplicate field(s).

• admin.E016: The value of form must inherit from BaseModelForm.

• admin.E017: The value of filter_vertical must be a list or tuple.

• admin.E018: The value of filter_horizontal must be a list or tuple.

• admin.E019: The value of filter_vertical[n]/filter_vertical[n] refers to <field name>,
which is not an attribute of <model>.

• admin.E020: The value of filter_vertical[n]/filter_vertical[n] must be a many-to-many
field.

• admin.E021: The value of radio_fields must be a dictionary.

• admin.E022: The value of radio_fields refers to <field name>, which is not an attribute of <model>.

• admin.E023: The value of radio_fields refers to <field name>, which is not a ForeignKey, and
does not have a choices definition.

• admin.E024: The value of radio_fields[<field name>] must be either admin.HORIZONTAL or
admin.VERTICAL.

• admin.E025: The value of view_on_site must be either a callable or a boolean value.

640 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• admin.E026: The value of prepopulated_fields must be a dictionary.

• admin.E027: The value of prepopulated_fields refers to <field name>, which is not an attribute of
<model>.

• admin.E028: The value of prepopulated_fields refers to <field name>, which must not be a
DateTimeField, a ForeignKey, or a ManyToManyField field.

• admin.E029: The value of prepopulated_fields[<field name>] must be a list or tuple.

• admin.E030: The value of prepopulated_fields refers to <field name>, which is not an attribute of
<model>.

• admin.E031: The value of ordering must be a list or tuple.

• admin.E032: The value of ordering has the random ordering marker ?, but contains other fields as well.

• admin.E033: The value of ordering refers to <field name>, which is not an attribute of <model>.

• admin.E034: The value of readonly_fields must be a list or tuple.

• admin.E035: The value of readonly_fields[n] is not a callable, an attribute of <ModelAdmin
class>, or an attribute of <model>.

ModelAdmin

The following checks are performed on any ModelAdmin that is registered with the admin site:

• admin.E101: The value of save_as must be a boolean.

• admin.E102: The value of save_on_top must be a boolean.

• admin.E103: The value of inlines must be a list or tuple.

• admin.E104: <InlineModelAdmin class> must inherit from BaseModelAdmin.

• admin.E105: <InlineModelAdmin class> must have a model attribute.

• admin.E106: The value of <InlineModelAdmin class>.model must be a Model.

• admin.E107: The value of list_display must be a list or tuple.

• admin.E108: The value of list_display[n] refers to <label>, which is not a callable, an attribute of
<ModelAdmin class>, or an attribute or method on <model>.

• admin.E109: The value of list_display[n] must not be a ManyToManyField field.

• admin.E110: The value of list_display_links must be a list, a tuple, or None.

• admin.E111: The value of list_display_links[n] refers to <label>, which is not defined in
list_display.

• admin.E112: The value of list_filter must be a list or tuple.

• admin.E113: The value of list_filter[n] must inherit from ListFilter.

• admin.E114: The value of list_filter[n] must not inherit from FieldListFilter.

• admin.E115: The value of list_filter[n][1] must inherit from FieldListFilter.

• admin.E116: The value of list_filter[n] refers to <label>, which does not refer to a Field.

• admin.E117: The value of list_select_related must be a boolean, tuple or list.

• admin.E118: The value of list_per_page must be an integer.

• admin.E119: The value of list_max_show_all must be an integer.

6.2. System check framework 641

Django Documentation, Release 1.10.9.dev20171123183751

• admin.E120: The value of list_editable must be a list or tuple.

• admin.E121: The value of list_editable[n] refers to <label>, which is not an attribute of <model>.

• admin.E122: The value of list_editable[n] refers to <label>, which is not contained in
list_display.

• admin.E123: The value of list_editable[n] cannot be in both list_editable and
list_display_links.

• admin.E124: The value of list_editable[n] refers to the first field in list_display (<label>),
which cannot be used unless list_display_links is set.

• admin.E125: The value of list_editable[n] refers to <field name>, which is not editable through
the admin.

• admin.E126: The value of search_fields must be a list or tuple.

• admin.E127: The value of date_hierarchy refers to <field name>, which is not an attribute of
<model>.

• admin.E128: The value of date_hierarchy must be a DateField or DateTimeField.

InlineModelAdmin

The following checks are performed on any InlineModelAdmin that is registered as an inline on a ModelAdmin.

• admin.E201: Cannot exclude the field <field name>, because it is the foreign key to the parent model
<app_label>.<model>.

• admin.E202: <model> has no ForeignKey to <parent model>./ <model> has more than one
ForeignKey to <parent model>.

• admin.E203: The value of extra must be an integer.

• admin.E204: The value of max_num must be an integer.

• admin.E205: The value of min_num must be an integer.

• admin.E206: The value of formset must inherit from BaseModelFormSet.

GenericInlineModelAdmin

The following checks are performed on any GenericInlineModelAdmin that is registered as an inline on a
ModelAdmin.

• admin.E301: 'ct_field' references <label>, which is not a field on <model>.

• admin.E302: 'ct_fk_field' references <label>, which is not a field on <model>.

• admin.E303: <model> has no GenericForeignKey.

• admin.E304: <model> has no GenericForeignKey using content type field <field name> and object
ID field <field name>.

AdminSite

The following checks are performed on the default AdminSite:

642 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• admin.E401: django.contrib.contenttypes must be in INSTALLED_APPS in order to use the ad-
min application.

• admin.E402: django.contrib.auth.context_processors.auth must be in TEMPLATES in or-
der to use the admin application.

Auth

• auth.E001: REQUIRED_FIELDS must be a list or tuple.

• auth.E002: The field named as the USERNAME_FIELD for a custom user model must not be included in
REQUIRED_FIELDS.

• auth.E003: <field> must be unique because it is named as the USERNAME_FIELD.

• auth.W004: <field> is named as the USERNAME_FIELD, but it is not unique.

• auth.E005: The permission codenamed <codename> clashes with a builtin permission for model <model>.

• auth.E006: The permission codenamed <codename> is duplicated for model <model>.

• auth.E007: The verbose_name of model <model> must be at most 244 characters for its builtin permission
names to be at most 255 characters.

• auth.E008: The permission named <name> of model <model> is longer than 255 characters.

• auth.C009: <User model>.is_anonymous must be an attribute or property rather than a method. Ignor-
ing this is a security issue as anonymous users will be treated as authenticated!

• auth.C010: <User model>.is_authenticated must be an attribute or property rather than a method.
Ignoring this is a security issue as anonymous users will be treated as authenticated!

Content Types

The following checks are performed when a model contains a GenericForeignKey or GenericRelation:

• contenttypes.E001: The GenericForeignKey object ID references the non-existent field <field>.

• contenttypes.E002: The GenericForeignKey content type references the non-existent field <field>.

• contenttypes.E003: <field> is not a ForeignKey.

• contenttypes.E004: <field> is not a ForeignKey to contenttypes.ContentType.

Security

The security checks do not make your site secure. They do not audit code, do intrusion detection, or do anything
particularly complex. Rather, they help perform an automated, low-hanging-fruit checklist. They help you remember
the simple things that improve your site’s security.

Some of these checks may not be appropriate for your particular deployment configuration. For instance, if you do
your HTTP to HTTPS redirection in a load balancer, it’d be irritating to be constantly warned about not having enabled
SECURE_SSL_REDIRECT. Use SILENCED_SYSTEM_CHECKS to silence unneeded checks.

The following checks are run if you use the check --deploy option:

• security.W001: You do not have django.middleware.security.SecurityMiddleware
in your MIDDLEWARE/MIDDLEWARE_CLASSES so the SECURE_HSTS_SECONDS,
SECURE_CONTENT_TYPE_NOSNIFF, SECURE_BROWSER_XSS_FILTER, and
SECURE_SSL_REDIRECT settings will have no effect.

6.2. System check framework 643

Django Documentation, Release 1.10.9.dev20171123183751

• security.W002: You do not have django.middleware.clickjacking.
XFrameOptionsMiddleware in your MIDDLEWARE/MIDDLEWARE_CLASSES, so your pages will
not be served with an 'x-frame-options' header. Unless there is a good reason for your site to be served
in a frame, you should consider enabling this header to help prevent clickjacking attacks.

• security.W003: You don’t appear to be using Django’s built-in cross-site request forgery pro-
tection via the middleware (django.middleware.csrf.CsrfViewMiddleware is not in your
MIDDLEWARE/MIDDLEWARE_CLASSES). Enabling the middleware is the safest approach to ensure you don’t
leave any holes.

• security.W004: You have not set a value for the SECURE_HSTS_SECONDS setting. If your entire site is served
only over SSL, you may want to consider setting a value and enabling HTTP Strict Transport Security. Be sure
to read the documentation first; enabling HSTS carelessly can cause serious, irreversible problems.

• security.W005: You have not set the SECURE_HSTS_INCLUDE_SUBDOMAINS setting to True. Without
this, your site is potentially vulnerable to attack via an insecure connection to a subdomain. Only set this to
True if you are certain that all subdomains of your domain should be served exclusively via SSL.

• security.W006: Your SECURE_CONTENT_TYPE_NOSNIFF setting is not set to True, so your pages will not
be served with an 'x-content-type-options: nosniff' header. You should consider enabling this
header to prevent the browser from identifying content types incorrectly.

• security.W007: Your SECURE_BROWSER_XSS_FILTER setting is not set to True, so your pages will not
be served with an 'x-xss-protection: 1; mode=block' header. You should consider enabling this
header to activate the browser’s XSS filtering and help prevent XSS attacks.

• security.W008: Your SECURE_SSL_REDIRECT setting is not set to True. Unless your site should be avail-
able over both SSL and non-SSL connections, you may want to either set this setting to True or configure a
load balancer or reverse-proxy server to redirect all connections to HTTPS.

• security.W009: Your SECRET_KEY has less than 50 characters or less than 5 unique characters. Please gener-
ate a long and random SECRET_KEY, otherwise many of Django’s security-critical features will be vulnerable
to attack.

• security.W010: You have django.contrib.sessions in your INSTALLED_APPS but you have not
set SESSION_COOKIE_SECURE to True. Using a secure-only session cookie makes it more difficult for
network traffic sniffers to hijack user sessions.

• security.W011: You have django.contrib.sessions.middleware.SessionMiddleware in
your MIDDLEWARE/MIDDLEWARE_CLASSES, but you have not set SESSION_COOKIE_SECURE to True.
Using a secure-only session cookie makes it more difficult for network traffic sniffers to hijack user sessions.

• security.W012: SESSION_COOKIE_SECURE is not set to True. Using a secure-only session cookie makes
it more difficult for network traffic sniffers to hijack user sessions.

• security.W013: You have django.contrib.sessions in your INSTALLED_APPS, but you have not set
SESSION_COOKIE_HTTPONLY to True. Using an HttpOnly session cookie makes it more difficult for
cross-site scripting attacks to hijack user sessions.

• security.W014: You have django.contrib.sessions.middleware.SessionMiddleware in
your MIDDLEWARE/MIDDLEWARE_CLASSES, but you have not set SESSION_COOKIE_HTTPONLY to
True. Using an HttpOnly session cookie makes it more difficult for cross-site scripting attacks to hijack
user sessions.

• security.W015: SESSION_COOKIE_HTTPONLY is not set to True. Using an HttpOnly session cookie
makes it more difficult for cross-site scripting attacks to hijack user sessions.

• security.W016: CSRF_COOKIE_SECURE is not set to True. Using a secure-only CSRF cookie makes it
more difficult for network traffic sniffers to steal the CSRF token.

644 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• security.W017: CSRF_COOKIE_HTTPONLY is not set to True. Using an HttpOnly CSRF cookie makes it
more difficult for cross-site scripting attacks to steal the CSRF token.

• security.W018: You should not have DEBUG set to True in deployment.

• security.W019: You have django.middleware.clickjacking.XFrameOptionsMiddleware in
your MIDDLEWARE/MIDDLEWARE_CLASSES, but X_FRAME_OPTIONS is not set to 'DENY'. The default
is 'SAMEORIGIN', but unless there is a good reason for your site to serve other parts of itself in a frame, you
should change it to 'DENY'.

• security.W020: ALLOWED_HOSTS must not be empty in deployment.

Sites

The following checks are performed on any model using a CurrentSiteManager:

• sites.E001: CurrentSiteManager could not find a field named <field name>.

• sites.E002: CurrentSiteManager cannot use <field> as it is not a foreign key or a many-to-many field.

Database

MySQL

If you’re using MySQL, the following checks will be performed:

• mysql.E001: MySQL does not allow unique CharFields to have a max_length > 255.

• mysql.W002: MySQL Strict Mode is not set for database connection ‘<alias>’. See also Setting sql_mode.

Templates

The following checks verify that your TEMPLATES setting is correctly configured:

• templates.E001: You have 'APP_DIRS': True in your TEMPLATES but also specify 'loaders' in
OPTIONS. Either remove APP_DIRS or remove the 'loaders' option.

• templates.E002: string_if_invalid in TEMPLATES OPTIONS must be a string but got: {value}
({type}).

Caches

The following checks verify that your CACHES setting is correctly configured:

• caches.E001: You must define a 'default' cache in your CACHES setting.

URLs

The following checks are performed on your URL configuration:

• urls.W001: Your URL pattern <pattern> uses include() with a regex ending with a $. Remove the
dollar from the regex to avoid problems including URLs.

• urls.W002: Your URL pattern <pattern> has a regex beginning with a /. Remove this slash as it is
unnecessary. If this pattern is targeted in an include(), ensure the include() pattern has a trailing /.

6.2. System check framework 645

Django Documentation, Release 1.10.9.dev20171123183751

• urls.W003: Your URL pattern <pattern> has a name including a :. Remove the colon, to avoid ambiguous
namespace references.

• urls.E004: Your URL pattern <pattern> is invalid. Ensure that urlpatterns is a list of url() instances.

6.3 Built-in class-based views API

Class-based views API reference. For introductory material, see the Class-based views topic guide.

6.3.1 Base views

The following three classes provide much of the functionality needed to create Django views. You may think of them
as parent views, which can be used by themselves or inherited from. They may not provide all the capabilities required
for projects, in which case there are Mixins and Generic class-based views.

Many of Django’s built-in class-based views inherit from other class-based views or various mixins. Because this
inheritance chain is very important, the ancestor classes are documented under the section title of Ancestors (MRO).
MRO is an acronym for Method Resolution Order.

View

class django.views.generic.base.View
The master class-based base view. All other class-based views inherit from this base class. It isn’t strictly a
generic view and thus can also be imported from django.views.

The ability to import from django.views was added.

Method Flowchart

1. dispatch()

2. http_method_not_allowed()

3. options()

Example views.py:

from django.http import HttpResponse
from django.views import View

class MyView(View):

def get(self, request, *args, **kwargs):
return HttpResponse('Hello, World!')

Example urls.py:

from django.conf.urls import url

from myapp.views import MyView

urlpatterns = [
url(r'^mine/$', MyView.as_view(), name='my-view'),

]

Attributes

646 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

http_method_names
The list of HTTP method names that this view will accept.

Default:

['get', 'post', 'put', 'patch', 'delete', 'head', 'options', 'trace']

Methods

classmethod as_view(**initkwargs)
Returns a callable view that takes a request and returns a response:

response = MyView.as_view()(request)

The returned view has view_class and view_initkwargs attributes.

dispatch(request, *args, **kwargs)
The view part of the view – the method that accepts a request argument plus arguments, and returns a
HTTP response.

The default implementation will inspect the HTTP method and attempt to delegate to a method that
matches the HTTP method; a GET will be delegated to get(), a POST to post(), and so on.

By default, a HEAD request will be delegated to get(). If you need to handle HEAD requests in a dif-
ferent way than GET, you can override the head() method. See Supporting other HTTP methods for an
example.

http_method_not_allowed(request, *args, **kwargs)
If the view was called with a HTTP method it doesn’t support, this method is called instead.

The default implementation returns HttpResponseNotAllowed with a list of allowed methods in
plain text.

options(request, *args, **kwargs)
Handles responding to requests for the OPTIONS HTTP verb. Returns a response with the Allow header
containing a list of the view’s allowed HTTP method names.

TemplateView

class django.views.generic.base.TemplateView
Renders a given template, with the context containing parameters captured in the URL.

Ancestors (MRO)

This view inherits methods and attributes from the following views:

• django.views.generic.base.TemplateResponseMixin

• django.views.generic.base.ContextMixin

• django.views.generic.base.View

Method Flowchart

1. dispatch()

2. http_method_not_allowed()

3. get_context_data()

Example views.py:

6.3. Built-in class-based views API 647

Django Documentation, Release 1.10.9.dev20171123183751

from django.views.generic.base import TemplateView

from articles.models import Article

class HomePageView(TemplateView):

template_name = "home.html"

def get_context_data(self, **kwargs):
context = super(HomePageView, self).get_context_data(**kwargs)
context['latest_articles'] = Article.objects.all()[:5]
return context

Example urls.py:

from django.conf.urls import url

from myapp.views import HomePageView

urlpatterns = [
url(r'^$', HomePageView.as_view(), name='home'),

]

Context

• Populated (through ContextMixin) with the keyword arguments captured from the URL pattern that
served the view.

RedirectView

class django.views.generic.base.RedirectView
Redirects to a given URL.

The given URL may contain dictionary-style string formatting, which will be interpolated against the parameters
captured in the URL. Because keyword interpolation is always done (even if no arguments are passed in), any
"%" characters in the URL must be written as "%%" so that Python will convert them to a single percent sign
on output.

If the given URL is None, Django will return an HttpResponseGone (410).

Ancestors (MRO)

This view inherits methods and attributes from the following view:

• django.views.generic.base.View

Method Flowchart

1. dispatch()

2. http_method_not_allowed()

3. get_redirect_url()

Example views.py:

from django.shortcuts import get_object_or_404
from django.views.generic.base import RedirectView

from articles.models import Article

648 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

class ArticleCounterRedirectView(RedirectView):

permanent = False
query_string = True
pattern_name = 'article-detail'

def get_redirect_url(self, *args, **kwargs):
article = get_object_or_404(Article, pk=kwargs['pk'])
article.update_counter()
return super(ArticleCounterRedirectView, self).get_redirect_url(*args,

→˓**kwargs)

Example urls.py:

from django.conf.urls import url
from django.views.generic.base import RedirectView

from article.views import ArticleCounterRedirectView, ArticleDetail

urlpatterns = [
url(r'^counter/(?P<pk>[0-9]+)/$', ArticleCounterRedirectView.as_view(), name=

→˓'article-counter'),
url(r'^details/(?P<pk>[0-9]+)/$', ArticleDetail.as_view(), name='article-

→˓detail'),
url(r'^go-to-django/$', RedirectView.as_view(url='https://djangoproject.com'),

→˓ name='go-to-django'),
]

Attributes

url
The URL to redirect to, as a string. Or None to raise a 410 (Gone) HTTP error.

pattern_name
The name of the URL pattern to redirect to. Reversing will be done using the same args and kwargs as are
passed in for this view.

permanent
Whether the redirect should be permanent. The only difference here is the HTTP status code returned. If
True, then the redirect will use status code 301. If False, then the redirect will use status code 302. By
default, permanent is False.

The default value of the permanent attribute changed from True to False.

query_string
Whether to pass along the GET query string to the new location. If True, then the query string is appended
to the URL. If False, then the query string is discarded. By default, query_string is False.

Methods

get_redirect_url(*args, **kwargs)
Constructs the target URL for redirection.

The default implementation uses url as a starting string and performs expansion of % named parameters
in that string using the named groups captured in the URL.

If url is not set, get_redirect_url() tries to reverse the pattern_name using what was captured
in the URL (both named and unnamed groups are used).

6.3. Built-in class-based views API 649

Django Documentation, Release 1.10.9.dev20171123183751

If requested by query_string, it will also append the query string to the generated URL. Subclasses
may implement any behavior they wish, as long as the method returns a redirect-ready URL string.

6.3.2 Generic display views

The two following generic class-based views are designed to display data. On many projects they are typically the
most commonly used views.

DetailView

class django.views.generic.detail.DetailView
While this view is executing, self.object will contain the object that the view is operating upon.

Ancestors (MRO)

This view inherits methods and attributes from the following views:

• django.views.generic.detail.SingleObjectTemplateResponseMixin

• django.views.generic.base.TemplateResponseMixin

• django.views.generic.detail.BaseDetailView

• django.views.generic.detail.SingleObjectMixin

• django.views.generic.base.View

Method Flowchart

1. dispatch()

2. http_method_not_allowed()

3. get_template_names()

4. get_slug_field()

5. get_queryset()

6. get_object()

7. get_context_object_name()

8. get_context_data()

9. get()

10. render_to_response()

Example myapp/views.py:

from django.views.generic.detail import DetailView
from django.utils import timezone

from articles.models import Article

class ArticleDetailView(DetailView):

model = Article

def get_context_data(self, **kwargs):
context = super(ArticleDetailView, self).get_context_data(**kwargs)

650 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

context['now'] = timezone.now()
return context

Example myapp/urls.py:

from django.conf.urls import url

from article.views import ArticleDetailView

urlpatterns = [
url(r'^(?P<slug>[-\w]+)/$', ArticleDetailView.as_view(), name='article-detail

→˓'),
]

Example myapp/article_detail.html:

<h1>{{ object.headline }}</h1>
<p>{{ object.content }}</p>
<p>Reporter: {{ object.reporter }}</p>
<p>Published: {{ object.pub_date|date }}</p>
<p>Date: {{ now|date }}</p>

ListView

class django.views.generic.list.ListView
A page representing a list of objects.

While this view is executing, self.object_list will contain the list of objects (usually, but not necessarily
a queryset) that the view is operating upon.

Ancestors (MRO)

This view inherits methods and attributes from the following views:

• django.views.generic.list.MultipleObjectTemplateResponseMixin

• django.views.generic.base.TemplateResponseMixin

• django.views.generic.list.BaseListView

• django.views.generic.list.MultipleObjectMixin

• django.views.generic.base.View

Method Flowchart

1. dispatch()

2. http_method_not_allowed()

3. get_template_names()

4. get_queryset()

5. get_context_object_name()

6. get_context_data()

7. get()

8. render_to_response()

6.3. Built-in class-based views API 651

Django Documentation, Release 1.10.9.dev20171123183751

Example views.py:

from django.views.generic.list import ListView
from django.utils import timezone

from articles.models import Article

class ArticleListView(ListView):

model = Article

def get_context_data(self, **kwargs):
context = super(ArticleListView, self).get_context_data(**kwargs)
context['now'] = timezone.now()
return context

Example myapp/urls.py:

from django.conf.urls import url

from article.views import ArticleListView

urlpatterns = [
url(r'^$', ArticleListView.as_view(), name='article-list'),

]

Example myapp/article_list.html:

<h1>Articles</h1>

{% for article in object_list %}

{{ article.pub_date|date }} - {{ article.headline }}
{% empty %}

No articles yet.
{% endfor %}

class django.views.generic.list.BaseListView
A base view for displaying a list of objects. It is not intended to be used directly, but rather as a parent class of
the django.views.generic.list.ListView or other views representing lists of objects.

Ancestors (MRO)

This view inherits methods and attributes from the following views:

• django.views.generic.list.MultipleObjectMixin

• django.views.generic.base.View

Methods

get(request, *args, **kwargs)
Adds object_list to the context. If allow_empty is True then display an empty list. If
allow_empty is False then raise a 404 error.

6.3.3 Generic editing views

The following views are described on this page and provide a foundation for editing content:

• django.views.generic.edit.FormView

652 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• django.views.generic.edit.CreateView

• django.views.generic.edit.UpdateView

• django.views.generic.edit.DeleteView

Note: Some of the examples on this page assume that an Author model has been defined as follows in myapp/
models.py:

from django.urls import reverse
from django.db import models

class Author(models.Model):
name = models.CharField(max_length=200)

def get_absolute_url(self):
return reverse('author-detail', kwargs={'pk': self.pk})

FormView

class django.views.generic.edit.FormView
A view that displays a form. On error, redisplays the form with validation errors; on success, redirects to a new
URL.

Ancestors (MRO)

This view inherits methods and attributes from the following views:

• django.views.generic.base.TemplateResponseMixin

• django.views.generic.edit.BaseFormView

• django.views.generic.edit.FormMixin

• django.views.generic.edit.ProcessFormView

• django.views.generic.base.View

Example myapp/forms.py:

from django import forms

class ContactForm(forms.Form):
name = forms.CharField()
message = forms.CharField(widget=forms.Textarea)

def send_email(self):
send email using the self.cleaned_data dictionary
pass

Example myapp/views.py:

from myapp.forms import ContactForm
from django.views.generic.edit import FormView

class ContactView(FormView):
template_name = 'contact.html'
form_class = ContactForm
success_url = '/thanks/'

6.3. Built-in class-based views API 653

Django Documentation, Release 1.10.9.dev20171123183751

def form_valid(self, form):
This method is called when valid form data has been POSTed.
It should return an HttpResponse.
form.send_email()
return super(ContactView, self).form_valid(form)

Example myapp/contact.html:

<form action="" method="post">{% csrf_token %}
{{ form.as_p }}
<input type="submit" value="Send message" />

</form>

CreateView

class django.views.generic.edit.CreateView
A view that displays a form for creating an object, redisplaying the form with validation errors (if there are any)
and saving the object.

Ancestors (MRO)

This view inherits methods and attributes from the following views:

• django.views.generic.detail.SingleObjectTemplateResponseMixin

• django.views.generic.base.TemplateResponseMixin

• django.views.generic.edit.BaseCreateView

• django.views.generic.edit.ModelFormMixin

• django.views.generic.edit.FormMixin

• django.views.generic.detail.SingleObjectMixin

• django.views.generic.edit.ProcessFormView

• django.views.generic.base.View

Attributes

template_name_suffix
The CreateView page displayed to a GET request uses a template_name_suffix of '_form'.
For example, changing this attribute to '_create_form' for a view creating objects for the example
Author model would cause the default template_name to be 'myapp/author_create_form.
html'.

object
When using CreateView you have access to self.object, which is the object being created. If the
object hasn’t been created yet, the value will be None.

Example myapp/views.py:

from django.views.generic.edit import CreateView
from myapp.models import Author

class AuthorCreate(CreateView):
model = Author
fields = ['name']

654 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Example myapp/author_form.html:

<form action="" method="post">{% csrf_token %}
{{ form.as_p }}
<input type="submit" value="Save" />

</form>

UpdateView

class django.views.generic.edit.UpdateView
A view that displays a form for editing an existing object, redisplaying the form with validation errors (if there
are any) and saving changes to the object. This uses a form automatically generated from the object’s model
class (unless a form class is manually specified).

Ancestors (MRO)

This view inherits methods and attributes from the following views:

• django.views.generic.detail.SingleObjectTemplateResponseMixin

• django.views.generic.base.TemplateResponseMixin

• django.views.generic.edit.BaseUpdateView

• django.views.generic.edit.ModelFormMixin

• django.views.generic.edit.FormMixin

• django.views.generic.detail.SingleObjectMixin

• django.views.generic.edit.ProcessFormView

• django.views.generic.base.View

Attributes

template_name_suffix
The UpdateView page displayed to a GET request uses a template_name_suffix of '_form'.
For example, changing this attribute to '_update_form' for a view updating objects for the example
Author model would cause the default template_name to be 'myapp/author_update_form.
html'.

object
When using UpdateView you have access to self.object, which is the object being updated.

Example myapp/views.py:

from django.views.generic.edit import UpdateView
from myapp.models import Author

class AuthorUpdate(UpdateView):
model = Author
fields = ['name']
template_name_suffix = '_update_form'

Example myapp/author_update_form.html:

<form action="" method="post">{% csrf_token %}
{{ form.as_p }}
<input type="submit" value="Update" />

</form>

6.3. Built-in class-based views API 655

Django Documentation, Release 1.10.9.dev20171123183751

DeleteView

class django.views.generic.edit.DeleteView
A view that displays a confirmation page and deletes an existing object. The given object will only be deleted
if the request method is POST. If this view is fetched via GET, it will display a confirmation page that should
contain a form that POSTs to the same URL.

Ancestors (MRO)

This view inherits methods and attributes from the following views:

• django.views.generic.detail.SingleObjectTemplateResponseMixin

• django.views.generic.base.TemplateResponseMixin

• django.views.generic.edit.BaseDeleteView

• django.views.generic.edit.DeletionMixin

• django.views.generic.detail.BaseDetailView

• django.views.generic.detail.SingleObjectMixin

• django.views.generic.base.View

Attributes

template_name_suffix
The DeleteView page displayed to a GET request uses a template_name_suffix of
'_confirm_delete'. For example, changing this attribute to '_check_delete' for a view delet-
ing objects for the example Author model would cause the default template_name to be 'myapp/
author_check_delete.html'.

Example myapp/views.py:

from django.views.generic.edit import DeleteView
from django.urls import reverse_lazy
from myapp.models import Author

class AuthorDelete(DeleteView):
model = Author
success_url = reverse_lazy('author-list')

Example myapp/author_confirm_delete.html:

<form action="" method="post">{% csrf_token %}
<p>Are you sure you want to delete "{{ object }}"?</p>
<input type="submit" value="Confirm" />

</form>

6.3.4 Generic date views

Date-based generic views, provided in django.views.generic.dates, are views for displaying drilldown
pages for date-based data.

Note: Some of the examples on this page assume that an Article model has been defined as follows in myapp/
models.py:

656 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

from django.db import models
from django.urls import reverse

class Article(models.Model):
title = models.CharField(max_length=200)
pub_date = models.DateField()

def get_absolute_url(self):
return reverse('article-detail', kwargs={'pk': self.pk})

ArchiveIndexView

class ArchiveIndexView
A top-level index page showing the “latest” objects, by date. Objects with a date in the future are not included
unless you set allow_future to True.

Ancestors (MRO)

• django.views.generic.list.MultipleObjectTemplateResponseMixin

• django.views.generic.base.TemplateResponseMixin

• django.views.generic.dates.BaseArchiveIndexView

• django.views.generic.dates.BaseDateListView

• django.views.generic.list.MultipleObjectMixin

• django.views.generic.dates.DateMixin

• django.views.generic.base.View

Context

In addition to the context provided by django.views.generic.list.MultipleObjectMixin (via
django.views.generic.dates.BaseDateListView), the template’s context will be:

• date_list: A QuerySet object containing all years that have objects available according to
queryset, represented as datetime.datetime objects, in descending order.

Notes

• Uses a default context_object_name of latest.

• Uses a default template_name_suffix of _archive.

• Defaults to providing date_list by year, but this can be altered to month or day using the attribute
date_list_period. This also applies to all subclass views.

Example myapp/urls.py:

from django.conf.urls import url
from django.views.generic.dates import ArchiveIndexView

from myapp.models import Article

urlpatterns = [
url(r'^archive/$',

ArchiveIndexView.as_view(model=Article, date_field="pub_date"),
name="article_archive"),

]

6.3. Built-in class-based views API 657

https://docs.python.org/3/library/datetime.html#datetime.datetime

Django Documentation, Release 1.10.9.dev20171123183751

Example myapp/article_archive.html:

{% for article in latest %}

{{ article.pub_date }}: {{ article.title }}
{% endfor %}

This will output all articles.

YearArchiveView

class YearArchiveView
A yearly archive page showing all available months in a given year. Objects with a date in the future are not
displayed unless you set allow_future to True.

Ancestors (MRO)

• django.views.generic.list.MultipleObjectTemplateResponseMixin

• django.views.generic.base.TemplateResponseMixin

• django.views.generic.dates.BaseYearArchiveView

• django.views.generic.dates.YearMixin

• django.views.generic.dates.BaseDateListView

• django.views.generic.list.MultipleObjectMixin

• django.views.generic.dates.DateMixin

• django.views.generic.base.View

make_object_list
A boolean specifying whether to retrieve the full list of objects for this year and pass those to the template.
If True, the list of objects will be made available to the context. If False, the None queryset will be
used as the object list. By default, this is False.

get_make_object_list()
Determine if an object list will be returned as part of the context. Returns make_object_list by
default.

Context

In addition to the context provided by django.views.generic.list.MultipleObjectMixin (via
django.views.generic.dates.BaseDateListView), the template’s context will be:

• date_list: A QuerySet object containing all months that have objects available according to
queryset, represented as datetime.datetime objects, in ascending order.

• year: A date object representing the given year.

• next_year: A date object representing the first day of the next year, according to allow_empty
and allow_future.

• previous_year: A date object representing the first day of the previous year, according to
allow_empty and allow_future.

Notes

• Uses a default template_name_suffix of _archive_year.

658 Chapter 6. API Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.date

Django Documentation, Release 1.10.9.dev20171123183751

Example myapp/views.py:

from django.views.generic.dates import YearArchiveView

from myapp.models import Article

class ArticleYearArchiveView(YearArchiveView):
queryset = Article.objects.all()
date_field = "pub_date"
make_object_list = True
allow_future = True

Example myapp/urls.py:

from django.conf.urls import url

from myapp.views import ArticleYearArchiveView

urlpatterns = [
url(r'^(?P<year>[0-9]{4})/$',

ArticleYearArchiveView.as_view(),
name="article_year_archive"),

]

Example myapp/article_archive_year.html:

{% for date in date_list %}

{{ date|date }}
{% endfor %}

<div>
<h1>All Articles for {{ year|date:"Y" }}</h1>
{% for obj in object_list %}

<p>
{{ obj.title }} - {{ obj.pub_date|date:"F j, Y" }}

</p>
{% endfor %}

</div>

MonthArchiveView

class MonthArchiveView
A monthly archive page showing all objects in a given month. Objects with a date in the future are not displayed
unless you set allow_future to True.

Ancestors (MRO)

• django.views.generic.list.MultipleObjectTemplateResponseMixin

• django.views.generic.base.TemplateResponseMixin

• django.views.generic.dates.BaseMonthArchiveView

• django.views.generic.dates.YearMixin

• django.views.generic.dates.MonthMixin

• django.views.generic.dates.BaseDateListView

6.3. Built-in class-based views API 659

Django Documentation, Release 1.10.9.dev20171123183751

• django.views.generic.list.MultipleObjectMixin

• django.views.generic.dates.DateMixin

• django.views.generic.base.View

Context

In addition to the context provided by MultipleObjectMixin (via BaseDateListView), the template’s
context will be:

• date_list: A QuerySet object containing all days that have objects available in the given month,
according to queryset, represented as datetime.datetime objects, in ascending order.

• month: A date object representing the given month.

• next_month: A date object representing the first day of the next month, according to allow_empty
and allow_future.

• previous_month: A date object representing the first day of the previous month, according to
allow_empty and allow_future.

Notes

• Uses a default template_name_suffix of _archive_month.

Example myapp/views.py:

from django.views.generic.dates import MonthArchiveView

from myapp.models import Article

class ArticleMonthArchiveView(MonthArchiveView):
queryset = Article.objects.all()
date_field = "pub_date"
allow_future = True

Example myapp/urls.py:

from django.conf.urls import url

from myapp.views import ArticleMonthArchiveView

urlpatterns = [
Example: /2012/aug/
url(r'^(?P<year>[0-9]{4})/(?P<month>[-\w]+)/$',

ArticleMonthArchiveView.as_view(),
name="archive_month"),

Example: /2012/08/
url(r'^(?P<year>[0-9]{4})/(?P<month>[0-9]+)/$',

ArticleMonthArchiveView.as_view(month_format='%m'),
name="archive_month_numeric"),

]

Example myapp/article_archive_month.html:

{% for article in object_list %}

{{ article.pub_date|date:"F j, Y" }}: {{ article.title }}
{% endfor %}

660 Chapter 6. API Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.date

Django Documentation, Release 1.10.9.dev20171123183751

<p>
{% if previous_month %}

Previous Month: {{ previous_month|date:"F Y" }}
{% endif %}
{% if next_month %}

Next Month: {{ next_month|date:"F Y" }}
{% endif %}

</p>

WeekArchiveView

class WeekArchiveView
A weekly archive page showing all objects in a given week. Objects with a date in the future are not displayed
unless you set allow_future to True.

Ancestors (MRO)

• django.views.generic.list.MultipleObjectTemplateResponseMixin

• django.views.generic.base.TemplateResponseMixin

• django.views.generic.dates.BaseWeekArchiveView

• django.views.generic.dates.YearMixin

• django.views.generic.dates.WeekMixin

• django.views.generic.dates.BaseDateListView

• django.views.generic.list.MultipleObjectMixin

• django.views.generic.dates.DateMixin

• django.views.generic.base.View

Context

In addition to the context provided by MultipleObjectMixin (via BaseDateListView), the template’s
context will be:

• week: A date object representing the first day of the given week.

• next_week: A date object representing the first day of the next week, according to allow_empty
and allow_future.

• previous_week: A date object representing the first day of the previous week, according to
allow_empty and allow_future.

Notes

• Uses a default template_name_suffix of _archive_week.

• The week_format attribute is a strptime() format string used to parse the week number. The
following values are supported:

– '%U': Based on the United States week system where the week begins on Sunday. This is the default
value.

– '%W': Similar to '%U', except it assumes that the week begins on Monday. This is not the same as
the ISO 8601 week number.

Example myapp/views.py:

6.3. Built-in class-based views API 661

https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/time.html#time.strptime

Django Documentation, Release 1.10.9.dev20171123183751

from django.views.generic.dates import WeekArchiveView

from myapp.models import Article

class ArticleWeekArchiveView(WeekArchiveView):
queryset = Article.objects.all()
date_field = "pub_date"
week_format = "%W"
allow_future = True

Example myapp/urls.py:

from django.conf.urls import url

from myapp.views import ArticleWeekArchiveView

urlpatterns = [
Example: /2012/week/23/
url(r'^(?P<year>[0-9]{4})/week/(?P<week>[0-9]+)/$',

ArticleWeekArchiveView.as_view(),
name="archive_week"),

]

Example myapp/article_archive_week.html:

<h1>Week {{ week|date:'W' }}</h1>

{% for article in object_list %}

{{ article.pub_date|date:"F j, Y" }}: {{ article.title }}
{% endfor %}

<p>
{% if previous_week %}

Previous Week: {{ previous_week|date:"W" }} of year {{ previous_week|date:
→˓"Y" }}

{% endif %}
{% if previous_week and next_week %}--{% endif %}
{% if next_week %}

Next week: {{ next_week|date:"W" }} of year {{ next_week|date:"Y" }}
{% endif %}

</p>

In this example, you are outputting the week number. Keep in mind that week numbers computed by the date
template filter with the 'W' format character are not always the same as those computed by strftime()
and strptime() with the '%W' format string. For year 2015, for example, week numbers output by
date are higher by one compared to those output by strftime(). There isn’t an equivalent for the
'%U' strftime() format string in date. Therefore, you should avoid using date to generate URLs for
WeekArchiveView.

DayArchiveView

class DayArchiveView
A day archive page showing all objects in a given day. Days in the future throw a 404 error, regardless of
whether any objects exist for future days, unless you set allow_future to True.

662 Chapter 6. API Reference

https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/time.html#time.strptime
https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/time.html#time.strftime

Django Documentation, Release 1.10.9.dev20171123183751

Ancestors (MRO)

• django.views.generic.list.MultipleObjectTemplateResponseMixin

• django.views.generic.base.TemplateResponseMixin

• django.views.generic.dates.BaseDayArchiveView

• django.views.generic.dates.YearMixin

• django.views.generic.dates.MonthMixin

• django.views.generic.dates.DayMixin

• django.views.generic.dates.BaseDateListView

• django.views.generic.list.MultipleObjectMixin

• django.views.generic.dates.DateMixin

• django.views.generic.base.View

Context

In addition to the context provided by MultipleObjectMixin (via BaseDateListView), the template’s
context will be:

• day: A date object representing the given day.

• next_day: A date object representing the next day, according to allow_empty and
allow_future.

• previous_day: A date object representing the previous day, according to allow_empty and
allow_future.

• next_month: A date object representing the first day of the next month, according to allow_empty
and allow_future.

• previous_month: A date object representing the first day of the previous month, according to
allow_empty and allow_future.

Notes

• Uses a default template_name_suffix of _archive_day.

Example myapp/views.py:

from django.views.generic.dates import DayArchiveView

from myapp.models import Article

class ArticleDayArchiveView(DayArchiveView):
queryset = Article.objects.all()
date_field = "pub_date"
allow_future = True

Example myapp/urls.py:

from django.conf.urls import url

from myapp.views import ArticleDayArchiveView

urlpatterns = [
Example: /2012/nov/10/
url(r'^(?P<year>[0-9]{4})/(?P<month>[-\w]+)/(?P<day>[0-9]+)/$',

6.3. Built-in class-based views API 663

https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.date

Django Documentation, Release 1.10.9.dev20171123183751

ArticleDayArchiveView.as_view(),
name="archive_day"),

]

Example myapp/article_archive_day.html:

<h1>{{ day }}</h1>

{% for article in object_list %}

{{ article.pub_date|date:"F j, Y" }}: {{ article.title }}
{% endfor %}

<p>
{% if previous_day %}

Previous Day: {{ previous_day }}
{% endif %}
{% if previous_day and next_day %}--{% endif %}
{% if next_day %}

Next Day: {{ next_day }}
{% endif %}

</p>

TodayArchiveView

class TodayArchiveView
A day archive page showing all objects for today. This is exactly the same as django.views.generic.
dates.DayArchiveView , except today’s date is used instead of the year/month/day arguments.

Ancestors (MRO)

• django.views.generic.list.MultipleObjectTemplateResponseMixin

• django.views.generic.base.TemplateResponseMixin

• django.views.generic.dates.BaseTodayArchiveView

• django.views.generic.dates.BaseDayArchiveView

• django.views.generic.dates.YearMixin

• django.views.generic.dates.MonthMixin

• django.views.generic.dates.DayMixin

• django.views.generic.dates.BaseDateListView

• django.views.generic.list.MultipleObjectMixin

• django.views.generic.dates.DateMixin

• django.views.generic.base.View

Notes

• Uses a default template_name_suffix of _archive_today.

Example myapp/views.py:

664 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

from django.views.generic.dates import TodayArchiveView

from myapp.models import Article

class ArticleTodayArchiveView(TodayArchiveView):
queryset = Article.objects.all()
date_field = "pub_date"
allow_future = True

Example myapp/urls.py:

from django.conf.urls import url

from myapp.views import ArticleTodayArchiveView

urlpatterns = [
url(r'^today/$',

ArticleTodayArchiveView.as_view(),
name="archive_today"),

]

Where is the example template for TodayArchiveView?

This view uses by default the same template as the DayArchiveView , which is in the previous example. If
you need a different template, set the template_name attribute to be the name of the new template.

DateDetailView

class DateDetailView
A page representing an individual object. If the object has a date value in the future, the view will throw a 404
error by default, unless you set allow_future to True.

Ancestors (MRO)

• django.views.generic.detail.SingleObjectTemplateResponseMixin

• django.views.generic.base.TemplateResponseMixin

• django.views.generic.dates.BaseDateDetailView

• django.views.generic.dates.YearMixin

• django.views.generic.dates.MonthMixin

• django.views.generic.dates.DayMixin

• django.views.generic.dates.DateMixin

• django.views.generic.detail.BaseDetailView

• django.views.generic.detail.SingleObjectMixin

• django.views.generic.base.View

Context

• Includes the single object associated with the model specified in the DateDetailView.

Notes

6.3. Built-in class-based views API 665

Django Documentation, Release 1.10.9.dev20171123183751

• Uses a default template_name_suffix of _detail.

Example myapp/urls.py:

from django.conf.urls import url
from django.views.generic.dates import DateDetailView

urlpatterns = [
url(r'^(?P<year>[0-9]{4})/(?P<month>[-\w]+)/(?P<day>[0-9]+)/(?P<pk>[0-9]+)/$',

DateDetailView.as_view(model=Article, date_field="pub_date"),
name="archive_date_detail"),

]

Example myapp/article_detail.html:

<h1>{{ object.title }}</h1>

Note: All of the generic views listed above have matching Base views that only differ in
that they do not include the MultipleObjectTemplateResponseMixin (for the archive views) or
SingleObjectTemplateResponseMixin (for the DateDetailView):

class BaseArchiveIndexView

class BaseYearArchiveView

class BaseMonthArchiveView

class BaseWeekArchiveView

class BaseDayArchiveView

class BaseTodayArchiveView

class BaseDateDetailView

6.3.5 Class-based views mixins

Class-based views API reference. For introductory material, see Using mixins with class-based views.

Simple mixins

ContextMixin

class django.views.generic.base.ContextMixin
Methods

get_context_data(**kwargs)
Returns a dictionary representing the template context. The keyword arguments provided will make up the
returned context. Example usage:

def get_context_data(self, **kwargs):
context = super(RandomNumberView, self).get_context_data(**kwargs)
context['number'] = random.randrange(1, 100)
return context

666 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

The template context of all class-based generic views include a view variable that points to the View
instance.

Use alters_data where appropriate

Note that having the view instance in the template context may expose potentially hazardous meth-
ods to template authors. To prevent methods like this from being called in the template, set
alters_data=True on those methods. For more information, read the documentation on rendering a
template context.

TemplateResponseMixin

class django.views.generic.base.TemplateResponseMixin
Provides a mechanism to construct a TemplateResponse, given suitable context. The template to use is
configurable and can be further customized by subclasses.

Attributes

template_name
The full name of a template to use as defined by a string. Not defining a template_name will raise a
django.core.exceptions.ImproperlyConfigured exception.

template_engine
The NAME of a template engine to use for loading the template. template_engine is passed as the
using keyword argument to response_class. Default is None, which tells Django to search for the
template in all configured engines.

response_class
The response class to be returned by render_to_response method. Default is
TemplateResponse. The template and context of TemplateResponse instances can be
altered later (e.g. in template response middleware).

If you need custom template loading or custom context object instantiation, create a
TemplateResponse subclass and assign it to response_class.

content_type
The content type to use for the response. content_type is passed as a keyword argument to
response_class. Default is None – meaning that Django uses DEFAULT_CONTENT_TYPE.

Methods

render_to_response(context, **response_kwargs)
Returns a self.response_class instance.

If any keyword arguments are provided, they will be passed to the constructor of the response class.

Calls get_template_names() to obtain the list of template names that will be searched looking for
an existent template.

get_template_names()
Returns a list of template names to search for when rendering the template. The first template that is found
will be used.

If template_name is specified, the default implementation will return a list containing
template_name (if it is specified).

6.3. Built-in class-based views API 667

Django Documentation, Release 1.10.9.dev20171123183751

Single object mixins

SingleObjectMixin

class django.views.generic.detail.SingleObjectMixin
Provides a mechanism for looking up an object associated with the current HTTP request.

Methods and Attributes

model
The model that this view will display data for. Specifying model = Foo is effectively the same as
specifying queryset = Foo.objects.all(), where objects stands for Foo’s default manager.

queryset
A QuerySet that represents the objects. If provided, the value of queryset supersedes the value
provided for model.

Warning: queryset is a class attribute with a mutable value so care must be taken when using it
directly. Before using it, either call its all() method or retrieve it with get_queryset() which
takes care of the cloning behind the scenes.

slug_field
The name of the field on the model that contains the slug. By default, slug_field is 'slug'.

slug_url_kwarg
The name of the URLConf keyword argument that contains the slug. By default, slug_url_kwarg is
'slug'.

pk_url_kwarg
The name of the URLConf keyword argument that contains the primary key. By default, pk_url_kwarg
is 'pk'.

context_object_name
Designates the name of the variable to use in the context.

query_pk_and_slug
If True, causes get_object() to perform its lookup using both the primary key and the slug. Defaults
to False.

This attribute can help mitigate insecure direct object reference attacks. When applications allow access to
individual objects by a sequential primary key, an attacker could brute-force guess all URLs; thereby
obtaining a list of all objects in the application. If users with access to individual objects should be
prevented from obtaining this list, setting query_pk_and_slug to Truewill help prevent the guessing
of URLs as each URL will require two correct, non-sequential arguments. Simply using a unique slug may
serve the same purpose, but this scheme allows you to have non-unique slugs.

get_object(queryset=None)
Returns the single object that this view will display. If queryset is provided, that queryset will be
used as the source of objects; otherwise, get_queryset() will be used. get_object() looks
for a pk_url_kwarg argument in the arguments to the view; if this argument is found, this method
performs a primary-key based lookup using that value. If this argument is not found, it looks for a
slug_url_kwarg argument, and performs a slug lookup using the slug_field.

When query_pk_and_slug is True, get_object() will perform its lookup using both the pri-
mary key and the slug.

get_queryset()
Returns the queryset that will be used to retrieve the object that this view will display. By default,

668 Chapter 6. API Reference

https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References

Django Documentation, Release 1.10.9.dev20171123183751

get_queryset() returns the value of the queryset attribute if it is set, otherwise it constructs a
QuerySet by calling the all() method on the model attribute’s default manager.

get_context_object_name(obj)
Return the context variable name that will be used to contain the data that this view is manipulating. If
context_object_name is not set, the context name will be constructed from the model_name of
the model that the queryset is composed from. For example, the model Article would have context
object named 'article'.

get_context_data(**kwargs)
Returns context data for displaying the list of objects.

The base implementation of this method requires that the self.object attribute be set by the view
(even if None). Be sure to do this if you are using this mixin without one of the built-in views that does
so.

It returns a dictionary with these contents:

• object: The object that this view is displaying (self.object).

• context_object_name: self.object will also be stored under the name returned by
get_context_object_name(), which defaults to the lowercased version of the model name.

Context variables override values from template context processors

Any variables from get_context_data() take precedence over context variables from con-
text processors. For example, if your view sets the model attribute to User, the default con-
text object name of user would override the user variable from the django.contrib.auth.
context_processors.auth() context processor. Use get_context_object_name() to
avoid a clash.

get_slug_field()
Returns the name of a slug field to be used to look up by slug. By default this simply returns the value of
slug_field.

SingleObjectTemplateResponseMixin

class django.views.generic.detail.SingleObjectTemplateResponseMixin
A mixin class that performs template-based response rendering for views that operate upon a single object
instance. Requires that the view it is mixed with provides self.object, the object instance that the view is
operating on. self.object will usually be, but is not required to be, an instance of a Django model. It may
be None if the view is in the process of constructing a new instance.

Extends

• TemplateResponseMixin

Methods and Attributes

template_name_field
The field on the current object instance that can be used to determine the name of a candidate template.
If either template_name_field itself or the value of the template_name_field on the current
object instance is None, the object will not be used for a candidate template name.

template_name_suffix
The suffix to append to the auto-generated candidate template name. Default suffix is _detail.

6.3. Built-in class-based views API 669

Django Documentation, Release 1.10.9.dev20171123183751

get_template_names()
Returns a list of candidate template names. Returns the following list:

• the value of template_name on the view (if provided)

• the contents of the template_name_field field on the object instance that the view is operating
upon (if available)

• <app_label>/<model_name><template_name_suffix>.html

Multiple object mixins

MultipleObjectMixin

class django.views.generic.list.MultipleObjectMixin
A mixin that can be used to display a list of objects.

If paginate_by is specified, Django will paginate the results returned by this. You can specify the page
number in the URL in one of two ways:

• Use the page parameter in the URLconf. For example, this is what your URLconf might look like:

url(r'^objects/page(?P<page>[0-9]+)/$', PaginatedView.as_view()),

• Pass the page number via the page query-string parameter. For example, a URL would look like this:

/objects/?page=3

These values and lists are 1-based, not 0-based, so the first page would be represented as page 1.

For more on pagination, read the pagination documentation.

As a special case, you are also permitted to use last as a value for page:

/objects/?page=last

This allows you to access the final page of results without first having to determine how many pages there are.

Note that page must be either a valid page number or the value last; any other value for page will result in
a 404 error.

Extends

• django.views.generic.base.ContextMixin

Methods and Attributes

allow_empty
A boolean specifying whether to display the page if no objects are available. If this is False and no
objects are available, the view will raise a 404 instead of displaying an empty page. By default, this is
True.

model
The model that this view will display data for. Specifying model = Foo is effectively the same as
specifying queryset = Foo.objects.all(), where objects stands for Foo’s default manager.

queryset
A QuerySet that represents the objects. If provided, the value of queryset supersedes the value
provided for model.

670 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Warning: queryset is a class attribute with a mutable value so care must be taken when using it
directly. Before using it, either call its all() method or retrieve it with get_queryset() which
takes care of the cloning behind the scenes.

ordering
A string or list of strings specifying the ordering to apply to the queryset. Valid values are the same as
those for order_by().

paginate_by
An integer specifying how many objects should be displayed per page. If this is given, the view will
paginate objects with paginate_by objects per page. The view will expect either a page query string
parameter (via request.GET) or a page variable specified in the URLconf.

paginate_orphans
An integer specifying the number of “overflow” objects the last page can contain. This extends the
paginate_by limit on the last page by up to paginate_orphans, in order to keep the last page
from having a very small number of objects.

page_kwarg
A string specifying the name to use for the page parameter. The view will expect this parameter to be
available either as a query string parameter (via request.GET) or as a kwarg variable specified in the
URLconf. Defaults to page.

paginator_class
The paginator class to be used for pagination. By default, django.core.paginator.Paginator
is used. If the custom paginator class doesn’t have the same constructor interface as django.core.
paginator.Paginator, you will also need to provide an implementation for get_paginator().

context_object_name
Designates the name of the variable to use in the context.

get_queryset()
Get the list of items for this view. This must be an iterable and may be a queryset (in which queryset-
specific behavior will be enabled).

get_ordering()
Returns a string (or iterable of strings) that defines the ordering that will be applied to the queryset.

Returns ordering by default.

paginate_queryset(queryset, page_size)
Returns a 4-tuple containing (paginator, page, object_list, is_paginated).

Constructed by paginating queryset into pages of size page_size. If the request contains a page
argument, either as a captured URL argument or as a GET argument, object_list will correspond to
the objects from that page.

get_paginate_by(queryset)
Returns the number of items to paginate by, or None for no pagination. By default this simply returns the
value of paginate_by .

get_paginator(queryset, per_page, orphans=0, allow_empty_first_page=True)
Returns an instance of the paginator to use for this view. By default, instantiates an instance of
paginator_class.

get_paginate_orphans()
An integer specifying the number of “overflow” objects the last page can contain. By default this simply
returns the value of paginate_orphans.

6.3. Built-in class-based views API 671

Django Documentation, Release 1.10.9.dev20171123183751

get_allow_empty()
Return a boolean specifying whether to display the page if no objects are available. If this method returns
False and no objects are available, the view will raise a 404 instead of displaying an empty page. By
default, this is True.

get_context_object_name(object_list)
Return the context variable name that will be used to contain the list of data that this view is manipulating.
If object_list is a queryset of Django objects and context_object_name is not set, the context
name will be the model_name of the model that the queryset is composed from, with postfix '_list'
appended. For example, the model Article would have a context object named article_list.

get_context_data(**kwargs)
Returns context data for displaying the list of objects.

Context

• object_list: The list of objects that this view is displaying. If context_object_name is speci-
fied, that variable will also be set in the context, with the same value as object_list.

• is_paginated: A boolean representing whether the results are paginated. Specifically, this is set to
False if no page size has been specified, or if the available objects do not span multiple pages.

• paginator: An instance of django.core.paginator.Paginator. If the page is not paginated,
this context variable will be None.

• page_obj: An instance of django.core.paginator.Page. If the page is not paginated, this
context variable will be None.

MultipleObjectTemplateResponseMixin

class django.views.generic.list.MultipleObjectTemplateResponseMixin
A mixin class that performs template-based response rendering for views that operate upon a list of object
instances. Requires that the view it is mixed with provides self.object_list, the list of object instances
that the view is operating on. self.object_list may be, but is not required to be, a QuerySet.

Extends

• TemplateResponseMixin

Methods and Attributes

template_name_suffix
The suffix to append to the auto-generated candidate template name. Default suffix is _list.

get_template_names()
Returns a list of candidate template names. Returns the following list:

• the value of template_name on the view (if provided)

• <app_label>/<model_name><template_name_suffix>.html

Editing mixins

The following mixins are used to construct Django’s editing views:

• django.views.generic.edit.FormMixin

• django.views.generic.edit.ModelFormMixin

• django.views.generic.edit.ProcessFormView

672 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• django.views.generic.edit.DeletionMixin

Note: Examples of how these are combined into editing views can be found at the documentation on Generic editing
views.

FormMixin

class django.views.generic.edit.FormMixin
A mixin class that provides facilities for creating and displaying forms.

Mixins

• django.views.generic.base.ContextMixin

Methods and Attributes

initial
A dictionary containing initial data for the form.

form_class
The form class to instantiate.

success_url
The URL to redirect to when the form is successfully processed.

prefix
The prefix for the generated form.

get_initial()
Retrieve initial data for the form. By default, returns a copy of initial.

get_form_class()
Retrieve the form class to instantiate. By default form_class.

get_form(form_class=None)
Instantiate an instance of form_class using get_form_kwargs(). If form_class isn’t provided
get_form_class() will be used.

get_form_kwargs()
Build the keyword arguments required to instantiate the form.

The initial argument is set to get_initial(). If the request is a POST or PUT, the request data
(request.POST and request.FILES) will also be provided.

get_prefix()
Determine the prefix for the generated form. Returns prefix by default.

get_success_url()
Determine the URL to redirect to when the form is successfully validated. Returns success_url by
default.

form_valid(form)
Redirects to get_success_url().

form_invalid(form)
Renders a response, providing the invalid form as context.

get_context_data(**kwargs)
Calls get_form() and adds the result to the context data with the name ‘form’.

6.3. Built-in class-based views API 673

Django Documentation, Release 1.10.9.dev20171123183751

ModelFormMixin

class django.views.generic.edit.ModelFormMixin
A form mixin that works on ModelForms, rather than a standalone form.

Since this is a subclass of SingleObjectMixin, instances of this mixin have access to the model and
queryset attributes, describing the type of object that the ModelForm is manipulating.

If you specify both the fields and form_class attributes, an ImproperlyConfigured exception will
be raised.

Mixins

• django.views.generic.edit.FormMixin

• django.views.generic.detail.SingleObjectMixin

Methods and Attributes

model
A model class. Can be explicitly provided, otherwise will be determined by examining self.object
or queryset.

fields
A list of names of fields. This is interpreted the same way as the Meta.fields attribute of ModelForm.

This is a required attribute if you are generating the form class automatically (e.g. using model). Omitting
this attribute will result in an ImproperlyConfigured exception.

success_url
The URL to redirect to when the form is successfully processed.

success_url may contain dictionary string formatting, which will be interpolated against the object’s
field attributes. For example, you could use success_url="/polls/{slug}/" to redirect to a URL
composed out of the slug field on a model.

get_form_class()
Retrieve the form class to instantiate. If form_class is provided, that class will be used. Otherwise,
a ModelForm will be instantiated using the model associated with the queryset, or with the model,
depending on which attribute is provided.

get_form_kwargs()
Add the current instance (self.object) to the standard get_form_kwargs().

get_success_url()
Determine the URL to redirect to when the form is successfully validated. Returns django.views.
generic.edit.ModelFormMixin.success_url if it is provided; otherwise, attempts to use the
get_absolute_url() of the object.

form_valid(form)
Saves the form instance, sets the current object for the view, and redirects to get_success_url().

form_invalid()
Renders a response, providing the invalid form as context.

ProcessFormView

class django.views.generic.edit.ProcessFormView
A mixin that provides basic HTTP GET and POST workflow.

674 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Note: This is named ‘ProcessFormView’ and inherits directly from django.views.generic.base.
View , but breaks if used independently, so it is more of a mixin.

Extends

• django.views.generic.base.View

Methods and Attributes

get(request, *args, **kwargs)
Renders a response using a context created with get_context_data().

Construction of the form was moved from this method to get_context_data().

post(request, *args, **kwargs)
Constructs a form, checks the form for validity, and handles it accordingly.

put(*args, **kwargs)
The PUT action is also handled and just passes all parameters through to post().

DeletionMixin

class django.views.generic.edit.DeletionMixin
Enables handling of the DELETE http action.

Methods and Attributes

success_url
The url to redirect to when the nominated object has been successfully deleted.

success_url may contain dictionary string formatting, which will be interpolated against the object’s
field attributes. For example, you could use success_url="/parent/{parent_id}/" to redirect
to a URL composed out of the parent_id field on a model.

get_success_url()
Returns the url to redirect to when the nominated object has been successfully deleted. Returns
success_url by default.

Date-based mixins

Note: All the date formatting attributes in these mixins use strftime() format characters. Do not try to use the
format characters from the now template tag as they are not compatible.

YearMixin

class YearMixin
A mixin that can be used to retrieve and provide parsing information for a year component of a date.

Methods and Attributes

year_format
The strftime() format to use when parsing the year. By default, this is '%Y'.

6.3. Built-in class-based views API 675

https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/time.html#time.strftime

Django Documentation, Release 1.10.9.dev20171123183751

year
Optional The value for the year, as a string. By default, set to None, which means the year will be
determined using other means.

get_year_format()
Returns the strftime() format to use when parsing the year. Returns year_format by default.

get_year()
Returns the year for which this view will display data, as a string. Tries the following sources, in order:

• The value of the YearMixin.year attribute.

• The value of the year argument captured in the URL pattern.

• The value of the year GET query argument.

Raises a 404 if no valid year specification can be found.

get_next_year(date)
Returns a date object containing the first day of the year after the date provided. This function can
also return None or raise an Http404 exception, depending on the values of allow_empty and
allow_future.

get_previous_year(date)
Returns a date object containing the first day of the year before the date provided. This function can
also return None or raise an Http404 exception, depending on the values of allow_empty and
allow_future.

MonthMixin

class MonthMixin
A mixin that can be used to retrieve and provide parsing information for a month component of a date.

Methods and Attributes

month_format
The strftime() format to use when parsing the month. By default, this is '%b'.

month
Optional The value for the month, as a string. By default, set to None, which means the month will be
determined using other means.

get_month_format()
Returns the strftime() format to use when parsing the month. Returns month_format by default.

get_month()
Returns the month for which this view will display data, as a string. Tries the following sources, in order:

• The value of the MonthMixin.month attribute.

• The value of the month argument captured in the URL pattern.

• The value of the month GET query argument.

Raises a 404 if no valid month specification can be found.

get_next_month(date)
Returns a date object containing the first day of the month after the date provided. This function can
also return None or raise an Http404 exception, depending on the values of allow_empty and
allow_future.

676 Chapter 6. API Reference

https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/time.html#time.strftime

Django Documentation, Release 1.10.9.dev20171123183751

get_previous_month(date)
Returns a date object containing the first day of the month before the date provided. This function can
also return None or raise an Http404 exception, depending on the values of allow_empty and
allow_future.

DayMixin

class DayMixin
A mixin that can be used to retrieve and provide parsing information for a day component of a date.

Methods and Attributes

day_format
The strftime() format to use when parsing the day. By default, this is '%d'.

day
Optional The value for the day, as a string. By default, set to None, which means the day will be deter-
mined using other means.

get_day_format()
Returns the strftime() format to use when parsing the day. Returns day_format by default.

get_day()
Returns the day for which this view will display data, as a string. Tries the following sources, in order:

• The value of the DayMixin.day attribute.

• The value of the day argument captured in the URL pattern.

• The value of the day GET query argument.

Raises a 404 if no valid day specification can be found.

get_next_day(date)
Returns a date object containing the next valid day after the date provided. This function can also return
None or raise an Http404 exception, depending on the values of allow_empty and allow_future.

get_previous_day(date)
Returns a date object containing the previous valid day. This function can also return None or raise an
Http404 exception, depending on the values of allow_empty and allow_future.

WeekMixin

class WeekMixin
A mixin that can be used to retrieve and provide parsing information for a week component of a date.

Methods and Attributes

week_format
The strftime() format to use when parsing the week. By default, this is '%U', which means the week
starts on Sunday. Set it to '%W' if your week starts on Monday.

week
Optional The value for the week, as a string. By default, set to None, which means the week will be
determined using other means.

get_week_format()
Returns the strftime() format to use when parsing the week. Returns week_format by default.

6.3. Built-in class-based views API 677

https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/time.html#time.strftime

Django Documentation, Release 1.10.9.dev20171123183751

get_week()
Returns the week for which this view will display data, as a string. Tries the following sources, in order:

• The value of the WeekMixin.week attribute.

• The value of the week argument captured in the URL pattern

• The value of the week GET query argument.

Raises a 404 if no valid week specification can be found.

get_next_week(date)
Returns a date object containing the first day of the week after the date provided. This function can
also return None or raise an Http404 exception, depending on the values of allow_empty and
allow_future.

get_prev_week(date)
Returns a date object containing the first day of the week before the date provided. This function can
also return None or raise an Http404 exception, depending on the values of allow_empty and
allow_future.

DateMixin

class DateMixin
A mixin class providing common behavior for all date-based views.

Methods and Attributes

date_field
The name of the DateField or DateTimeField in the QuerySet’s model that the date-based
archive should use to determine the list of objects to display on the page.

When time zone support is enabled and date_field is a DateTimeField, dates are assumed to be
in the current time zone. Otherwise, the queryset could include objects from the previous or the next day
in the end user’s time zone.

Warning: In this situation, if you have implemented per-user time zone selection, the same URL may
show a different set of objects, depending on the end user’s time zone. To avoid this, you should use a
DateField as the date_field attribute.

allow_future
A boolean specifying whether to include “future” objects on this page, where “future” means objects in
which the field specified in date_field is greater than the current date/time. By default, this is False.

get_date_field()
Returns the name of the field that contains the date data that this view will operate on. Returns
date_field by default.

get_allow_future()
Determine whether to include “future” objects on this page, where “future” means objects in which the
field specified in date_field is greater than the current date/time. Returns allow_future by default.

BaseDateListView

class BaseDateListView
A base class that provides common behavior for all date-based views. There won’t normally be a reason to

678 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

instantiate BaseDateListView ; instantiate one of the subclasses instead.

While this view (and its subclasses) are executing, self.object_list will contain the list of objects that
the view is operating upon, and self.date_list will contain the list of dates for which data is available.

Mixins

• DateMixin

• MultipleObjectMixin

Methods and Attributes

allow_empty
A boolean specifying whether to display the page if no objects are available. If this is True and no objects
are available, the view will display an empty page instead of raising a 404.

This is identical to django.views.generic.list.MultipleObjectMixin.allow_empty ,
except for the default value, which is False.

date_list_period
Optional A string defining the aggregation period for date_list. It must be one of 'year' (default),
'month', or 'day'.

get_dated_items()
Returns a 3-tuple containing (date_list, object_list, extra_context).

date_list is the list of dates for which data is available. object_list is the list of objects.
extra_context is a dictionary of context data that will be added to any context data provided by
the MultipleObjectMixin.

get_dated_queryset(**lookup)
Returns a queryset, filtered using the query arguments defined by lookup. Enforces any restrictions on
the queryset, such as allow_empty and allow_future.

get_date_list_period()
Returns the aggregation period for date_list. Returns date_list_period by default.

get_date_list(queryset, date_type=None, ordering=’ASC’)
Returns the list of dates of type date_type for which queryset contains entries. For example,
get_date_list(qs, 'year')will return the list of years for which qs has entries. If date_type
isn’t provided, the result of get_date_list_period() is used. date_type and ordering are
simply passed to QuerySet.dates().

6.3.6 Class-based generic views - flattened index

This index provides an alternate organization of the reference documentation for class-based views. For each view, the
effective attributes and methods from the class tree are represented under that view. For the reference documentation
organized by the class which defines the behavior, see Class-based views.

See also:

Classy Class-Based Views provides a nice interface to navigate the class hierarchy of the built-in class-based views.

Simple generic views

View

class View

6.3. Built-in class-based views API 679

https://ccbv.co.uk/

Django Documentation, Release 1.10.9.dev20171123183751

Attributes (with optional accessor):

• http_method_names

Methods

• as_view()

• dispatch()

• head()

• http_method_not_allowed()

TemplateView

class TemplateView

Attributes (with optional accessor):

• content_type

• http_method_names

• response_class [render_to_response()]

• template_engine

• template_name [get_template_names()]

Methods

• as_view()

• dispatch()

• get()

• get_context_data()

• head()

• http_method_not_allowed()

• render_to_response()

RedirectView

class RedirectView

Attributes (with optional accessor):

• http_method_names

• pattern_name

• permanent

• query_string

• url [get_redirect_url()]

Methods

• as_view()

680 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• delete()

• dispatch()

• get()

• head()

• http_method_not_allowed()

• options()

• post()

• put()

Detail Views

DetailView

class DetailView

Attributes (with optional accessor):

• content_type

• context_object_name [get_context_object_name()]

• http_method_names

• model

• pk_url_kwarg

• queryset [get_queryset()]

• response_class [render_to_response()]

• slug_field [get_slug_field()]

• slug_url_kwarg

• template_engine

• template_name [get_template_names()]

• template_name_field

• template_name_suffix

Methods

• as_view()

• dispatch()

• get()

• get_context_data()

• get_object()

• head()

• http_method_not_allowed()

• render_to_response()

6.3. Built-in class-based views API 681

Django Documentation, Release 1.10.9.dev20171123183751

List Views

ListView

class ListView

Attributes (with optional accessor):

• allow_empty [get_allow_empty()]

• content_type

• context_object_name [get_context_object_name()]

• http_method_names

• model

• ordering [get_ordering()]

• paginate_by [get_paginate_by()]

• paginate_orphans [get_paginate_orphans()]

• paginator_class

• queryset [get_queryset()]

• response_class [render_to_response()]

• template_engine

• template_name [get_template_names()]

• template_name_suffix

Methods

• as_view()

• dispatch()

• get()

• get_context_data()

• get_paginator()

• head()

• http_method_not_allowed()

• paginate_queryset()

• render_to_response()

Editing views

FormView

class FormView

Attributes (with optional accessor):

• content_type

682 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• form_class [get_form_class()]

• http_method_names

• initial [get_initial()]

• prefix [get_prefix()]

• response_class [render_to_response()]

• success_url [get_success_url()]

• template_engine

• template_name [get_template_names()]

Methods

• as_view()

• dispatch()

• form_invalid()

• form_valid()

• get()

• get_context_data()

• get_form()

• get_form_kwargs()

• http_method_not_allowed()

• post()

• put()

CreateView

class CreateView

Attributes (with optional accessor):

• content_type

• context_object_name [get_context_object_name()]

• fields

• form_class [get_form_class()]

• http_method_names

• initial [get_initial()]

• model

• pk_url_kwarg

• prefix [get_prefix()]

• queryset [get_queryset()]

• response_class [render_to_response()]

• slug_field [get_slug_field()]

6.3. Built-in class-based views API 683

Django Documentation, Release 1.10.9.dev20171123183751

• slug_url_kwarg

• success_url [get_success_url()]

• template_engine

• template_name [get_template_names()]

• template_name_field

• template_name_suffix

Methods

• as_view()

• dispatch()

• form_invalid()

• form_valid()

• get()

• get_context_data()

• get_form()

• get_form_kwargs()

• get_object()

• head()

• http_method_not_allowed()

• post()

• put()

• render_to_response()

UpdateView

class UpdateView

Attributes (with optional accessor):

• content_type

• context_object_name [get_context_object_name()]

• fields

• form_class [get_form_class()]

• http_method_names

• initial [get_initial()]

• model

• pk_url_kwarg

• prefix [get_prefix()]

• queryset [get_queryset()]

• response_class [render_to_response()]

684 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• slug_field [get_slug_field()]

• slug_url_kwarg

• success_url [get_success_url()]

• template_engine

• template_name [get_template_names()]

• template_name_field

• template_name_suffix

Methods

• as_view()

• dispatch()

• form_invalid()

• form_valid()

• get()

• get_context_data()

• get_form()

• get_form_kwargs()

• get_object()

• head()

• http_method_not_allowed()

• post()

• put()

• render_to_response()

DeleteView

class DeleteView

Attributes (with optional accessor):

• content_type

• context_object_name [get_context_object_name()]

• http_method_names

• model

• pk_url_kwarg

• queryset [get_queryset()]

• response_class [render_to_response()]

• slug_field [get_slug_field()]

• slug_url_kwarg

• success_url [get_success_url()]

6.3. Built-in class-based views API 685

Django Documentation, Release 1.10.9.dev20171123183751

• template_engine

• template_name [get_template_names()]

• template_name_field

• template_name_suffix

Methods

• as_view()

• delete()

• dispatch()

• get()

• get_context_data()

• get_object()

• head()

• http_method_not_allowed()

• post()

• render_to_response()

Date-based views

ArchiveIndexView

class ArchiveIndexView

Attributes (with optional accessor):

• allow_empty [get_allow_empty()]

• allow_future [get_allow_future()]

• content_type

• context_object_name [get_context_object_name()]

• date_field [get_date_field()]

• http_method_names

• model

• ordering [get_ordering()]

• paginate_by [get_paginate_by()]

• paginate_orphans [get_paginate_orphans()]

• paginator_class

• queryset [get_queryset()]

• response_class [render_to_response()]

• template_engine

• template_name [get_template_names()]

686 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• template_name_suffix

Methods

• as_view()

• dispatch()

• get()

• get_context_data()

• get_date_list()

• get_dated_items()

• get_dated_queryset()

• get_paginator()

• head()

• http_method_not_allowed()

• paginate_queryset()

• render_to_response()

YearArchiveView

class YearArchiveView

Attributes (with optional accessor):

• allow_empty [get_allow_empty()]

• allow_future [get_allow_future()]

• content_type

• context_object_name [get_context_object_name()]

• date_field [get_date_field()]

• http_method_names

• make_object_list [get_make_object_list()]

• model

• ordering [get_ordering()]

• paginate_by [get_paginate_by()]

• paginate_orphans [get_paginate_orphans()]

• paginator_class

• queryset [get_queryset()]

• response_class [render_to_response()]

• template_engine

• template_name [get_template_names()]

• template_name_suffix

• year [get_year()]

6.3. Built-in class-based views API 687

Django Documentation, Release 1.10.9.dev20171123183751

• year_format [get_year_format()]

Methods

• as_view()

• dispatch()

• get()

• get_context_data()

• get_date_list()

• get_dated_items()

• get_dated_queryset()

• get_paginator()

• head()

• http_method_not_allowed()

• paginate_queryset()

• render_to_response()

MonthArchiveView

class MonthArchiveView

Attributes (with optional accessor):

• allow_empty [get_allow_empty()]

• allow_future [get_allow_future()]

• content_type

• context_object_name [get_context_object_name()]

• date_field [get_date_field()]

• http_method_names

• model

• month [get_month()]

• month_format [get_month_format()]

• ordering [get_ordering()]

• paginate_by [get_paginate_by()]

• paginate_orphans [get_paginate_orphans()]

• paginator_class

• queryset [get_queryset()]

• response_class [render_to_response()]

• template_engine

• template_name [get_template_names()]

• template_name_suffix

688 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• year [get_year()]

• year_format [get_year_format()]

Methods

• as_view()

• dispatch()

• get()

• get_context_data()

• get_date_list()

• get_dated_items()

• get_dated_queryset()

• get_next_month()

• get_paginator()

• get_previous_month()

• head()

• http_method_not_allowed()

• paginate_queryset()

• render_to_response()

WeekArchiveView

class WeekArchiveView

Attributes (with optional accessor):

• allow_empty [get_allow_empty()]

• allow_future [get_allow_future()]

• content_type

• context_object_name [get_context_object_name()]

• date_field [get_date_field()]

• http_method_names

• model

• ordering [get_ordering()]

• paginate_by [get_paginate_by()]

• paginate_orphans [get_paginate_orphans()]

• paginator_class

• queryset [get_queryset()]

• response_class [render_to_response()]

• template_engine

• template_name [get_template_names()]

6.3. Built-in class-based views API 689

Django Documentation, Release 1.10.9.dev20171123183751

• template_name_suffix

• week [get_week()]

• week_format [get_week_format()]

• year [get_year()]

• year_format [get_year_format()]

Methods

• as_view()

• dispatch()

• get()

• get_context_data()

• get_date_list()

• get_dated_items()

• get_dated_queryset()

• get_paginator()

• head()

• http_method_not_allowed()

• paginate_queryset()

• render_to_response()

DayArchiveView

class DayArchiveView

Attributes (with optional accessor):

• allow_empty [get_allow_empty()]

• allow_future [get_allow_future()]

• content_type

• context_object_name [get_context_object_name()]

• date_field [get_date_field()]

• day [get_day()]

• day_format [get_day_format()]

• http_method_names

• model

• month [get_month()]

• month_format [get_month_format()]

• ordering [get_ordering()]

• paginate_by [get_paginate_by()]

• paginate_orphans [get_paginate_orphans()]

690 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• paginator_class

• queryset [get_queryset()]

• response_class [render_to_response()]

• template_engine

• template_name [get_template_names()]

• template_name_suffix

• year [get_year()]

• year_format [get_year_format()]

Methods

• as_view()

• dispatch()

• get()

• get_context_data()

• get_date_list()

• get_dated_items()

• get_dated_queryset()

• get_next_day()

• get_next_month()

• get_paginator()

• get_previous_day()

• get_previous_month()

• head()

• http_method_not_allowed()

• paginate_queryset()

• render_to_response()

TodayArchiveView

class TodayArchiveView

Attributes (with optional accessor):

• allow_empty [get_allow_empty()]

• allow_future [get_allow_future()]

• content_type

• context_object_name [get_context_object_name()]

• date_field [get_date_field()]

• day [get_day()]

• day_format [get_day_format()]

6.3. Built-in class-based views API 691

Django Documentation, Release 1.10.9.dev20171123183751

• http_method_names

• model

• month [get_month()]

• month_format [get_month_format()]

• ordering [get_ordering()]

• paginate_by [get_paginate_by()]

• paginate_orphans [get_paginate_orphans()]

• paginator_class

• queryset [get_queryset()]

• response_class [render_to_response()]

• template_engine

• template_name [get_template_names()]

• template_name_suffix

• year [get_year()]

• year_format [get_year_format()]

Methods

• as_view()

• dispatch()

• get()

• get_context_data()

• get_date_list()

• get_dated_items()

• get_dated_queryset()

• get_next_day()

• get_next_month()

• get_paginator()

• get_previous_day()

• get_previous_month()

• head()

• http_method_not_allowed()

• paginate_queryset()

• render_to_response()

692 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

DateDetailView

class DateDetailView

Attributes (with optional accessor):

• allow_future [get_allow_future()]

• content_type

• context_object_name [get_context_object_name()]

• date_field [get_date_field()]

• day [get_day()]

• day_format [get_day_format()]

• http_method_names

• model

• month [get_month()]

• month_format [get_month_format()]

• pk_url_kwarg

• queryset [get_queryset()]

• response_class [render_to_response()]

• slug_field [get_slug_field()]

• slug_url_kwarg

• template_engine

• template_name [get_template_names()]

• template_name_field

• template_name_suffix

• year [get_year()]

• year_format [get_year_format()]

Methods

• as_view()

• dispatch()

• get()

• get_context_data()

• get_next_day()

• get_next_month()

• get_object()

• get_previous_day()

• get_previous_month()

• head()

• http_method_not_allowed()

6.3. Built-in class-based views API 693

Django Documentation, Release 1.10.9.dev20171123183751

• render_to_response()

6.3.7 Specification

Each request served by a class-based view has an independent state; therefore, it is safe to store state variables on the
instance (i.e., self.foo = 3 is a thread-safe operation).

A class-based view is deployed into a URL pattern using the as_view() classmethod:

urlpatterns = [
url(r'^view/$', MyView.as_view(size=42)),

]

Thread safety with view arguments

Arguments passed to a view are shared between every instance of a view. This means that you shouldn’t use a list,
dictionary, or any other mutable object as an argument to a view. If you do and the shared object is modified, the
actions of one user visiting your view could have an effect on subsequent users visiting the same view.

Arguments passed into as_view() will be assigned onto the instance that is used to service a request. Using the
previous example, this means that every request on MyView is able to use self.size. Arguments must correspond
to attributes that already exist on the class (return True on a hasattr check).

6.3.8 Base vs Generic views

Base class-based views can be thought of as parent views, which can be used by themselves or inherited from. They
may not provide all the capabilities required for projects, in which case there are Mixins which extend what base views
can do.

Django’s generic views are built off of those base views, and were developed as a shortcut for common usage patterns
such as displaying the details of an object. They take certain common idioms and patterns found in view development
and abstract them so that you can quickly write common views of data without having to repeat yourself.

Most generic views require the queryset key, which is a QuerySet instance; see Making queries for more infor-
mation about QuerySet objects.

6.4 Clickjacking Protection

The clickjacking middleware and decorators provide easy-to-use protection against clickjacking. This type of attack
occurs when a malicious site tricks a user into clicking on a concealed element of another site which they have loaded
in a hidden frame or iframe.

6.4.1 An example of clickjacking

Suppose an online store has a page where a logged in user can click “Buy Now” to purchase an item. A user has
chosen to stay logged into the store all the time for convenience. An attacker site might create an “I Like Ponies”
button on one of their own pages, and load the store’s page in a transparent iframe such that the “Buy Now” button
is invisibly overlaid on the “I Like Ponies” button. If the user visits the attacker’s site, clicking “I Like Ponies” will
cause an inadvertent click on the “Buy Now” button and an unknowing purchase of the item.

694 Chapter 6. API Reference

https://en.wikipedia.org/wiki/Clickjacking

Django Documentation, Release 1.10.9.dev20171123183751

6.4.2 Preventing clickjacking

Modern browsers honor the X-Frame-Options HTTP header that indicates whether or not a resource is allowed to load
within a frame or iframe. If the response contains the header with a value of SAMEORIGIN then the browser will only
load the resource in a frame if the request originated from the same site. If the header is set to DENY then the browser
will block the resource from loading in a frame no matter which site made the request.

Django provides a few simple ways to include this header in responses from your site:

1. A simple middleware that sets the header in all responses.

2. A set of view decorators that can be used to override the middleware or to only set the header for certain views.

The X-Frame-Options HTTP header will only be set by the middleware or view decorators if it is not already
present in the response.

6.4.3 How to use it

Setting X-Frame-Options for all responses

To set the same X-Frame-Options value for all responses in your site, put 'django.middleware.
clickjacking.XFrameOptionsMiddleware' to MIDDLEWARE:

MIDDLEWARE = [
...
'django.middleware.clickjacking.XFrameOptionsMiddleware',
...

]

This middleware is enabled in the settings file generated by startproject.

By default, the middleware will set the X-Frame-Options header to SAMEORIGIN for every outgoing
HttpResponse. If you want DENY instead, set the X_FRAME_OPTIONS setting:

X_FRAME_OPTIONS = 'DENY'

When using the middleware there may be some views where you do not want the X-Frame-Options header set.
For those cases, you can use a view decorator that tells the middleware not to set the header:

from django.http import HttpResponse
from django.views.decorators.clickjacking import xframe_options_exempt

@xframe_options_exempt
def ok_to_load_in_a_frame(request):

return HttpResponse("This page is safe to load in a frame on any site.")

Setting X-Frame-Options per view

To set the X-Frame-Options header on a per view basis, Django provides these decorators:

from django.http import HttpResponse
from django.views.decorators.clickjacking import xframe_options_deny
from django.views.decorators.clickjacking import xframe_options_sameorigin

@xframe_options_deny
def view_one(request):

6.4. Clickjacking Protection 695

https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options

Django Documentation, Release 1.10.9.dev20171123183751

return HttpResponse("I won't display in any frame!")

@xframe_options_sameorigin
def view_two(request):

return HttpResponse("Display in a frame if it's from the same origin as me.")

Note that you can use the decorators in conjunction with the middleware. Use of a decorator overrides the middleware.

6.4.4 Limitations

The X-Frame-Options header will only protect against clickjacking in a modern browser. Older browsers will
quietly ignore the header and need other clickjacking prevention techniques.

Browsers that support X-Frame-Options

• Internet Explorer 8+

• Firefox 3.6.9+

• Opera 10.5+

• Safari 4+

• Chrome 4.1+

See also

A complete list of browsers supporting X-Frame-Options.

6.5 contrib packages

Django aims to follow Python’s “batteries included” philosophy. It ships with a variety of extra, optional tools that
solve common Web-development problems.

This code lives in django/contrib in the Django distribution. This document gives a rundown of the packages in
contrib, along with any dependencies those packages have.

Note

For most of these add-ons – specifically, the add-ons that include either models or template tags – you’ll need to
add the package name (e.g., 'django.contrib.redirects') to your INSTALLED_APPS setting and re-run
manage.py migrate.

6.5.1 The Django admin site

One of the most powerful parts of Django is the automatic admin interface. It reads metadata from your models to
provide a quick, model-centric interface where trusted users can manage content on your site. The admin’s recom-
mended use is limited to an organization’s internal management tool. It’s not intended for building your entire front
end around.

696 Chapter 6. API Reference

https://en.wikipedia.org/wiki/Clickjacking#Prevention
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options#Browser_compatibility
https://docs.python.org/3/tutorial/stdlib.html#tut-batteries-included

Django Documentation, Release 1.10.9.dev20171123183751

The admin has many hooks for customization, but beware of trying to use those hooks exclusively. If you need to
provide a more process-centric interface that abstracts away the implementation details of database tables and fields,
then it’s probably time to write your own views.

In this document we discuss how to activate, use, and customize Django’s admin interface.

Overview

The admin is enabled in the default project template used by startproject.

For reference, here are the requirements:

1. Add 'django.contrib.admin' to your INSTALLED_APPS setting.

2. The admin has four dependencies - django.contrib.auth, django.contrib.contenttypes,
django.contrib.messages and django.contrib.sessions. If these applications are not in your
INSTALLED_APPS list, add them.

3. Add django.contrib.auth.context_processors.auth and django.contrib.
messages.context_processors.messages to the 'context_processors' option of the
DjangoTemplates backend defined in your TEMPLATES as well as django.contrib.auth.
middleware.AuthenticationMiddleware and django.contrib.messages.middleware.
MessageMiddleware to MIDDLEWARE. These are all active by default, so you only need to do this if
you’ve manually tweaked the settings.

4. Determine which of your application’s models should be editable in the admin interface.

5. For each of those models, optionally create a ModelAdmin class that encapsulates the customized admin
functionality and options for that particular model.

6. Instantiate an AdminSite and tell it about each of your models and ModelAdmin classes.

7. Hook the AdminSite instance into your URLconf.

After you’ve taken these steps, you’ll be able to use your Django admin site by visiting the URL you hooked it into
(/admin/, by default). If you need to create a user to login with, you can use the createsuperuser command.

Other topics

Admin actions

The basic workflow of Django’s admin is, in a nutshell, “select an object, then change it.” This works well for a
majority of use cases. However, if you need to make the same change to many objects at once, this workflow can be
quite tedious.

In these cases, Django’s admin lets you write and register “actions” – simple functions that get called with a list of
objects selected on the change list page.

If you look at any change list in the admin, you’ll see this feature in action; Django ships with a “delete selected ob-
jects” action available to all models. For example, here’s the user module from Django’s built-in django.contrib.
auth app:

6.5. contrib packages 697

Django Documentation, Release 1.10.9.dev20171123183751

Warning: The “delete selected objects” action uses QuerySet.delete() for efficiency reasons, which has
an important caveat: your model’s delete() method will not be called.

If you wish to override this behavior, simply write a custom action which accomplishes deletion in your preferred
manner – for example, by calling Model.delete() for each of the selected items.

For more background on bulk deletion, see the documentation on object deletion.

Read on to find out how to add your own actions to this list.

Writing actions

The easiest way to explain actions is by example, so let’s dive in.

A common use case for admin actions is the bulk updating of a model. Imagine a simple news application with an
Article model:

from django.db import models

STATUS_CHOICES = (
('d', 'Draft'),
('p', 'Published'),
('w', 'Withdrawn'),

)

class Article(models.Model):
title = models.CharField(max_length=100)
body = models.TextField()
status = models.CharField(max_length=1, choices=STATUS_CHOICES)

def __str__(self): # __unicode__ on Python 2
return self.title

A common task we might perform with a model like this is to update an article’s status from “draft” to “published”.
We could easily do this in the admin one article at a time, but if we wanted to bulk-publish a group of articles, it’d be
tedious. So, let’s write an action that lets us change an article’s status to “published.”

698 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Writing action functions

First, we’ll need to write a function that gets called when the action is triggered from the admin. Action functions are
just regular functions that take three arguments:

• The current ModelAdmin

• An HttpRequest representing the current request,

• A QuerySet containing the set of objects selected by the user.

Our publish-these-articles function won’t need the ModelAdmin or the request object, but we will use the queryset:

def make_published(modeladmin, request, queryset):
queryset.update(status='p')

Note: For the best performance, we’re using the queryset’s update method. Other types of actions might need to deal
with each object individually; in these cases we’d just iterate over the queryset:

for obj in queryset:
do_something_with(obj)

That’s actually all there is to writing an action! However, we’ll take one more optional-but-useful step and give the
action a “nice” title in the admin. By default, this action would appear in the action list as “Make published” – the
function name, with underscores replaced by spaces. That’s fine, but we can provide a better, more human-friendly
name by giving the make_published function a short_description attribute:

def make_published(modeladmin, request, queryset):
queryset.update(status='p')

make_published.short_description = "Mark selected stories as published"

Note: This might look familiar; the admin’s list_display option uses the same technique to provide human-
readable descriptions for callback functions registered there, too.

Adding actions to the ModelAdmin

Next, we’ll need to inform our ModelAdmin of the action. This works just like any other configuration option. So,
the complete admin.py with the action and its registration would look like:

from django.contrib import admin
from myapp.models import Article

def make_published(modeladmin, request, queryset):
queryset.update(status='p')

make_published.short_description = "Mark selected stories as published"

class ArticleAdmin(admin.ModelAdmin):
list_display = ['title', 'status']
ordering = ['title']
actions = [make_published]

admin.site.register(Article, ArticleAdmin)

6.5. contrib packages 699

Django Documentation, Release 1.10.9.dev20171123183751

That code will give us an admin change list that looks something like this:

That’s really all there is to it! If you’re itching to write your own actions, you now know enough to get started. The
rest of this document just covers more advanced techniques.

Handling errors in actions

If there are foreseeable error conditions that may occur while running your action, you should gracefully inform
the user of the problem. This means handling exceptions and using django.contrib.admin.ModelAdmin.
message_user() to display a user friendly description of the problem in the response.

Advanced action techniques

There’s a couple of extra options and possibilities you can exploit for more advanced options.

Actions as ModelAdmin methods

The example above shows the make_published action defined as a simple function. That’s perfectly fine, but it’s
not perfect from a code design point of view: since the action is tightly coupled to the Article object, it makes
sense to hook the action to the ArticleAdmin object itself.

That’s easy enough to do:

class ArticleAdmin(admin.ModelAdmin):
...

actions = ['make_published']

def make_published(self, request, queryset):
queryset.update(status='p')

make_published.short_description = "Mark selected stories as published"

Notice first that we’ve moved make_published into a method and renamed the modeladmin parameter to self,
and second that we’ve now put the string 'make_published' in actions instead of a direct function reference.
This tells the ModelAdmin to look up the action as a method.

700 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Defining actions as methods gives the action more straightforward, idiomatic access to the ModelAdmin itself,
allowing the action to call any of the methods provided by the admin. For example, we can use self to flash a
message to the user informing her that the action was successful:

class ArticleAdmin(admin.ModelAdmin):
...

def make_published(self, request, queryset):
rows_updated = queryset.update(status='p')
if rows_updated == 1:

message_bit = "1 story was"
else:

message_bit = "%s stories were" % rows_updated
self.message_user(request, "%s successfully marked as published." % message_

→˓bit)

This make the action match what the admin itself does after successfully performing an action:

Actions that provide intermediate pages

By default, after an action is performed the user is simply redirected back to the original change list page. However,
some actions, especially more complex ones, will need to return intermediate pages. For example, the built-in delete
action asks for confirmation before deleting the selected objects.

To provide an intermediary page, simply return an HttpResponse (or subclass) from your action. For example,
you might write a simple export function that uses Django’s serialization functions to dump some selected objects as
JSON:

from django.http import HttpResponse
from django.core import serializers

def export_as_json(modeladmin, request, queryset):
response = HttpResponse(content_type="application/json")
serializers.serialize("json", queryset, stream=response)
return response

6.5. contrib packages 701

Django Documentation, Release 1.10.9.dev20171123183751

Generally, something like the above isn’t considered a great idea. Most of the time, the best practice will be to return
an HttpResponseRedirect and redirect the user to a view you’ve written, passing the list of selected objects in
the GET query string. This allows you to provide complex interaction logic on the intermediary pages. For example,
if you wanted to provide a more complete export function, you’d want to let the user choose a format, and possibly a
list of fields to include in the export. The best thing to do would be to write a small action that simply redirects to your
custom export view:

from django.contrib import admin
from django.contrib.contenttypes.models import ContentType
from django.http import HttpResponseRedirect

def export_selected_objects(modeladmin, request, queryset):
selected = request.POST.getlist(admin.ACTION_CHECKBOX_NAME)
ct = ContentType.objects.get_for_model(queryset.model)
return HttpResponseRedirect("/export/?ct=%s&ids=%s" % (ct.pk, ",".join(selected)))

As you can see, the action is the simple part; all the complex logic would belong in your export view. This would need
to deal with objects of any type, hence the business with the ContentType.

Writing this view is left as an exercise to the reader.

Making actions available site-wide

AdminSite.add_action(action, name=None)
Some actions are best if they’re made available to any object in the admin site – the export action defined above
would be a good candidate. You can make an action globally available using AdminSite.add_action().
For example:

from django.contrib import admin

admin.site.add_action(export_selected_objects)

This makes the export_selected_objects action globally available as an action named “ex-
port_selected_objects”. You can explicitly give the action a name – good if you later want to programmatically
remove the action – by passing a second argument to AdminSite.add_action():

admin.site.add_action(export_selected_objects, 'export_selected')

Disabling actions

Sometimes you need to disable certain actions – especially those registered site-wide – for particular objects. There’s
a few ways you can disable actions:

Disabling a site-wide action

AdminSite.disable_action(name)
If you need to disable a site-wide action you can call AdminSite.disable_action().

For example, you can use this method to remove the built-in “delete selected objects” action:

admin.site.disable_action('delete_selected')

702 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Once you’ve done the above, that action will no longer be available site-wide.

If, however, you need to re-enable a globally-disabled action for one particular model, simply list it explicitly in
your ModelAdmin.actions list:

Globally disable delete selected
admin.site.disable_action('delete_selected')

This ModelAdmin will not have delete_selected available
class SomeModelAdmin(admin.ModelAdmin):

actions = ['some_other_action']
...

This one will
class AnotherModelAdmin(admin.ModelAdmin):

actions = ['delete_selected', 'a_third_action']
...

Disabling all actions for a particular ModelAdmin

If you want no bulk actions available for a given ModelAdmin, simply set ModelAdmin.actions to None:

class MyModelAdmin(admin.ModelAdmin):
actions = None

This tells the ModelAdmin to not display or allow any actions, including any site-wide actions.

Conditionally enabling or disabling actions

ModelAdmin.get_actions(request)
Finally, you can conditionally enable or disable actions on a per-request (and hence per-user basis) by overriding
ModelAdmin.get_actions().

This returns a dictionary of actions allowed. The keys are action names, and the values are (function,
name, short_description) tuples.

Most of the time you’ll use this method to conditionally remove actions from the list gathered by the superclass.
For example, if I only wanted users whose names begin with ‘J’ to be able to delete objects in bulk, I could do
the following:

class MyModelAdmin(admin.ModelAdmin):
...

def get_actions(self, request):
actions = super(MyModelAdmin, self).get_actions(request)
if request.user.username[0].upper() != 'J':

if 'delete_selected' in actions:
del actions['delete_selected']

return actions

The Django admin documentation generator

Django’s admindocs app pulls documentation from the docstrings of models, views, template tags, and template
filters for any app in INSTALLED_APPS and makes that documentation available from the Django admin.

6.5. contrib packages 703

Django Documentation, Release 1.10.9.dev20171123183751

Overview

To activate the admindocs, you will need to do the following:

• Add django.contrib.admindocs to your INSTALLED_APPS.

• Add url(r'^admin/doc/', include('django.contrib.admindocs.urls')) to your
urlpatterns. Make sure it’s included before the r'^admin/' entry, so that requests to /admin/doc/
don’t get handled by the latter entry.

• Install the docutils Python module (http://docutils.sf.net/).

• Optional: Using the admindocs bookmarklets requires django.contrib.admindocs.middleware.
XViewMiddleware to be installed.

Once those steps are complete, you can start browsing the documentation by going to your admin interface and clicking
the “Documentation” link in the upper right of the page.

Documentation helpers

The following special markup can be used in your docstrings to easily create hyperlinks to other components:

Django Component reStructuredText roles
Models :model:`app_label.ModelName`
Views :view:`app_label.view_name`
Template tags :tag:`tagname`
Template filters :filter:`filtername`
Templates :template:`path/to/template.html`

Model reference

The models section of the admindocs page describes each model in the system along with all the fields and meth-
ods available on it. Relationships to other models appear as hyperlinks. Descriptions are pulled from help_text
attributes on fields or from docstrings on model methods.

The models section of the admindocs now describes methods that take arguments as well. In previous versions it
was restricted to methods without arguments.

A model with useful documentation might look like this:

class BlogEntry(models.Model):
"""
Stores a single blog entry, related to :model:`blog.Blog` and
:model:`auth.User`.
"""
slug = models.SlugField(help_text="A short label, generally used in URLs.")
author = models.ForeignKey(

User,
models.SET_NULL,
blank=True, null=True,

)
blog = models.ForeignKey(Blog, models.CASCADE)
...

def publish(self):
"""Makes the blog entry live on the site."""
...

704 Chapter 6. API Reference

http://docutils.sf.net/

Django Documentation, Release 1.10.9.dev20171123183751

View reference

Each URL in your site has a separate entry in the admindocs page, and clicking on a given URL will show you the
corresponding view. Helpful things you can document in your view function docstrings include:

• A short description of what the view does.

• The context, or a list of variables available in the view’s template.

• The name of the template or templates that are used for that view.

For example:

from django.shortcuts import render

from myapp.models import MyModel

def my_view(request, slug):
"""
Display an individual :model:`myapp.MyModel`.

Context

``mymodel``
An instance of :model:`myapp.MyModel`.

Template:

:template:`myapp/my_template.html`
"""
context = {'mymodel': MyModel.objects.get(slug=slug)}
return render(request, 'myapp/my_template.html', context)

Template tags and filters reference

The tags and filters admindocs sections describe all the tags and filters that come with Django (in fact, the built-in
tag reference and built-in filter reference documentation come directly from those pages). Any tags or filters that you
create or are added by a third-party app will show up in these sections as well.

Template reference

While admindocs does not include a place to document templates by themselves, if you use the
:template:`path/to/template.html` syntax in a docstring the resulting page will verify the path of that
template with Django’s template loaders. This can be a handy way to check if the specified template exists and to
show where on the filesystem that template is stored.

Included Bookmarklets

One bookmarklet is available from the admindocs page:

Documentation for this page Jumps you from any page to the documentation for the view that generates that page.

Using this bookmarklet requires that XViewMiddleware is installed and that you are logged into the Django
admin as a User with is_staff set to True.

6.5. contrib packages 705

Django Documentation, Release 1.10.9.dev20171123183751

JavaScript customizations in the admin

Inline form events

You may want to execute some JavaScript when an inline form is added or removed in the admin change form. The
formset:added and formset:removed jQuery events allow this. The event handler is passed three arguments:

• event is the jQuery event.

• $row is the newly added (or removed) row.

• formsetName is the formset the row belongs to.

The event is fired using the django.jQuery namespace.

In your custom change_form.html template, extend the admin_change_form_document_ready block
and add the event listener code:

{% extends 'admin/change_form.html' %}
{% load static %}

{% block admin_change_form_document_ready %}
{{ block.super }}
<script type="text/javascript" src="{% static 'app/formset_handlers.js' %}"></script>
{% endblock %}

app/static/app/formset_handlers.js

(function($) {
$(document).on('formset:added', function(event, $row, formsetName) {

if (formsetName == 'author_set') {
// Do something

}
});

$(document).on('formset:removed', function(event, $row, formsetName) {
// Row removed

});
})(django.jQuery);

Two points to keep in mind:

• The JavaScript code must go in a template block if you are inheriting admin/change_form.html or it
won’t be rendered in the final HTML.

• {{ block.super }} is added because Django’s admin_change_form_document_ready block
contains JavaScript code to handle various operations in the change form and we need that to be rendered
too.

Sometimes you’ll need to work with jQuery plugins that are not registered in the django.jQuery namespace.
To do that, simply change how the code listens for events. Instead of wrapping the listener in the django.jQuery
namespace, just listen to the event triggered from there. For example:

{% extends 'admin/change_form.html' %}
{% load static %}

{% block admin_change_form_document_ready %}
{{ block.super }}
<script type="text/javascript" src="{% static 'app/unregistered_handlers.js' %}"></
→˓script>
{% endblock %}

706 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

app/static/app/unregistered_handlers.js

django.jQuery(document).on('formset:added', function(event, $row, formsetName) {
// Row added

});

django.jQuery(document).on('formset:removed', function(event, $row, formsetName) {
// Row removed

});

See also:

For information about serving the static files (images, JavaScript, and CSS) associated with the admin in production,
see Serving files.

Having problems? Try FAQ: The admin.

ModelAdmin objects

class ModelAdmin
The ModelAdmin class is the representation of a model in the admin interface. Usually, these are stored in a
file named admin.py in your application. Let’s take a look at a very simple example of the ModelAdmin:

from django.contrib import admin
from myproject.myapp.models import Author

class AuthorAdmin(admin.ModelAdmin):
pass

admin.site.register(Author, AuthorAdmin)

Do you need a ModelAdmin object at all?

In the preceding example, the ModelAdmin class doesn’t define any custom values (yet). As a result, the
default admin interface will be provided. If you are happy with the default admin interface, you don’t need
to define a ModelAdmin object at all – you can register the model class without providing a ModelAdmin
description. The preceding example could be simplified to:

from django.contrib import admin
from myproject.myapp.models import Author

admin.site.register(Author)

The register decorator

register(*models, site=django.admin.sites.site)
There is also a decorator for registering your ModelAdmin classes:

from django.contrib import admin
from .models import Author

@admin.register(Author)
class AuthorAdmin(admin.ModelAdmin):

pass

6.5. contrib packages 707

Django Documentation, Release 1.10.9.dev20171123183751

It is given one or more model classes to register with the ModelAdmin and an optional keyword argument
site if you are not using the default AdminSite:

from django.contrib import admin
from .models import Author, Reader, Editor
from myproject.admin_site import custom_admin_site

@admin.register(Author, Reader, Editor, site=custom_admin_site)
class PersonAdmin(admin.ModelAdmin):

pass

You can’t use this decorator if you have to reference your model admin class in its __init__() method,
e.g. super(PersonAdmin, self).__init__(*args, **kwargs). If you are using Python 3 and
don’t have to worry about supporting Python 2, you can use super().__init__(*args, **kwargs) .
Otherwise, you’ll have to use admin.site.register() instead of this decorator.

Discovery of admin files

When you put 'django.contrib.admin' in your INSTALLED_APPS setting, Django automatically looks for
an admin module in each application and imports it.

class apps.AdminConfig
This is the default AppConfig class for the admin. It calls autodiscover() when Django starts.

class apps.SimpleAdminConfig
This class works like AdminConfig, except it doesn’t call autodiscover().

autodiscover()
This function attempts to import an admin module in each installed application. Such modules are expected to
register models with the admin.

Typically you won’t need to call this function directly as AdminConfig calls it when Django starts.

If you are using a custom AdminSite, it is common to import all of the ModelAdmin subclasses into your
code and register them to the custom AdminSite. In that case, in order to disable auto-discovery, you should
put 'django.contrib.admin.apps.SimpleAdminConfig' instead of 'django.contrib.admin' in
your INSTALLED_APPS setting.

ModelAdmin options

The ModelAdmin is very flexible. It has several options for dealing with customizing the interface. All options are
defined on the ModelAdmin subclass:

from django.contrib import admin

class AuthorAdmin(admin.ModelAdmin):
date_hierarchy = 'pub_date'

ModelAdmin.actions
A list of actions to make available on the change list page. See Admin actions for details.

ModelAdmin.actions_on_top

ModelAdmin.actions_on_bottom
Controls where on the page the actions bar appears. By default, the admin changelist displays actions at the top
of the page (actions_on_top = True; actions_on_bottom = False).

708 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

ModelAdmin.actions_selection_counter
Controls whether a selection counter is displayed next to the action dropdown. By default, the admin changelist
will display it (actions_selection_counter = True).

ModelAdmin.date_hierarchy
Set date_hierarchy to the name of a DateField or DateTimeField in your model, and the change
list page will include a date-based drilldown navigation by that field.

Example:

date_hierarchy = 'pub_date'

This will intelligently populate itself based on available data, e.g. if all the dates are in one month, it’ll show the
day-level drill-down only.

Note: date_hierarchy uses QuerySet.datetimes() internally. Please refer to its documentation for
some caveats when time zone support is enabled (USE_TZ = True).

ModelAdmin.empty_value_display
This attribute overrides the default display value for record’s fields that are empty (None, empty string, etc.).
The default value is - (a dash). For example:

from django.contrib import admin

class AuthorAdmin(admin.ModelAdmin):
empty_value_display = '-empty-'

You can also override empty_value_display for all admin pages with AdminSite.
empty_value_display , or for specific fields like this:

from django.contrib import admin

class AuthorAdmin(admin.ModelAdmin):
fields = ('name', 'title', 'view_birth_date')

def view_birth_date(self, obj):
return obj.birth_date

view_birth_date.empty_value_display = '???'

ModelAdmin.exclude
This attribute, if given, should be a list of field names to exclude from the form.

For example, let’s consider the following model:

from django.db import models

class Author(models.Model):
name = models.CharField(max_length=100)
title = models.CharField(max_length=3)
birth_date = models.DateField(blank=True, null=True)

If you want a form for the Author model that includes only the name and title fields, you would specify
fields or exclude like this:

from django.contrib import admin

6.5. contrib packages 709

Django Documentation, Release 1.10.9.dev20171123183751

class AuthorAdmin(admin.ModelAdmin):
fields = ('name', 'title')

class AuthorAdmin(admin.ModelAdmin):
exclude = ('birth_date',)

Since the Author model only has three fields, name, title, and birth_date, the forms resulting from the
above declarations will contain exactly the same fields.

ModelAdmin.fields
Use the fields option to make simple layout changes in the forms on the “add” and “change” pages such
as showing only a subset of available fields, modifying their order, or grouping them into rows. For example,
you could define a simpler version of the admin form for the django.contrib.flatpages.models.
FlatPage model as follows:

class FlatPageAdmin(admin.ModelAdmin):
fields = ('url', 'title', 'content')

In the above example, only the fields url, title and content will be displayed, sequentially, in the form.
fields can contain values defined in ModelAdmin.readonly_fields to be displayed as read-only.

For more complex layout needs, see the fieldsets option.

The fields option, unlike list_display , may only contain names of fields on the model or the form
specified by form. It may contain callables only if they are listed in readonly_fields.

To display multiple fields on the same line, wrap those fields in their own tuple. In this example, the url and
title fields will display on the same line and the content field will be displayed below them on its own
line:

class FlatPageAdmin(admin.ModelAdmin):
fields = (('url', 'title'), 'content')

Note

This fields option should not be confused with the fields dictionary key that is within the fieldsets
option, as described in the next section.

If neither fields nor fieldsets options are present, Django will default to displaying each field that isn’t
an AutoField and has editable=True, in a single fieldset, in the same order as the fields are defined in
the model.

ModelAdmin.fieldsets
Set fieldsets to control the layout of admin “add” and “change” pages.

fieldsets is a list of two-tuples, in which each two-tuple represents a <fieldset> on the admin form
page. (A <fieldset> is a “section” of the form.)

The two-tuples are in the format (name, field_options), where name is a string representing the title
of the fieldset and field_options is a dictionary of information about the fieldset, including a list of fields
to be displayed in it.

A full example, taken from the django.contrib.flatpages.models.FlatPage model:

from django.contrib import admin

class FlatPageAdmin(admin.ModelAdmin):
fieldsets = (

710 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

(None, {
'fields': ('url', 'title', 'content', 'sites')

}),
('Advanced options', {

'classes': ('collapse',),
'fields': ('registration_required', 'template_name'),

}),
)

This results in an admin page that looks like:

If neither fieldsets nor fields options are present, Django will default to displaying each field that isn’t
an AutoField and has editable=True, in a single fieldset, in the same order as the fields are defined in
the model.

The field_options dictionary can have the following keys:

• fields A tuple of field names to display in this fieldset. This key is required.

Example:

{
'fields': ('first_name', 'last_name', 'address', 'city', 'state'),
}

6.5. contrib packages 711

Django Documentation, Release 1.10.9.dev20171123183751

As with the fields option, to display multiple fields on the same line, wrap those fields in their own
tuple. In this example, the first_name and last_name fields will display on the same line:

{
'fields': (('first_name', 'last_name'), 'address', 'city', 'state'),
}

fields can contain values defined in readonly_fields to be displayed as read-only.

If you add the name of a callable to fields, the same rule applies as with the fields option: the
callable must be listed in readonly_fields.

• classes A list or tuple containing extra CSS classes to apply to the fieldset.

Example:

{
'classes': ('wide', 'extrapretty'),
}

Two useful classes defined by the default admin site stylesheet are collapse and wide. Fieldsets
with the collapse style will be initially collapsed in the admin and replaced with a small “click to
expand” link. Fieldsets with the wide style will be given extra horizontal space.

• description A string of optional extra text to be displayed at the top of each fieldset, under the heading
of the fieldset. This string is not rendered for TabularInline due to its layout.

Note that this value is not HTML-escaped when it’s displayed in the admin interface. This lets you
include HTML if you so desire. Alternatively you can use plain text and django.utils.html.
escape() to escape any HTML special characters.

ModelAdmin.filter_horizontal
By default, a ManyToManyField is displayed in the admin site with a <select multiple>. However,
multiple-select boxes can be difficult to use when selecting many items. Adding a ManyToManyField to this
list will instead use a nifty unobtrusive JavaScript “filter” interface that allows searching within the options. The
unselected and selected options appear in two boxes side by side. See filter_vertical to use a vertical
interface.

ModelAdmin.filter_vertical
Same as filter_horizontal, but uses a vertical display of the filter interface with the box of unselected
options appearing above the box of selected options.

ModelAdmin.form
By default a ModelForm is dynamically created for your model. It is used to create the form presented on both
the add/change pages. You can easily provide your own ModelForm to override any default form behavior on
the add/change pages. Alternatively, you can customize the default form rather than specifying an entirely new
one by using the ModelAdmin.get_form() method.

For an example see the section Adding custom validation to the admin.

Note

If you define the Meta.model attribute on a ModelForm, you must also define the Meta.fields attribute
(or the Meta.exclude attribute). However, since the admin has its own way of defining fields, the Meta.
fields attribute will be ignored.

If the ModelForm is only going to be used for the admin, the easiest solution is to omit the Meta.model
attribute, since ModelAdmin will provide the correct model to use. Alternatively, you can set fields = []
in the Meta class to satisfy the validation on the ModelForm.

712 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Note

If your ModelForm and ModelAdmin both define an exclude option then ModelAdmin takes precedence:

from django import forms
from django.contrib import admin
from myapp.models import Person

class PersonForm(forms.ModelForm):

class Meta:
model = Person
exclude = ['name']

class PersonAdmin(admin.ModelAdmin):
exclude = ['age']
form = PersonForm

In the above example, the “age” field will be excluded but the “name” field will be included in the generated
form.

ModelAdmin.formfield_overrides
This provides a quick-and-dirty way to override some of the Field options for use in the admin.
formfield_overrides is a dictionary mapping a field class to a dict of arguments to pass to the field
at construction time.

Since that’s a bit abstract, let’s look at a concrete example. The most common use of
formfield_overrides is to add a custom widget for a certain type of field. So, imagine we’ve written
a RichTextEditorWidget that we’d like to use for large text fields instead of the default <textarea>.
Here’s how we’d do that:

from django.db import models
from django.contrib import admin

Import our custom widget and our model from where they're defined
from myapp.widgets import RichTextEditorWidget
from myapp.models import MyModel

class MyModelAdmin(admin.ModelAdmin):
formfield_overrides = {

models.TextField: {'widget': RichTextEditorWidget},
}

Note that the key in the dictionary is the actual field class, not a string. The value is another dictionary; these
arguments will be passed to the form field’s __init__() method. See The Forms API for details.

Warning: If you want to use a custom widget with a relation field (i.e. ForeignKey or
ManyToManyField), make sure you haven’t included that field’s name in raw_id_fields or
radio_fields.

formfield_overrides won’t let you change the widget on relation fields that have raw_id_fields
or radio_fields set. That’s because raw_id_fields and radio_fields imply custom widgets
of their own.

ModelAdmin.inlines

6.5. contrib packages 713

Django Documentation, Release 1.10.9.dev20171123183751

See InlineModelAdmin objects below as well as ModelAdmin.get_formsets_with_inlines().

ModelAdmin.list_display
Set list_display to control which fields are displayed on the change list page of the admin.

Example:

list_display = ('first_name', 'last_name')

If you don’t set list_display, the admin site will display a single column that displays the __str__()
(__unicode__() on Python 2) representation of each object.

You have four possible values that can be used in list_display:

• A field of the model. For example:

class PersonAdmin(admin.ModelAdmin):
list_display = ('first_name', 'last_name')

• A callable that accepts one parameter for the model instance. For example:

def upper_case_name(obj):
return ("%s %s" % (obj.first_name, obj.last_name)).upper()

upper_case_name.short_description = 'Name'

class PersonAdmin(admin.ModelAdmin):
list_display = (upper_case_name,)

• A string representing an attribute on the ModelAdmin. This behaves same as the callable. For example:

class PersonAdmin(admin.ModelAdmin):
list_display = ('upper_case_name',)

def upper_case_name(self, obj):
return ("%s %s" % (obj.first_name, obj.last_name)).upper()

upper_case_name.short_description = 'Name'

• A string representing an attribute on the model. This behaves almost the same as the callable, but self in
this context is the model instance. Here’s a full model example:

from django.db import models
from django.contrib import admin

class Person(models.Model):
name = models.CharField(max_length=50)
birthday = models.DateField()

def decade_born_in(self):
return self.birthday.strftime('%Y')[:3] + "0's"

decade_born_in.short_description = 'Birth decade'

class PersonAdmin(admin.ModelAdmin):
list_display = ('name', 'decade_born_in')

A few special cases to note about list_display:

• If the field is a ForeignKey, Django will display the __str__() (__unicode__() on Python 2) of
the related object.

714 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• ManyToManyField fields aren’t supported, because that would entail executing a separate SQL state-
ment for each row in the table. If you want to do this nonetheless, give your model a custom
method, and add that method’s name to list_display. (See below for more on custom methods
in list_display.)

• If the field is a BooleanField or NullBooleanField, Django will display a pretty “on” or “off”
icon instead of True or False.

• If the string given is a method of the model, ModelAdmin or a callable, Django will HTML-escape the
output by default. To escape user input and allow your own unescaped tags, use format_html().

Here’s a full example model:

from django.db import models
from django.contrib import admin
from django.utils.html import format_html

class Person(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)
color_code = models.CharField(max_length=6)

def colored_name(self):
return format_html(

'{} {}',
self.color_code,
self.first_name,
self.last_name,

)

class PersonAdmin(admin.ModelAdmin):
list_display = ('first_name', 'last_name', 'colored_name')

Deprecated since version 1.9: In older versions, you could add an allow_tags attribute to the
method to prevent auto-escaping. This attribute is deprecated as it’s safer to use format_html(),
format_html_join(), or mark_safe() instead.

• As some examples have already demonstrated, when using a callable, a model method, or a ModelAdmin
method, you can customize the column’s title by adding a short_description attribute to the
callable.

• If the value of a field is None, an empty string, or an iterable without elements, Django will display - (a
dash). You can override this with AdminSite.empty_value_display:

from django.contrib import admin

admin.site.empty_value_display = '(None)'

You can also use ModelAdmin.empty_value_display:

class PersonAdmin(admin.ModelAdmin):
empty_value_display = 'unknown'

Or on a field level:

class PersonAdmin(admin.ModelAdmin):
list_display = ('name', 'birth_date_view')

def birth_date_view(self, obj):

6.5. contrib packages 715

Django Documentation, Release 1.10.9.dev20171123183751

return obj.birth_date

birth_date_view.empty_value_display = 'unknown'

The ability to customize empty_value_display was added.

• If the string given is a method of the model, ModelAdmin or a callable that returns True or False Django
will display a pretty “on” or “off” icon if you give the method a boolean attribute whose value is True.

Here’s a full example model:

from django.db import models
from django.contrib import admin

class Person(models.Model):
first_name = models.CharField(max_length=50)
birthday = models.DateField()

def born_in_fifties(self):
return self.birthday.strftime('%Y')[:3] == '195'

born_in_fifties.boolean = True

class PersonAdmin(admin.ModelAdmin):
list_display = ('name', 'born_in_fifties')

• The __str__() (__unicode__() on Python 2) method is just as valid in list_display as any
other model method, so it’s perfectly OK to do this:

list_display = ('__str__', 'some_other_field')

• Usually, elements of list_display that aren’t actual database fields can’t be used in sorting (because
Django does all the sorting at the database level).

However, if an element of list_display represents a certain database field, you can indicate this fact
by setting the admin_order_field attribute of the item.

For example:

from django.db import models
from django.contrib import admin
from django.utils.html import format_html

class Person(models.Model):
first_name = models.CharField(max_length=50)
color_code = models.CharField(max_length=6)

def colored_first_name(self):
return format_html(

'{}',
self.color_code,
self.first_name,

)

colored_first_name.admin_order_field = 'first_name'

class PersonAdmin(admin.ModelAdmin):
list_display = ('first_name', 'colored_first_name')

716 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

The above will tell Django to order by the first_name field when trying to sort by
colored_first_name in the admin.

To indicate descending order with admin_order_field you can use a hyphen prefix on the field name.
Using the above example, this would look like:

colored_first_name.admin_order_field = '-first_name'

admin_order_field supports query lookups to sort by values on related models. This example in-
cludes an “author first name” column in the list display and allows sorting it by first name:

class Blog(models.Model):
title = models.CharField(max_length=255)
author = models.ForeignKey(Person, on_delete=models.CASCADE)

class BlogAdmin(admin.ModelAdmin):
list_display = ('title', 'author', 'author_first_name')

def author_first_name(self, obj):
return obj.author.first_name

author_first_name.admin_order_field = 'author__first_name'

• Elements of list_display can also be properties. Please note however, that due to the way prop-
erties work in Python, setting short_description on a property is only possible when using the
property() function and not with the @property decorator.

For example:

class Person(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)

def my_property(self):
return self.first_name + ' ' + self.last_name

my_property.short_description = "Full name of the person"

full_name = property(my_property)

class PersonAdmin(admin.ModelAdmin):
list_display = ('full_name',)

• The field names in list_display will also appear as CSS classes in the HTML output, in the form of
column-<field_name> on each <th> element. This can be used to set column widths in a CSS file
for example.

• Django will try to interpret every element of list_display in this order:

– A field of the model.

– A callable.

– A string representing a ModelAdmin attribute.

– A string representing a model attribute.

For example if you have first_name as a model field and as a ModelAdmin attribute, the model field
will be used.

ModelAdmin.list_display_links
Use list_display_links to control if and which fields in list_display should be linked to the

6.5. contrib packages 717

Django Documentation, Release 1.10.9.dev20171123183751

“change” page for an object.

By default, the change list page will link the first column – the first field specified in list_display – to the
change page for each item. But list_display_links lets you change this:

• Set it to None to get no links at all.

• Set it to a list or tuple of fields (in the same format as list_display) whose columns you want con-
verted to links.

You can specify one or many fields. As long as the fields appear in list_display, Django doesn’t
care how many (or how few) fields are linked. The only requirement is that if you want to use
list_display_links in this fashion, you must define list_display.

In this example, the first_name and last_name fields will be linked on the change list page:

class PersonAdmin(admin.ModelAdmin):
list_display = ('first_name', 'last_name', 'birthday')
list_display_links = ('first_name', 'last_name')

In this example, the change list page grid will have no links:

class AuditEntryAdmin(admin.ModelAdmin):
list_display = ('timestamp', 'message')
list_display_links = None

ModelAdmin.list_editable
Set list_editable to a list of field names on the model which will allow editing on the change list page.
That is, fields listed in list_editable will be displayed as form widgets on the change list page, allowing
users to edit and save multiple rows at once.

Note: list_editable interacts with a couple of other options in particular ways; you should note the
following rules:

• Any field in list_editable must also be in list_display. You can’t edit a field that’s not dis-
played!

• The same field can’t be listed in both list_editable and list_display_links – a field can’t be
both a form and a link.

You’ll get a validation error if either of these rules are broken.

ModelAdmin.list_filter
Set list_filter to activate filters in the right sidebar of the change list page of the admin, as illustrated in
the following screenshot:

718 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

list_filter should be a list or tuple of elements, where each element should be of one of the following
types:

• a field name, where the specified field should be either a BooleanField, CharField, DateField,
DateTimeField, IntegerField, ForeignKey or ManyToManyField, for example:

class PersonAdmin(admin.ModelAdmin):
list_filter = ('is_staff', 'company')

Field names in list_filter can also span relations using the __ lookup, for example:

class PersonAdmin(admin.UserAdmin):
list_filter = ('company__name',)

• a class inheriting from django.contrib.admin.SimpleListFilter, which you need to provide
the title and parameter_name attributes to and override the lookups and queryset methods,
e.g.:

from datetime import date

from django.contrib import admin
from django.utils.translation import ugettext_lazy as _

class DecadeBornListFilter(admin.SimpleListFilter):
Human-readable title which will be displayed in the
right admin sidebar just above the filter options.
title = _('decade born')

Parameter for the filter that will be used in the URL query.
parameter_name = 'decade'

def lookups(self, request, model_admin):
"""
Returns a list of tuples. The first element in each
tuple is the coded value for the option that will
appear in the URL query. The second element is the
human-readable name for the option that will appear
in the right sidebar.
"""
return (

6.5. contrib packages 719

Django Documentation, Release 1.10.9.dev20171123183751

('80s', _('in the eighties')),
('90s', _('in the nineties')),

)

def queryset(self, request, queryset):
"""
Returns the filtered queryset based on the value
provided in the query string and retrievable via
`self.value()`.
"""
Compare the requested value (either '80s' or '90s')
to decide how to filter the queryset.
if self.value() == '80s':

return queryset.filter(birthday__gte=date(1980, 1, 1),
birthday__lte=date(1989, 12, 31))

if self.value() == '90s':
return queryset.filter(birthday__gte=date(1990, 1, 1),

birthday__lte=date(1999, 12, 31))

class PersonAdmin(admin.ModelAdmin):
list_filter = (DecadeBornListFilter,)

Note: As a convenience, the HttpRequest object is passed to the lookups and queryset methods,
for example:

class AuthDecadeBornListFilter(DecadeBornListFilter):

def lookups(self, request, model_admin):
if request.user.is_superuser:

return super(AuthDecadeBornListFilter, self).lookups(request,
→˓model_admin)

def queryset(self, request, queryset):
if request.user.is_superuser:

return super(AuthDecadeBornListFilter, self).queryset(request,
→˓queryset)

Also as a convenience, the ModelAdmin object is passed to the lookups method, for example if you
want to base the lookups on the available data:

class AdvancedDecadeBornListFilter(DecadeBornListFilter):

def lookups(self, request, model_admin):
"""
Only show the lookups if there actually is
anyone born in the corresponding decades.
"""
qs = model_admin.get_queryset(request)
if qs.filter(birthday__gte=date(1980, 1, 1),

birthday__lte=date(1989, 12, 31)).exists():
yield ('80s', _('in the eighties'))

if qs.filter(birthday__gte=date(1990, 1, 1),
birthday__lte=date(1999, 12, 31)).exists():

yield ('90s', _('in the nineties'))

• a tuple, where the first element is a field name and the second element is a class inheriting from django.

720 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

contrib.admin.FieldListFilter, for example:

class PersonAdmin(admin.ModelAdmin):
list_filter = (

('is_staff', admin.BooleanFieldListFilter),
)

You can limit the choices of a related model to the objects involved in that relation using
RelatedOnlyFieldListFilter:

class BookAdmin(admin.ModelAdmin):
list_filter = (

('author', admin.RelatedOnlyFieldListFilter),
)

Assuming author is a ForeignKey to a User model, this will limit the list_filter choices to
the users who have written a book instead of listing all users.

Note: The FieldListFilter API is considered internal and might be changed.

List filter’s typically appear only if the filter has more than one choice. A filter’s has_output() method
controls whether or not it appears.

It is possible to specify a custom template for rendering a list filter:

class FilterWithCustomTemplate(admin.SimpleListFilter):
template = "custom_template.html"

See the default template provided by Django (admin/filter.html) for a concrete example.

ModelAdmin.list_max_show_all
Set list_max_show_all to control how many items can appear on a “Show all” admin change list page.
The admin will display a “Show all” link on the change list only if the total result count is less than or equal to
this setting. By default, this is set to 200.

ModelAdmin.list_per_page
Set list_per_page to control how many items appear on each paginated admin change list page. By default,
this is set to 100.

ModelAdmin.list_select_related
Set list_select_related to tell Django to use select_related() in retrieving the list of objects on
the admin change list page. This can save you a bunch of database queries.

The value should be either a boolean, a list or a tuple. Default is False.

When value is True, select_related() will always be called. When value is set to False, Django will
look at list_display and call select_related() if any ForeignKey is present.

If you need more fine-grained control, use a tuple (or list) as value for list_select_related. Empty
tuple will prevent Django from calling select_related at all. Any other tuple will be passed directly to
select_related as parameters. For example:

class ArticleAdmin(admin.ModelAdmin):
list_select_related = ('author', 'category')

will call select_related('author', 'category').

If you need to specify a dynamic value based on the request, you can implement a
get_list_select_related() method.

6.5. contrib packages 721

Django Documentation, Release 1.10.9.dev20171123183751

ModelAdmin.ordering
Set ordering to specify how lists of objects should be ordered in the Django admin views. This should be a
list or tuple in the same format as a model’s ordering parameter.

If this isn’t provided, the Django admin will use the model’s default ordering.

If you need to specify a dynamic order (for example depending on user or language) you can implement a
get_ordering() method.

ModelAdmin.paginator
The paginator class to be used for pagination. By default, django.core.paginator.Paginator is used.
If the custom paginator class doesn’t have the same constructor interface as django.core.paginator.
Paginator, you will also need to provide an implementation for ModelAdmin.get_paginator().

ModelAdmin.prepopulated_fields
Set prepopulated_fields to a dictionary mapping field names to the fields it should prepopulate from:

class ArticleAdmin(admin.ModelAdmin):
prepopulated_fields = {"slug": ("title",)}

When set, the given fields will use a bit of JavaScript to populate from the fields assigned. The main use for
this functionality is to automatically generate the value for SlugField fields from one or more other fields.
The generated value is produced by concatenating the values of the source fields, and then by transforming that
result into a valid slug (e.g. substituting dashes for spaces).

prepopulated_fields doesn’t accept DateTimeField, ForeignKey, nor ManyToManyField
fields.

ModelAdmin.preserve_filters
The admin now preserves filters on the list view after creating, editing or deleting an object. You can restore the
previous behavior of clearing filters by setting this attribute to False.

ModelAdmin.radio_fields
By default, Django’s admin uses a select-box interface (<select>) for fields that are ForeignKey or have
choices set. If a field is present in radio_fields, Django will use a radio-button interface instead. As-
suming group is a ForeignKey on the Person model:

class PersonAdmin(admin.ModelAdmin):
radio_fields = {"group": admin.VERTICAL}

You have the choice of using HORIZONTAL or VERTICAL from the django.contrib.admin module.

Don’t include a field in radio_fields unless it’s a ForeignKey or has choices set.

ModelAdmin.raw_id_fields
By default, Django’s admin uses a select-box interface (<select>) for fields that are ForeignKey. Sometimes
you don’t want to incur the overhead of having to select all the related instances to display in the drop-down.

raw_id_fields is a list of fields you would like to change into an Input widget for either a ForeignKey
or ManyToManyField:

class ArticleAdmin(admin.ModelAdmin):
raw_id_fields = ("newspaper",)

The raw_id_fields Input widget should contain a primary key if the field is a ForeignKey or a comma
separated list of values if the field is a ManyToManyField. The raw_id_fields widget shows a magni-
fying glass button next to the field which allows users to search for and select a value:

722 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

ModelAdmin.readonly_fields
By default the admin shows all fields as editable. Any fields in this option (which should be a list or tuple)
will display its data as-is and non-editable; they are also excluded from the ModelForm used for creating and
editing. Note that when specifying ModelAdmin.fields or ModelAdmin.fieldsets the read-only
fields must be present to be shown (they are ignored otherwise).

If readonly_fields is used without defining explicit ordering through ModelAdmin.fields or
ModelAdmin.fieldsets they will be added last after all editable fields.

A read-only field can not only display data from a model’s field, it can also display the output of a model’s
method or a method of the ModelAdmin class itself. This is very similar to the way ModelAdmin.
list_display behaves. This provides an easy way to use the admin interface to provide feedback on the
status of the objects being edited, for example:

from django.contrib import admin
from django.utils.html import format_html_join
from django.utils.safestring import mark_safe

class PersonAdmin(admin.ModelAdmin):
readonly_fields = ('address_report',)

def address_report(self, instance):
assuming get_full_address() returns a list of strings
for each line of the address and you want to separate each
line by a linebreak
return format_html_join(

mark_safe('
'),
'{}',
((line,) for line in instance.get_full_address()),

) or mark_safe("I can't determine this address.</
→˓span>")

short_description functions like a model field's verbose_name
address_report.short_description = "Address"

ModelAdmin.save_as
Set save_as to enable a “save as new” feature on admin change forms.

Normally, objects have three save options: “Save”, “Save and continue editing”, and “Save and add another”.
If save_as is True, “Save and add another” will be replaced by a “Save as new” button that creates a new
object (with a new ID) rather than updating the existing object.

By default, save_as is set to False.

ModelAdmin.save_as_continue
When save_as=True, the default redirect after saving the new object is to the change view for that object. If
you set save_as_continue=False, the redirect will be to the changelist view.

By default, save_as_continue is set to True.

ModelAdmin.save_on_top
Set save_on_top to add save buttons across the top of your admin change forms.

6.5. contrib packages 723

Django Documentation, Release 1.10.9.dev20171123183751

Normally, the save buttons appear only at the bottom of the forms. If you set save_on_top, the buttons will
appear both on the top and the bottom.

By default, save_on_top is set to False.

ModelAdmin.search_fields
Set search_fields to enable a search box on the admin change list page. This should be set to a list of field
names that will be searched whenever somebody submits a search query in that text box.

These fields should be some kind of text field, such as CharField or TextField. You can also perform a
related lookup on a ForeignKey or ManyToManyField with the lookup API “follow” notation:

search_fields = ['foreign_key__related_fieldname']

For example, if you have a blog entry with an author, the following definition would enable searching blog
entries by the email address of the author:

search_fields = ['user__email']

When somebody does a search in the admin search box, Django splits the search query into words and re-
turns all objects that contain each of the words, case insensitive, where each word must be in at least one of
search_fields. For example, if search_fields is set to ['first_name', 'last_name'] and
a user searches for john lennon, Django will do the equivalent of this SQL WHERE clause:

WHERE (first_name ILIKE '%john%' OR last_name ILIKE '%john%')
AND (first_name ILIKE '%lennon%' OR last_name ILIKE '%lennon%')

For faster and/or more restrictive searches, prefix the field name with an operator:

^ Use the ‘^’ operator to match starting at the beginning of the field. For example, if search_fields is set
to ['^first_name', '^last_name'] and a user searches for john lennon, Django will do the
equivalent of this SQL WHERE clause:

WHERE (first_name ILIKE 'john%' OR last_name ILIKE 'john%')
AND (first_name ILIKE 'lennon%' OR last_name ILIKE 'lennon%')

This query is more efficient than the normal '%john%' query, because the database only needs to check
the beginning of a column’s data, rather than seeking through the entire column’s data. Plus, if the column
has an index on it, some databases may be able to use the index for this query, even though it’s a LIKE
query.

= Use the ‘=’ operator for case-insensitive exact matching. For example, if search_fields is set to
['=first_name', '=last_name'] and a user searches for john lennon, Django will do the
equivalent of this SQL WHERE clause:

WHERE (first_name ILIKE 'john' OR last_name ILIKE 'john')
AND (first_name ILIKE 'lennon' OR last_name ILIKE 'lennon')

Note that the query input is split by spaces, so, following this example, it’s currently not possible to search
for all records in which first_name is exactly 'john winston' (containing a space).

@ Using the ‘@’ operator to perform a full text match. This is like the default search method but uses an index.
Currently this is only available for MySQL.

If you need to customize search you can use ModelAdmin.get_search_results() to provide additional
or alternate search behavior.

ModelAdmin.show_full_result_count
Set show_full_result_count to control whether the full count of objects should be displayed on a filtered

724 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

admin page (e.g. 99 results (103 total)). If this option is set to False, a text like 99 results
(Show all) is displayed instead.

The default of show_full_result_count=True generates a query to perform a full count on the table
which can be expensive if the table contains a large number of rows.

ModelAdmin.view_on_site
Set view_on_site to control whether or not to display the “View on site” link. This link should bring you to
a URL where you can display the saved object.

This value can be either a boolean flag or a callable. If True (the default), the object’s
get_absolute_url() method will be used to generate the url.

If your model has a get_absolute_url() method but you don’t want the “View on site” button to appear,
you only need to set view_on_site to False:

from django.contrib import admin

class PersonAdmin(admin.ModelAdmin):
view_on_site = False

In case it is a callable, it accepts the model instance as a parameter. For example:

from django.contrib import admin
from django.urls import reverse

class PersonAdmin(admin.ModelAdmin):
def view_on_site(self, obj):

url = reverse('person-detail', kwargs={'slug': obj.slug})
return 'https://example.com' + url

Custom template options

The Overriding admin templates section describes how to override or extend the default admin templates. Use the
following options to override the default templates used by the ModelAdmin views:

ModelAdmin.add_form_template
Path to a custom template, used by add_view().

ModelAdmin.change_form_template
Path to a custom template, used by change_view().

ModelAdmin.change_list_template
Path to a custom template, used by changelist_view().

ModelAdmin.delete_confirmation_template
Path to a custom template, used by delete_view() for displaying a confirmation page when deleting one or
more objects.

ModelAdmin.delete_selected_confirmation_template
Path to a custom template, used by the delete_selected action method for displaying a confirmation page
when deleting one or more objects. See the actions documentation.

ModelAdmin.object_history_template
Path to a custom template, used by history_view().

6.5. contrib packages 725

Django Documentation, Release 1.10.9.dev20171123183751

ModelAdmin methods

Warning: When overriding ModelAdmin.save_model() and ModelAdmin.delete_model(), your
code must save/delete the object. They aren’t meant for veto purposes, rather they allow you to perform extra
operations.

ModelAdmin.save_model(request, obj, form, change)
The save_model method is given the HttpRequest, a model instance, a ModelForm instance, and a
boolean value based on whether it is adding or changing the object. Overriding this method allows doing pre-
or post-save operations. Call super().save_model() to save the object using Model.save().

For example to attach request.user to the object prior to saving:

from django.contrib import admin

class ArticleAdmin(admin.ModelAdmin):
def save_model(self, request, obj, form, change):

obj.user = request.user
super(ArticleAdmin, self).save_model(request, obj, form, change)

ModelAdmin.delete_model(request, obj)
The delete_model method is given the HttpRequest and a model instance. Overriding this method
allows doing pre- or post-delete operations. Call super().delete_model() to delete the object using
Model.delete().

ModelAdmin.save_formset(request, form, formset, change)
The save_formset method is given the HttpRequest, the parent ModelForm instance and a boolean
value based on whether it is adding or changing the parent object.

For example, to attach request.user to each changed formset model instance:

class ArticleAdmin(admin.ModelAdmin):
def save_formset(self, request, form, formset, change):

instances = formset.save(commit=False)
for obj in formset.deleted_objects:

obj.delete()
for instance in instances:

instance.user = request.user
instance.save()

formset.save_m2m()

See also Saving objects in the formset.

ModelAdmin.get_ordering(request)
The get_ordering method takes a request as parameter and is expected to return a list or tuple for
ordering similar to the ordering attribute. For example:

class PersonAdmin(admin.ModelAdmin):

def get_ordering(self, request):
if request.user.is_superuser:

return ['name', 'rank']
else:

return ['name']

ModelAdmin.get_search_results(request, queryset, search_term)

726 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

The get_search_results method modifies the list of objects displayed into those that match the provided
search term. It accepts the request, a queryset that applies the current filters, and the user-provided search term.
It returns a tuple containing a queryset modified to implement the search, and a boolean indicating if the results
may contain duplicates.

The default implementation searches the fields named in ModelAdmin.search_fields.

This method may be overridden with your own custom search method. For example, you might wish to search
by an integer field, or use an external tool such as Solr or Haystack. You must establish if the queryset changes
implemented by your search method may introduce duplicates into the results, and return True in the second
element of the return value.

For example, to search by name and age, you could use:

class PersonAdmin(admin.ModelAdmin):
list_display = ('name', 'age')
search_fields = ('name',)

def get_search_results(self, request, queryset, search_term):
queryset, use_distinct = super(PersonAdmin, self).get_search_

→˓results(request, queryset, search_term)
try:

search_term_as_int = int(search_term)
except ValueError:

pass
else:

queryset |= self.model.objects.filter(age=search_term_as_int)
return queryset, use_distinct

This implementation is more efficient than search_fields = ('name', '=age') which results
in a string comparison for the numeric field, for example ... OR UPPER("polls_choice".
"votes"::text) = UPPER('4') on PostgreSQL.

ModelAdmin.save_related(request, form, formsets, change)
The save_related method is given the HttpRequest, the parent ModelForm instance, the list of inline
formsets and a boolean value based on whether the parent is being added or changed. Here you can do any pre-
or post-save operations for objects related to the parent. Note that at this point the parent object and its form
have already been saved.

ModelAdmin.get_readonly_fields(request, obj=None)
The get_readonly_fields method is given the HttpRequest and the obj being edited (or None on
an add form) and is expected to return a list or tuple of field names that will be displayed as read-only, as
described above in the ModelAdmin.readonly_fields section.

ModelAdmin.get_prepopulated_fields(request, obj=None)
The get_prepopulated_fields method is given the HttpRequest and the obj being edited (or
None on an add form) and is expected to return a dictionary, as described above in the ModelAdmin.
prepopulated_fields section.

ModelAdmin.get_list_display(request)
The get_list_display method is given the HttpRequest and is expected to return a list or tuple
of field names that will be displayed on the changelist view as described above in the ModelAdmin.
list_display section.

ModelAdmin.get_list_display_links(request, list_display)
The get_list_display_links method is given the HttpRequest and the list or tuple returned
by ModelAdmin.get_list_display(). It is expected to return either None or a list or tuple
of field names on the changelist that will be linked to the change view, as described in the ModelAdmin.
list_display_links section.

6.5. contrib packages 727

Django Documentation, Release 1.10.9.dev20171123183751

ModelAdmin.get_fields(request, obj=None)
The get_fields method is given the HttpRequest and the obj being edited (or None on an add form)
and is expected to return a list of fields, as described above in the ModelAdmin.fields section.

ModelAdmin.get_fieldsets(request, obj=None)
The get_fieldsets method is given the HttpRequest and the obj being edited (or None on an add
form) and is expected to return a list of two-tuples, in which each two-tuple represents a <fieldset> on the
admin form page, as described above in the ModelAdmin.fieldsets section.

ModelAdmin.get_list_filter(request)
The get_list_filter method is given the HttpRequest and is expected to return the same kind of
sequence type as for the list_filter attribute.

ModelAdmin.get_list_select_related(request)
The get_list_select_related method is given the HttpRequest and should return a boolean or list
as ModelAdmin.list_select_related does.

ModelAdmin.get_search_fields(request)
The get_search_fields method is given the HttpRequest and is expected to return the same kind of
sequence type as for the search_fields attribute.

ModelAdmin.get_inline_instances(request, obj=None)
The get_inline_instances method is given the HttpRequest and the obj being edited (or None
on an add form) and is expected to return a list or tuple of InlineModelAdmin objects, as described
below in the InlineModelAdmin section. For example, the following would return inlines without the
default filtering based on add, change, and delete permissions:

class MyModelAdmin(admin.ModelAdmin):
inlines = (MyInline,)

def get_inline_instances(self, request, obj=None):
return [inline(self.model, self.admin_site) for inline in self.inlines]

If you override this method, make sure that the returned inlines are instances of the classes defined in inlines
or you might encounter a “Bad Request” error when adding related objects.

ModelAdmin.get_urls()
The get_urls method on a ModelAdmin returns the URLs to be used for that ModelAdmin in the same way
as a URLconf. Therefore you can extend them as documented in URL dispatcher:

class MyModelAdmin(admin.ModelAdmin):
def get_urls(self):

urls = super(MyModelAdmin, self).get_urls()
my_urls = [

url(r'^my_view/$', self.my_view),
]
return my_urls + urls

def my_view(self, request):
...
context = dict(

Include common variables for rendering the admin template.
self.admin_site.each_context(request),
Anything else you want in the context...
key=value,

)
return TemplateResponse(request, "sometemplate.html", context)

If you want to use the admin layout, extend from admin/base_site.html:

728 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

{% extends "admin/base_site.html" %}
{% block content %}
...
{% endblock %}

Note: Notice that the custom patterns are included before the regular admin URLs: the admin URL patterns
are very permissive and will match nearly anything, so you’ll usually want to prepend your custom URLs to the
built-in ones.

In this example, my_view will be accessed at /admin/myapp/mymodel/my_view/ (assuming the admin
URLs are included at /admin/.)

However, the self.my_view function registered above suffers from two problems:

• It will not perform any permission checks, so it will be accessible to the general public.

• It will not provide any header details to prevent caching. This means if the page retrieves data from the
database, and caching middleware is active, the page could show outdated information.

Since this is usually not what you want, Django provides a convenience wrapper to check permissions and
mark the view as non-cacheable. This wrapper is AdminSite.admin_view() (i.e. self.admin_site.
admin_view inside a ModelAdmin instance); use it like so:

class MyModelAdmin(admin.ModelAdmin):
def get_urls(self):

urls = super(MyModelAdmin, self).get_urls()
my_urls = [

url(r'^my_view/$', self.admin_site.admin_view(self.my_view))
]
return my_urls + urls

Notice the wrapped view in the fifth line above:

url(r'^my_view/$', self.admin_site.admin_view(self.my_view))

This wrapping will protect self.my_view from unauthorized access and will apply the django.views.
decorators.cache.never_cache() decorator to make sure it is not cached if the cache middleware is
active.

If the page is cacheable, but you still want the permission check to be performed, you can pass a
cacheable=True argument to AdminSite.admin_view():

url(r'^my_view/$', self.admin_site.admin_view(self.my_view, cacheable=True))

ModelAdmin views have model_admin attributes. Other AdminSite views have admin_site at-
tributes.

ModelAdmin.get_form(request, obj=None, **kwargs)
Returns a ModelForm class for use in the admin add and change views, see add_view() and
change_view().

The base implementation uses modelform_factory() to subclass form, modified by attributes such as
fields and exclude. So, for example, if you wanted to offer additional fields to superusers, you could swap
in a different base form like so:

class MyModelAdmin(admin.ModelAdmin):
def get_form(self, request, obj=None, **kwargs):

6.5. contrib packages 729

Django Documentation, Release 1.10.9.dev20171123183751

if request.user.is_superuser:
kwargs['form'] = MySuperuserForm

return super(MyModelAdmin, self).get_form(request, obj, **kwargs)

You may also simply return a custom ModelForm class directly.

ModelAdmin.get_formsets_with_inlines(request, obj=None)
Yields (FormSet, InlineModelAdmin) pairs for use in admin add and change views.

For example if you wanted to display a particular inline only in the change view, you could override
get_formsets_with_inlines as follows:

class MyModelAdmin(admin.ModelAdmin):
inlines = [MyInline, SomeOtherInline]

def get_formsets_with_inlines(self, request, obj=None):
for inline in self.get_inline_instances(request, obj):

hide MyInline in the add view
if isinstance(inline, MyInline) and obj is None:

continue
yield inline.get_formset(request, obj), inline

ModelAdmin.formfield_for_foreignkey(db_field, request, **kwargs)
The formfield_for_foreignkey method on a ModelAdmin allows you to override the default form-
field for a foreign keys field. For example, to return a subset of objects for this foreign key field based on the
user:

class MyModelAdmin(admin.ModelAdmin):
def formfield_for_foreignkey(self, db_field, request, **kwargs):

if db_field.name == "car":
kwargs["queryset"] = Car.objects.filter(owner=request.user)

return super(MyModelAdmin, self).formfield_for_foreignkey(db_field,
→˓request, **kwargs)

This uses the HttpRequest instance to filter the Car foreign key field to only display the cars owned by the
User instance.

ModelAdmin.formfield_for_manytomany(db_field, request, **kwargs)
Like the formfield_for_foreignkey method, the formfield_for_manytomany method can be
overridden to change the default formfield for a many to many field. For example, if an owner can own multiple
cars and cars can belong to multiple owners – a many to many relationship – you could filter the Car foreign
key field to only display the cars owned by the User:

class MyModelAdmin(admin.ModelAdmin):
def formfield_for_manytomany(self, db_field, request, **kwargs):

if db_field.name == "cars":
kwargs["queryset"] = Car.objects.filter(owner=request.user)

return super(MyModelAdmin, self).formfield_for_manytomany(db_field,
→˓request, **kwargs)

ModelAdmin.formfield_for_choice_field(db_field, request, **kwargs)
Like the formfield_for_foreignkey and formfield_for_manytomany methods, the
formfield_for_choice_field method can be overridden to change the default formfield for a
field that has declared choices. For example, if the choices available to a superuser should be different than
those available to regular staff, you could proceed as follows:

class MyModelAdmin(admin.ModelAdmin):
def formfield_for_choice_field(self, db_field, request, **kwargs):

730 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

if db_field.name == "status":
kwargs['choices'] = (

('accepted', 'Accepted'),
('denied', 'Denied'),

)
if request.user.is_superuser:

kwargs['choices'] += (('ready', 'Ready for deployment'),)
return super(MyModelAdmin, self).formfield_for_choice_field(db_field,

→˓request, **kwargs)

Note

Any choices attribute set on the formfield will be limited to the form field only. If the corresponding field on
the model has choices set, the choices provided to the form must be a valid subset of those choices, otherwise
the form submission will fail with a ValidationError when the model itself is validated before saving.

ModelAdmin.get_changelist(request, **kwargs)
Returns the Changelist class to be used for listing. By default, django.contrib.admin.views.
main.ChangeList is used. By inheriting this class you can change the behavior of the listing.

ModelAdmin.get_changelist_form(request, **kwargs)
Returns a ModelForm class for use in the Formset on the changelist page. To use a custom form, for
example:

from django import forms

class MyForm(forms.ModelForm):
pass

class MyModelAdmin(admin.ModelAdmin):
def get_changelist_form(self, request, **kwargs):

return MyForm

Note

If you define the Meta.model attribute on a ModelForm, you must also define the Meta.fields at-
tribute (or the Meta.exclude attribute). However, ModelAdmin ignores this value, overriding it with the
ModelAdmin.list_editable attribute. The easiest solution is to omit the Meta.model attribute, since
ModelAdmin will provide the correct model to use.

ModelAdmin.get_changelist_formset(request, **kwargs)
Returns a ModelFormSet class for use on the changelist page if list_editable is used. To use a custom
formset, for example:

from django.forms import BaseModelFormSet

class MyAdminFormSet(BaseModelFormSet):
pass

class MyModelAdmin(admin.ModelAdmin):
def get_changelist_formset(self, request, **kwargs):

kwargs['formset'] = MyAdminFormSet
return super(MyModelAdmin, self).get_changelist_formset(request, **kwargs)

6.5. contrib packages 731

Django Documentation, Release 1.10.9.dev20171123183751

ModelAdmin.has_add_permission(request)
Should return True if adding an object is permitted, False otherwise.

ModelAdmin.has_change_permission(request, obj=None)
Should return True if editing obj is permitted, False otherwise. If obj is None, should return True or False
to indicate whether editing of objects of this type is permitted in general (e.g., False will be interpreted as
meaning that the current user is not permitted to edit any object of this type).

ModelAdmin.has_delete_permission(request, obj=None)
Should return True if deleting obj is permitted, False otherwise. If obj is None, should return True or
False to indicate whether deleting objects of this type is permitted in general (e.g., False will be interpreted
as meaning that the current user is not permitted to delete any object of this type).

ModelAdmin.has_module_permission(request)
Should return True if displaying the module on the admin index page and accessing the module’s index page is
permitted, False otherwise. Uses User.has_module_perms() by default. Overriding it does not restrict
access to the add, change or delete views, has_add_permission(), has_change_permission(),
and has_delete_permission() should be used for that.

ModelAdmin.get_queryset(request)
The get_queryset method on a ModelAdmin returns a QuerySet of all model instances that can be
edited by the admin site. One use case for overriding this method is to show objects owned by the logged-in
user:

class MyModelAdmin(admin.ModelAdmin):
def get_queryset(self, request):

qs = super(MyModelAdmin, self).get_queryset(request)
if request.user.is_superuser:

return qs
return qs.filter(author=request.user)

ModelAdmin.message_user(request, message, level=messages.INFO, extra_tags=’‘,
fail_silently=False)

Sends a message to the user using the django.contrib.messages backend. See the custom ModelAdmin
example.

Keyword arguments allow you to change the message level, add extra CSS tags, or fail silently if the contrib.
messages framework is not installed. These keyword arguments match those for django.contrib.
messages.add_message(), see that function’s documentation for more details. One difference is that
the level may be passed as a string label in addition to integer/constant.

ModelAdmin.get_paginator(request, queryset, per_page, orphans=0, allow_empty_first_page=True)
Returns an instance of the paginator to use for this view. By default, instantiates an instance of paginator.

ModelAdmin.response_add(request, obj, post_url_continue=None)
Determines the HttpResponse for the add_view() stage.

response_add is called after the admin form is submitted and just after the object and all the related instances
have been created and saved. You can override it to change the default behavior after the object has been created.

ModelAdmin.response_change(request, obj)
Determines the HttpResponse for the change_view() stage.

response_change is called after the admin form is submitted and just after the object and all the related
instances have been saved. You can override it to change the default behavior after the object has been changed.

ModelAdmin.response_delete(request, obj_display, obj_id)
Determines the HttpResponse for the delete_view() stage.

response_delete is called after the object has been deleted. You can override it to change the default
behavior after the object has been deleted.

732 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

obj_display is a string with the name of the deleted object.

obj_id is the serialized identifier used to retrieve the object to be deleted.

ModelAdmin.get_changeform_initial_data(request)
A hook for the initial data on admin change forms. By default, fields are given initial values from GET parame-
ters. For instance, ?name=initial_value will set the name field’s initial value to be initial_value.

This method should return a dictionary in the form {'fieldname': 'fieldval'}:

def get_changeform_initial_data(self, request):
return {'name': 'custom_initial_value'}

Other methods

ModelAdmin.add_view(request, form_url=’‘, extra_context=None)
Django view for the model instance addition page. See note below.

ModelAdmin.change_view(request, object_id, form_url=’‘, extra_context=None)
Django view for the model instance editing page. See note below.

ModelAdmin.changelist_view(request, extra_context=None)
Django view for the model instances change list/actions page. See note below.

ModelAdmin.delete_view(request, object_id, extra_context=None)
Django view for the model instance(s) deletion confirmation page. See note below.

ModelAdmin.history_view(request, object_id, extra_context=None)
Django view for the page that shows the modification history for a given model instance.

Unlike the hook-type ModelAdmin methods detailed in the previous section, these five methods are in reality de-
signed to be invoked as Django views from the admin application URL dispatching handler to render the pages that
deal with model instances CRUD operations. As a result, completely overriding these methods will significantly
change the behavior of the admin application.

One common reason for overriding these methods is to augment the context data that is provided to the template that
renders the view. In the following example, the change view is overridden so that the rendered template is provided
some extra mapping data that would not otherwise be available:

class MyModelAdmin(admin.ModelAdmin):

A template for a very customized change view:
change_form_template = 'admin/myapp/extras/openstreetmap_change_form.html'

def get_osm_info(self):
...
pass

def change_view(self, request, object_id, form_url='', extra_context=None):
extra_context = extra_context or {}
extra_context['osm_data'] = self.get_osm_info()
return super(MyModelAdmin, self).change_view(

request, object_id, form_url, extra_context=extra_context,
)

These views return TemplateResponse instances which allow you to easily customize the response data before
rendering. For more details, see the TemplateResponse documentation.

6.5. contrib packages 733

Django Documentation, Release 1.10.9.dev20171123183751

ModelAdmin asset definitions

There are times where you would like add a bit of CSS and/or JavaScript to the add/change views. This can be
accomplished by using a Media inner class on your ModelAdmin:

class ArticleAdmin(admin.ModelAdmin):
class Media:

css = {
"all": ("my_styles.css",)

}
js = ("my_code.js",)

The staticfiles app prepends STATIC_URL (or MEDIA_URL if STATIC_URL is None) to any asset paths. The same
rules apply as regular asset definitions on forms.

jQuery

Django admin JavaScript makes use of the jQuery library.

To avoid conflicts with user-supplied scripts or libraries, Django’s jQuery (version 2.2.3) is namespaced as django.
jQuery. If you want to use jQuery in your own admin JavaScript without including a second copy, you can use the
django.jQuery object on changelist and add/edit views.

The embedded jQuery was upgraded from 1.11.2 to 2.1.4. This drops support for Internet Explorer 8 and below. You
can restore support by including your own version of jQuery 1.X.

The embedded jQuery was upgraded from 2.1.4 to 2.2.3.

The ModelAdmin class requires jQuery by default, so there is no need to add jQuery to your ModelAdmin’s list
of media resources unless you have a specific need. For example, if you require the jQuery library to be in the global
namespace (for example when using third-party jQuery plugins) or if you need a newer version of jQuery, you will
have to include your own copy.

Django provides both uncompressed and ‘minified’ versions of jQuery, as jquery.js and jquery.min.js re-
spectively.

ModelAdmin and InlineModelAdmin have a media property that returns a list of Media objects which store
paths to the JavaScript files for the forms and/or formsets. If DEBUG is True it will return the uncompressed versions
of the various JavaScript files, including jquery.js; if not, it will return the ‘minified’ versions.

Adding custom validation to the admin

Adding custom validation of data in the admin is quite easy. The automatic admin interface reuses django.forms,
and the ModelAdmin class gives you the ability define your own form:

class ArticleAdmin(admin.ModelAdmin):
form = MyArticleAdminForm

MyArticleAdminForm can be defined anywhere as long as you import where needed. Now within your form you
can add your own custom validation for any field:

class MyArticleAdminForm(forms.ModelForm):
def clean_name(self):

do something that validates your data
return self.cleaned_data["name"]

734 Chapter 6. API Reference

https://jquery.com

Django Documentation, Release 1.10.9.dev20171123183751

It is important you use a ModelForm here otherwise things can break. See the forms documentation on custom
validation and, more specifically, the model form validation notes for more information.

InlineModelAdmin objects

class InlineModelAdmin

class TabularInline

class StackedInline
The admin interface has the ability to edit models on the same page as a parent model. These are called inlines.
Suppose you have these two models:

from django.db import models

class Author(models.Model):
name = models.CharField(max_length=100)

class Book(models.Model):
author = models.ForeignKey(Author, on_delete=models.CASCADE)
title = models.CharField(max_length=100)

You can edit the books authored by an author on the author page. You add inlines to a model by specifying them
in a ModelAdmin.inlines:

from django.contrib import admin

class BookInline(admin.TabularInline):
model = Book

class AuthorAdmin(admin.ModelAdmin):
inlines = [

BookInline,
]

Django provides two subclasses of InlineModelAdmin and they are:

• TabularInline

• StackedInline

The difference between these two is merely the template used to render them.

InlineModelAdmin options

InlineModelAdmin shares many of the same features as ModelAdmin, and adds some of its own (the shared
features are actually defined in the BaseModelAdmin superclass). The shared features are:

• form

• fieldsets

• fields

• formfield_overrides

• exclude

• filter_horizontal

6.5. contrib packages 735

Django Documentation, Release 1.10.9.dev20171123183751

• filter_vertical

• ordering

• prepopulated_fields

• get_queryset()

• radio_fields

• readonly_fields

• raw_id_fields

• formfield_for_choice_field()

• formfield_for_foreignkey()

• formfield_for_manytomany()

• has_add_permission()

• has_change_permission()

• has_delete_permission()

• has_module_permission()

The InlineModelAdmin class adds:

InlineModelAdmin.model
The model which the inline is using. This is required.

InlineModelAdmin.fk_name
The name of the foreign key on the model. In most cases this will be dealt with automatically, but fk_name
must be specified explicitly if there are more than one foreign key to the same parent model.

InlineModelAdmin.formset
This defaults to BaseInlineFormSet. Using your own formset can give you many possibilities of cus-
tomization. Inlines are built around model formsets.

InlineModelAdmin.form
The value for form defaults to ModelForm. This is what is passed through to
inlineformset_factory() when creating the formset for this inline.

Warning: When writing custom validation for InlineModelAdmin forms, be cautious of writing validation
that relies on features of the parent model. If the parent model fails to validate, it may be left in an inconsistent
state as described in the warning in Validation on a ModelForm.

InlineModelAdmin.classes
A list or tuple containing extra CSS classes to apply to the fieldset that is rendered for the inlines. Defaults to
None. As with classes configured in fieldsets, inlines with a collapse class will be initially collapsed
and their header will have a small “show” link.

InlineModelAdmin.extra
This controls the number of extra forms the formset will display in addition to the initial forms. See the formsets
documentation for more information.

For users with JavaScript-enabled browsers, an “Add another” link is provided to enable any number of addi-
tional inlines to be added in addition to those provided as a result of the extra argument.

The dynamic link will not appear if the number of currently displayed forms exceeds max_num, or if the user
does not have JavaScript enabled.

736 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

InlineModelAdmin.get_extra() also allows you to customize the number of extra forms.

InlineModelAdmin.max_num
This controls the maximum number of forms to show in the inline. This doesn’t directly correlate to the number
of objects, but can if the value is small enough. See Limiting the number of editable objects for more information.

InlineModelAdmin.get_max_num() also allows you to customize the maximum number of extra forms.

InlineModelAdmin.min_num
This controls the minimum number of forms to show in the inline. See modelformset_factory() for
more information.

InlineModelAdmin.get_min_num() also allows you to customize the minimum number of displayed
forms.

InlineModelAdmin.raw_id_fields
By default, Django’s admin uses a select-box interface (<select>) for fields that are ForeignKey. Sometimes
you don’t want to incur the overhead of having to select all the related instances to display in the drop-down.

raw_id_fields is a list of fields you would like to change into an Input widget for either a ForeignKey
or ManyToManyField:

class BookInline(admin.TabularInline):
model = Book
raw_id_fields = ("pages",)

InlineModelAdmin.template
The template used to render the inline on the page.

InlineModelAdmin.verbose_name
An override to the verbose_name found in the model’s inner Meta class.

InlineModelAdmin.verbose_name_plural
An override to the verbose_name_plural found in the model’s inner Meta class.

InlineModelAdmin.can_delete
Specifies whether or not inline objects can be deleted in the inline. Defaults to True.

InlineModelAdmin.show_change_link
Specifies whether or not inline objects that can be changed in the admin have a link to the change form. Defaults
to False.

InlineModelAdmin.get_formset(request, obj=None, **kwargs)
Returns a BaseInlineFormSet class for use in admin add/change views. See the example for
ModelAdmin.get_formsets_with_inlines.

InlineModelAdmin.get_extra(request, obj=None, **kwargs)
Returns the number of extra inline forms to use. By default, returns the InlineModelAdmin.extra at-
tribute.

Override this method to programmatically determine the number of extra inline forms. For example, this may
be based on the model instance (passed as the keyword argument obj):

class BinaryTreeAdmin(admin.TabularInline):
model = BinaryTree

def get_extra(self, request, obj=None, **kwargs):
extra = 2
if obj:

return extra - obj.binarytree_set.count()
return extra

6.5. contrib packages 737

Django Documentation, Release 1.10.9.dev20171123183751

InlineModelAdmin.get_max_num(request, obj=None, **kwargs)
Returns the maximum number of extra inline forms to use. By default, returns the InlineModelAdmin.
max_num attribute.

Override this method to programmatically determine the maximum number of inline forms. For example, this
may be based on the model instance (passed as the keyword argument obj):

class BinaryTreeAdmin(admin.TabularInline):
model = BinaryTree

def get_max_num(self, request, obj=None, **kwargs):
max_num = 10
if obj and obj.parent:

return max_num - 5
return max_num

InlineModelAdmin.get_min_num(request, obj=None, **kwargs)
Returns the minimum number of inline forms to use. By default, returns the InlineModelAdmin.min_num
attribute.

Override this method to programmatically determine the minimum number of inline forms. For example, this
may be based on the model instance (passed as the keyword argument obj).

Working with a model with two or more foreign keys to the same parent model

It is sometimes possible to have more than one foreign key to the same model. Take this model for instance:

from django.db import models

class Friendship(models.Model):
to_person = models.ForeignKey(Person, on_delete=models.CASCADE, related_name=

→˓"friends")
from_person = models.ForeignKey(Person, on_delete=models.CASCADE, related_name=

→˓"from_friends")

If you wanted to display an inline on the Person admin add/change pages you need to explicitly define the foreign
key since it is unable to do so automatically:

from django.contrib import admin
from myapp.models import Friendship

class FriendshipInline(admin.TabularInline):
model = Friendship
fk_name = "to_person"

class PersonAdmin(admin.ModelAdmin):
inlines = [

FriendshipInline,
]

Working with many-to-many models

By default, admin widgets for many-to-many relations will be displayed on whichever model contains the actual
reference to the ManyToManyField. Depending on your ModelAdmin definition, each many-to-many field in

738 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

your model will be represented by a standard HTML <select multiple>, a horizontal or vertical filter, or a
raw_id_admin widget. However, it is also possible to replace these widgets with inlines.

Suppose we have the following models:

from django.db import models

class Person(models.Model):
name = models.CharField(max_length=128)

class Group(models.Model):
name = models.CharField(max_length=128)
members = models.ManyToManyField(Person, related_name='groups')

If you want to display many-to-many relations using an inline, you can do so by defining an InlineModelAdmin
object for the relationship:

from django.contrib import admin

class MembershipInline(admin.TabularInline):
model = Group.members.through

class PersonAdmin(admin.ModelAdmin):
inlines = [

MembershipInline,
]

class GroupAdmin(admin.ModelAdmin):
inlines = [

MembershipInline,
]
exclude = ('members',)

There are two features worth noting in this example.

Firstly - the MembershipInline class references Group.members.through. The through attribute is a
reference to the model that manages the many-to-many relation. This model is automatically created by Django when
you define a many-to-many field.

Secondly, the GroupAdmin must manually exclude the members field. Django displays an admin widget for a
many-to-many field on the model that defines the relation (in this case, Group). If you want to use an inline model to
represent the many-to-many relationship, you must tell Django’s admin to not display this widget - otherwise you will
end up with two widgets on your admin page for managing the relation.

Note that when using this technique the m2m_changed signals aren’t triggered. This is because as far as the admin
is concerned, through is just a model with two foreign key fields rather than a many-to-many relation.

In all other respects, the InlineModelAdmin is exactly the same as any other. You can customize the appearance
using any of the normal ModelAdmin properties.

Working with many-to-many intermediary models

When you specify an intermediary model using the through argument to a ManyToManyField, the admin will
not display a widget by default. This is because each instance of that intermediary model requires more information
than could be displayed in a single widget, and the layout required for multiple widgets will vary depending on the
intermediate model.

6.5. contrib packages 739

Django Documentation, Release 1.10.9.dev20171123183751

However, we still want to be able to edit that information inline. Fortunately, this is easy to do with inline admin
models. Suppose we have the following models:

from django.db import models

class Person(models.Model):
name = models.CharField(max_length=128)

class Group(models.Model):
name = models.CharField(max_length=128)
members = models.ManyToManyField(Person, through='Membership')

class Membership(models.Model):
person = models.ForeignKey(Person, on_delete=models.CASCADE)
group = models.ForeignKey(Group, on_delete=models.CASCADE)
date_joined = models.DateField()
invite_reason = models.CharField(max_length=64)

The first step in displaying this intermediate model in the admin is to define an inline class for the Membership
model:

class MembershipInline(admin.TabularInline):
model = Membership
extra = 1

This simple example uses the default InlineModelAdmin values for the Membership model, and limits the extra
add forms to one. This could be customized using any of the options available to InlineModelAdmin classes.

Now create admin views for the Person and Group models:

class PersonAdmin(admin.ModelAdmin):
inlines = (MembershipInline,)

class GroupAdmin(admin.ModelAdmin):
inlines = (MembershipInline,)

Finally, register your Person and Group models with the admin site:

admin.site.register(Person, PersonAdmin)
admin.site.register(Group, GroupAdmin)

Now your admin site is set up to edit Membership objects inline from either the Person or the Group detail pages.

Using generic relations as an inline

It is possible to use an inline with generically related objects. Let’s say you have the following models:

from django.db import models
from django.contrib.contenttypes.fields import GenericForeignKey

class Image(models.Model):
image = models.ImageField(upload_to="images")
content_type = models.ForeignKey(ContentType, on_delete=models.CASCADE)
object_id = models.PositiveIntegerField()
content_object = GenericForeignKey("content_type", "object_id")

740 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

class Product(models.Model):
name = models.CharField(max_length=100)

If you want to allow editing and creating an Image instance on the Product, add/change
views you can use GenericTabularInline or GenericStackedInline (both subclasses of
GenericInlineModelAdmin) provided by admin. They implement tabular and stacked visual layouts
for the forms representing the inline objects, respectively, just like their non-generic counterparts. They behave just
like any other inline. In your admin.py for this example app:

from django.contrib import admin
from django.contrib.contenttypes.admin import GenericTabularInline

from myproject.myapp.models import Image, Product

class ImageInline(GenericTabularInline):
model = Image

class ProductAdmin(admin.ModelAdmin):
inlines = [

ImageInline,
]

admin.site.register(Product, ProductAdmin)

See the contenttypes documentation for more specific information.

Overriding admin templates

It is relatively easy to override many of the templates which the admin module uses to generate the various pages of
an admin site. You can even override a few of these templates for a specific app, or a specific model.

Set up your projects admin template directories

The admin template files are located in the contrib/admin/templates/admin directory.

In order to override one or more of them, first create an admin directory in your project’s templates directory.
This can be any of the directories you specified in the DIRS option of the DjangoTemplates backend in the
TEMPLATES setting. If you have customized the 'loaders' option, be sure 'django.template.loaders.
filesystem.Loader' appears before 'django.template.loaders.app_directories.Loader' so
that your custom templates will be found by the template loading system before those that are included with django.
contrib.admin.

Within this admin directory, create sub-directories named after your app. Within these app subdirectories create sub-
directories named after your models. Note, that the admin app will lowercase the model name when looking for the
directory, so make sure you name the directory in all lowercase if you are going to run your app on a case-sensitive
filesystem.

To override an admin template for a specific app, copy and edit the template from the django/contrib/admin/
templates/admin directory, and save it to one of the directories you just created.

For example, if we wanted to add a tool to the change list view for all the models in an app named my_app, we would
copy contrib/admin/templates/admin/change_list.html to the templates/admin/my_app/
directory of our project, and make any necessary changes.

If we wanted to add a tool to the change list view for only a specific model named ‘Page’, we would copy that same
file to the templates/admin/my_app/page directory of our project.

6.5. contrib packages 741

Django Documentation, Release 1.10.9.dev20171123183751

Overriding vs. replacing an admin template

Because of the modular design of the admin templates, it is usually neither necessary nor advisable to replace an entire
template. It is almost always better to override only the section of the template which you need to change.

To continue the example above, we want to add a new link next to the History tool for the Page model. After
looking at change_form.html we determine that we only need to override the object-tools-items block.
Therefore here is our new change_form.html :

{% extends "admin/change_form.html" %}
{% load i18n admin_urls %}
{% block object-tools-items %}

<a href="{% url opts|admin_urlname:'history' original.pk|admin_urlquote %}"

→˓class="historylink">{% trans "History" %}

My Link

{% if has_absolute_url %}

<a href="{% url 'admin:view_on_site' content_type_id original.pk %}"

→˓class="viewsitelink">{% trans "View on site" %}

{% endif %}
{% endblock %}

And that’s it! If we placed this file in the templates/admin/my_app directory, our link would appear on the
change form for all models within my_app.

Templates which may be overridden per app or model

Not every template in contrib/admin/templates/admin may be overridden per app or per model. The fol-
lowing can:

• app_index.html

• change_form.html

• change_list.html

• delete_confirmation.html

• object_history.html

For those templates that cannot be overridden in this way, you may still override them for your entire project. Just
place the new version in your templates/admin directory. This is particularly useful to create custom 404 and
500 pages.

Note: Some of the admin templates, such as change_list_results.html are used to render custom inclusion
tags. These may be overridden, but in such cases you are probably better off creating your own version of the tag in
question and giving it a different name. That way you can use it selectively.

742 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Root and login templates

If you wish to change the index, login or logout templates, you are better off creating your own AdminSite in-
stance (see below), and changing the AdminSite.index_template , AdminSite.login_template or
AdminSite.logout_template properties.

AdminSite objects

class AdminSite(name=’admin’)
A Django administrative site is represented by an instance of django.contrib.admin.sites.
AdminSite; by default, an instance of this class is created as django.contrib.admin.site and you
can register your models and ModelAdmin instances with it.

When constructing an instance of an AdminSite, you can provide a unique instance name using the name
argument to the constructor. This instance name is used to identify the instance, especially when reversing
admin URLs. If no instance name is provided, a default instance name of admin will be used. See Customizing
the AdminSite class for an example of customizing the AdminSite class.

AdminSite attributes

Templates can override or extend base admin templates as described in Overriding admin templates.

AdminSite.site_header
The text to put at the top of each admin page, as an <h1> (a string). By default, this is “Django administration”.

AdminSite.site_title
The text to put at the end of each admin page’s <title> (a string). By default, this is “Django site admin”.

AdminSite.site_url
The URL for the “View site” link at the top of each admin page. By default, site_url is /. Set it to None to
remove the link.

For sites running on a subpath, the each_context() method checks if the current request has request.
META['SCRIPT_NAME'] set and uses that value if site_url isn’t set to something other than /.

The SCRIPT_NAME support described in the previous paragraph was added.

AdminSite.index_title
The text to put at the top of the admin index page (a string). By default, this is “Site administration”.

AdminSite.index_template
Path to a custom template that will be used by the admin site main index view.

AdminSite.app_index_template
Path to a custom template that will be used by the admin site app index view.

AdminSite.empty_value_display
The string to use for displaying empty values in the admin site’s change list. Defaults to a dash. The value
can also be overridden on a per ModelAdmin basis and on a custom field within a ModelAdmin by set-
ting an empty_value_display attribute on the field. See ModelAdmin.empty_value_display for
examples.

AdminSite.login_template
Path to a custom template that will be used by the admin site login view.

AdminSite.login_form
Subclass of AuthenticationForm that will be used by the admin site login view.

6.5. contrib packages 743

Django Documentation, Release 1.10.9.dev20171123183751

AdminSite.logout_template
Path to a custom template that will be used by the admin site logout view.

AdminSite.password_change_template
Path to a custom template that will be used by the admin site password change view.

AdminSite.password_change_done_template
Path to a custom template that will be used by the admin site password change done view.

AdminSite methods

AdminSite.each_context(request)
Returns a dictionary of variables to put in the template context for every page in the admin site.

Includes the following variables and values by default:

• site_header: AdminSite.site_header

• site_title: AdminSite.site_title

• site_url: AdminSite.site_url

• has_permission: AdminSite.has_permission()

• available_apps: a list of applications from the application registry available for the current user.
Each entry in the list is a dict representing an application with the following keys:

– app_label: the application label

– app_url: the URL of the application index in the admin

– has_module_perms: a boolean indicating if displaying and accessing of the module’s index page
is permitted for the current user

– models: a list of the models available in the application

Each model is a dict with the following keys:

– object_name: class name of the model

– name: plural name of the model

– perms: a dict tracking add, change, and delete permissions

– admin_url: admin changelist URL for the model

– add_url: admin URL to add a new model instance

The available_apps variable was added.

AdminSite.has_permission(request)
Returns True if the user for the given HttpRequest has permission to view at least one page in the admin
site. Defaults to requiring both User.is_active and User.is_staff to be True.

AdminSite.register(model_or_iterable, admin_class=None, **options)
Registers the given model class (or iterable of classes) with the given admin_class. admin_class defaults
to ModelAdmin (the default admin options). If keyword arguments are given – e.g. list_display – they’ll
be applied as options to the admin class.

Raises ImproperlyConfigured if a model is abstract. and django.contrib.admin.sites.
AlreadyRegistered if a model is already registered.

744 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Hooking AdminSite instances into your URLconf

The last step in setting up the Django admin is to hook your AdminSite instance into your URLconf. Do this by
pointing a given URL at the AdminSite.urls method. It is not necessary to use include().

In this example, we register the default AdminSite instance django.contrib.admin.site at the URL /
admin/

urls.py
from django.conf.urls import url
from django.contrib import admin

urlpatterns = [
url(r'^admin/', admin.site.urls),

]

In previous versions, you would pass admin.site.urls to include().

Customizing the AdminSite class

If you’d like to set up your own admin site with custom behavior, you’re free to subclass AdminSite and override or
add anything you like. Then, simply create an instance of your AdminSite subclass (the same way you’d instantiate
any other Python class) and register your models and ModelAdmin subclasses with it instead of with the default site.
Finally, update myproject/urls.py to reference your AdminSite subclass.

myapp/admin.py

from django.contrib.admin import AdminSite

from .models import MyModel

class MyAdminSite(AdminSite):
site_header = 'Monty Python administration'

admin_site = MyAdminSite(name='myadmin')
admin_site.register(MyModel)

myproject/urls.py

from django.conf.urls import url

from myapp.admin import admin_site

urlpatterns = [
url(r'^myadmin/', admin_site.urls),

]

Note that you may not want autodiscovery of admin modules when using your own AdminSite instance since you
will likely be importing all the per-app admin modules in your myproject.admin module. This means you need
to put 'django.contrib.admin.apps.SimpleAdminConfig' instead of 'django.contrib.admin'
in your INSTALLED_APPS setting.

Multiple admin sites in the same URLconf

It’s easy to create multiple instances of the admin site on the same Django-powered website. Just create multiple
instances of AdminSite and root each one at a different URL.

6.5. contrib packages 745

Django Documentation, Release 1.10.9.dev20171123183751

In this example, the URLs /basic-admin/ and /advanced-admin/ feature separate versions of the ad-
min site – using the AdminSite instances myproject.admin.basic_site and myproject.admin.
advanced_site, respectively:

urls.py
from django.conf.urls import url
from myproject.admin import basic_site, advanced_site

urlpatterns = [
url(r'^basic-admin/', basic_site.urls),
url(r'^advanced-admin/', advanced_site.urls),

]

AdminSite instances take a single argument to their constructor, their name, which can be anything you like. This
argument becomes the prefix to the URL names for the purposes of reversing them. This is only necessary if you are
using more than one AdminSite.

Adding views to admin sites

Just like ModelAdmin, AdminSite provides a get_urls() method that can be overridden to define additional
views for the site. To add a new view to your admin site, extend the base get_urls() method to include a pattern
for your new view.

Note: Any view you render that uses the admin templates, or extends the base admin template, should set request.
current_app before rendering the template. It should be set to either self.name if your view is on an
AdminSite or self.admin_site.name if your view is on a ModelAdmin.

Adding a password-reset feature

You can add a password-reset feature to the admin site by adding a few lines to your URLconf. Specifically, add these
four patterns:

from django.contrib.auth import views as auth_views

url(r'^admin/password_reset/$', auth_views.password_reset, name='admin_password_reset
→˓'),
url(r'^admin/password_reset/done/$', auth_views.password_reset_done, name='password_
→˓reset_done'),
url(r'^reset/(?P<uidb64>[0-9A-Za-z_\-]+)/(?P<token>.+)/$', auth_views.password_reset_
→˓confirm, name='password_reset_confirm'),
url(r'^reset/done/$', auth_views.password_reset_complete, name='password_reset_
→˓complete'),

(This assumes you’ve added the admin at admin/ and requires that you put the URLs starting with ^admin/ before
the line that includes the admin app itself).

The presence of the admin_password_reset named URL will cause a “forgotten your password?” link to appear
on the default admin log-in page under the password box.

746 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

LogEntry objects

class models.LogEntry
The LogEntry class tracks additions, changes, and deletions of objects done through the admin interface.

LogEntry attributes

LogEntry.action_time
The date and time of the action.

LogEntry.user
The user (an AUTH_USER_MODEL instance) who performed the action.

LogEntry.content_type
The ContentType of the modified object.

LogEntry.object_id
The textual representation of the modified object’s primary key.

LogEntry.object_repr
The object‘s repr() after the modification.

LogEntry.action_flag
The type of action logged: ADDITION, CHANGE, DELETION.

For example, to get a list of all additions done through the admin:

from django.contrib.admin.models import LogEntry, ADDITION

LogEntry.objects.filter(action_flag=ADDITION)

LogEntry.change_message
The detailed description of the modification. In the case of an edit, for example, the message contains
a list of the edited fields. The Django admin site formats this content as a JSON structure, so that
get_change_message() can recompose a message translated in the current user language. Custom code
might set this as a plain string though. You are advised to use the get_change_message() method to
retrieve this value instead of accessing it directly.

Previously, this attribute was always a plain string. It is now JSON-structured so that the message can be
translated in the current user language. Old messages are untouched.

LogEntry methods

LogEntry.get_edited_object()
A shortcut that returns the referenced object.

LogEntry.get_change_message()
Formats and translates change_message into the current user language. Messages created before Django
1.10 will always be displayed in the language in which they were logged.

Reversing admin URLs

When an AdminSite is deployed, the views provided by that site are accessible using Django’s URL reversing
system.

The AdminSite provides the following named URL patterns:

6.5. contrib packages 747

Django Documentation, Release 1.10.9.dev20171123183751

Page URL name Parameters
Index index
Login login
Logout logout
Password change password_change
Password change done password_change_done
i18n JavaScript jsi18n
Application index page app_list app_label
Redirect to object’s page view_on_site content_type_id, object_id

Each ModelAdmin instance provides an additional set of named URLs:

Page URL name Parameters
Changelist {{ app_label }}_{{ model_name }}_changelist
Add {{ app_label }}_{{ model_name }}_add
History {{ app_label }}_{{ model_name }}_history object_id
Delete {{ app_label }}_{{ model_name }}_delete object_id
Change {{ app_label }}_{{ model_name }}_change object_id

The UserAdmin provides a named URL:

Page URL name Parameters
Password change auth_user_password_change user_id

These named URLs are registered with the application namespace admin, and with an instance namespace corre-
sponding to the name of the Site instance.

So - if you wanted to get a reference to the Change view for a particular Choice object (from the polls application)
in the default admin, you would call:

>>> from django.urls import reverse
>>> c = Choice.objects.get(...)
>>> change_url = reverse('admin:polls_choice_change', args=(c.id,))

This will find the first registered instance of the admin application (whatever the instance name), and resolve to the
view for changing poll.Choice instances in that instance.

If you want to find a URL in a specific admin instance, provide the name of that instance as a current_app hint
to the reverse call. For example, if you specifically wanted the admin view from the admin instance named custom,
you would need to call:

>>> change_url = reverse('admin:polls_choice_change', args=(c.id,), current_app=
→˓'custom')

For more details, see the documentation on reversing namespaced URLs.

To allow easier reversing of the admin urls in templates, Django provides an admin_urlname filter which takes an
action as argument:

{% load admin_urls %}
Add user
Delete this user

The action in the examples above match the last part of the URL names for ModelAdmin instances described above.
The opts variable can be any object which has an app_label and model_name attributes and is usually supplied
by the admin views for the current model.

748 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

The staff_member_required decorator

staff_member_required(redirect_field_name=’next’, login_url=’admin:login’)
This decorator is used on the admin views that require authorization. A view decorated with this function will
having the following behavior:

• If the user is logged in, is a staff member (User.is_staff=True), and is active (User.
is_active=True), execute the view normally.

• Otherwise, the request will be redirected to the URL specified by the login_url parameter, with the
originally requested path in a query string variable specified by redirect_field_name. For example:
/admin/login/?next=/admin/polls/question/3/.

Example usage:

from django.contrib.admin.views.decorators import staff_member_required

@staff_member_required
def my_view(request):

...

6.5.2 django.contrib.auth

This document provides API reference material for the components of Django’s authentication system. For more
details on the usage of these components or how to customize authentication and authorization see the authentication
topic guide.

User model

Fields

class models.User
User objects have the following fields:

username
Required. 150 characters or fewer. Usernames may contain alphanumeric, _, @, +, . and - characters.

The max_length should be sufficient for many use cases. If you need a longer length, please use a
custom user model. If you use MySQL with the utf8mb4 encoding (recommended for proper Unicode
support), specify at most max_length=191 because MySQL can only create unique indexes with 191
characters in that case by default.

Usernames and Unicode

Django originally accepted only ASCII letters in usernames. Although it wasn’t a deliberate choice, Uni-
code characters have always been accepted when using Python 3. Django 1.10 officially added Unicode
support in usernames, keeping the ASCII-only behavior on Python 2.

The max_length increased from 30 to 150 characters.

first_name
Optional. 30 characters or fewer.

last_name
Optional. 30 characters or fewer.

6.5. contrib packages 749

Django Documentation, Release 1.10.9.dev20171123183751

email
Optional. Email address.

password
Required. A hash of, and metadata about, the password. (Django doesn’t store the raw password.) Raw
passwords can be arbitrarily long and can contain any character. See the password documentation.

groups
Many-to-many relationship to Group

user_permissions
Many-to-many relationship to Permission

is_staff
Boolean. Designates whether this user can access the admin site.

is_active
Boolean. Designates whether this user account should be considered active. We recommend that you set
this flag to False instead of deleting accounts; that way, if your applications have any foreign keys to
users, the foreign keys won’t break.

This doesn’t necessarily control whether or not the user can log in. Authentication backends
aren’t required to check for the is_active flag but the default backend (ModelBackend)
and the RemoteUserBackend do. You can use AllowAllUsersModelBackend or
AllowAllUsersRemoteUserBackend if you want to allow inactive users to login. In this case,
you’ll also want to customize the AuthenticationForm used by the login() view as it rejects inac-
tive users. Be aware that the permission-checking methods such as has_perm() and the authentication
in the Django admin all return False for inactive users.

In older versions, ModelBackend and RemoteUserBackend allowed inactive users to authenticate.

is_superuser
Boolean. Designates that this user has all permissions without explicitly assigning them.

last_login
A datetime of the user’s last login.

date_joined
A datetime designating when the account was created. Is set to the current date/time by default when the
account is created.

Attributes

class models.User

is_authenticated
Read-only attribute which is always True (as opposed to AnonymousUser.is_authenticated
which is always False). This is a way to tell if the user has been authenticated. This does not im-
ply any permissions and doesn’t check if the user is active or has a valid session. Even though nor-
mally you will check this attribute on request.user to find out whether it has been populated by
the AuthenticationMiddleware (representing the currently logged-in user), you should know this
attribute is True for any User instance.

In older versions, this was a method. Backwards-compatibility support for using it as a method will be
removed in Django 2.0.

750 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

is_anonymous
Read-only attribute which is always False. This is a way of differentiating User and AnonymousUser
objects. Generally, you should prefer using is_authenticated to this attribute.

In older versions, this was a method. Backwards-compatibility support for using it as a method will be
removed in Django 2.0.

Methods

class models.User

get_username()
Returns the username for the user. Since the User model can be swapped out, you should use this method
instead of referencing the username attribute directly.

get_full_name()
Returns the first_name plus the last_name, with a space in between.

get_short_name()
Returns the first_name.

set_password(raw_password)
Sets the user’s password to the given raw string, taking care of the password hashing. Doesn’t save the
User object.

When the raw_password is None, the password will be set to an unusable password, as if
set_unusable_password() were used.

check_password(raw_password)
Returns True if the given raw string is the correct password for the user. (This takes care of the password
hashing in making the comparison.)

set_unusable_password()
Marks the user as having no password set. This isn’t the same as having a blank string for a password.
check_password() for this user will never return True. Doesn’t save the User object.

You may need this if authentication for your application takes place against an existing external source
such as an LDAP directory.

has_usable_password()
Returns False if set_unusable_password() has been called for this user.

get_group_permissions(obj=None)
Returns a set of permission strings that the user has, through their groups.

If obj is passed in, only returns the group permissions for this specific object.

get_all_permissions(obj=None)
Returns a set of permission strings that the user has, both through group and user permissions.

If obj is passed in, only returns the permissions for this specific object.

has_perm(perm, obj=None)
Returns True if the user has the specified permission, where perm is in the format "<app label>.
<permission codename>". (see documentation on permissions). If the user is inactive, this method
will always return False.

If obj is passed in, this method won’t check for a permission for the model, but for this specific object.

6.5. contrib packages 751

Django Documentation, Release 1.10.9.dev20171123183751

has_perms(perm_list, obj=None)
Returns True if the user has each of the specified permissions, where each perm is in the format "<app
label>.<permission codename>". If the user is inactive, this method will always return False.

If obj is passed in, this method won’t check for permissions for the model, but for the specific object.

has_module_perms(package_name)
Returns True if the user has any permissions in the given package (the Django app label). If the user is
inactive, this method will always return False.

email_user(subject, message, from_email=None, **kwargs)
Sends an email to the user. If from_email is None, Django uses the DEFAULT_FROM_EMAIL. Any
**kwargs are passed to the underlying send_mail() call.

Manager methods

class models.UserManager
The User model has a custom manager that has the following helper methods (in addition to the methods
provided by BaseUserManager):

create_user(username, email=None, password=None, **extra_fields)
Creates, saves and returns a User.

The username and password are set as given. The domain portion of email is automatically con-
verted to lowercase, and the returned User object will have is_active set to True.

If no password is provided, set_unusable_password() will be called.

The extra_fields keyword arguments are passed through to the User’s __init__ method to allow
setting arbitrary fields on a custom user model.

See Creating users for example usage.

create_superuser(username, email, password, **extra_fields)
Same as create_user(), but sets is_staff and is_superuser to True.

AnonymousUser object

class models.AnonymousUser
django.contrib.auth.models.AnonymousUser is a class that implements the django.
contrib.auth.models.User interface, with these differences:

• id is always None.

• username is always the empty string.

• get_username() always returns the empty string.

• is_anonymous is True instead of False.

• is_authenticated is False instead of True.

• is_staff and is_superuser are always False.

• is_active is always False.

• groups and user_permissions are always empty.

• set_password(), check_password(), save() and delete() raise
NotImplementedError.

752 Chapter 6. API Reference

https://docs.python.org/3/library/exceptions.html#NotImplementedError

Django Documentation, Release 1.10.9.dev20171123183751

In practice, you probably won’t need to use AnonymousUser objects on your own, but they’re used by Web requests,
as explained in the next section.

Permission model

class models.Permission

Fields

Permission objects have the following fields:

class models.Permission

name
Required. 255 characters or fewer. Example: 'Can vote'.

content_type
Required. A reference to the django_content_type database table, which contains a record for each
installed model.

codename
Required. 100 characters or fewer. Example: 'can_vote'.

Methods

Permission objects have the standard data-access methods like any other Django model.

Group model

class models.Group

Fields

Group objects have the following fields:

class models.Group

name
Required. 80 characters or fewer. Any characters are permitted. Example: 'Awesome Users'.

permissions
Many-to-many field to Permission:

group.permissions.set([permission_list])
group.permissions.add(permission, permission, ...)
group.permissions.remove(permission, permission, ...)
group.permissions.clear()

6.5. contrib packages 753

Django Documentation, Release 1.10.9.dev20171123183751

Validators

class validators.ASCIIUsernameValidator
A field validator allowing only ASCII letters, in addition to @, ., +, -, and _. The default validator for User.
username on Python 2.

class validators.UnicodeUsernameValidator
A field validator allowing Unicode letters, in addition to @, ., +, -, and _. The default validator for User.
username on Python 3.

Login and logout signals

The auth framework uses the following signals that can be used for notification when a user logs in or out.

user_logged_in()
Sent when a user logs in successfully.

Arguments sent with this signal:

sender The class of the user that just logged in.

request The current HttpRequest instance.

user The user instance that just logged in.

user_logged_out()
Sent when the logout method is called.

sender As above: the class of the user that just logged out or None if the user was not authenticated.

request The current HttpRequest instance.

user The user instance that just logged out or None if the user was not authenticated.

user_login_failed()
Sent when the user failed to login successfully

sender The name of the module used for authentication.

credentials A dictionary of keyword arguments containing the user credentials that were passed to
authenticate() or your own custom authentication backend. Credentials matching a set of ‘sen-
sitive’ patterns, (including password) will not be sent in the clear as part of the signal.

Authentication backends

This section details the authentication backends that come with Django. For information on how to use them and how
to write your own authentication backends, see the Other authentication sources section of the User authentication
guide.

Available authentication backends

The following backends are available in django.contrib.auth.backends:

class ModelBackend
This is the default authentication backend used by Django. It authenticates using credentials consisting of a user
identifier and password. For Django’s default user model, the user identifier is the username, for custom user
models it is the field specified by USERNAME_FIELD (see Customizing Users and authentication).

It also handles the default permissions model as defined for User and PermissionsMixin.

754 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

has_perm(), get_all_permissions(), get_user_permissions(), and
get_group_permissions() allow an object to be passed as a parameter for object-specific per-
missions, but this backend does not implement them other than returning an empty set of permissions if obj
is not None.

authenticate(username=None, password=None, **kwargs)
Tries to authenticate username with password by calling User.check_password. If no
username is provided, it tries to fetch a username from kwargs using the key CustomUser.
USERNAME_FIELD. Returns an authenticated user or None.

get_user_permissions(user_obj, obj=None)
Returns the set of permission strings the user_obj has from their own user permissions. Returns an
empty set if is_anonymous or is_active is False.

get_group_permissions(user_obj, obj=None)
Returns the set of permission strings the user_obj has from the permissions of the groups they belong.
Returns an empty set if is_anonymous or is_active is False.

get_all_permissions(user_obj, obj=None)
Returns the set of permission strings the user_obj has, including both user permissions and group
permissions. Returns an empty set if is_anonymous or is_active is False.

has_perm(user_obj, perm, obj=None)
Uses get_all_permissions() to check if user_obj has the permission string perm. Returns
False if the user is not is_active.

has_module_perms(self, user_obj, app_label)
Returns whether the user_obj has any permissions on the app app_label.

user_can_authenticate()
Returns whether the user is allowed to authenticate. To match the behavior of AuthenticationForm
which prohibits inactive users from logging in, this method returns False for users
with is_active=False. Custom user models that don’t have an is_active field are allowed.

class AllowAllUsersModelBackend
Same as ModelBackend except that it doesn’t reject inactive users because user_can_authenticate()
always returns True.

When using this backend, you’ll likely want to customize the AuthenticationForm used by the login()
view by overriding the confirm_login_allowed() method as it rejects inactive users.

class RemoteUserBackend
Use this backend to take advantage of external-to-Django-handled authentication. It authenticates using user-
names passed in request.META['REMOTE_USER']. See the Authenticating against REMOTE_USER doc-
umentation.

If you need more control, you can create your own authentication backend that inherits from this class and
override these attributes or methods:

RemoteUserBackend.create_unknown_user
True or False. Determines whether or not a user object is created if not already in the database Defaults to
True.

RemoteUserBackend.authenticate(remote_user)
The username passed as remote_user is considered trusted. This method simply returns the user object with
the given username, creating a new user object if create_unknown_user is True.

Returns None if create_unknown_user is False and a User object with the given username is not
found in the database.

6.5. contrib packages 755

Django Documentation, Release 1.10.9.dev20171123183751

RemoteUserBackend.clean_username(username)
Performs any cleaning on the username (e.g. stripping LDAP DN information) prior to using it to get or create
a user object. Returns the cleaned username.

RemoteUserBackend.configure_user(user)
Configures a newly created user. This method is called immediately after a new user is created, and can be used
to perform custom setup actions, such as setting the user’s groups based on attributes in an LDAP directory.
Returns the user object.

RemoteUserBackend.user_can_authenticate()
Returns whether the user is allowed to authenticate. This method returns False for users with
is_active=False. Custom user models that don’t have an is_active field are allowed.

class AllowAllUsersRemoteUserBackend
Same as RemoteUserBackend except that it doesn’t reject inactive users because
user_can_authenticate always returns True.

Utility functions

get_user(request)
Returns the user model instance associated with the given request’s session.

It checks if the authentication backend stored in the session is present in AUTHENTICATION_BACKENDS. If
so, it uses the backend’s get_user() method to retrieve the user model instance and then verifies the session
by calling the user model’s get_session_auth_hash() method.

Returns an instance of AnonymousUser if the authentication backend stored in the session is no longer in
AUTHENTICATION_BACKENDS, if a user isn’t returned by the backend’s get_user() method, or if the
session auth hash doesn’t validate.

6.5.3 The contenttypes framework

Django includes a contenttypes application that can track all of the models installed in your Django-powered
project, providing a high-level, generic interface for working with your models.

Overview

At the heart of the contenttypes application is the ContentType model, which lives at django.contrib.
contenttypes.models.ContentType. Instances of ContentType represent and store information about
the models installed in your project, and new instances of ContentType are automatically created whenever new
models are installed.

Instances of ContentType have methods for returning the model classes they represent and for querying objects
from those models. ContentType also has a custom manager that adds methods for working with ContentType
and for obtaining instances of ContentType for a particular model.

Relations between your models and ContentType can also be used to enable “generic” relationships between an
instance of one of your models and instances of any model you have installed.

Installing the contenttypes framework

The contenttypes framework is included in the default INSTALLED_APPS list created by django-admin
startproject, but if you’ve removed it or if you manually set up your INSTALLED_APPS list, you can enable it
by adding 'django.contrib.contenttypes' to your INSTALLED_APPS setting.

756 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

It’s generally a good idea to have the contenttypes framework installed; several of Django’s other bundled applications
require it:

• The admin application uses it to log the history of each object added or changed through the admin interface.

• Django’s authentication framework uses it to tie user permissions to specific models.

The ContentType model

class ContentType
Each instance of ContentType has two fields which, taken together, uniquely describe an installed model:

app_label
The name of the application the model is part of. This is taken from the app_label attribute of the
model, and includes only the last part of the application’s Python import path; django.contrib.
contenttypes, for example, becomes an app_label of contenttypes.

model
The name of the model class.

Additionally, the following property is available:

name
The human-readable name of the content type. This is taken from the verbose_name attribute of the
model.

Let’s look at an example to see how this works. If you already have the contenttypes application installed, and
then add the sites application to your INSTALLED_APPS setting and run manage.py migrate to
install it, the model django.contrib.sites.models.Site will be installed into your database. Along with
it a new instance of ContentType will be created with the following values:

• app_label will be set to 'sites' (the last part of the Python path django.contrib.sites).

• model will be set to 'site'.

Methods on ContentType instances

Each ContentType instance has methods that allow you to get from a ContentType instance to the model it
represents, or to retrieve objects from that model:

ContentType.get_object_for_this_type(**kwargs)
Takes a set of valid lookup arguments for the model the ContentType represents, and does a get()
lookup on that model, returning the corresponding object.

ContentType.model_class()
Returns the model class represented by this ContentType instance.

For example, we could look up the ContentType for the User model:

>>> from django.contrib.contenttypes.models import ContentType
>>> ContentType.objects.get(app_label="auth", model="user")
<ContentType: user>

And then use it to query for a particular User, or to get access to the User model class:

>>> user_type.model_class()
<class 'django.contrib.auth.models.User'>
>>> user_type.get_object_for_this_type(username='Guido')
<User: Guido>

6.5. contrib packages 757

Django Documentation, Release 1.10.9.dev20171123183751

Together, get_object_for_this_type() and model_class() enable two extremely important use cases:

1. Using these methods, you can write high-level generic code that performs queries on any installed model –
instead of importing and using a single specific model class, you can pass an app_label and model into a
ContentType lookup at runtime, and then work with the model class or retrieve objects from it.

2. You can relate another model to ContentType as a way of tying instances of it to particular model classes,
and use these methods to get access to those model classes.

Several of Django’s bundled applications make use of the latter technique. For example, the permissions
system in Django’s authentication framework uses a Permission model with a foreign key to ContentType;
this lets Permission represent concepts like “can add blog entry” or “can delete news story”.

The ContentTypeManager

class ContentTypeManager
ContentType also has a custom manager, ContentTypeManager, which adds the following methods:

clear_cache()
Clears an internal cache used by ContentType to keep track of models for which it has created
ContentType instances. You probably won’t ever need to call this method yourself; Django will call it
automatically when it’s needed.

get_for_id(id)
Lookup a ContentType by ID. Since this method uses the same shared cache as get_for_model(),
it’s preferred to use this method over the usual ContentType.objects.get(pk=id)

get_for_model(model, for_concrete_model=True)
Takes either a model class or an instance of a model, and returns the ContentType instance representing
that model. for_concrete_model=False allows fetching the ContentType of a proxy model.

get_for_models(*models, for_concrete_models=True)
Takes a variadic number of model classes, and returns a dictionary mapping the model classes to the
ContentType instances representing them. for_concrete_models=False allows fetching the
ContentType of proxy models.

get_by_natural_key(app_label, model)
Returns the ContentType instance uniquely identified by the given application label and model name.
The primary purpose of this method is to allow ContentType objects to be referenced via a natural key
during deserialization.

The get_for_model() method is especially useful when you know you need to work with a ContentType but
don’t want to go to the trouble of obtaining the model’s metadata to perform a manual lookup:

>>> from django.contrib.auth.models import User
>>> ContentType.objects.get_for_model(User)
<ContentType: user>

Generic relations

Adding a foreign key from one of your own models to ContentType allows your model to effectively tie itself to
another model class, as in the example of the Permission model above. But it’s possible to go one step further and
use ContentType to enable truly generic (sometimes called “polymorphic”) relationships between models.

A simple example is a tagging system, which might look like this:

758 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

from django.db import models
from django.contrib.contenttypes.fields import GenericForeignKey
from django.contrib.contenttypes.models import ContentType

class TaggedItem(models.Model):
tag = models.SlugField()
content_type = models.ForeignKey(ContentType, on_delete=models.CASCADE)
object_id = models.PositiveIntegerField()
content_object = GenericForeignKey('content_type', 'object_id')

def __str__(self): # __unicode__ on Python 2
return self.tag

A normal ForeignKey can only “point to” one other model, which means that if the TaggedItem model used
a ForeignKey it would have to choose one and only one model to store tags for. The contenttypes application
provides a special field type (GenericForeignKey) which works around this and allows the relationship to be
with any model:

class GenericForeignKey
There are three parts to setting up a GenericForeignKey:

1. Give your model a ForeignKey to ContentType. The usual name for this field is “content_type”.

2. Give your model a field that can store primary key values from the models you’ll be relating to. For most
models, this means a PositiveIntegerField. The usual name for this field is “object_id”.

3. Give your model a GenericForeignKey , and pass it the names of the two fields described above.
If these fields are named “content_type” and “object_id”, you can omit this – those are the default field
names GenericForeignKey will look for.

for_concrete_model
If False, the field will be able to reference proxy models. Default is True. This mirrors the
for_concrete_model argument to get_for_model().

Primary key type compatibility

The “object_id” field doesn’t have to be the same type as the primary key fields on the related models, but their primary
key values must be coercible to the same type as the “object_id” field by its get_db_prep_value() method.

For example, if you want to allow generic relations to models with either IntegerField or CharField primary
key fields, you can use CharField for the “object_id” field on your model since integers can be coerced to strings
by get_db_prep_value().

For maximum flexibility you can use a TextField which doesn’t have a maximum length defined, however this
may incur significant performance penalties depending on your database backend.

There is no one-size-fits-all solution for which field type is best. You should evaluate the models you expect to be
pointing to and determine which solution will be most effective for your use case.

Serializing references to ContentType objects

If you’re serializing data (for example, when generating fixtures) from a model that implements generic relations,
you should probably be using a natural key to uniquely identify related ContentType objects. See natural keys and
dumpdata --natural-foreign for more information.

This will enable an API similar to the one used for a normal ForeignKey; each TaggedItem will have a
content_object field that returns the object it’s related to, and you can also assign to that field or use it when

6.5. contrib packages 759

Django Documentation, Release 1.10.9.dev20171123183751

creating a TaggedItem:

>>> from django.contrib.auth.models import User
>>> guido = User.objects.get(username='Guido')
>>> t = TaggedItem(content_object=guido, tag='bdfl')
>>> t.save()
>>> t.content_object
<User: Guido>

Due to the way GenericForeignKey is implemented, you cannot use such fields directly with filters (filter()
and exclude(), for example) via the database API. Because a GenericForeignKey isn’t a normal field object,
these examples will not work:

This will fail
>>> TaggedItem.objects.filter(content_object=guido)
This will also fail
>>> TaggedItem.objects.get(content_object=guido)

Likewise, GenericForeignKeys does not appear in ModelForms.

Reverse generic relations

class GenericRelation

related_query_name
The relation on the related object back to this object doesn’t exist by default. Setting
related_query_name creates a relation from the related object back to this one. This allows querying
and filtering from the related object.

If you know which models you’ll be using most often, you can also add a “reverse” generic relationship to enable an
additional API. For example:

from django.db import models
from django.contrib.contenttypes.fields import GenericRelation

class Bookmark(models.Model):
url = models.URLField()
tags = GenericRelation(TaggedItem)

Bookmark instances will each have a tags attribute, which can be used to retrieve their associated TaggedItems:

>>> b = Bookmark(url='https://www.djangoproject.com/')
>>> b.save()
>>> t1 = TaggedItem(content_object=b, tag='django')
>>> t1.save()
>>> t2 = TaggedItem(content_object=b, tag='python')
>>> t2.save()
>>> b.tags.all()
<QuerySet [<TaggedItem: django>, <TaggedItem: python>]>

Defining GenericRelation with related_query_name set allows querying from the related object:

tags = GenericRelation(TaggedItem, related_query_name='bookmarks')

This enables filtering, ordering, and other query operations on Bookmark from TaggedItem:

760 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

>>> # Get all tags belonging to bookmarks containing `django` in the url
>>> TaggedItem.objects.filter(bookmarks__url__contains='django')
<QuerySet [<TaggedItem: django>, <TaggedItem: python>]>

Of course, if you don’t add the reverse relationship, you can do the same types of lookups manually:

>>> b = Bookmark.objects.get(url='https://www.djangoproject.com/')
>>> bookmark_type = ContentType.objects.get_for_model(b)
>>> TaggedItem.objects.filter(content_type__pk=bookmark_type.id, object_id=b.id)
<QuerySet [<TaggedItem: django>, <TaggedItem: python>]>

Just as GenericForeignKey accepts the names of the content-type and object-ID fields as arguments, so too does
GenericRelation; if the model which has the generic foreign key is using non-default names for those fields, you
must pass the names of the fields when setting up a GenericRelation to it. For example, if the TaggedItem
model referred to above used fields named content_type_fk and object_primary_key to create its generic
foreign key, then a GenericRelation back to it would need to be defined like so:

tags = GenericRelation(
TaggedItem,
content_type_field='content_type_fk',
object_id_field='object_primary_key',

)

Note also, that if you delete an object that has a GenericRelation, any objects which have a
GenericForeignKey pointing at it will be deleted as well. In the example above, this means that if a Bookmark
object were deleted, any TaggedItem objects pointing at it would be deleted at the same time.

Unlike ForeignKey , GenericForeignKey does not accept an on_delete argument to customize this behav-
ior; if desired, you can avoid the cascade-deletion simply by not using GenericRelation, and alternate behavior
can be provided via the pre_delete signal.

Generic relations and aggregation

Django’s database aggregation API works with a GenericRelation. For example, you can find out how many
tags all the bookmarks have:

>>> Bookmark.objects.aggregate(Count('tags'))
{'tags__count': 3}

Generic relation in forms

The django.contrib.contenttypes.forms module provides:

• BaseGenericInlineFormSet

• A formset factory, generic_inlineformset_factory(), for use with GenericForeignKey .

class BaseGenericInlineFormSet

generic_inlineformset_factory(model, form=ModelForm, formset=BaseGenericInlineFormSet,
ct_field=”content_type”, fk_field=”object_id”, fields=None,
exclude=None, extra=3, can_order=False, can_delete=True,
max_num=None, formfield_callback=None, validate_max=False,
for_concrete_model=True, min_num=None, vali-
date_min=False)

Returns a GenericInlineFormSet using modelformset_factory().

6.5. contrib packages 761

Django Documentation, Release 1.10.9.dev20171123183751

You must provide ct_field and fk_field if they are different from the defaults,
content_type and object_id respectively. Other parameters are similar to those documented in
modelformset_factory() and inlineformset_factory().

The for_concrete_model argument corresponds to the for_concrete_model argument on
GenericForeignKey.

Generic relations in admin

The django.contrib.contenttypes.admin module provides GenericTabularInline and
GenericStackedInline (subclasses of GenericInlineModelAdmin)

These classes and functions enable the use of generic relations in forms and the admin. See the model formset and
admin documentation for more information.

class GenericInlineModelAdmin
The GenericInlineModelAdmin class inherits all properties from an InlineModelAdmin class. How-
ever, it adds a couple of its own for working with the generic relation:

ct_field
The name of the ContentType foreign key field on the model. Defaults to content_type.

ct_fk_field
The name of the integer field that represents the ID of the related object. Defaults to object_id.

class GenericTabularInline

class GenericStackedInline
Subclasses of GenericInlineModelAdmin with stacked and tabular layouts, respectively.

6.5.4 The flatpages app

Django comes with an optional “flatpages” application. It lets you store simple “flat” HTML content in a database and
handles the management for you via Django’s admin interface and a Python API.

A flatpage is a simple object with a URL, title and content. Use it for one-off, special-case pages, such as “About” or
“Privacy Policy” pages, that you want to store in a database but for which you don’t want to develop a custom Django
application.

A flatpage can use a custom template or a default, systemwide flatpage template. It can be associated with one, or
multiple, sites.

The content field may optionally be left blank if you prefer to put your content in a custom template.

Here are some examples of flatpages on Django-powered sites:

• http://www.lawrence.com/about/contact/

• http://www2.ljworld.com/site/rules/

Installation

To install the flatpages app, follow these steps:

1. Install the sites framework by adding 'django.contrib.sites' to your INSTALLED_APPS set-
ting, if it’s not already in there.

762 Chapter 6. API Reference

http://www.lawrence.com/about/contact/
http://www2.ljworld.com/site/rules/

Django Documentation, Release 1.10.9.dev20171123183751

Also make sure you’ve correctly set SITE_ID to the ID of the site the settings file represents. This will usually
be 1 (i.e. SITE_ID = 1, but if you’re using the sites framework to manage multiple sites, it could be the ID
of a different site.

2. Add 'django.contrib.flatpages' to your INSTALLED_APPS setting.

Then either:

3. Add an entry in your URLconf. For example:

urlpatterns = [
url(r'^pages/', include('django.contrib.flatpages.urls')),

]

or:

3. Add 'django.contrib.flatpages.middleware.FlatpageFallbackMiddleware' to your
MIDDLEWARE setting.

4. Run the command manage.py migrate.

How it works

manage.py migrate creates two tables in your database: django_flatpage and
django_flatpage_sites. django_flatpage is a simple lookup table that simply maps a URL to a
title and bunch of text content. django_flatpage_sites associates a flatpage with a site.

Using the URLconf

There are several ways to include the flat pages in your URLconf. You can dedicate a particular path to flat pages:

urlpatterns = [
url(r'^pages/', include('django.contrib.flatpages.urls')),

]

You can also set it up as a “catchall” pattern. In this case, it is important to place the pattern at the end of the other
urlpatterns:

from django.contrib.flatpages import views

Your other patterns here
urlpatterns += [

url(r'^(?P<url>.*/)$', views.flatpage),
]

Warning: If you set APPEND_SLASH to False, you must remove the slash in the catchall pattern or flatpages
without a trailing slash will not be matched.

Another common setup is to use flat pages for a limited set of known pages and to hard code the urls, so you can
reference them with the url template tag:

from django.contrib.flatpages import views

urlpatterns += [
url(r'^about-us/$', views.flatpage, {'url': '/about-us/'}, name='about'),

6.5. contrib packages 763

Django Documentation, Release 1.10.9.dev20171123183751

url(r'^license/$', views.flatpage, {'url': '/license/'}, name='license'),
]

Using the middleware

The FlatpageFallbackMiddleware can do all of the work.

class FlatpageFallbackMiddleware
Each time any Django application raises a 404 error, this middleware checks the flatpages database for the
requested URL as a last resort. Specifically, it checks for a flatpage with the given URL with a site ID that
corresponds to the SITE_ID setting.

If it finds a match, it follows this algorithm:

• If the flatpage has a custom template, it loads that template. Otherwise, it loads the template flatpages/
default.html.

• It passes that template a single context variable, flatpage, which is the flatpage object. It uses
RequestContext in rendering the template.

The middleware will only add a trailing slash and redirect (by looking at the APPEND_SLASH setting) if the
resulting URL refers to a valid flatpage. Redirects are permanent (301 status code).

If it doesn’t find a match, the request continues to be processed as usual.

The middleware only gets activated for 404s – not for 500s or responses of any other status code.

Flatpages will not apply view middleware

Because the FlatpageFallbackMiddleware is applied only after URL resolution has failed and produced a
404, the response it returns will not apply any view middleware methods. Only requests which are successfully routed
to a view via normal URL resolution apply view middleware.

Note that the order of MIDDLEWARE matters. Generally, you can put FlatpageFallbackMiddleware at the end
of the list. This means it will run first when processing the response, and ensures that any other response-processing
middlewares see the real flatpage response rather than the 404.

For more on middleware, read the middleware docs.

Ensure that your 404 template works

Note that the FlatpageFallbackMiddleware only steps in once another view has successfully produced a 404
response. If another view or middleware class attempts to produce a 404 but ends up raising an exception instead, the
response will become an HTTP 500 (“Internal Server Error”) and the FlatpageFallbackMiddleware will not
attempt to serve a flat page.

How to add, change and delete flatpages

Via the admin interface

If you’ve activated the automatic Django admin interface, you should see a “Flatpages” section on the admin index
page. Edit flatpages as you edit any other object in the system.

764 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

The FlatPage model has an enable_comments field that isn’t used by contrib.flatpages, but that could
be useful for your project or third-party apps. It doesn’t appear in the admin interface, but you can add it by registering
a custom ModelAdmin for FlatPage:

from django.contrib import admin
from django.contrib.flatpages.admin import FlatPageAdmin
from django.contrib.flatpages.models import FlatPage
from django.utils.translation import ugettext_lazy as _

Define a new FlatPageAdmin
class FlatPageAdmin(FlatPageAdmin):

fieldsets = (
(None, {'fields': ('url', 'title', 'content', 'sites')}),
(_('Advanced options'), {

'classes': ('collapse',),
'fields': (

'enable_comments',
'registration_required',
'template_name',

),
}),

)

Re-register FlatPageAdmin
admin.site.unregister(FlatPage)
admin.site.register(FlatPage, FlatPageAdmin)

The enable_comments field was removed from FlatPageAdmin.

Via the Python API

class FlatPage
Flatpages are represented by a standard Django model, which lives in django/contrib/flatpages/models.py. You
can access flatpage objects via the Django database API.

Check for duplicate flatpage URLs.

If you add or modify flatpages via your own code, you will likely want to check for duplicate flatpage URLs within the
same site. The flatpage form used in the admin performs this validation check, and can be imported from django.
contrib.flatpages.forms.FlatpageForm and used in your own views.

Flatpage templates

By default, flatpages are rendered via the template flatpages/default.html, but you can override that for a
particular flatpage: in the admin, a collapsed fieldset titled “Advanced options” (clicking will expand it) contains a
field for specifying a template name. If you’re creating a flat page via the Python API you can simply set the template
name as the field template_name on the FlatPage object.

Creating the flatpages/default.html template is your responsibility; in your template directory, just create a
flatpages directory containing a file default.html.

Flatpage templates are passed a single context variable, flatpage, which is the flatpage object.

Here’s a sample flatpages/default.html template:

6.5. contrib packages 765

https://github.com/django/django/blob/master/django/contrib/flatpages/models.py

Django Documentation, Release 1.10.9.dev20171123183751

<!DOCTYPE html>
<html>
<head>
<title>{{ flatpage.title }}</title>
</head>
<body>
{{ flatpage.content }}
</body>
</html>

Since you’re already entering raw HTML into the admin page for a flatpage, both flatpage.title and
flatpage.content are marked as not requiring automatic HTML escaping in the template.

Getting a list of FlatPage objects in your templates

The flatpages app provides a template tag that allows you to iterate over all of the available flatpages on the current
site.

Like all custom template tags, you’ll need to load its custom tag library before you can use it. After loading the library,
you can retrieve all current flatpages via the get_flatpages tag:

{% load flatpages %}
{% get_flatpages as flatpages %}

{% for page in flatpages %}
{{ page.title }}

{% endfor %}

Displaying registration_required flatpages

By default, the get_flatpages templatetag will only show flatpages that are marked
registration_required = False. If you want to display registration-protected flatpages, you need to
specify an authenticated user using a for clause.

For example:

{% get_flatpages for someuser as about_pages %}

If you provide an anonymous user, get_flatpages will behave the same as if you hadn’t provided a user – i.e., it
will only show you public flatpages.

Limiting flatpages by base URL

An optional argument, starts_with, can be applied to limit the returned pages to those beginning with a particular
base URL. This argument may be passed as a string, or as a variable to be resolved from the context.

For example:

{% get_flatpages '/about/' as about_pages %}
{% get_flatpages about_prefix as about_pages %}
{% get_flatpages '/about/' for someuser as about_pages %}

766 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Integrating with django.contrib.sitemaps

class FlatPageSitemap
The sitemaps.FlatPageSitemap class looks at all publicly visible flatpages defined for the current
SITE_ID (see the sites documentation) and creates an entry in the sitemap. These entries include only
the location attribute – not lastmod, changefreq or priority .

Example

Here’s an example of a URLconf using FlatPageSitemap:

from django.conf.urls import url
from django.contrib.flatpages.sitemaps import FlatPageSitemap
from django.contrib.sitemaps.views import sitemap

urlpatterns = [
...

the sitemap
url(r'^sitemap\.xml$', sitemap,

{'sitemaps': {'flatpages': FlatPageSitemap}},
name='django.contrib.sitemaps.views.sitemap'),

]

6.5.5 GeoDjango

GeoDjango intends to be a world-class geographic Web framework. Its goal is to make it as easy as possible to build
GIS Web applications and harness the power of spatially enabled data.

GeoDjango Tutorial

Introduction

GeoDjango is an included contrib module for Django that turns it into a world-class geographic Web framework.
GeoDjango strives to make it as simple as possible to create geographic Web applications, like location-based services.
Its features include:

• Django model fields for OGC geometries and raster data.

• Extensions to Django’s ORM for querying and manipulating spatial data.

• Loosely-coupled, high-level Python interfaces for GIS geometry and raster operations and data manipulation in
different formats.

• Editing geometry fields from the admin.

This tutorial assumes familiarity with Django; thus, if you’re brand new to Django, please read through the regular
tutorial to familiarize yourself with Django first.

Note: GeoDjango has additional requirements beyond what Django requires – please consult the installation docu-
mentation for more details.

6.5. contrib packages 767

http://www.opengeospatial.org/

Django Documentation, Release 1.10.9.dev20171123183751

This tutorial will guide you through the creation of a geographic web application for viewing the world borders.1 Some
of the code used in this tutorial is taken from and/or inspired by the GeoDjango basic apps project.2

Note: Proceed through the tutorial sections sequentially for step-by-step instructions.

Setting Up

Create a Spatial Database

Typically no special setup is required, so you can create a database as you would for any other project. We provide
some tips for selected databases:

• Installing PostGIS

• Installing SpatiaLite

Create a New Project

Use the standard django-admin script to create a project called geodjango:

$ django-admin startproject geodjango

This will initialize a new project. Now, create a world Django application within the geodjango project:

$ cd geodjango
$ python manage.py startapp world

Configure settings.py

The geodjango project settings are stored in the geodjango/settings.py file. Edit the database connection
settings to match your setup:

DATABASES = {
'default': {

'ENGINE': 'django.contrib.gis.db.backends.postgis',
'NAME': 'geodjango',
'USER': 'geo',

},
}

In addition, modify the INSTALLED_APPS setting to include django.contrib.admin, django.contrib.
gis, and world (your newly created application):

INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',

1 Special thanks to Bjørn Sandvik of thematicmapping.org for providing and maintaining this dataset.
2 GeoDjango basic apps was written by Dane Springmeyer, Josh Livni, and Christopher Schmidt.

768 Chapter 6. API Reference

http://thematicmapping.org/downloads/world_borders.php
https://code.google.com/p/geodjango-basic-apps/
http://thematicmapping.org

Django Documentation, Release 1.10.9.dev20171123183751

'django.contrib.staticfiles',
'django.contrib.gis',
'world',

]

Geographic Data

World Borders

The world borders data is available in this zip file. Create a data directory in the world application, download the
world borders data, and unzip. On GNU/Linux platforms, use the following commands:

$ mkdir world/data
$ cd world/data
$ wget http://thematicmapping.org/downloads/TM_WORLD_BORDERS-0.3.zip
$ unzip TM_WORLD_BORDERS-0.3.zip
$ cd ../..

The world borders ZIP file contains a set of data files collectively known as an ESRI Shapefile, one of the most popular
geospatial data formats. When unzipped, the world borders dataset includes files with the following extensions:

• .shp: Holds the vector data for the world borders geometries.

• .shx: Spatial index file for geometries stored in the .shp.

• .dbf: Database file for holding non-geometric attribute data (e.g., integer and character fields).

• .prj: Contains the spatial reference information for the geographic data stored in the shapefile.

Use ogrinfo to examine spatial data

The GDAL ogrinfo utility allows examining the metadata of shapefiles or other vector data sources:

$ ogrinfo world/data/TM_WORLD_BORDERS-0.3.shp
INFO: Open of `world/data/TM_WORLD_BORDERS-0.3.shp'

using driver `ESRI Shapefile' successful.
1: TM_WORLD_BORDERS-0.3 (Polygon)

ogrinfo tells us that the shapefile has one layer, and that this layer contains polygon data. To find out more, we’ll
specify the layer name and use the -so option to get only the important summary information:

$ ogrinfo -so world/data/TM_WORLD_BORDERS-0.3.shp TM_WORLD_BORDERS-0.3
INFO: Open of `world/data/TM_WORLD_BORDERS-0.3.shp'

using driver `ESRI Shapefile' successful.

Layer name: TM_WORLD_BORDERS-0.3
Geometry: Polygon
Feature Count: 246
Extent: (-180.000000, -90.000000) - (180.000000, 83.623596)
Layer SRS WKT:
GEOGCS["GCS_WGS_1984",

DATUM["WGS_1984",
SPHEROID["WGS_1984",6378137.0,298.257223563]],

PRIMEM["Greenwich",0.0],
UNIT["Degree",0.0174532925199433]]

6.5. contrib packages 769

http://thematicmapping.org/downloads/TM_WORLD_BORDERS-0.3.zip
https://en.wikipedia.org/wiki/Shapefile

Django Documentation, Release 1.10.9.dev20171123183751

FIPS: String (2.0)
ISO2: String (2.0)
ISO3: String (3.0)
UN: Integer (3.0)
NAME: String (50.0)
AREA: Integer (7.0)
POP2005: Integer (10.0)
REGION: Integer (3.0)
SUBREGION: Integer (3.0)
LON: Real (8.3)
LAT: Real (7.3)

This detailed summary information tells us the number of features in the layer (246), the geographic bounds of the
data, the spatial reference system (“SRS WKT”), as well as type information for each attribute field. For example,
FIPS: String (2.0) indicates that the FIPS character field has a maximum length of 2. Similarly, LON: Real
(8.3) is a floating-point field that holds a maximum of 8 digits up to three decimal places.

Geographic Models

Defining a Geographic Model

Now that you’ve examined your dataset using ogrinfo, create a GeoDjango model to represent this data:

from django.contrib.gis.db import models

class WorldBorder(models.Model):
Regular Django fields corresponding to the attributes in the
world borders shapefile.
name = models.CharField(max_length=50)
area = models.IntegerField()
pop2005 = models.IntegerField('Population 2005')
fips = models.CharField('FIPS Code', max_length=2)
iso2 = models.CharField('2 Digit ISO', max_length=2)
iso3 = models.CharField('3 Digit ISO', max_length=3)
un = models.IntegerField('United Nations Code')
region = models.IntegerField('Region Code')
subregion = models.IntegerField('Sub-Region Code')
lon = models.FloatField()
lat = models.FloatField()

GeoDjango-specific: a geometry field (MultiPolygonField)
mpoly = models.MultiPolygonField()

Returns the string representation of the model.
def __str__(self): # __unicode__ on Python 2

return self.name

Note that the models module is imported from django.contrib.gis.db.

The default spatial reference system for geometry fields is WGS84 (meaning the SRID is 4326) – in other words, the
field coordinates are in longitude, latitude pairs in units of degrees. To use a different coordinate system, set the SRID
of the geometry field with the srid argument. Use an integer representing the coordinate system’s EPSG code.

770 Chapter 6. API Reference

https://en.wikipedia.org/wiki/SRID

Django Documentation, Release 1.10.9.dev20171123183751

Run migrate

After defining your model, you need to sync it with the database. First, create a database migration:

$ python manage.py makemigrations
Migrations for 'world':

world/migrations/0001_initial.py:
- Create model WorldBorder

Let’s look at the SQL that will generate the table for the WorldBorder model:

$ python manage.py sqlmigrate world 0001

This command should produce the following output:

BEGIN;
--
-- Create model WorldBorder
--
CREATE TABLE "world_worldborder" (

"id" serial NOT NULL PRIMARY KEY,
"name" varchar(50) NOT NULL,
"area" integer NOT NULL,
"pop2005" integer NOT NULL,
"fips" varchar(2) NOT NULL,
"iso2" varchar(2) NOT NULL,
"iso3" varchar(3) NOT NULL,
"un" integer NOT NULL,
"region" integer NOT NULL,
"subregion" integer NOT NULL,
"lon" double precision NOT NULL,
"lat" double precision NOT NULL
"mpoly" geometry(MULTIPOLYGON,4326) NOT NULL

)
;
CREATE INDEX "world_worldborder_mpoly_id" ON "world_worldborder" USING GIST ("mpoly"
→˓);
COMMIT;

If this looks correct, run migrate to create this table in the database:

$ python manage.py migrate
Operations to perform:

Apply all migrations: admin, auth, contenttypes, sessions, world
Running migrations:

...
Applying world.0001_initial... OK

Importing Spatial Data

This section will show you how to import the world borders shapefile into the database via GeoDjango models using
the LayerMapping data import utility.

There are many different ways to import data into a spatial database – besides the tools included within GeoDjango,
you may also use the following:

6.5. contrib packages 771

Django Documentation, Release 1.10.9.dev20171123183751

• ogr2ogr: A command-line utility included with GDAL that can import many vector data formats into PostGIS,
MySQL, and Oracle databases.

• shp2pgsql: This utility included with PostGIS imports ESRI shapefiles into PostGIS.

GDAL Interface

Earlier, you used ogrinfo to examine the contents of the world borders shapefile. GeoDjango also includes a
Pythonic interface to GDAL’s powerful OGR library that can work with all the vector data sources that OGR supports.

First, invoke the Django shell:

$ python manage.py shell

If you downloaded the World Borders data earlier in the tutorial, then you can determine its path using Python’s built-in
os module:

>>> import os
>>> import world
>>> world_shp = os.path.abspath(os.path.join(os.path.dirname(world.__file__),
... 'data', 'TM_WORLD_BORDERS-0.3.shp'))

Now, open the world borders shapefile using GeoDjango’s DataSource interface:

>>> from django.contrib.gis.gdal import DataSource
>>> ds = DataSource(world_shp)
>>> print(ds)
/ ... /geodjango/world/data/TM_WORLD_BORDERS-0.3.shp (ESRI Shapefile)

Data source objects can have different layers of geospatial features; however, shapefiles are only allowed to have one
layer:

>>> print(len(ds))
1
>>> lyr = ds[0]
>>> print(lyr)
TM_WORLD_BORDERS-0.3

You can see the layer’s geometry type and how many features it contains:

>>> print(lyr.geom_type)
Polygon
>>> print(len(lyr))
246

Note: Unfortunately, the shapefile data format does not allow for greater specificity with regards to geometry types.
This shapefile, like many others, actually includes MultiPolygon geometries, not Polygons. It’s important to use
a more general field type in models: a GeoDjango MultiPolygonField will accept a Polygon geometry, but a
PolygonField will not accept a MultiPolygon type geometry. This is why the WorldBorder model defined
above uses a MultiPolygonField.

The Layer may also have a spatial reference system associated with it. If it does, the srs attribute will return a
SpatialReference object:

772 Chapter 6. API Reference

http://www.gdal.org/ogr2ogr.html
http://postgis.net/docs/using_postgis_dbmanagement.html#shp2pgsql_usage

Django Documentation, Release 1.10.9.dev20171123183751

>>> srs = lyr.srs
>>> print(srs)
GEOGCS["GCS_WGS_1984",

DATUM["WGS_1984",
SPHEROID["WGS_1984",6378137.0,298.257223563]],

PRIMEM["Greenwich",0.0],
UNIT["Degree",0.0174532925199433]]

>>> srs.proj4 # PROJ.4 representation
'+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs '

This shapefile is in the popular WGS84 spatial reference system – in other words, the data uses longitude, latitude
pairs in units of degrees.

In addition, shapefiles also support attribute fields that may contain additional data. Here are the fields on the World
Borders layer:

>>> print(lyr.fields)
['FIPS', 'ISO2', 'ISO3', 'UN', 'NAME', 'AREA', 'POP2005', 'REGION', 'SUBREGION', 'LON
→˓', 'LAT']

The following code will let you examine the OGR types (e.g. integer or string) associated with each of the fields:

>>> [fld.__name__ for fld in lyr.field_types]
['OFTString', 'OFTString', 'OFTString', 'OFTInteger', 'OFTString', 'OFTInteger',
→˓'OFTInteger', 'OFTInteger', 'OFTInteger', 'OFTReal', 'OFTReal']

You can iterate over each feature in the layer and extract information from both the feature’s geometry (accessed via
the geom attribute) as well as the feature’s attribute fields (whose values are accessed via get() method):

>>> for feat in lyr:
... print(feat.get('NAME'), feat.geom.num_points)
...
Guernsey 18
Jersey 26
South Georgia South Sandwich Islands 338
Taiwan 363

Layer objects may be sliced:

>>> lyr[0:2]
[<django.contrib.gis.gdal.feature.Feature object at 0x2f47690>, <django.contrib.gis.
→˓gdal.feature.Feature object at 0x2f47650>]

And individual features may be retrieved by their feature ID:

>>> feat = lyr[234]
>>> print(feat.get('NAME'))
San Marino

Boundary geometries may be exported as WKT and GeoJSON:

>>> geom = feat.geom
>>> print(geom.wkt)
POLYGON ((12.415798 43.957954,12.450554 ...
>>> print(geom.json)
{ "type": "Polygon", "coordinates": [[[12.415798, 43.957954], [12.450554, 43.
→˓979721], ...

6.5. contrib packages 773

Django Documentation, Release 1.10.9.dev20171123183751

LayerMapping

To import the data, use a LayerMapping in a Python script. Create a file called load.py inside the world applica-
tion, with the following code:

import os
from django.contrib.gis.utils import LayerMapping
from .models import WorldBorder

world_mapping = {
'fips' : 'FIPS',
'iso2' : 'ISO2',
'iso3' : 'ISO3',
'un' : 'UN',
'name' : 'NAME',
'area' : 'AREA',
'pop2005' : 'POP2005',
'region' : 'REGION',
'subregion' : 'SUBREGION',
'lon' : 'LON',
'lat' : 'LAT',
'mpoly' : 'MULTIPOLYGON',

}

world_shp = os.path.abspath(
os.path.join(os.path.dirname(__file__), 'data', 'TM_WORLD_BORDERS-0.3.shp'),

)

def run(verbose=True):
lm = LayerMapping(

WorldBorder, world_shp, world_mapping,
transform=False, encoding='iso-8859-1',

)
lm.save(strict=True, verbose=verbose)

A few notes about what’s going on:

• Each key in the world_mapping dictionary corresponds to a field in the WorldBorder model. The value
is the name of the shapefile field that data will be loaded from.

• The key mpoly for the geometry field is MULTIPOLYGON, the geometry type GeoDjango will import the field
as. Even simple polygons in the shapefile will automatically be converted into collections prior to insertion into
the database.

• The path to the shapefile is not absolute – in other words, if you move the world application (with data
subdirectory) to a different location, the script will still work.

• The transform keyword is set to False because the data in the shapefile does not need to be converted – it’s
already in WGS84 (SRID=4326).

• The encoding keyword is set to the character encoding of the string values in the shapefile. This ensures that
string values are read and saved correctly from their original encoding system.

Afterwards, invoke the Django shell from the geodjango project directory:

$ python manage.py shell

Next, import the load module, call the run routine, and watch LayerMapping do the work:

774 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

>>> from world import load
>>> load.run()

Try ogrinspect

Now that you’ve seen how to define geographic models and import data with the LayerMapping data import utility, it’s
possible to further automate this process with use of the ogrinspect management command. The ogrinspect
command introspects a GDAL-supported vector data source (e.g., a shapefile) and generates a model definition and
LayerMapping dictionary automatically.

The general usage of the command goes as follows:

$ python manage.py ogrinspect [options] <data_source> <model_name> [options]

data_source is the path to the GDAL-supported data source and model_name is the name to use for the model.
Command-line options may be used to further define how the model is generated.

For example, the following command nearly reproduces the WorldBorder model and mapping dictionary created
above, automatically:

$ python manage.py ogrinspect world/data/TM_WORLD_BORDERS-0.3.shp WorldBorder \
--srid=4326 --mapping --multi

A few notes about the command-line options given above:

• The --srid=4326 option sets the SRID for the geographic field.

• The --mapping option tells ogrinspect to also generate a mapping dictionary for use with
LayerMapping.

• The --multi option is specified so that the geographic field is a MultiPolygonField instead of just a
PolygonField.

The command produces the following output, which may be copied directly into the models.py of a GeoDjango
application:

This is an auto-generated Django model module created by ogrinspect.
from django.contrib.gis.db import models

class WorldBorder(models.Model):
fips = models.CharField(max_length=2)
iso2 = models.CharField(max_length=2)
iso3 = models.CharField(max_length=3)
un = models.IntegerField()
name = models.CharField(max_length=50)
area = models.IntegerField()
pop2005 = models.IntegerField()
region = models.IntegerField()
subregion = models.IntegerField()
lon = models.FloatField()
lat = models.FloatField()
geom = models.MultiPolygonField(srid=4326)

Auto-generated `LayerMapping` dictionary for WorldBorder model
worldborders_mapping = {

'fips' : 'FIPS',
'iso2' : 'ISO2',

6.5. contrib packages 775

Django Documentation, Release 1.10.9.dev20171123183751

'iso3' : 'ISO3',
'un' : 'UN',
'name' : 'NAME',
'area' : 'AREA',
'pop2005' : 'POP2005',
'region' : 'REGION',
'subregion' : 'SUBREGION',
'lon' : 'LON',
'lat' : 'LAT',
'geom' : 'MULTIPOLYGON',

}

Spatial Queries

Spatial Lookups

GeoDjango adds spatial lookups to the Django ORM. For example, you can find the country in the WorldBorder
table that contains a particular point. First, fire up the management shell:

$ python manage.py shell

Now, define a point of interest3:

>>> pnt_wkt = 'POINT(-95.3385 29.7245)'

The pnt_wkt string represents the point at -95.3385 degrees longitude, 29.7245 degrees latitude. The geometry is in
a format known as Well Known Text (WKT), a standard issued by the Open Geospatial Consortium (OGC).4 Import
the WorldBorder model, and perform a contains lookup using the pnt_wkt as the parameter:

>>> from world.models import WorldBorder
>>> WorldBorder.objects.filter(mpoly__contains=pnt_wkt)
<QuerySet [<WorldBorder: United States>]>

Here, you retrieved a QuerySet with only one model: the border of the United States (exactly what you would
expect).

Similarly, you may also use a GEOS geometry object. Here, you can combine the intersects spatial lookup with
the get method to retrieve only the WorldBorder instance for San Marino instead of a queryset:

>>> from django.contrib.gis.geos import Point
>>> pnt = Point(12.4604, 43.9420)
>>> WorldBorder.objects.get(mpoly__intersects=pnt)
<WorldBorder: San Marino>

The contains and intersects lookups are just a subset of the available queries – the GeoDjango Database API
documentation has more.

Automatic Spatial Transformations

When doing spatial queries, GeoDjango automatically transforms geometries if they’re in a different coordinate sys-
tem. In the following example, coordinates will be expressed in EPSG SRID 32140, a coordinate system specific to
south Texas only and in units of meters, not degrees:

3 This point is the University of Houston Law Center.
4 Open Geospatial Consortium, Inc., OpenGIS Simple Feature Specification For SQL.

776 Chapter 6. API Reference

http://spatialreference.org/ref/epsg/32140/
https://www.law.uh.edu/
http://www.opengeospatial.org/standards/sfs

Django Documentation, Release 1.10.9.dev20171123183751

>>> from django.contrib.gis.geos import Point, GEOSGeometry
>>> pnt = Point(954158.1, 4215137.1, srid=32140)

Note that pnt may also be constructed with EWKT, an “extended” form of WKT that includes the SRID:

>>> pnt = GEOSGeometry('SRID=32140;POINT(954158.1 4215137.1)')

GeoDjango’s ORM will automatically wrap geometry values in transformation SQL, allowing the developer to work
at a higher level of abstraction:

>>> qs = WorldBorder.objects.filter(mpoly__intersects=pnt)
>>> print(qs.query) # Generating the SQL
SELECT "world_worldborder"."id", "world_worldborder"."name", "world_worldborder"."area
→˓",
"world_worldborder"."pop2005", "world_worldborder"."fips", "world_worldborder"."iso2",
"world_worldborder"."iso3", "world_worldborder"."un", "world_worldborder"."region",
"world_worldborder"."subregion", "world_worldborder"."lon", "world_worldborder"."lat",
"world_worldborder"."mpoly" FROM "world_worldborder"
WHERE ST_Intersects("world_worldborder"."mpoly", ST_Transform(%s, 4326))
>>> qs # printing evaluates the queryset
<QuerySet [<WorldBorder: United States>]>

Raw queries

When using raw queries, you should generally wrap your geometry fields with the asText() SQL function (or
ST_AsText for PostGIS) so that the field value will be recognized by GEOS:

City.objects.raw('SELECT id, name, asText(point) from myapp_city')

This is not absolutely required by PostGIS, but generally you should only use raw queries when you know exactly
what you are doing.

Lazy Geometries

GeoDjango loads geometries in a standardized textual representation. When the geometry field is first accessed, GeoD-
jango creates a GEOS geometry object <ref-geos>, exposing powerful functionality, such as serialization properties
for popular geospatial formats:

>>> sm = WorldBorder.objects.get(name='San Marino')
>>> sm.mpoly
<MultiPolygon object at 0x24c6798>
>>> sm.mpoly.wkt # WKT
MULTIPOLYGON (((12.4157980000000006 43.9579540000000009, 12.4505540000000003 43.
→˓9797209999999978, ...
>>> sm.mpoly.wkb # WKB (as Python binary buffer)
<read-only buffer for 0x1fe2c70, size -1, offset 0 at 0x2564c40>
>>> sm.mpoly.geojson # GeoJSON (requires GDAL)
'{ "type": "MultiPolygon", "coordinates": [[[[12.415798, 43.957954], [12.450554,
→˓ 43.979721], ...

This includes access to all of the advanced geometric operations provided by the GEOS library:

>>> pnt = Point(12.4604, 43.9420)
>>> sm.mpoly.contains(pnt)

6.5. contrib packages 777

Django Documentation, Release 1.10.9.dev20171123183751

True
>>> pnt.contains(sm.mpoly)
False

Geographic annotations

GeoDjango also offers a set of geographic annotations to compute distances and several other operations (intersection,
difference, etc.). See the Geographic Database Functions documentation.

Putting your data on the map

Geographic Admin

GeoDjango extends Django’s admin application with support for editing geometry fields.

Basics

GeoDjango also supplements the Django admin by allowing users to create and modify geometries on a JavaScript
slippy map (powered by OpenLayers).

Let’s dive right in. Create a file called admin.py inside the world application with the following code:

from django.contrib.gis import admin
from .models import WorldBorder

admin.site.register(WorldBorder, admin.GeoModelAdmin)

Next, edit your urls.py in the geodjango application folder as follows:

from django.conf.urls import url, include
from django.contrib.gis import admin

urlpatterns = [
url(r'^admin/', admin.site.urls),

]

Create an admin user:

$ python manage.py createsuperuser

Next, start up the Django development server:

$ python manage.py runserver

Finally, browse to http://localhost:8000/admin/, and log in with the user you just created. Browse to any
of the WorldBorder entries – the borders may be edited by clicking on a polygon and dragging the vertexes to the
desired position.

778 Chapter 6. API Reference

http://openlayers.org/

Django Documentation, Release 1.10.9.dev20171123183751

OSMGeoAdmin

With the OSMGeoAdmin, GeoDjango uses a Open Street Map layer in the admin. This provides more context (in-
cluding street and thoroughfare details) than available with the GeoModelAdmin (which uses the Vector Map Level
0 WMS dataset hosted at OSGeo).

First, there are some important requirements:

• OSMGeoAdmin requires that GDAL is installed.

• The PROJ.4 datum shifting files must be installed (see the PROJ.4 installation instructions for more details).

If you meet this requirement, then just substitute the OSMGeoAdmin option class in your admin.py file:

admin.site.register(WorldBorder, admin.OSMGeoAdmin)

GeoDjango Installation

Overview

In general, GeoDjango installation requires:

1. Python and Django

2. Spatial database

3. Installing Geospatial libraries

Details for each of the requirements and installation instructions are provided in the sections below. In addition,
platform-specific instructions are available for:

• Mac OS X

• Windows

Use the Source

Because GeoDjango takes advantage of the latest in the open source geospatial software technology, recent versions
of the libraries are necessary. If binary packages aren’t available for your platform, installation from source may
be required. When compiling the libraries from source, please follow the directions closely, especially if you’re a
beginner.

Requirements

Python and Django

Because GeoDjango is included with Django, please refer to Django’s installation instructions for details on how to
install.

Spatial database

PostgreSQL (with PostGIS), MySQL (mostly with MyISAM engine), Oracle, and SQLite (with SpatiaLite) are the
spatial databases currently supported.

6.5. contrib packages 779

https://www.openstreetmap.org/
http://earth-info.nga.mil/publications/vmap0.html
http://earth-info.nga.mil/publications/vmap0.html
http://www.osgeo.org

Django Documentation, Release 1.10.9.dev20171123183751

Note: PostGIS is recommended, because it is the most mature and feature-rich open source spatial database.

The geospatial libraries required for a GeoDjango installation depends on the spatial database used. The following
lists the library requirements, supported versions, and any notes for each of the supported database backends:

Database Library Requirements Supported
Versions

Notes

Post-
greSQL

GEOS, PROJ.4, PostGIS 9.2+ Requires PostGIS.

MySQL GEOS 5.5+ Not OGC-compliant; limited
functionality.

Oracle GEOS 11.2+ XE not supported.
SQLite GEOS, GDAL, PROJ.4,

SpatiaLite
3.6.+ Requires SpatiaLite 3.0+, pysqlite2

2.5+

See also this comparison matrix on the OSGeo Wiki for PostgreSQL/PostGIS/GEOS/GDAL possible combinations.

Installation

Geospatial libraries

Installing Geospatial libraries

GeoDjango uses and/or provides interfaces for the following open source geospatial libraries:

Program Description Required Supported Versions
GEOS Geometry Engine Open Source Yes 3.4, 3.3
PROJ.4 Cartographic Projections library Yes (PostgreSQL and SQLite

only)
4.9, 4.8, 4.7, 4.6, 4.5, 4.4

GDAL Geospatial Data Abstraction
Library

Yes (SQLite only) 2.1, 2.0, 1.11, 1.10, 1.9, 1.8,
1.7

GeoIP IP-based geolocation library No 2
PostGIS Spatial extensions for

PostgreSQL
Yes (PostgreSQL only) 2.3, 2.2, 2.1, 2.0

Spa-
tiaLite

Spatial extensions for SQLite Yes (SQLite only) 4.3, 4.2, 4.1, 4.0, 3.0

Note that older or more recent versions of these libraries may also work totally fine with GeoDjango. Your mileage
may vary.

Install GDAL

While GDAL is technically not required, it is recommended. Important features of GeoDjango (including the Lay-
erMapping data import utility, geometry reprojection, and the geographic admin) depend on its functionality.

Note: The GeoDjango interfaces to GEOS, GDAL, and GeoIP may be used independently of Django. In other words,
no database or settings file required – just import them as normal from django.contrib.gis.

On Debian/Ubuntu, you are advised to install the following packages which will install, directly or by dependency, the
required geospatial libraries:

780 Chapter 6. API Reference

https://trac.osgeo.org/postgis/wiki/UsersWikiPostgreSQLPostGIS
https://github.com/OSGeo/proj.4/wiki/
http://postgis.net/
http://www.gaia-gis.it/gaia-sins/
http://www.gaia-gis.it/gaia-sins/

Django Documentation, Release 1.10.9.dev20171123183751

$ sudo apt-get install binutils libproj-dev gdal-bin

Optional packages to consider:

• libgeoip1: for GeoIP support

• python-gdal for GDAL’s own Python bindings – includes interfaces for raster manipulation

Please also consult platform-specific instructions if you are on Mac OS X or Windows.

Building from source

When installing from source on UNIX and GNU/Linux systems, please follow the installation instructions carefully,
and install the libraries in the given order. If using MySQL or Oracle as the spatial database, only GEOS is required.

Note: On Linux platforms, it may be necessary to run the ldconfig command after installing each library. For
example:

$ sudo make install
$ sudo ldconfig

Note: OS X users are required to install Apple Developer Tools in order to compile software from source. This is
typically included on your OS X installation DVDs.

GEOS

GEOS is a C++ library for performing geometric operations, and is the default internal geometry representation used
by GeoDjango (it’s behind the “lazy” geometries). Specifically, the C API library is called (e.g., libgeos_c.so)
directly from Python using ctypes.

First, download GEOS 3.4.2 from the GEOS website and untar the source archive:

$ wget http://download.osgeo.org/geos/geos-3.4.2.tar.bz2
$ tar xjf geos-3.4.2.tar.bz2

Next, change into the directory where GEOS was unpacked, run the configure script, compile, and install:

$ cd geos-3.4.2
$./configure
$ make
$ sudo make install
$ cd ..

Troubleshooting

Can’t find GEOS library

When GeoDjango can’t find GEOS, this error is raised:

6.5. contrib packages 781

https://developer.apple.com/technologies/tools/

Django Documentation, Release 1.10.9.dev20171123183751

ImportError: Could not find the GEOS library (tried "geos_c"). Try setting GEOS_
→˓LIBRARY_PATH in your settings.

The most common solution is to properly configure your Library environment settings or set GEOS_LIBRARY_PATH
in your settings.

If using a binary package of GEOS (e.g., on Ubuntu), you may need to Install binutils.

GEOS_LIBRARY_PATH

If your GEOS library is in a non-standard location, or you don’t want to modify the system’s library path then the
GEOS_LIBRARY_PATH setting may be added to your Django settings file with the full path to the GEOS C library.
For example:

GEOS_LIBRARY_PATH = '/home/bob/local/lib/libgeos_c.so'

Note: The setting must be the full path to the C shared library; in other words you want to use libgeos_c.so, not
libgeos.so.

See also My logs are filled with GEOS-related errors.

PROJ.4

PROJ.4 is a library for converting geospatial data to different coordinate reference systems.

First, download the PROJ.4 source code and datum shifting files1:

$ wget http://download.osgeo.org/proj/proj-4.9.1.tar.gz
$ wget http://download.osgeo.org/proj/proj-datumgrid-1.5.tar.gz

Next, untar the source code archive, and extract the datum shifting files in the nad subdirectory. This must be done
prior to configuration:

$ tar xzf proj-4.9.1.tar.gz
$ cd proj-4.9.1/nad
$ tar xzf ../../proj-datumgrid-1.5.tar.gz
$ cd ..

Finally, configure, make and install PROJ.4:

$./configure
$ make
$ sudo make install
$ cd ..

GDAL

GDAL is an excellent open source geospatial library that has support for reading most vector and raster spatial data

1 The datum shifting files are needed for converting data to and from certain projections. For example, the PROJ.4 string for the Google
projection (900913 or 3857) requires the null grid file only included in the extra datum shifting files. It is easier to install the shifting files now,
then to have debug a problem caused by their absence later.

782 Chapter 6. API Reference

https://github.com/OSGeo/proj.4/wiki/
https://trac.osgeo.org/gdal/
http://spatialreference.org/ref/sr-org/6864/prj/
http://spatialreference.org/ref/sr-org/6864/prj/

Django Documentation, Release 1.10.9.dev20171123183751

formats. Currently, GeoDjango only supports GDAL’s vector data capabilities2. GEOS and PROJ.4 should be installed
prior to building GDAL.

First download the latest GDAL release version and untar the archive:

$ wget http://download.osgeo.org/gdal/1.11.2/gdal-1.11.2.tar.gz
$ tar xzf gdal-1.11.2.tar.gz
$ cd gdal-1.11.2

Configure, make and install:

$./configure
$ make # Go get some coffee, this takes a while.
$ sudo make install
$ cd ..

Note: Because GeoDjango has its own Python interface, the preceding instructions do not build GDAL’s own
Python bindings. The bindings may be built by adding the --with-python flag when running configure.
See GDAL/OGR In Python for more information on GDAL’s bindings.

If you have any problems, please see the troubleshooting section below for suggestions and solutions.

Troubleshooting

Can’t find GDAL library

When GeoDjango can’t find the GDAL library, the HAS_GDAL flag will be false:

>>> from django.contrib.gis import gdal
>>> gdal.HAS_GDAL
False

The solution is to properly configure your Library environment settings or set GDAL_LIBRARY_PATH in your settings.

GDAL_LIBRARY_PATH

If your GDAL library is in a non-standard location, or you don’t want to modify the system’s library path then the
GDAL_LIBRARY_PATH setting may be added to your Django settings file with the full path to the GDAL library.
For example:

GDAL_LIBRARY_PATH = '/home/sue/local/lib/libgdal.so'

Database installation

Installing PostGIS

PostGIS adds geographic object support to PostgreSQL, turning it into a spatial database. GEOS, PROJ.4 and GDAL
should be installed prior to building PostGIS. You might also need additional libraries, see PostGIS requirements.

The psycopg2 module is required for use as the database adapter when using GeoDjango with PostGIS.
2 Specifically, GeoDjango provides support for the OGR library, a component of GDAL.

6.5. contrib packages 783

https://trac.osgeo.org/gdal/wiki/GdalOgrInPython
http://postgis.net/
http://postgis.net/docs/postgis_installation.html#install_requirements
http://initd.org/psycopg/
http://gdal.org/ogr_arch.html

Django Documentation, Release 1.10.9.dev20171123183751

On Debian/Ubuntu, you are advised to install the following packages: postgresql-x.x, postgresql-x.x-postgis,
postgresql-server-dev-x.x, python-psycopg2 (x.x matching the PostgreSQL version you want to install). Alternately,
you can build from source. Consult the platform-specific instructions if you are on Mac OS X or Windows.

Post-installation

Creating a spatial database

PostGIS 2 includes an extension for PostgreSQL that’s used to enable spatial functionality:

$ createdb <db name>
$ psql <db name>
> CREATE EXTENSION postgis;

The database user must be a superuser in order to run CREATE EXTENSION postgis;. The command is run
during the migrate process. An alternative is to use a migration operation in your project:

from django.contrib.postgres.operations import CreateExtension
from django.db import migrations

class Migration(migrations.Migration):

operations = [
CreateExtension('postgis'),
...

]

GeoDjango does not currently leverage any PostGIS topology functionality. If you plan to use those fea-
tures at some point, you can also install the postgis_topology extension by issuing CREATE EXTENSION
postgis_topology;.

Managing the database

To administer the database, you can either use the pgAdmin III program (Start → PostgreSQL 9.x → pgAdmin III) or
the SQL Shell (Start → PostgreSQL 9.x → SQL Shell). For example, to create a geodjango spatial database and
user, the following may be executed from the SQL Shell as the postgres user:

postgres# CREATE USER geodjango PASSWORD 'my_passwd';
postgres# CREATE DATABASE geodjango OWNER geodjango;

Installing SpatiaLite

SpatiaLite adds spatial support to SQLite, turning it into a full-featured spatial database.

First, check if you can install SpatiaLite from system packages or binaries.

For example, on Debian-based distributions, try to install the spatialite-bin package. For distributions that
package SpatiaLite 4.2+, install libsqlite3-mod-spatialite.

For Mac OS X, follow the instructions below.

For Windows, you may find binaries on the Gaia-SINS home page.

In any case, you should always be able to install from source.

784 Chapter 6. API Reference

http://postgis.net/docs/postgis_installation.html#install_short_version
http://postgis.net/docs/Topology.html
https://www.gaia-gis.it/fossil/libspatialite
http://www.gaia-gis.it/gaia-sins/

Django Documentation, Release 1.10.9.dev20171123183751

SPATIALITE_LIBRARY_PATH setting required for SpatiaLite 4.2+

If you’re using SpatiaLite 4.2+, you must put this in your settings:

SPATIALITE_LIBRARY_PATH = 'mod_spatialite'

Installing from source

GEOS and PROJ.4 should be installed prior to building SpatiaLite.

SQLite

Check first if SQLite is compiled with the R*Tree module. Run the sqlite3 command line interface and enter the
following query:

sqlite> CREATE VIRTUAL TABLE testrtree USING rtree(id,minX,maxX,minY,maxY);

If you obtain an error, you will have to recompile SQLite from source. Otherwise, just skip this section.

To install from sources, download the latest amalgamation source archive from the SQLite download page, and extract:

$ wget https://sqlite.org/sqlite-amalgamation-3.6.23.1.tar.gz
$ tar xzf sqlite-amalgamation-3.6.23.1.tar.gz
$ cd sqlite-3.6.23.1

Next, run the configure script – however the CFLAGS environment variable needs to be customized so that SQLite
knows to build the R*Tree module:

$ CFLAGS="-DSQLITE_ENABLE_RTREE=1" ./configure
$ make
$ sudo make install
$ cd ..

SpatiaLite library (libspatialite)

Get the latest SpatiaLite library source bundle from the download page:

$ wget http://www.gaia-gis.it/gaia-sins/libspatialite-sources/libspatialite-4.1.0.tar.
→˓gz
$ tar xaf libspatialite-4.1.0.tar.gz
$ cd libspatialite-4.1.0
$./configure
$ make
$ sudo make install

Note: For Mac OS X users building from source, the SpatiaLite library and tools need to have their target
configured:

$./configure --target=macosx

6.5. contrib packages 785

https://www.sqlite.org/rtree.html
https://www.sqlite.org/download.html
http://www.gaia-gis.it/gaia-sins/libspatialite-sources/

Django Documentation, Release 1.10.9.dev20171123183751

Mac OS X-specific instructions

To install the SpatiaLite library and tools, Mac OS X users can choose between KyngChaos packages and Homebrew.

KyngChaos

First, follow the instructions in the KyngChaos packages section.

When creating a SpatiaLite database, the spatialite program is required. However, instead of attempting to
compile the SpatiaLite tools from source, download the SpatiaLite Binaries for OS X, and install spatialite in a
location available in your PATH. For example:

$ curl -O http://www.gaia-gis.it/spatialite/spatialite-tools-osx-x86-2.3.1.tar.gz
$ tar xzf spatialite-tools-osx-x86-2.3.1.tar.gz
$ cd spatialite-tools-osx-x86-2.3.1/bin
$ sudo cp spatialite /Library/Frameworks/SQLite3.framework/Programs

Finally, for GeoDjango to be able to find the KyngChaos SpatiaLite library, add the following to your settings.py:

SPATIALITE_LIBRARY_PATH='/Library/Frameworks/SQLite3.framework/SQLite3'

Homebrew

Homebrew handles all the SpatiaLite related packages on your behalf, including SQLite3, SpatiaLite, PROJ, and
GEOS. Install them like this:

$ brew update
$ brew install spatialite-tools
$ brew install gdal

Finally, for GeoDjango to be able to find the SpatiaLite library, add the following to your settings.py:

SPATIALITE_LIBRARY_PATH='/usr/local/lib/mod_spatialite.dylib'

Add django.contrib.gis to INSTALLED_APPS

Like other Django contrib applications, you will only need to add django.contrib.gis to INSTALLED_APPS
in your settings. This is so that the gis templates can be located – if not done, then features such as the geographic
admin or KML sitemaps will not function properly.

Troubleshooting

If you can’t find the solution to your problem here then participate in the community! You can:

• Join the #geodjango IRC channel on Freenode. Please be patient and polite – while you may not get an
immediate response, someone will attempt to answer your question as soon as they see it.

• Ask your question on the GeoDjango mailing list.

• File a ticket on the Django trac if you think there’s a bug. Make sure to provide a complete description of the
problem, versions used, and specify the component as “GIS”.

786 Chapter 6. API Reference

http://brew.sh/
http://www.gaia-gis.it/spatialite-2.3.1/binaries.html
http://brew.sh/
https://groups.google.com/d/forum/geodjango
https://code.djangoproject.com/newticket

Django Documentation, Release 1.10.9.dev20171123183751

Library environment settings

By far, the most common problem when installing GeoDjango is that the external shared libraries (e.g., for GEOS
and GDAL) cannot be located.1 Typically, the cause of this problem is that the operating system isn’t aware of the
directory where the libraries built from source were installed.

In general, the library path may be set on a per-user basis by setting an environment variable, or by configuring the
library path for the entire system.

LD_LIBRARY_PATH environment variable

A user may set this environment variable to customize the library paths they want to use. The typical library direc-
tory for software built from source is /usr/local/lib. Thus, /usr/local/lib needs to be included in the
LD_LIBRARY_PATH variable. For example, the user could place the following in their bash profile:

export LD_LIBRARY_PATH=/usr/local/lib

Setting system library path

On GNU/Linux systems, there is typically a file in /etc/ld.so.conf, which may include additional paths from
files in another directory, such as /etc/ld.so.conf.d. As the root user, add the custom library path (like /usr/
local/lib) on a new line in ld.so.conf. This is one example of how to do so:

$ sudo echo /usr/local/lib >> /etc/ld.so.conf
$ sudo ldconfig

For OpenSolaris users, the system library path may be modified using the crle utility. Run crle with no options to
see the current configuration and use crle -l to set with the new library path. Be very careful when modifying the
system library path:

crle -l $OLD_PATH:/usr/local/lib

Install binutils

GeoDjango uses the find_library function (from the ctypes.util Python module) to discover libraries. The
find_library routine uses a program called objdump (part of the binutils package) to verify a shared library
on GNU/Linux systems. Thus, if binutils is not installed on your Linux system then Python’s ctypes may not be
able to find your library even if your library path is set correctly and geospatial libraries were built perfectly.

The binutils package may be installed on Debian and Ubuntu systems using the following command:

$ sudo apt-get install binutils

Similarly, on Red Hat and CentOS systems:

$ sudo yum install binutils

1 GeoDjango uses the find_library() routine from ctypes.util to locate shared libraries.

6.5. contrib packages 787

https://docs.python.org/3/library/ctypes.html#ctypes.util.find_library

Django Documentation, Release 1.10.9.dev20171123183751

Platform-specific instructions

Mac OS X

Because of the variety of packaging systems available for OS X, users have several different options for installing
GeoDjango. These options are:

• Postgres.app (easiest and recommended)

• Homebrew

• KyngChaos packages

• Fink

• MacPorts

• Building from source

This section also includes instructions for installing an upgraded version of Python from packages provided by the
Python Software Foundation, however, this is not required.

Python

Although OS X comes with Python installed, users can use framework installers provided by the Python Software
Foundation. An advantage to using the installer is that OS X’s Python will remain “pristine” for internal operating
system use.

Note: You will need to modify the PATH environment variable in your .profile file so that the new version of
Python is used when python is entered at the command-line:

export PATH=/Library/Frameworks/Python.framework/Versions/Current/bin:$PATH

Postgres.app

Postgres.app is a standalone PostgreSQL server that includes the PostGIS extension. You will also need to install
gdal and libgeoip with Homebrew.

After installing Postgres.app, add the following to your .bash_profile so you can run the package’s programs
from the command-line. Replace X.Y with the version of PostgreSQL in the Postgres.app you installed:

export PATH=$PATH:/Applications/Postgres.app/Contents/Versions/X.Y/bin

You can check if the path is set up correctly by typing which psql at a terminal prompt.

Homebrew

Homebrew provides “recipes” for building binaries and packages from source. It provides recipes for the GeoDjango
prerequisites on Macintosh computers running OS X. Because Homebrew still builds the software from source, the
Apple Developer Tools are required.

Summary:

788 Chapter 6. API Reference

https://www.python.org/ftp/python/
http://postgresapp.com/
http://brew.sh/
https://developer.apple.com/technologies/tools/

Django Documentation, Release 1.10.9.dev20171123183751

$ brew install postgresql
$ brew install postgis
$ brew install gdal
$ brew install libgeoip

KyngChaos packages

William Kyngesburye provides a number of geospatial library binary packages that make it simple to get GeoDjango
installed on OS X without compiling them from source. However, the Apple Developer Tools are still necessary for
compiling the Python database adapters psycopg2 (for PostGIS) and pysqlite2 (for SpatiaLite).

Note: SpatiaLite users should consult the Mac OS X-specific instructions section after installing the packages for
additional instructions.

Download the framework packages for:

• UnixImageIO

• PROJ

• GEOS

• SQLite3 (includes the SpatiaLite library)

• GDAL

Install the packages in the order they are listed above, as the GDAL and SQLite packages require the packages listed
before them.

Afterwards, you can also install the KyngChaos binary packages for PostgreSQL and PostGIS.

After installing the binary packages, you’ll want to add the following to your .profile to be able to run the package
programs from the command-line:

export PATH=/Library/Frameworks/UnixImageIO.framework/Programs:$PATH
export PATH=/Library/Frameworks/PROJ.framework/Programs:$PATH
export PATH=/Library/Frameworks/GEOS.framework/Programs:$PATH
export PATH=/Library/Frameworks/SQLite3.framework/Programs:$PATH
export PATH=/Library/Frameworks/GDAL.framework/Programs:$PATH
export PATH=/usr/local/pgsql/bin:$PATH

psycopg2

After you’ve installed the KyngChaos binaries and modified your PATH, as described above, psycopg2 may be
installed using the following command:

$ pip install psycopg2

Note: If you don’t have pip, follow the installation instructions to install it.

6.5. contrib packages 789

http://www.kyngchaos.com/software/frameworks
https://developer.apple.com/technologies/tools/
https://pypi.python.org/pypi/pysqlite
http://www.kyngchaos.com/software/postgres

Django Documentation, Release 1.10.9.dev20171123183751

Fink

Kurt Schwehr has been gracious enough to create GeoDjango packages for users of the Fink package system. Different
packages are available (starting with django-gis), depending on which version of Python you want to use.

MacPorts

MacPorts may be used to install GeoDjango prerequisites on Macintosh computers running OS X. Because MacPorts
still builds the software from source, the Apple Developer Tools are required.

Summary:

$ sudo port install postgresql93-server
$ sudo port install geos
$ sudo port install proj
$ sudo port install postgis
$ sudo port install gdal +geos
$ sudo port install libgeoip

Note: You will also have to modify the PATH in your .profile so that the MacPorts programs are accessible from
the command-line:

export PATH=/opt/local/bin:/opt/local/lib/postgresql93/bin

In addition, add the DYLD_FALLBACK_LIBRARY_PATH setting so that the libraries can be found by Python:

export DYLD_FALLBACK_LIBRARY_PATH=/opt/local/lib:/opt/local/lib/postgresql93

Windows

Proceed through the following sections sequentially in order to install GeoDjango on Windows.

Python

Install Python.

PostgreSQL

First, download the latest PostgreSQL 9.x installer from the EnterpriseDB website. After downloading, simply run the
installer, follow the on-screen directions, and keep the default options unless you know the consequences of changing
them.

Note: The PostgreSQL installer creates both a new Windows user to be the ‘postgres service account’ and a
postgres database superuser You will be prompted once to set the password for both accounts – make sure to
remember it!

When the installer completes, it will ask to launch the Application Stack Builder (ASB) on exit – keep this checked,
as it is necessary to install PostGIS.

790 Chapter 6. API Reference

https://schwehr.blogspot.com/
http://www.finkproject.org/
http://pdb.finkproject.org/pdb/browse.php?summary=django-gis
http://pdb.finkproject.org/pdb/browse.php?summary=django-gis
https://www.macports.org/
https://developer.apple.com/technologies/tools/
http://www.enterprisedb.com/products-services-training/pgdownload
http://www.enterprisedb.com

Django Documentation, Release 1.10.9.dev20171123183751

Note: If installed successfully, the PostgreSQL server will run in the background each time the system as started as a
Windows service. A PostgreSQL 9.x start menu group will created and contains shortcuts for the ASB as well as the
‘SQL Shell’, which will launch a psql command window.

PostGIS

From within the Application Stack Builder (to run outside of the installer, Start → Programs → PostgreSQL 9.x),
select PostgreSQL Database Server 9.x on port 5432 from the drop down menu. Next, expand the Categories →
Spatial Extensions menu tree and select PostGIS X.Y for PostgreSQL 9.x.

After clicking next, you will be prompted to select your mirror, PostGIS will be downloaded, and the PostGIS installer
will begin. Select only the default options during install (e.g., do not uncheck the option to create a default PostGIS
database).

Note: You will be prompted to enter your postgres database superuser password in the ‘Database Connection
Information’ dialog.

psycopg2

The psycopg2 Python module provides the interface between Python and the PostgreSQL database. Download the
latest Windows installer for your version of Python and PostgreSQL and run using the default settings.2

OSGeo4W

The OSGeo4W installer makes it simple to install the PROJ.4, GDAL, and GEOS libraries required by GeoDjango.
First, download the OSGeo4W installer, and run it. Select Express Web-GIS Install and click next. In the ‘Select
Packages’ list, ensure that GDAL is selected; MapServer and Apache are also enabled by default, but are not required
by GeoDjango and may be unchecked safely. After clicking next, the packages will be automatically downloaded and
installed, after which you may exit the installer.

Modify Windows environment

In order to use GeoDjango, you will need to add your Python and OSGeo4W directories to your Windows system
Path, as well as create GDAL_DATA and PROJ_LIB environment variables. The following set of commands, exe-
cutable with cmd.exe, will set this up:

set OSGEO4W_ROOT=C:\OSGeo4W
set PYTHON_ROOT=C:\Python27
set GDAL_DATA=%OSGEO4W_ROOT%\share\gdal
set PROJ_LIB=%OSGEO4W_ROOT%\share\proj
set PATH=%PATH%;%PYTHON_ROOT%;%OSGEO4W_ROOT%\bin
reg ADD "HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment" /v Path /
→˓t REG_EXPAND_SZ /f /d "%PATH%"
reg ADD "HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment" /v GDAL_
→˓DATA /t REG_EXPAND_SZ /f /d "%GDAL_DATA%"
reg ADD "HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment" /v PROJ_
→˓LIB /t REG_EXPAND_SZ /f /d "%PROJ_LIB%"

2 The psycopg2 Windows installers are packaged and maintained by Jason Erickson.

6.5. contrib packages 791

http://www.stickpeople.com/projects/python/win-psycopg/
https://trac.osgeo.org/osgeo4w/
https://trac.osgeo.org/osgeo4w/
http://www.stickpeople.com/projects/python/win-psycopg/

Django Documentation, Release 1.10.9.dev20171123183751

For your convenience, these commands are available in the executable batch script, geodjango_setup.bat.

Note: Administrator privileges are required to execute these commands. To do this, right-click on
geodjango_setup.bat and select Run as administrator. You need to log out and log back in again for the
settings to take effect.

Note: If you customized the Python or OSGeo4W installation directories, then you will need to modify the
OSGEO4W_ROOT and/or PYTHON_ROOT variables accordingly.

Install Django and set up database

Finally, install Django on your system.

GeoDjango Model API

This document explores the details of the GeoDjango Model API. Throughout this section, we’ll be using the following
geographic model of a ZIP code and of a Digital Elevation Model as our examples:

from django.contrib.gis.db import models

class Zipcode(models.Model):
code = models.CharField(max_length=5)
poly = models.PolygonField()

class Elevation(models.Model):
name = models.CharField(max_length=100)
rast = models.RasterField()

Spatial Field Types

Spatial fields consist of a series of geometry field types and one raster field type. Each of the geometry field types
correspond to the OpenGIS Simple Features specification1. There is no such standard for raster data.

GeometryField

class GeometryField

PointField

class PointField
1 OpenGIS Consortium, Inc., Simple Feature Specification For SQL.

792 Chapter 6. API Reference

https://en.wikipedia.org/wiki/ZIP_code
https://en.wikipedia.org/wiki/Digital_elevation_model
http://www.opengeospatial.org/standards/sfs

Django Documentation, Release 1.10.9.dev20171123183751

LineStringField

class LineStringField

PolygonField

class PolygonField

MultiPointField

class MultiPointField

MultiLineStringField

class MultiLineStringField

MultiPolygonField

class MultiPolygonField

GeometryCollectionField

class GeometryCollectionField

RasterField

class RasterField

RasterField is currently only implemented for the PostGIS backend.

Spatial Field Options

The geometry field options srid and spatial_index are now shared by GeometryField and RasterField
through the BaseSpatialField.

In addition to the regular Field options available for Django model fields, spatial fields have the following additional
options. All are optional.

srid

BaseSpatialField.srid

Sets the SRID2 (Spatial Reference System Identity) of the geometry field to the given value. Defaults to 4326 (also
known as WGS84, units are in degrees of longitude and latitude).

2 See id. at Ch. 2.3.8, p. 39 (Geometry Values and Spatial Reference Systems).

6.5. contrib packages 793

https://en.wikipedia.org/wiki/WGS84

Django Documentation, Release 1.10.9.dev20171123183751

Selecting an SRID

Choosing an appropriate SRID for your model is an important decision that the developer should consider carefully.
The SRID is an integer specifier that corresponds to the projection system that will be used to interpret the data in
the spatial database.3 Projection systems give the context to the coordinates that specify a location. Although the
details of geodesy are beyond the scope of this documentation, the general problem is that the earth is spherical and
representations of the earth (e.g., paper maps, Web maps) are not.

Most people are familiar with using latitude and longitude to reference a location on the earth’s surface. However,
latitude and longitude are angles, not distances. In other words, while the shortest path between two points on a flat
surface is a straight line, the shortest path between two points on a curved surface (such as the earth) is an arc of a great
circle.4 Thus, additional computation is required to obtain distances in planar units (e.g., kilometers and miles). Using
a geographic coordinate system may introduce complications for the developer later on. For example, SpatiaLite does
not have the capability to perform distance calculations between geometries using geographic coordinate systems, e.g.
constructing a query to find all points within 5 miles of a county boundary stored as WGS84.5

Portions of the earth’s surface may projected onto a two-dimensional, or Cartesian, plane. Projected coordinate sys-
tems are especially convenient for region-specific applications, e.g., if you know that your database will only cover
geometries in North Kansas, then you may consider using projection system specific to that region. Moreover, pro-
jected coordinate systems are defined in Cartesian units (such as meters or feet), easing distance calculations.

Note: If you wish to perform arbitrary distance queries using non-point geometries in WGS84 in PostGIS and you
want decent performance, enable the GeometryField.geography keyword so that geography database type is
used instead.

Additional Resources:

• spatialreference.org: A Django-powered database of spatial reference systems.

• The State Plane Coordinate System: A website covering the various projection systems used in the United
States. Much of the U.S. spatial data encountered will be in one of these coordinate systems rather than in a
geographic coordinate system such as WGS84.

spatial_index

BaseSpatialField.spatial_index

Defaults to True. Creates a spatial index for the given geometry field.

Note: This is different from the db_index field option because spatial indexes are created in a different manner
than regular database indexes. Specifically, spatial indexes are typically created using a variant of the R-Tree, while
regular database indexes typically use B-Trees.

Geometry Field Options

There are additional options available for Geometry fields. All the following options are optional.

3 Typically, SRID integer corresponds to an EPSG (European Petroleum Survey Group) identifier. However, it may also be associated with
custom projections defined in spatial database’s spatial reference systems table.

4 Terry A. Slocum, Robert B. McMaster, Fritz C. Kessler, & Hugh H. Howard, Thematic Cartography and Geographic Visualization (Prentice
Hall, 2nd edition), at Ch. 7.1.3.

5 This limitation does not apply to PostGIS.

794 Chapter 6. API Reference

https://en.wikipedia.org/wiki/Geodesy
https://en.wikipedia.org/wiki/Great_circle
https://en.wikipedia.org/wiki/Great_circle
http://www.spatialreference.org/ref/epsg/2796/
http://spatialreference.org/
https://web.archive.org/web/20080302095452/http://welcome.warnercnr.colostate.edu/class_info/nr502/lg3/datums_coordinates/spcs.html
http://www.epsg.org

Django Documentation, Release 1.10.9.dev20171123183751

dim

GeometryField.dim

This option may be used for customizing the coordinate dimension of the geometry field. By default, it is set to 2, for
representing two-dimensional geometries. For spatial backends that support it, it may be set to 3 for three-dimensional
support.

Note: At this time 3D support is limited to the PostGIS spatial backend.

geography

GeometryField.geography

If set to True, this option will create a database column of type geography, rather than geometry. Please refer to the
geography type section below for more details.

Note: Geography support is limited to PostGIS and will force the SRID to be 4326.

Geography Type

The geography type provides native support for spatial features represented with geographic coordinates (e.g., WGS84
longitude/latitude).6 Unlike the plane used by a geometry type, the geography type uses a spherical representation of
its data. Distance and measurement operations performed on a geography column automatically employ great circle
arc calculations and return linear units. In other words, when ST_Distance is called on two geographies, a value in
meters is returned (as opposed to degrees if called on a geometry column in WGS84).

Because geography calculations involve more mathematics, only a subset of the PostGIS spatial lookups are available
for the geography type. Practically, this means that in addition to the distance lookups only the following additional
spatial lookups are available for geography columns:

• bboverlaps

• coveredby

• covers

• intersects

If you need to use a spatial lookup or aggregate that doesn’t support the geography type as input, you can use the
Cast database function to convert the geography column to a geometry type in the query:

from django.contrib.gis.db.models import PointField
from django.db.models.functions import Cast

Zipcode.objects.annotate(
geom=Cast('geography_field', PointField())

).filter(geom__within=poly)

For more information, the PostGIS documentation contains a helpful section on determining when to use geography
data type over geometry data type.

6 Please refer to the PostGIS Geography Type documentation for more details.

6.5. contrib packages 795

http://postgis.net/docs/using_postgis_dbmanagement.html#PostGIS_GeographyVSGeometry
http://postgis.net/docs/using_postgis_dbmanagement.html#PostGIS_GeographyVSGeometry
http://postgis.net/docs/using_postgis_dbmanagement.html#PostGIS_Geography

Django Documentation, Release 1.10.9.dev20171123183751

GeoManager

class GeoManager

The GeoManager is required in order to use the legacy GeoQuerySet Methods.

Deprecated since version 1.9: All GeoQuerySetmethods have been deprecated and replaced by equivalent database
functions. As soon as the legacy methods have been replaced in your code, you should be able to remove the special
GeoManager from your GIS-enabled classes.

In older versions, the manager was required to conduct geographic queries. Without it, all geographic filters failed.

GeoManagerwas required even if the model did not have a geographic field itself, e.g., in the case of a ForeignKey
relation to a model with a geographic field. For example, if we had an Address model with a ForeignKey to our
Zipcode model:

from django.contrib.gis.db import models

class Address(models.Model):
num = models.IntegerField()
street = models.CharField(max_length=100)
city = models.CharField(max_length=100)
state = models.CharField(max_length=2)
zipcode = models.ForeignKey(Zipcode, on_delete=models.CASCADE)
objects = models.GeoManager()

The geographic manager was needed to do spatial queries on related Zipcode objects, for example:

qs = Address.objects.filter(zipcode__poly__contains='POINT(-104.590948 38.319914)')

GeoDjango Database API

Spatial Backends

GeoDjango currently provides the following spatial database backends:

• django.contrib.gis.db.backends.postgis

• django.contrib.gis.db.backends.mysql

• django.contrib.gis.db.backends.oracle

• django.contrib.gis.db.backends.spatialite

MySQL Spatial Limitations

MySQL’s spatial extensions only support bounding box operations (what MySQL calls minimum bounding rectangles,
or MBR). Specifically, MySQL does not conform to the OGC standard:

Currently, MySQL does not implement these functions [Contains, Crosses, Disjoint,
Intersects, Overlaps, Touches, Within] according to the specification. Those that are im-
plemented return the same result as the corresponding MBR-based functions.

In other words, while spatial lookups such as contains are available in GeoDjango when using MySQL, the results
returned are really equivalent to what would be returned when using bbcontains on a different spatial backend.

796 Chapter 6. API Reference

https://dev.mysql.com/doc/refman/en/spatial-relation-functions.html

Django Documentation, Release 1.10.9.dev20171123183751

Warning: True spatial indexes (R-trees) are only supported with MyISAM tables on MySQL.5 In other words,
when using MySQL spatial extensions you have to choose between fast spatial lookups and the integrity of your
data – MyISAM tables do not support transactions or foreign key constraints.

Raster Support

RasterField is currently only implemented for the PostGIS backend. Spatial lookups are available for raster fields,
but spatial database functions and aggregates aren’t implemented for raster fields.

RasterField now supports spatial lookups.

Creating and Saving Models with Geometry Fields

Here is an example of how to create a geometry object (assuming the Zipcode model):

>>> from zipcode.models import Zipcode
>>> z = Zipcode(code=77096, poly='POLYGON((10 10, 10 20, 20 20, 20 15, 10 10))')
>>> z.save()

GEOSGeometry objects may also be used to save geometric models:

>>> from django.contrib.gis.geos import GEOSGeometry
>>> poly = GEOSGeometry('POLYGON((10 10, 10 20, 20 20, 20 15, 10 10))')
>>> z = Zipcode(code=77096, poly=poly)
>>> z.save()

Moreover, if the GEOSGeometry is in a different coordinate system (has a different SRID value) than that of the
field, then it will be implicitly transformed into the SRID of the model’s field, using the spatial database’s transform
procedure:

>>> poly_3084 = GEOSGeometry('POLYGON((10 10, 10 20, 20 20, 20 15, 10 10))',
→˓srid=3084) # SRID 3084 is 'NAD83(HARN) / Texas Centric Lambert Conformal'
>>> z = Zipcode(code=78212, poly=poly_3084)
>>> z.save()
>>> from django.db import connection
>>> print(connection.queries[-1]['sql']) # printing the last SQL statement executed
→˓(requires DEBUG=True)
INSERT INTO "geoapp_zipcode" ("code", "poly") VALUES (78212, ST_Transform(ST_
→˓GeomFromWKB('\\001 ... ', 3084), 4326))

Thus, geometry parameters may be passed in using the GEOSGeometry object, WKT (Well Known Text1), HEX-
EWKB (PostGIS specific – a WKB geometry in hexadecimal2), and GeoJSON3 (requires GDAL). Essentially, if the
input is not a GEOSGeometry object, the geometry field will attempt to create a GEOSGeometry instance from the
input.

5 See Creating Spatial Indexes in the MySQL Reference Manual:

For MyISAM tables, SPATIAL INDEX creates an R-tree index. For storage engines that support nonspatial indexing of spatial
columns, the engine creates a B-tree index. A B-tree index on spatial values will be useful for exact-value lookups, but not for range
scans.

1 See Open Geospatial Consortium, Inc., OpenGIS Simple Feature Specification For SQL, Document 99-049 (May 5, 1999), at Ch. 3.2.5, p.
3-11 (SQL Textual Representation of Geometry).

2 See PostGIS EWKB, EWKT and Canonical Forms, PostGIS documentation at Ch. 4.1.2.
3 See Howard Butler, Martin Daly, Allan Doyle, Tim Schaub, & Christopher Schmidt, The GeoJSON Format Specification, Revision 1.0 (June

16, 2008).

6.5. contrib packages 797

https://dev.mysql.com/doc/refman/en/creating-spatial-indexes.html
http://www.opengis.org/docs/99-049.pdf
http://postgis.net/docs/using_postgis_dbmanagement.html#EWKB_EWKT
http://geojson.org/geojson-spec.html

Django Documentation, Release 1.10.9.dev20171123183751

For more information creating GEOSGeometry objects, refer to the GEOS tutorial.

Creating and Saving Models with Raster Fields

When creating raster models, the raster field will implicitly convert the input into a GDALRaster using lazy-
evaluation. The raster field will therefore accept any input that is accepted by the GDALRaster constructor.

Here is an example of how to create a raster object from a raster file volcano.tif (assuming the Elevation
model):

>>> from elevation.models import Elevation
>>> dem = Elevation(name='Volcano', rast='/path/to/raster/volcano.tif')
>>> dem.save()

GDALRaster objects may also be used to save raster models:

>>> from django.contrib.gis.gdal import GDALRaster
>>> rast = GDALRaster({'width': 10, 'height': 10, 'name': 'Canyon', 'srid': 4326,
... 'scale': [0.1, -0.1], 'bands': [{"data": range(100)}]})
>>> dem = Elevation(name='Canyon', rast=rast)
>>> dem.save()

Note that this equivalent to:

>>> dem = Elevation.objects.create(
... name='Canyon',
... rast={'width': 10, 'height': 10, 'name': 'Canyon', 'srid': 4326,
... 'scale': [0.1, -0.1], 'bands': [{"data": range(100)}]},
...)

Spatial Lookups

GeoDjango’s lookup types may be used with any manager method like filter(), exclude(), etc. However, the
lookup types unique to GeoDjango are only available on spatial fields.

Filters on ‘normal’ fields (e.g. CharField) may be chained with those on geographic fields. Geographic lookups
accept geometry and raster input on both sides and input types can be mixed freely.

The general structure of geographic lookups is described below. A complete reference can be found in the spatial
lookup reference.

Geometry Lookups

Geographic queries with geometries take the following general form (assuming the Zipcode model used in the
GeoDjango Model API):

>>> qs = Zipcode.objects.filter(<field>__<lookup_type>=<parameter>)
>>> qs = Zipcode.objects.exclude(...)

For example:

>>> qs = Zipcode.objects.filter(poly__contains=pnt)
>>> qs = Elevation.objects.filter(poly__contains=rst)

798 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

In this case, poly is the geographic field, contains is the spatial lookup type, pnt is the parameter (which may be
a GEOSGeometry object or a string of GeoJSON , WKT, or HEXEWKB), and rst is a GDALRaster object.

Raster Lookups

The raster lookup syntax is similar to the syntax for geometries. The only difference is that a band index can be
specified as additional input. If no band index is specified, the first band is used by default (index 0). In that case the
syntax is identical to the syntax for geometry lookups.

To specify the band index, an additional parameter can be specified on both sides of the lookup. On the left hand side,
the double underscore syntax is used to pass a band index. On the right hand side, a tuple of the raster and band index
can be specified.

This results in the following general form for lookups involving rasters (assuming the Elevation model used in the
GeoDjango Model API):

>>> qs = Elevation.objects.filter(<field>__<lookup_type>=<parameter>)
>>> qs = Elevation.objects.filter(<field>__<band_index>__<lookup_type>=<parameter>)
>>> qs = Elevation.objects.filter(<field>__<lookup_type>=(<raster_input, <band_index>)

For example:

>>> qs = Elevation.objects.filter(rast__contains=geom)
>>> qs = Elevation.objects.filter(rast__contains=rst)
>>> qs = Elevation.objects.filter(rast__1__contains=geom)
>>> qs = Elevation.objects.filter(rast__contains=(rst, 1))
>>> qs = Elevation.objects.filter(rast__1__contains=(rst, 1))

On the left hand side of the example, rast is the geographic raster field and contains is the spatial lookup type.
On the right hand side, geom is a geometry input and rst is a GDALRaster object. The band index defaults to 0 in
the first two queries and is set to 1 on the others.

While all spatial lookups can be used with raster objects on both sides, not all underlying operators natively accept
raster input. For cases where the operator expects geometry input, the raster is automatically converted to a geometry.
It’s important to keep this in mind when interpreting the lookup results.

The type of raster support is listed for all lookups in the compatibility table. Lookups involving rasters are currently
only available for the PostGIS backend.

Distance Queries

Introduction

Distance calculations with spatial data is tricky because, unfortunately, the Earth is not flat. Some distance queries
with fields in a geographic coordinate system may have to be expressed differently because of limitations in PostGIS.
Please see the Selecting an SRID section in the GeoDjango Model API documentation for more details.

Distance Lookups

Availability: PostGIS, Oracle, SpatiaLite, PGRaster (Native)

The following distance lookups are available:

• distance_lt

6.5. contrib packages 799

Django Documentation, Release 1.10.9.dev20171123183751

• distance_lte

• distance_gt

• distance_gte

• dwithin

Note: For measuring, rather than querying on distances, use the Distance function.

Distance lookups take a tuple parameter comprising:

1. A geometry or raster to base calculations from; and

2. A number or Distance object containing the distance.

If a Distance object is used, it may be expressed in any units (the SQL generated will use units converted to those
of the field); otherwise, numeric parameters are assumed to be in the units of the field.

Note: In PostGIS, ST_Distance_Sphere does not limit the geometry types geographic distance queries are
performed with.4 However, these queries may take a long time, as great-circle distances must be calculated on the fly
for every row in the query. This is because the spatial index on traditional geometry fields cannot be used.

For much better performance on WGS84 distance queries, consider using geography columns in your database instead
because they are able to use their spatial index in distance queries. You can tell GeoDjango to use a geography column
by setting geography=True in your field definition.

For example, let’s say we have a SouthTexasCity model (from the GeoDjango distance tests) on a projected
coordinate system valid for cities in southern Texas:

from django.contrib.gis.db import models

class SouthTexasCity(models.Model):
name = models.CharField(max_length=30)
A projected coordinate system (only valid for South Texas!)
is used, units are in meters.
point = models.PointField(srid=32140)

Then distance queries may be performed as follows:

>>> from django.contrib.gis.geos import GEOSGeometry
>>> from django.contrib.gis.measure import D # ``D`` is a shortcut for ``Distance``
>>> from geoapp.models import SouthTexasCity
Distances will be calculated from this point, which does not have to be projected.
>>> pnt = GEOSGeometry('POINT(-96.876369 29.905320)', srid=4326)
If numeric parameter, units of field (meters in this case) are assumed.
>>> qs = SouthTexasCity.objects.filter(point__distance_lte=(pnt, 7000))
Find all Cities within 7 km, > 20 miles away, and > 100 chains away (an obscure
→˓unit)
>>> qs = SouthTexasCity.objects.filter(point__distance_lte=(pnt, D(km=7)))
>>> qs = SouthTexasCity.objects.filter(point__distance_gte=(pnt, D(mi=20)))
>>> qs = SouthTexasCity.objects.filter(point__distance_gte=(pnt, D(chain=100)))

Raster queries work the same way by simply replacing the geometry field point with a raster field, or the pnt object
with a raster object, or both. To specify the band index of a raster input on the right hand side, a 3-tuple can be passed
to the lookup as follows:

4 See PostGIS documentation on ST_DistanceSphere.

800 Chapter 6. API Reference

https://github.com/django/django/blob/master/tests/gis_tests/distapp/models.py
http://postgis.net/docs/ST_DistanceSphere.html

Django Documentation, Release 1.10.9.dev20171123183751

>>> qs = SouthTexasCity.objects.filter(point__distance_gte=(rst, 2, D(km=7)))

Where the band with index 2 (the third band) of the raster rst would be used for the lookup.

Compatibility Tables

Spatial Lookups

The following table provides a summary of what spatial lookups are available for each spatial database backend. The
PostGIS Raster (PGRaster) lookups are divided into the three categories described in the raster lookup details: native
support N, bilateral native support B, and geometry conversion support C.

Lookup Type PostGIS Oracle MySQL6 SpatiaLite PGRaster
bbcontains X X X N
bboverlaps X X X N
contained X X X N
contains X X X X B
contains_properly X B
coveredby X X B
covers X X B
crosses X X C
disjoint X X X X B
distance_gt X X X N
distance_gte X X X N
distance_lt X X X N
distance_lte X X X N
dwithin X X B
equals X X X X C
exact X X X X B
intersects X X X X B
isvalid X
overlaps X X X X B
relate X X X C
same_as X X X X B
touches X X X X B
within X X X X B
left X C
right X C
overlaps_left X B
overlaps_right X B
overlaps_above X C
overlaps_below X C
strictly_above X C
strictly_below X C

6 Refer MySQL Spatial Limitations section for more details.

6.5. contrib packages 801

Django Documentation, Release 1.10.9.dev20171123183751

Database functions

The following table provides a summary of what geography-specific database functions are available on each spatial
backend.

Function PostGIS Oracle MySQL SpatiaLite
Area X X X X
AsGeoJSON X X
AsGML X X
AsKML X X
AsSVG X X
BoundingCircle X
Centroid X X X X
Difference X X X (≥ 5.6.1) X
Distance X X X (≥ 5.6.1) X
Envelope X X X
ForceRHR X
GeoHash X X (≥ 4.0, LWGEOM)
Intersection X X X (≥ 5.6.1) X
IsValid X
Length X X X X
MakeValid X
MemSize X
NumGeometries X X X X
NumPoints X X X X
Perimeter X X X (≥ 4.0)
PointOnSurface X X X
Reverse X X X (≥ 4.0)
Scale X X
SnapToGrid X X (≥ 3.1)
SymDifference X X X (≥ 5.6.1) X
Transform X X X
Translate X X
Union X X X (≥ 5.6.1) X

Aggregate Functions

The following table provides a summary of what GIS-specific aggregate functions are available on each spatial back-
end. Please note that MySQL does not support any of these aggregates, and is thus excluded from the table.

Aggregate PostGIS Oracle SpatiaLite
Collect X X
Extent X X X
Extent3D X
MakeLine X X
Union X X X

GeoDjango Forms API

GeoDjango provides some specialized form fields and widgets in order to visually display and edit geolocalized data
on a map. By default, they use OpenLayers-powered maps, with a base WMS layer provided by Metacarta.

802 Chapter 6. API Reference

http://openlayers.org/
http://www.metacarta.com/

Django Documentation, Release 1.10.9.dev20171123183751

Field arguments

In addition to the regular form field arguments, GeoDjango form fields take the following optional arguments.

srid

Field.srid
This is the SRID code that the field value should be transformed to. For example, if the map widget SRID
is different from the SRID more generally used by your application or database, the field will automatically
convert input values into that SRID.

geom_type

Field.geom_type
You generally shouldn’t have to set or change that attribute which should be setup depending on the field class.
It matches the OpenGIS standard geometry name.

Form field classes

GeometryField

class GeometryField

PointField

class PointField

LineStringField

class LineStringField

PolygonField

class PolygonField

MultiPointField

class MultiPointField

MultiLineStringField

class MultiLineStringField

6.5. contrib packages 803

Django Documentation, Release 1.10.9.dev20171123183751

MultiPolygonField

class MultiPolygonField

GeometryCollectionField

class GeometryCollectionField

Form widgets

GeoDjango form widgets allow you to display and edit geographic data on a visual map. Note that none of the currently
available widgets supports 3D geometries, hence geometry fields will fallback using a simple Textarea widget for
such data.

Widget attributes

GeoDjango widgets are template-based, so their attributes are mostly different from other Django widget attributes.

BaseGeometryWidget.geom_type
The OpenGIS geometry type, generally set by the form field.

BaseGeometryWidget.map_height

BaseGeometryWidget.map_width
Height and width of the widget map (default is 400x600).

BaseGeometryWidget.map_srid
SRID code used by the map (default is 4326).

BaseGeometryWidget.display_raw
Boolean value specifying if a textarea input showing the serialized representation of the current geometry is
visible, mainly for debugging purposes (default is False).

BaseGeometryWidget.supports_3d
Indicates if the widget supports edition of 3D data (default is False).

BaseGeometryWidget.template_name
The template used to render the map widget.

You can pass widget attributes in the same manner that for any other Django widget. For example:

from django.contrib.gis import forms

class MyGeoForm(forms.Form):
point = forms.PointField(widget=

forms.OSMWidget(attrs={'map_width': 800, 'map_height': 500}))

Widget classes

BaseGeometryWidget

class BaseGeometryWidget
This is an abstract base widget containing the logic needed by subclasses. You cannot directly use this widget

804 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

for a geometry field. Note that the rendering of GeoDjango widgets is based on a template, identified by the
template_name class attribute.

OpenLayersWidget

class OpenLayersWidget
This is the default widget used by all GeoDjango form fields. template_name is gis/openlayers.
html.

OpenLayersWidget and OSMWidget use the openlayers.js file hosted on the openlayers.org
website. This works for basic usage during development, but isn’t appropriate for a production deployment as
openlayers.org/api/ has no guaranteed uptime and runs on a slow server. You are therefore advised to
subclass these widgets in order to specify your own version of the openlayers.js file in the js property of
the inner Media class (see Assets as a static definition). You can host a copy of openlayers.js tailored to
your needs on your own server or refer to a copy from a content-delivery network like https://cdnjs.com/. This
will also allow you to serve the JavaScript file(s) using the https protocol if needed.

OSMWidget

class OSMWidget
This widget uses an OpenStreetMap base layer (Mapnik) to display geographic objects on. template_name
is gis/openlayers-osm.html.

The OpenLayersWidget note about JavaScript file hosting above also applies here. See also this FAQ answer
about https access to map tiles.

GeoQuerySet API Reference

class GeoQuerySet(model=None)

Spatial Lookups

The spatial lookups in this section are available for GeometryField and RasterField.

For an introduction, see the spatial lookups introduction. For an overview of what lookups are compatible with a
particular spatial backend, refer to the spatial lookup compatibility table.

Spatial lookups now support raster input.

Lookups with rasters

All examples in the reference below are given for geometry fields and inputs, but the lookups can be used the same
way with rasters on both sides. Whenever a lookup doesn’t support raster input, the input is automatically converted
to a geometry where necessary using the ST_Polygon function. See also the introduction to raster lookups.

The database operators used by the lookups can be divided into three categories:

• Native raster support N: the operator accepts rasters natively on both sides of the lookup, and raster input can be
mixed with geometry inputs.

• Bilateral raster support B: the operator supports rasters only if both sides of the lookup receive raster inputs.
Raster data is automatically converted to geometries for mixed lookups.

• Geometry conversion support C. The lookup does not have native raster support, all raster data is automatically
converted to geometries.

6.5. contrib packages 805

http://docs.openlayers.org/library/deploying.html
http://docs.openlayers.org/library/deploying.html
https://cdnjs.com/
https://help.openstreetmap.org/questions/10920/how-to-embed-a-map-in-my-https-site
http://postgis.net/docs/RT_ST_Polygon.html

Django Documentation, Release 1.10.9.dev20171123183751

The examples below show the SQL equivalent for the lookups in the different types of raster support. The same pattern
applies to all spatial lookups.

Case Lookup SQL Equivalent
N, B rast__contains=rst ST_Contains(rast, rst)
N, B rast__1__contains=(rst,

2)
ST_Contains(rast, 1, rst, 2)

B, C rast__contains=geom ST_Contains(ST_Polygon(rast), geom)
B, C rast__1__contains=geom ST_Contains(ST_Polygon(rast, 1), geom)
B, C poly__contains=rst ST_Contains(poly, ST_Polygon(rst))
B, C poly__contains=(rst, 1) ST_Contains(poly, ST_Polygon(rst, 1))
C rast__crosses=rst ST_Crosses(ST_Polygon(rast), ST_Polygon(rst))
C rast__1__crosses=(rst,

2)
ST_Crosses(ST_Polygon(rast, 1),
ST_Polygon(rst, 2))

C rast__crosses=geom ST_Crosses(ST_Polygon(rast), geom)
C poly__crosses=rst ST_Crosses(poly, ST_Polygon(rst))

Spatial lookups with rasters are only supported for PostGIS backends (denominated as PGRaster in this section).

bbcontains

Availability: PostGIS, MySQL, SpatiaLite, PGRaster (Native)

Tests if the geometry or raster field’s bounding box completely contains the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__bbcontains=geom)

Backend SQL Equivalent
PostGIS poly ~ geom
MySQL MBRContains(poly, geom)
SpatiaLite MbrContains(poly, geom)

bboverlaps

Availability: PostGIS, MySQL, SpatiaLite, PGRaster (Native)

Tests if the geometry field’s bounding box overlaps the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__bboverlaps=geom)

Backend SQL Equivalent
PostGIS poly && geom
MySQL MBROverlaps(poly, geom)
SpatiaLite MbrOverlaps(poly, geom)

contained

Availability: PostGIS, MySQL, SpatiaLite, PGRaster (Native)

Tests if the geometry field’s bounding box is completely contained by the lookup geometry’s bounding box.

806 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Example:

Zipcode.objects.filter(poly__contained=geom)

Backend SQL Equivalent
PostGIS poly @ geom
MySQL MBRWithin(poly, geom)
SpatiaLite MbrWithin(poly, geom)

contains

Availability: PostGIS, Oracle, MySQL, SpatiaLite, PGRaster (Bilateral)

Tests if the geometry field spatially contains the lookup geometry.

Example:

Zipcode.objects.filter(poly__contains=geom)

Backend SQL Equivalent
PostGIS ST_Contains(poly, geom)
Oracle SDO_CONTAINS(poly, geom)
MySQL MBRContains(poly, geom)
SpatiaLite Contains(poly, geom)

contains_properly

Availability: PostGIS, PGRaster (Bilateral)

Returns true if the lookup geometry intersects the interior of the geometry field, but not the boundary (or exterior).4

Example:

Zipcode.objects.filter(poly__contains_properly=geom)

Backend SQL Equivalent
PostGIS ST_ContainsProperly(poly, geom)

coveredby

Availability: PostGIS, Oracle, PGRaster (Bilateral)

Tests if no point in the geometry field is outside the lookup geometry.3

Example:

Zipcode.objects.filter(poly__coveredby=geom)

Backend SQL Equivalent
PostGIS ST_CoveredBy(poly, geom)
Oracle SDO_COVEREDBY(poly, geom)

4 Refer to the PostGIS ST_ContainsProperly documentation for more details.
3 For an explanation of this routine, read Quirks of the “Contains” Spatial Predicate by Martin Davis (a PostGIS developer).

6.5. contrib packages 807

http://postgis.net/docs/ST_ContainsProperly.html
http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html

Django Documentation, Release 1.10.9.dev20171123183751

covers

Availability: PostGIS, Oracle, PGRaster (Bilateral)

Tests if no point in the lookup geometry is outside the geometry field.3

Example:

Zipcode.objects.filter(poly__covers=geom)

Backend SQL Equivalent
PostGIS ST_Covers(poly, geom)
Oracle SDO_COVERS(poly, geom)

crosses

Availability: PostGIS, SpatiaLite, PGRaster (Conversion)

Tests if the geometry field spatially crosses the lookup geometry.

Example:

Zipcode.objects.filter(poly__crosses=geom)

Backend SQL Equivalent
PostGIS ST_Crosses(poly, geom)
SpatiaLite Crosses(poly, geom)

disjoint

Availability: PostGIS, Oracle, MySQL, SpatiaLite, PGRaster (Bilateral)

Tests if the geometry field is spatially disjoint from the lookup geometry.

Example:

Zipcode.objects.filter(poly__disjoint=geom)

Backend SQL Equivalent
PostGIS ST_Disjoint(poly, geom)
Oracle SDO_GEOM.RELATE(poly, 'DISJOINT', geom, 0.05)
MySQL MBRDisjoint(poly, geom)
SpatiaLite Disjoint(poly, geom)

equals

Availability: PostGIS, Oracle, MySQL, SpatiaLite, PGRaster (Conversion)

exact, same_as

Availability: PostGIS, Oracle, MySQL, SpatiaLite, PGRaster (Bilateral)

808 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

intersects

Availability: PostGIS, Oracle, MySQL, SpatiaLite, PGRaster (Bilateral)

Tests if the geometry field spatially intersects the lookup geometry.

Example:

Zipcode.objects.filter(poly__intersects=geom)

Backend SQL Equivalent
PostGIS ST_Intersects(poly, geom)
Oracle SDO_OVERLAPBDYINTERSECT(poly, geom)
MySQL MBRIntersects(poly, geom)
SpatiaLite Intersects(poly, geom)

isvalid

Availability: PostGIS

Tests if the geometry is valid.

Example:

Zipcode.objects.filter(poly__isvalid=True)

PostGIS equivalent:

SELECT ... WHERE ST_IsValid(poly)

overlaps

Availability: PostGIS, Oracle, MySQL, SpatiaLite, PGRaster (Bilateral)

relate

Availability: PostGIS, Oracle, SpatiaLite, PGRaster (Conversion)

Tests if the geometry field is spatially related to the lookup geometry by the values given in the given pattern. This
lookup requires a tuple parameter, (geom, pattern); the form of pattern will depend on the spatial backend:

PostGIS & SpatiaLite

On these spatial backends the intersection pattern is a string comprising nine characters, which define intersections
between the interior, boundary, and exterior of the geometry field and the lookup geometry. The intersection pattern
matrix may only use the following characters: 1, 2, T, F, or *. This lookup type allows users to “fine tune” a specific
geometric relationship consistent with the DE-9IM model.1

Geometry example:

1 See OpenGIS Simple Feature Specification For SQL, at Ch. 2.1.13.2, p. 2-13 (The Dimensionally Extended Nine-Intersection Model).

6.5. contrib packages 809

http://www.opengis.org/docs/99-049.pdf

Django Documentation, Release 1.10.9.dev20171123183751

A tuple lookup parameter is used to specify the geometry and
the intersection pattern (the pattern here is for 'contains').
Zipcode.objects.filter(poly__relate=(geom, 'T*T***FF*'))

PostGIS SQL equivalent:

SELECT ... WHERE ST_Relate(poly, geom, 'T*T***FF*')

SpatiaLite SQL equivalent:

SELECT ... WHERE Relate(poly, geom, 'T*T***FF*')

Raster example:

Zipcode.objects.filter(poly__relate=(rast, 1, 'T*T***FF*'))
Zipcode.objects.filter(rast__2__relate=(rast, 1, 'T*T***FF*'))

PostGIS SQL equivalent:

SELECT ... WHERE ST_Relate(poly, ST_Polygon(rast, 1), 'T*T***FF*')
SELECT ... WHERE ST_Relate(ST_Polygon(rast, 2), ST_Polygon(rast, 1), 'T*T***FF*')

Oracle

Here the relation pattern is comprised of at least one of the nine relation strings: TOUCH, OVERLAPBDYDISJOINT,
OVERLAPBDYINTERSECT, EQUAL, INSIDE, COVEREDBY, CONTAINS, COVERS, ON, and ANYINTERACT. Mul-
tiple strings may be combined with the logical Boolean operator OR, for example, 'inside+touch'.2 The relation
strings are case-insensitive.

Example:

Zipcode.objects.filter(poly__relate=(geom, 'anyinteract'))

Oracle SQL equivalent:

SELECT ... WHERE SDO_RELATE(poly, geom, 'anyinteract')

touches

Availability: PostGIS, Oracle, MySQL, SpatiaLite

Tests if the geometry field spatially touches the lookup geometry.

Example:

Zipcode.objects.filter(poly__touches=geom)

Backend SQL Equivalent
PostGIS ST_Touches(poly, geom)
MySQL MBRTouches(poly, geom)
Oracle SDO_TOUCH(poly, geom)
SpatiaLite Touches(poly, geom)

2 See SDO_RELATE documentation, from Ch. 11 of the Oracle Spatial User’s Guide and Manual.

810 Chapter 6. API Reference

https://docs.oracle.com/cd/B19306_01/appdev.102/b14255/sdo_operat.htm#sthref845

Django Documentation, Release 1.10.9.dev20171123183751

within

Availability: PostGIS, Oracle, MySQL, SpatiaLite, PGRaster (Bilateral)

Tests if the geometry field is spatially within the lookup geometry.

Example:

Zipcode.objects.filter(poly__within=geom)

Backend SQL Equivalent
PostGIS ST_Within(poly, geom)
MySQL MBRWithin(poly, geom)
Oracle SDO_INSIDE(poly, geom)
SpatiaLite Within(poly, geom)

left

Availability: PostGIS, PGRaster (Conversion)

Tests if the geometry field’s bounding box is strictly to the left of the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__left=geom)

PostGIS equivalent:

SELECT ... WHERE poly << geom

right

Availability: PostGIS, PGRaster (Conversion)

Tests if the geometry field’s bounding box is strictly to the right of the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__right=geom)

PostGIS equivalent:

SELECT ... WHERE poly >> geom

overlaps_left

Availability: PostGIS, PGRaster (Bilateral)

Tests if the geometry field’s bounding box overlaps or is to the left of the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__overlaps_left=geom)

PostGIS equivalent:

6.5. contrib packages 811

Django Documentation, Release 1.10.9.dev20171123183751

SELECT ... WHERE poly &< geom

overlaps_right

Availability: PostGIS, PGRaster (Bilateral)

Tests if the geometry field’s bounding box overlaps or is to the right of the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__overlaps_right=geom)

PostGIS equivalent:

SELECT ... WHERE poly &> geom

overlaps_above

Availability: PostGIS, PGRaster (Conversion)

Tests if the geometry field’s bounding box overlaps or is above the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__overlaps_above=geom)

PostGIS equivalent:

SELECT ... WHERE poly |&> geom

overlaps_below

Availability: PostGIS, PGRaster (Conversion)

Tests if the geometry field’s bounding box overlaps or is below the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__overlaps_below=geom)

PostGIS equivalent:

SELECT ... WHERE poly &<| geom

strictly_above

Availability: PostGIS, PGRaster (Conversion)

Tests if the geometry field’s bounding box is strictly above the lookup geometry’s bounding box.

Example:

812 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Zipcode.objects.filter(poly__strictly_above=geom)

PostGIS equivalent:

SELECT ... WHERE poly |>> geom

strictly_below

Availability: PostGIS, PGRaster (Conversion)

Tests if the geometry field’s bounding box is strictly below the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__strictly_below=geom)

PostGIS equivalent:

SELECT ... WHERE poly <<| geom

Distance Lookups

Availability: PostGIS, Oracle, SpatiaLite, PGRaster (Native)

For an overview on performing distance queries, please refer to the distance queries introduction.

Distance lookups take the following form:

<field>__<distance lookup>=(<geometry/raster>, <distance value>[, 'spheroid'])
<field>__<distance lookup>=(<raster>, <band_index>, <distance value>[, 'spheroid'])
<field>__<band_index>__<distance lookup>=(<raster>, <band_index>, <distance value>[,
→˓'spheroid'])

The value passed into a distance lookup is a tuple; the first two values are mandatory, and are the geometry to calculate
distances to, and a distance value (either a number in units of the field, a Distance object, or a query expression
<ref/models/expressions>). To pass a band index to the lookup, use a 3-tuple where the second entry is the band index.

With PostGIS, on every distance lookup but dwithin, an optional element, 'spheroid', may be included to
tell GeoDjango to use the more accurate spheroid distance calculation functions on fields with a geodetic coordi-
nate system (e.g., ST_Distance_Spheroid would be used instead of ST_Distance_Sphere). The simpler
ST_Distance function is used with projected coordinate systems. Rasters are converted to geometries for spheroid
based lookups.

The ability to pass an expression as the distance value was added.

distance_gt

Returns models where the distance to the geometry field from the lookup geometry is greater than the given distance
value.

Example:

Zipcode.objects.filter(poly__distance_gt=(geom, D(m=5)))

6.5. contrib packages 813

Django Documentation, Release 1.10.9.dev20171123183751

Backend SQL Equivalent
PostGIS ST_Distance/ST_Distance_Sphere(poly, geom) > 5
Oracle SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) > 5
SpatiaLite Distance(poly, geom) > 5

distance_gte

Returns models where the distance to the geometry field from the lookup geometry is greater than or equal to the given
distance value.

Example:

Zipcode.objects.filter(poly__distance_gte=(geom, D(m=5)))

Backend SQL Equivalent
PostGIS ST_Distance/ST_Distance_Sphere(poly, geom) >= 5
Oracle SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) >= 5
SpatiaLite Distance(poly, geom) >= 5

distance_lt

Returns models where the distance to the geometry field from the lookup geometry is less than the given distance
value.

Example:

Zipcode.objects.filter(poly__distance_lt=(geom, D(m=5)))

Backend SQL Equivalent
PostGIS ST_Distance/ST_Distance_Sphere(poly, geom) < 5
Oracle SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) < 5
SpatiaLite Distance(poly, geom) < 5

distance_lte

Returns models where the distance to the geometry field from the lookup geometry is less than or equal to the given
distance value.

Example:

Zipcode.objects.filter(poly__distance_lte=(geom, D(m=5)))

Backend SQL Equivalent
PostGIS ST_Distance/ST_Distance_Sphere(poly, geom) <= 5
Oracle SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) <= 5
SpatiaLite Distance(poly, geom) <= 5

dwithin

Returns models where the distance to the geometry field from the lookup geometry are within the given distance from
one another. Note that you can only provide Distance objects if the targeted geometries are in a projected system.
For geographic geometries, you should use units of the geometry field (e.g. degrees for WGS84) .

814 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Example:

Zipcode.objects.filter(poly__dwithin=(geom, D(m=5)))

Backend SQL Equivalent
PostGIS ST_DWithin(poly, geom, 5)
Oracle SDO_WITHIN_DISTANCE(poly, geom, 5)

Note: This lookup is not available on SpatiaLite.

GeoQuerySet Methods

Deprecated since version 1.9: Using GeoQuerySet methods is now deprecated in favor of the new Geographic
Database Functions. Albeit a little more verbose, they are much more powerful in how it is possible to combine them
to build more complex queries.

GeoQuerySet methods specify that a spatial operation be performed on each spatial operation on each geographic
field in the queryset and store its output in a new attribute on the model (which is generally the name of the
GeoQuerySet method).

There are also aggregate GeoQuerySet methods which return a single value instead of a queryset. This section will
describe the API and availability of every GeoQuerySet method available in GeoDjango.

Note: What methods are available depend on your spatial backend. See the compatibility table for more details.

With a few exceptions, the following keyword arguments may be used with all GeoQuerySet methods:

Keyword Argument Description
field_name By default, GeoQuerySet methods use the first geo-

graphic field encountered in the model. This keyword
should be used to specify another geographic field (e.g.,
field_name='point2') when there are multiple
geographic fields in a model.
On PostGIS, the field_name keyword may
also be used on geometry fields in models that
are related via a ForeignKey relation (e.g.,
field_name='related__point').

model_att By default, GeoQuerySet methods typically attach
their output in an attribute with the same name as the
GeoQuerySet method. Setting this keyword with
the desired attribute name will override this default be-
havior. For example, qs = Zipcode.objects.
centroid(model_att='c') will attach the cen-
troid of the Zipcode geometry field in a c attribute on
every model rather than in a centroid attribute.
This keyword is required if a method name clashes
with an existing GeoQuerySet method – if you
wanted to use the area() method on model with a
PolygonField named area, for example.

6.5. contrib packages 815

Django Documentation, Release 1.10.9.dev20171123183751

Measurement

Availability: PostGIS, Oracle, SpatiaLite

area

GeoQuerySet.area(**kwargs)

Deprecated since version 1.9: Use the Area function instead.

Returns the area of the geographic field in an area attribute on each element of this GeoQuerySet.

distance

GeoQuerySet.distance(geom, **kwargs)

Deprecated since version 1.9: Use the Distance function instead.

This method takes a geometry as a parameter, and attaches a distance attribute to every model in the returned
queryset that contains the distance (as a Distance object) to the given geometry.

In the following example (taken from the GeoDjango distance tests), the distance from the Tasmanian city of Hobart
to every other PointField in the AustraliaCity queryset is calculated:

>>> pnt = AustraliaCity.objects.get(name='Hobart').point
>>> for city in AustraliaCity.objects.distance(pnt): print(city.name, city.distance)
Wollongong 990071.220408 m
Shellharbour 972804.613941 m
Thirroul 1002334.36351 m
Mittagong 975691.632637 m
Batemans Bay 834342.185561 m
Canberra 598140.268959 m
Melbourne 575337.765042 m
Sydney 1056978.87363 m
Hobart 0.0 m
Adelaide 1162031.83522 m
Hillsdale 1049200.46122 m

Note: Because the distance attribute is a Distance object, you can easily express the value in the units of your
choice. For example, city.distance.mi is the distance value in miles and city.distance.km is the distance
value in kilometers. See Measurement Objects for usage details and the list of Supported units.

length

GeoQuerySet.length(**kwargs)

Deprecated since version 1.9: Use the Length function instead.

Returns the length of the geometry field in a length attribute (a Distance object) on each model in the queryset.

816 Chapter 6. API Reference

https://github.com/django/django/blob/master/tests/gis_tests/distapp/models.py
https://en.wikipedia.org/wiki/Tasmania

Django Documentation, Release 1.10.9.dev20171123183751

perimeter

GeoQuerySet.perimeter(**kwargs)

Deprecated since version 1.9: Use the Perimeter function instead.

Returns the perimeter of the geometry field in a perimeter attribute (a Distance object) on each model in the
queryset.

Geometry Relationships

The following methods take no arguments, and attach geometry objects each element of the GeoQuerySet that is
the result of relationship function evaluated on the geometry field.

centroid

GeoQuerySet.centroid(**kwargs)

Deprecated since version 1.9: Use the Centroid function instead.

Availability: PostGIS, Oracle, SpatiaLite

Returns the centroid value for the geographic field in a centroid attribute on each element of the
GeoQuerySet.

envelope

GeoQuerySet.envelope(**kwargs)

Deprecated since version 1.9: Use the Envelope function instead.

Availability: PostGIS, SpatiaLite

Returns a geometry representing the bounding box of the geometry field in an envelope attribute on each element
of the GeoQuerySet.

point_on_surface

GeoQuerySet.point_on_surface(**kwargs)

Deprecated since version 1.9: Use the PointOnSurface function instead.

Availability: PostGIS, Oracle, SpatiaLite

Returns a Point geometry guaranteed to lie on the surface of the geometry field in a point_on_surface attribute
on each element of the queryset; otherwise sets with None.

Geometry Editors

force_rhr

GeoQuerySet.force_rhr(**kwargs)

6.5. contrib packages 817

Django Documentation, Release 1.10.9.dev20171123183751

Deprecated since version 1.9: Use the ForceRHR function instead.

Availability: PostGIS

Returns a modified version of the polygon/multipolygon in which all of the vertices follow the Right-Hand-Rule, and
attaches as a force_rhr attribute on each element of the queryset.

reverse_geom

GeoQuerySet.reverse_geom(**kwargs)

Deprecated since version 1.9: Use the Reverse function instead.

Availability: PostGIS, Oracle

Reverse the coordinate order of the geometry field, and attaches as a reverse attribute on each element of the
queryset.

scale

GeoQuerySet.scale(x, y, z=0.0, **kwargs)

Deprecated since version 1.9: Use the Scale function instead.

Availability: PostGIS, SpatiaLite

snap_to_grid

GeoQuerySet.snap_to_grid(*args, **kwargs)

Deprecated since version 1.9: Use the SnapToGrid function instead.

Snap all points of the input geometry to the grid. How the geometry is snapped to the grid depends on how many
numeric (either float, integer, or long) arguments are given.

Number of Arguments Description
1 A single size to snap bot the X and Y grids to.
2 X and Y sizes to snap the grid to.
4 X, Y sizes and the corresponding X, Y origins.

transform

GeoQuerySet.transform(srid=4326, **kwargs)

Deprecated since version 1.9: Use the Transform function instead.

Availability: PostGIS, Oracle, SpatiaLite

The transform method transforms the geometry field of a model to the spatial reference system specified by the
srid parameter. If no srid is given, then 4326 (WGS84) is used by default.

Note: Unlike other GeoQuerySet methods, transform stores its output “in-place”. In other words, no new
attribute for the transformed geometry is placed on the models.

818 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Note: What spatial reference system an integer SRID corresponds to may depend on the spatial database used. In
other words, the SRID numbers used for Oracle are not necessarily the same as those used by PostGIS.

Example:

>>> qs = Zipcode.objects.all().transform() # Transforms to WGS84
>>> qs = Zipcode.objects.all().transform(32140) # Transforming to "NAD83 / Texas
→˓South Central"
>>> print(qs[0].poly.srid)
32140
>>> print(qs[0].poly)
POLYGON ((234055.1698884720099159 4937796.9232223574072123 ...

translate

GeoQuerySet.translate(x, y, z=0.0, **kwargs)

Deprecated since version 1.9: Use the Translate function instead.

Availability: PostGIS, SpatiaLite

Translates the geometry field to a new location using the given numeric parameters as offsets.

Geometry Operations

Availability: PostGIS, Oracle, SpatiaLite

The following methods all take a geometry as a parameter and attach a geometry to each element of the
GeoQuerySet that is the result of the operation.

difference

GeoQuerySet.difference(geom)

Deprecated since version 1.9: Use the Difference function instead.

Returns the spatial difference of the geographic field with the given geometry in a difference attribute on each
element of the GeoQuerySet.

intersection

GeoQuerySet.intersection(geom)

Deprecated since version 1.9: Use the Intersection function instead.

Returns the spatial intersection of the geographic field with the given geometry in an intersection attribute on
each element of the GeoQuerySet.

sym_difference

GeoQuerySet.sym_difference(geom)

6.5. contrib packages 819

Django Documentation, Release 1.10.9.dev20171123183751

Deprecated since version 1.9: Use the SymDifference function instead.

Returns the symmetric difference of the geographic field with the given geometry in a sym_difference attribute
on each element of the GeoQuerySet.

union

GeoQuerySet.union(geom)

Deprecated since version 1.9: Use the Union function instead.

Returns the union of the geographic field with the given geometry in an union attribute on each element of the
GeoQuerySet.

Geometry Output

The following GeoQuerySet methods will return an attribute that has the value of the geometry field in each model
converted to the requested output format.

geohash

GeoQuerySet.geohash(precision=20, **kwargs)

Deprecated since version 1.9: Use the GeoHash function instead.

Attaches a geohash attribute to every model the queryset containing the GeoHash representation of the geometry.

geojson

GeoQuerySet.geojson(**kwargs)

Deprecated since version 1.9: Use the AsGeoJSON function instead.

Availability: PostGIS, SpatiaLite

Attaches a geojson attribute to every model in the queryset that contains the GeoJSON representation of the geom-
etry.

Keyword
Argument

Description

precision It may be used to specify the number of significant digits for the coordinates in the GeoJSON
representation – the default value is 8.

crs Set this to True if you want the coordinate reference system to be included in the returned
GeoJSON.

bbox Set this to True if you want the bounding box to be included in the returned GeoJSON.

gml

GeoQuerySet.gml(**kwargs)

Deprecated since version 1.9: Use the AsGML function instead.

Availability: PostGIS, Oracle, SpatiaLite

820 Chapter 6. API Reference

http://geohash.org/
http://geojson.org/

Django Documentation, Release 1.10.9.dev20171123183751

Attaches a gml attribute to every model in the queryset that contains the Geographic Markup Language (GML)
representation of the geometry.

Example:

>>> qs = Zipcode.objects.all().gml()
>>> print(qs[0].gml)
<gml:Polygon srsName="EPSG:4326"><gml:OuterBoundaryIs>-147.78711,70.245363 ... -147.
→˓78711,70.245363</gml:OuterBoundaryIs></gml:Polygon>

Keyword
Argument

Description

precision This keyword is for PostGIS only. It may be used to specify the number of significant digits for
the coordinates in the GML representation – the default value is 8.

version This keyword is for PostGIS only. It may be used to specify the GML version used, and may only
be values of 2 or 3. The default value is 2.

kml

GeoQuerySet.kml(**kwargs)

Deprecated since version 1.9: Use the AsKML function instead.

Availability: PostGIS, SpatiaLite

Attaches a kml attribute to every model in the queryset that contains the Keyhole Markup Language (KML) rep-
resentation of the geometry fields. It should be noted that the contents of the KML are transformed to WGS84 if
necessary.

Example:

>>> qs = Zipcode.objects.all().kml()
>>> print(qs[0].kml)
<Polygon><outerBoundaryIs><LinearRing><coordinates>-103.04135,36.217596,0 ... -103.
→˓04135,36.217596,0</coordinates></LinearRing></outerBoundaryIs></Polygon>

Keyword
Argument

Description

precision This keyword may be used to specify the number of significant digits for the coordinates in the
KML representation – the default value is 8.

svg

GeoQuerySet.svg(**kwargs)

Deprecated since version 1.9: Use the AsSVG function instead.

Availability: PostGIS, SpatiaLite

Attaches a svg attribute to every model in the queryset that contains the Scalable Vector Graphics (SVG) path data of
the geometry fields.

Keyword
Argument

Description

relative If set to True, the path data will be implemented in terms of relative moves. Defaults to False,
meaning that absolute moves are used instead.

precision This keyword may be used to specify the number of significant digits for the coordinates in the
SVG representation – the default value is 8.

6.5. contrib packages 821

https://en.wikipedia.org/wiki/Geography_Markup_Language
https://developers.google.com/kml/documentation/
http://www.w3.org/Graphics/SVG/

Django Documentation, Release 1.10.9.dev20171123183751

Miscellaneous

mem_size

GeoQuerySet.mem_size(**kwargs)

Deprecated since version 1.9: Use the MemSize function instead.

Availability: PostGIS

Returns the memory size (number of bytes) that the geometry field takes in a mem_size attribute on each element of
the GeoQuerySet.

num_geom

GeoQuerySet.num_geom(**kwargs)

Deprecated since version 1.9: Use the NumGeometries function instead.

Availability: PostGIS, Oracle, SpatiaLite

Returns the number of geometries in a num_geom attribute on each element of the GeoQuerySet if the geometry
field is a collection (e.g., a GEOMETRYCOLLECTION or MULTI* field); otherwise sets with None.

num_points

GeoQuerySet.num_points(**kwargs)

Deprecated since version 1.9: Use the NumPoints function instead.

Availability: PostGIS, Oracle, SpatiaLite

Returns the number of points in the first linestring in the geometry field in a num_points attribute on each element
of the GeoQuerySet; otherwise sets with None.

Aggregate Functions

Django provides some GIS-specific aggregate functions. For details on how to use these aggregate functions, see the
topic guide on aggregation.

Keyword
Argument

Description

tolerance This keyword is for Oracle only. It is for the tolerance value used by the SDOAGGRTYPE
procedure; the Oracle documentation has more details.

Example:

>>> from django.contrib.gis.db.models import Extent, Union
>>> WorldBorder.objects.aggregate(Extent('mpoly'), Union('mpoly'))

Collect

class Collect(geo_field)

822 Chapter 6. API Reference

https://docs.oracle.com/html/B14255_01/sdo_intro.htm#sthref150

Django Documentation, Release 1.10.9.dev20171123183751

Availability: PostGIS, SpatiaLite

Returns a GEOMETRYCOLLECTION or a MULTI geometry object from the geometry column. This is analogous to
a simplified version of the Union aggregate, except it can be several orders of magnitude faster than performing a
union because it simply rolls up geometries into a collection or multi object, not caring about dissolving boundaries.

Extent

class Extent(geo_field)

Availability: PostGIS, Oracle, SpatiaLite

Returns the extent of all geo_field in the QuerySet as a four-tuple, comprising the lower left coordinate and the
upper right coordinate.

Example:

>>> qs = City.objects.filter(name__in=('Houston', 'Dallas')).aggregate(Extent('poly'))
>>> print(qs['poly__extent'])
(-96.8016128540039, 29.7633724212646, -95.3631439208984, 32.782058715820)

Extent3D

class Extent3D(geo_field)

Availability: PostGIS

Returns the 3D extent of all geo_field in the QuerySet as a six-tuple, comprising the lower left coordinate and
upper right coordinate (each with x, y, and z coordinates).

Example:

>>> qs = City.objects.filter(name__in=('Houston', 'Dallas')).aggregate(Extent3D('poly
→˓'))
>>> print(qs['poly__extent3d'])
(-96.8016128540039, 29.7633724212646, 0, -95.3631439208984, 32.782058715820, 0)

MakeLine

class MakeLine(geo_field)

Availability: PostGIS, SpatiaLite

Returns a LineString constructed from the point field geometries in the QuerySet. Currently, ordering the
queryset has no effect.

SpatiaLite support was added.

Example:

>>> qs = City.objects.filter(name__in=('Houston', 'Dallas')).aggregate(MakeLine('poly
→˓'))
>>> print(qs['poly__makeline'])
LINESTRING (-95.3631510000000020 29.7633739999999989, -96.8016109999999941 32.
→˓7820570000000018)

6.5. contrib packages 823

Django Documentation, Release 1.10.9.dev20171123183751

Union

class Union(geo_field)

Availability: PostGIS, Oracle, SpatiaLite

This method returns a GEOSGeometry object comprising the union of every geometry in the queryset. Please note
that use of Union is processor intensive and may take a significant amount of time on large querysets.

Note: If the computation time for using this method is too expensive, consider using Collect instead.

Example:

>>> u = Zipcode.objects.aggregate(Union(poly)) # This may take a long time.
>>> u = Zipcode.objects.filter(poly__within=bbox).aggregate(Union(poly)) # A more
→˓sensible approach.

Geographic Database Functions

The functions documented on this page allow users to access geographic database functions to be used in annotations,
aggregations, or filters in Django.

Example:

>>> from django.contrib.gis.db.models.functions import Length
>>> Track.objects.annotate(length=Length('line')).filter(length__gt=100)

Not all backends support all functions, so refer to the documentation of each function to see if your database backend
supports the function you want to use. If you call a geographic function on a backend that doesn’t support it, you’ll
get a NotImplementedError exception.

Function’s summary:

Measure-
ment

Relationships Operations Editors Output
format

Miscellaneous

Area BoundingCircle Difference ForceRHR AsGeoJSON IsValid
Distance Centroid Intersection MakeValid AsGML MemSize
Length Envelope SymDifference Reverse AsKML NumGeometries
Perimeter PointOnSurface Union Scale AsSVG NumPoints

SnapToGrid GeoHash
Transform
Translate

Area

class Area(expression, **extra)

Availability: MySQL, Oracle, PostGIS, SpatiaLite

Accepts a single geographic field or expression and returns the area of the field as an Area measure. On MySQL, a
raw float value is returned, as it’s not possible to automatically determine the unit of the field.

824 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

AsGeoJSON

class AsGeoJSON(expression, bbox=False, crs=False, precision=8, **extra)

Availability: PostGIS, SpatiaLite

Accepts a single geographic field or expression and returns a GeoJSON representation of the geometry. Note that the
result is not a complete GeoJSON structure but only the geometry key content of a GeoJSON structure. See also
GeoJSON Serializer.

Example:

>>> City.objects.annotate(json=AsGeoJSON('point')).get(name='Chicago').json
{"type":"Point","coordinates":[-87.65018,41.85039]}

Keyword
Argument

Description

bbox Set this to True if you want the bounding box to be included in the returned GeoJSON.
crs Set this to True if you want the coordinate reference system to be included in the returned

GeoJSON.
precision It may be used to specify the number of significant digits for the coordinates in the GeoJSON

representation – the default value is 8.

AsGML

class AsGML(expression, version=2, precision=8, **extra)

Availability: PostGIS, SpatiaLite

Accepts a single geographic field or expression and returns a Geographic Markup Language (GML) representation of
the geometry.

Example:

>>> qs = Zipcode.objects.annotate(gml=AsGML('poly'))
>>> print(qs[0].gml)
<gml:Polygon srsName="EPSG:4326"><gml:OuterBoundaryIs>-147.78711,70.245363 ...
-147.78711,70.245363</gml:OuterBoundaryIs></gml:Polygon>

Keyword
Argument

Description

precision Specifies the number of significant digits for the coordinates in the GML representation – the
default value is 8.

version Specifies the GML version to use: 2 (default) or 3.

AsKML

class AsKML(expression, precision=8, **extra)

Availability: PostGIS, SpatiaLite

Accepts a single geographic field or expression and returns a Keyhole Markup Language (KML) representation of the
geometry.

Example:

6.5. contrib packages 825

http://geojson.org/
https://en.wikipedia.org/wiki/Geography_Markup_Language
https://developers.google.com/kml/documentation/

Django Documentation, Release 1.10.9.dev20171123183751

>>> qs = Zipcode.objects.annotate(kml=AsKML('poly'))
>>> print(qs[0].kml)
<Polygon><outerBoundaryIs><LinearRing><coordinates>-103.04135,36.217596,0 ...
-103.04135,36.217596,0</coordinates></LinearRing></outerBoundaryIs></Polygon>

Keyword
Argument

Description

precision This keyword may be used to specify the number of significant digits for the coordinates in the
KML representation – the default value is 8.

AsSVG

class AsSVG(expression, relative=False, precision=8, **extra)

Availability: PostGIS, SpatiaLite

Accepts a single geographic field or expression and returns a Scalable Vector Graphics (SVG) representation of the
geometry.

Keyword
Argument

Description

relative If set to True, the path data will be implemented in terms of relative moves. Defaults to False,
meaning that absolute moves are used instead.

precision This keyword may be used to specify the number of significant digits for the coordinates in the
SVG representation – the default value is 8.

BoundingCircle

class BoundingCircle(expression, num_seg=48, **extra)

Availability: PostGIS

Accepts a single geographic field or expression and returns the smallest circle polygon that can fully contain the
geometry.

Centroid

class Centroid(expression, **extra)

Availability: MySQL, PostGIS, Oracle, SpatiaLite

Accepts a single geographic field or expression and returns the centroid value of the geometry.

Difference

class Difference(expr1, expr2, **extra)

Availability: MySQL (≥ 5.6.1), PostGIS, Oracle, SpatiaLite

Accepts two geographic fields or expressions and returns the geometric difference, that is the part of geometry A that
does not intersect with geometry B.

MySQL support was added.

826 Chapter 6. API Reference

http://www.w3.org/Graphics/SVG/
http://postgis.net/docs/ST_MinimumBoundingCircle.html

Django Documentation, Release 1.10.9.dev20171123183751

Distance

class Distance(expr1, expr2, spheroid=None, **extra)

Availability: MySQL (≥ 5.6.1), PostGIS, Oracle, SpatiaLite

Accepts two geographic fields or expressions and returns the distance between them, as a Distance object. On
MySQL, a raw float value is returned, as it’s not possible to automatically determine the unit of the field.

On backends that support distance calculation on geodetic coordinates, the proper backend function is automatically
chosen depending on the SRID value of the geometries (e.g. ST_Distance_Sphere on PostGIS).

When distances are calculated with geodetic (angular) coordinates, as is the case with the default WGS84 (4326)
SRID, you can set the spheroid keyword argument to decide if the calculation should be based on a simple sphere
(less accurate, less resource-intensive) or on a spheroid (more accurate, more resource-intensive).

In the following example, the distance from the city of Hobart to every other PointField in the AustraliaCity
queryset is calculated:

>>> from django.contrib.gis.db.models.functions import Distance
>>> pnt = AustraliaCity.objects.get(name='Hobart').point
>>> for city in AustraliaCity.objects.annotate(distance=Distance('point', pnt)):
... print(city.name, city.distance)
Wollongong 990071.220408 m
Shellharbour 972804.613941 m
Thirroul 1002334.36351 m
...

Note: Because the distance attribute is a Distance object, you can easily express the value in the units of your
choice. For example, city.distance.mi is the distance value in miles and city.distance.km is the distance
value in kilometers. See Measurement Objects for usage details and the list of Supported units.

Envelope

class Envelope(expression, **extra)

Availability: MySQL, PostGIS, SpatiaLite

Accepts a single geographic field or expression and returns the geometry representing the bounding box of the geom-
etry.

ForceRHR

class ForceRHR(expression, **extra)

Availability: PostGIS

Accepts a single geographic field or expression and returns a modified version of the polygon/multipolygon in which
all of the vertices follow the right-hand rule.

GeoHash

class GeoHash(expression, precision=None, **extra)

6.5. contrib packages 827

http://postgis.net/docs/ST_ForceRHR.html

Django Documentation, Release 1.10.9.dev20171123183751

Availability: PostGIS, SpatiaLite (≥ 4.0, LWGEOM)

Accepts a single geographic field or expression and returns a GeoHash representation of the geometry.

The precision keyword argument controls the number of characters in the result.

SpatiaLite support was added.

Intersection

class Intersection(expr1, expr2, **extra)

Availability: MySQL (≥ 5.6.1), PostGIS, Oracle, SpatiaLite

Accepts two geographic fields or expressions and returns the geometric intersection between them.

MySQL support was added.

IsValid

class IsValid(expr)

Availability: PostGIS

Accepts a geographic field or expression and tests if the value is well formed. Returns True if its value is a valid
geometry and False otherwise.

Length

class Length(expression, spheroid=True, **extra)

Availability: MySQL, Oracle, PostGIS, SpatiaLite

Accepts a single geographic linestring or multilinestring field or expression and returns its length as an Distance
measure. On MySQL, a raw float value is returned, as it’s not possible to automatically determine the unit of the field.

On PostGIS and SpatiaLite, when the coordinates are geodetic (angular), you can specify if the calculation should
be based on a simple sphere (less accurate, less resource-intensive) or on a spheroid (more accurate, more resource-
intensive) with the spheroid keyword argument.

MakeValid

class MakeValid(expr)

Availability: PostGIS

Accepts a geographic field or expression and attempts to convert the value into a valid geometry without losing any of
the input vertices. Geometries that are already valid are returned without changes. Simple polygons might become a
multipolygon and the result might be of lower dimension than the input.

MemSize

class MemSize(expression, **extra)

828 Chapter 6. API Reference

https://en.wikipedia.org/wiki/Geohash

Django Documentation, Release 1.10.9.dev20171123183751

Availability: PostGIS

Accepts a single geographic field or expression and returns the memory size (number of bytes) that the geometry field
takes.

NumGeometries

class NumGeometries(expression, **extra)

Availability: MySQL, PostGIS, Oracle, SpatiaLite

Accepts a single geographic field or expression and returns the number of geometries if the geometry field is a collec-
tion (e.g., a GEOMETRYCOLLECTION or MULTI* field); otherwise returns None.

NumPoints

class NumPoints(expression, **extra)

Availability: MySQL, PostGIS, Oracle, SpatiaLite

Accepts a single geographic field or expression and returns the number of points in the first linestring in the geometry
field; otherwise returns None.

Perimeter

class Perimeter(expression, **extra)

Availability: PostGIS, Oracle, SpatiaLite (≥ 4.0)

Accepts a single geographic field or expression and returns the perimeter of the geometry field as a Distance object.

PointOnSurface

class PointOnSurface(expression, **extra)

Availability: PostGIS, Oracle, SpatiaLite

Accepts a single geographic field or expression and returns a Point geometry guaranteed to lie on the surface of the
field; otherwise returns None.

Reverse

class Reverse(expression, **extra)

Availability: PostGIS, Oracle, SpatiaLite (≥ 4.0)

Accepts a single geographic field or expression and returns a geometry with reversed coordinates.

Scale

class Scale(expression, x, y, z=0.0, **extra)

6.5. contrib packages 829

Django Documentation, Release 1.10.9.dev20171123183751

Availability: PostGIS, SpatiaLite

Accepts a single geographic field or expression and returns a geometry with scaled coordinates by multiplying them
with the x, y, and optionally z parameters.

SnapToGrid

class SnapToGrid(expression, *args, **extra)

Availability: PostGIS, SpatiaLite (≥ 3.1)

Accepts a single geographic field or expression and returns a geometry with all points snapped to the given grid. How
the geometry is snapped to the grid depends on how many numeric (either float, integer, or long) arguments are given.

Number of Arguments Description
1 A single size to snap both the X and Y grids to.
2 X and Y sizes to snap the grid to.
4 X, Y sizes and the corresponding X, Y origins.

SymDifference

class SymDifference(expr1, expr2, **extra)

Availability: MySQL (≥ 5.6.1), PostGIS, Oracle, SpatiaLite

Accepts two geographic fields or expressions and returns the geometric symmetric difference (union without the
intersection) between the given parameters.

MySQL support was added.

Transform

class Transform(expression, srid, **extra)

Availability: PostGIS, Oracle, SpatiaLite

Accepts a geographic field or expression and a SRID integer code, and returns the transformed geometry to the spatial
reference system specified by the srid parameter.

Note: What spatial reference system an integer SRID corresponds to may depend on the spatial database used. In
other words, the SRID numbers used for Oracle are not necessarily the same as those used by PostGIS.

Translate

class Translate(expression, x, y, z=0.0, **extra)

Availability: PostGIS, SpatiaLite

Accepts a single geographic field or expression and returns a geometry with its coordinates offset by the x, y, and
optionally z numeric parameters.

830 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Union

class Union(expr1, expr2, **extra)

Availability: MySQL (≥ 5.6.1), PostGIS, Oracle, SpatiaLite

Accepts two geographic fields or expressions and returns the union of both geometries.

Measurement Objects

The django.contrib.gis.measure module contains objects that allow for convenient representation of dis-
tance and area units of measure.1 Specifically, it implements two objects, Distance and Area – both of which may
be accessed via the D and A convenience aliases, respectively.

Example

Distance objects may be instantiated using a keyword argument indicating the context of the units. In the example
below, two different distance objects are instantiated in units of kilometers (km) and miles (mi):

>>> from django.contrib.gis.measure import Distance, D
>>> d1 = Distance(km=5)
>>> print(d1)
5.0 km
>>> d2 = D(mi=5) # `D` is an alias for `Distance`
>>> print(d2)
5.0 mi

Conversions are easy, just access the preferred unit attribute to get a converted distance quantity:

>>> print(d1.mi) # Converting 5 kilometers to miles
3.10685596119
>>> print(d2.km) # Converting 5 miles to kilometers
8.04672

Moreover, arithmetic operations may be performed between the distance objects:

>>> print(d1 + d2) # Adding 5 miles to 5 kilometers
13.04672 km
>>> print(d2 - d1) # Subtracting 5 kilometers from 5 miles
1.89314403881 mi

Two Distance objects multiplied together will yield an Area object, which uses squared units of measure:

>>> a = d1 * d2 # Returns an Area object.
>>> print(a)
40.2336 sq_km

To determine what the attribute abbreviation of a unit is, the unit_attname class method may be used:

>>> print(Distance.unit_attname('US Survey Foot'))
survey_ft
>>> print(Distance.unit_attname('centimeter'))
cm

1 Robert Coup is the initial author of the measure objects, and was inspired by Brian Beck’s work in geopy and Geoff Biggs’ PhD work on
dimensioned units for robotics.

6.5. contrib packages 831

https://koordinates.com/
https://github.com/geopy/geopy/

Django Documentation, Release 1.10.9.dev20171123183751

Supported units

Unit Attribute Full name or alias(es)
km Kilometre, Kilometer
mi Mile
m Meter, Metre
yd Yard
ft Foot, Foot (International)
survey_ft U.S. Foot, US survey foot
inch Inches
cm Centimeter
mm Millimetre, Millimeter
um Micrometer, Micrometre
british_ft British foot (Sears 1922)
british_yd British yard (Sears 1922)
british_chain_sears British chain (Sears 1922)
indian_yd Indian yard, Yard (Indian)
sears_yd Yard (Sears)
clarke_ft Clarke’s Foot
chain Chain
chain_benoit Chain (Benoit)
chain_sears Chain (Sears)
british_chain_benoit British chain (Benoit 1895 B)
british_chain_sears_truncated British chain (Sears 1922 truncated)
gold_coast_ft Gold Coast foot
link Link
link_benoit Link (Benoit)
link_sears Link (Sears)
clarke_link Clarke’s link
fathom Fathom
rod Rod
nm Nautical Mile
nm_uk Nautical Mile (UK)
german_m German legal metre

Note: Area attributes are the same as Distance attributes, except they are prefixed with sq_ (area units are square
in nature). For example, Area(sq_m=2) creates an Area object representing two square meters.

Measurement API

Distance

class Distance(**kwargs)
To initialize a distance object, pass in a keyword corresponding to the desired unit attribute name set with desired
value. For example, the following creates a distance object representing 5 miles:

>>> dist = Distance(mi=5)

832 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

__getattr__(unit_att)

Returns the distance value in units corresponding to the given unit attribute. For example:

>>> print(dist.km)
8.04672

classmethod unit_attname(unit_name)

Returns the distance unit attribute name for the given full unit name. For example:

>>> Distance.unit_attname('Mile')
'mi'

class D
Alias for Distance class.

Area

class Area(**kwargs)
To initialize an area object, pass in a keyword corresponding to the desired unit attribute name set with desired
value. For example, the following creates an area object representing 5 square miles:

>>> a = Area(sq_mi=5)

__getattr__(unit_att)

Returns the area value in units corresponding to the given unit attribute. For example:

>>> print(a.sq_km)
12.949940551680001

classmethod unit_attname(unit_name)

Returns the area unit attribute name for the given full unit name. For example:

>>> Area.unit_attname('Kilometer')
'sq_km'

class A
Alias for Area class.

GEOS API

Background

What is GEOS?

GEOS stands for Geometry Engine - Open Source, and is a C++ library, ported from the Java Topology Suite. GEOS
implements the OpenGIS Simple Features for SQL spatial predicate functions and spatial operators. GEOS, now an
OSGeo project, was initially developed and maintained by Refractions Research of Victoria, Canada.

6.5. contrib packages 833

https://trac.osgeo.org/geos/
http://sourceforge.net/projects/jts-topo-suite/
http://www.opengeospatial.org/standards/sfs
http://www.refractions.net/

Django Documentation, Release 1.10.9.dev20171123183751

Features

GeoDjango implements a high-level Python wrapper for the GEOS library, its features include:

• A BSD-licensed interface to the GEOS geometry routines, implemented purely in Python using ctypes.

• Loosely-coupled to GeoDjango. For example, GEOSGeometry objects may be used outside of a Django
project/application. In other words, no need to have DJANGO_SETTINGS_MODULE set or use a database, etc.

• Mutability: GEOSGeometry objects may be modified.

• Cross-platform and tested; compatible with Windows, Linux, Solaris, and Mac OS X platforms.

Tutorial

This section contains a brief introduction and tutorial to using GEOSGeometry objects.

Creating a Geometry

GEOSGeometry objects may be created in a few ways. The first is to simply instantiate the object on some spatial
input – the following are examples of creating the same geometry from WKT, HEX, WKB, and GeoJSON:

>>> from django.contrib.gis.geos import GEOSGeometry
>>> pnt = GEOSGeometry('POINT(5 23)') # WKT
>>> pnt = GEOSGeometry('010100000000000000000014400000000000003740') # HEX
>>> pnt = GEOSGeometry(buffer(
→˓'\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14@\x00\x00\x00\x00\x00\x007@'))
>>> pnt = GEOSGeometry('{ "type": "Point", "coordinates": [5.000000, 23.000000] }')
→˓# GeoJSON

Another option is to use the constructor for the specific geometry type that you wish to create. For example, a Point
object may be created by passing in the X and Y coordinates into its constructor:

>>> from django.contrib.gis.geos import Point
>>> pnt = Point(5, 23)

All these constructors take the keyword argument srid. For example:

>>> from django.contrib.gis.geos import GEOSGeometry, LineString, Point
>>> print(GEOSGeometry('POINT (0 0)', srid=4326))
SRID=4326;POINT (0 0)
>>> print(LineString((0, 0), (1, 1), srid=4326))
SRID=4326;LINESTRING (0 0, 1 1)
>>> print(Point(0, 0, srid=32140))
SRID=32140;POINT (0 0)

Finally, there is the fromfile() factory method which returns a GEOSGeometry object from a file:

>>> from django.contrib.gis.geos import fromfile
>>> pnt = fromfile('/path/to/pnt.wkt')
>>> pnt = fromfile(open('/path/to/pnt.wkt'))

My logs are filled with GEOS-related errors

You find many TypeError or AttributeError exceptions filling your Web server’s log files. This generally
means that you are creating GEOS objects at the top level of some of your Python modules. Then, due to a race

834 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

condition in the garbage collector, your module is garbage collected before the GEOS object. To prevent this, create
GEOSGeometry objects inside the local scope of your functions/methods.

Geometries are Pythonic

GEOSGeometry objects are ‘Pythonic’, in other words components may be accessed, modified, and iterated over
using standard Python conventions. For example, you can iterate over the coordinates in a Point:

>>> pnt = Point(5, 23)
>>> [coord for coord in pnt]
[5.0, 23.0]

With any geometry object, the GEOSGeometry.coords property may be used to get the geometry coordinates as
a Python tuple:

>>> pnt.coords
(5.0, 23.0)

You can get/set geometry components using standard Python indexing techniques. However, what is returned depends
on the geometry type of the object. For example, indexing on a LineString returns a coordinate tuple:

>>> from django.contrib.gis.geos import LineString
>>> line = LineString((0, 0), (0, 50), (50, 50), (50, 0), (0, 0))
>>> line[0]
(0.0, 0.0)
>>> line[-2]
(50.0, 0.0)

Whereas indexing on a Polygon will return the ring (a LinearRing object) corresponding to the index:

>>> from django.contrib.gis.geos import Polygon
>>> poly = Polygon(((0.0, 0.0), (0.0, 50.0), (50.0, 50.0), (50.0, 0.0), (0.0, 0.0)))
>>> poly[0]
<LinearRing object at 0x1044395b0>
>>> poly[0][-2] # second-to-last coordinate of external ring
(50.0, 0.0)

In addition, coordinates/components of the geometry may added or modified, just like a Python list:

>>> line[0] = (1.0, 1.0)
>>> line.pop()
(0.0, 0.0)
>>> line.append((1.0, 1.0))
>>> line.coords
((1.0, 1.0), (0.0, 50.0), (50.0, 50.0), (50.0, 0.0), (1.0, 1.0))

Geometries support set-like operators:

>>> from django.contrib.gis.geos import LineString
>>> ls1 = LineString((0, 0), (2, 2))
>>> ls2 = LineString((1, 1), (3, 3))
>>> print(ls1 | ls2) # equivalent to `ls1.union(ls2)`
MULTILINESTRING ((0 0, 1 1), (1 1, 2 2), (2 2, 3 3))
>>> print(ls1 & ls2) # equivalent to `ls1.intersection(ls2)`
LINESTRING (1 1, 2 2)
>>> print(ls1 - ls2) # equivalent to `ls1.difference(ls2)`

6.5. contrib packages 835

Django Documentation, Release 1.10.9.dev20171123183751

LINESTRING(0 0, 1 1)
>>> print(ls1 ^ ls2) # equivalent to `ls1.sym_difference(ls2)`
MULTILINESTRING ((0 0, 1 1), (2 2, 3 3))

Equality operator doesn’t check spatial equality

The GEOSGeometry equality operator uses equals_exact(), not equals(), i.e. it requires the compared
geometries to have the same coordinates in the same positions:

>>> from django.contrib.gis.geos import LineString
>>> ls1 = LineString((0, 0), (1, 1))
>>> ls2 = LineString((1, 1), (0, 0))
>>> ls1.equals(ls2)
True
>>> ls1 == ls2
False

Geometry Objects

GEOSGeometry

class GEOSGeometry(geo_input, srid=None)

Parameters

• geo_input – Geometry input value (string or buffer)

• srid (int) – spatial reference identifier

This is the base class for all GEOS geometry objects. It initializes on the given geo_input argument, and then
assumes the proper geometry subclass (e.g., GEOSGeometry('POINT(1 1)') will create a Point object).

The following input formats, along with their corresponding Python types, are accepted:

Format Input Type
WKT / EWKT str or unicode
HEX / HEXEWKB str or unicode
WKB / EWKB buffer
GeoJSON (requires GDAL) str or unicode

Properties

GEOSGeometry.coords
Returns the coordinates of the geometry as a tuple.

GEOSGeometry.dims
Returns the dimension of the geometry:

• 0 for Points and MultiPoints

• 1 for LineStrings and MultiLineStrings

• 2 for Polygons and MultiPolygons

• -1 for empty GeometryCollections

836 Chapter 6. API Reference

https://docs.python.org/3/library/functions.html#int

Django Documentation, Release 1.10.9.dev20171123183751

• the maximum dimension of its elements for non-empty GeometryCollections

GEOSGeometry.empty
Returns whether or not the set of points in the geometry is empty.

GEOSGeometry.geom_type
Returns a string corresponding to the type of geometry. For example:

>>> pnt = GEOSGeometry('POINT(5 23)')
>>> pnt.geom_type
'Point'

GEOSGeometry.geom_typeid
Returns the GEOS geometry type identification number. The following table shows the value for each geometry
type:

Geometry ID
Point 0
LineString 1
LinearRing 2
Polygon 3
MultiPoint 4
MultiLineString 5
MultiPolygon 6
GeometryCollection 7

GEOSGeometry.num_coords
Returns the number of coordinates in the geometry.

GEOSGeometry.num_geom
Returns the number of geometries in this geometry. In other words, will return 1 on anything but geometry
collections.

GEOSGeometry.hasz
Returns a boolean indicating whether the geometry is three-dimensional.

GEOSGeometry.ring
Returns a boolean indicating whether the geometry is a LinearRing.

GEOSGeometry.simple
Returns a boolean indicating whether the geometry is ‘simple’. A geometry is simple if and only if it does
not intersect itself (except at boundary points). For example, a LineString object is not simple if it inter-
sects itself. Thus, LinearRing and Polygon objects are always simple because they do cannot intersect
themselves, by definition.

GEOSGeometry.valid
Returns a boolean indicating whether the geometry is valid.

GEOSGeometry.valid_reason
Returns a string describing the reason why a geometry is invalid.

GEOSGeometry.srid
Property that may be used to retrieve or set the SRID associated with the geometry. For example:

>>> pnt = Point(5, 23)
>>> print(pnt.srid)
None
>>> pnt.srid = 4326
>>> pnt.srid
4326

6.5. contrib packages 837

Django Documentation, Release 1.10.9.dev20171123183751

Output Properties

The properties in this section export the GEOSGeometry object into a different. This output may be in the form of a
string, buffer, or even another object.

GEOSGeometry.ewkt
Returns the “extended” Well-Known Text of the geometry. This representation is specific to PostGIS and is
a superset of the OGC WKT standard.1 Essentially the SRID is prepended to the WKT representation, for
example SRID=4326;POINT(5 23).

Note: The output from this property does not include the 3dm, 3dz, and 4d information that PostGIS supports
in its EWKT representations.

GEOSGeometry.hex
Returns the WKB of this Geometry in hexadecimal form. Please note that the SRID value is not included in this
representation because it is not a part of the OGC specification (use the GEOSGeometry.hexewkb property
instead).

GEOSGeometry.hexewkb
Returns the EWKB of this Geometry in hexadecimal form. This is an extension of the WKB specification that
includes the SRID value that are a part of this geometry.

GEOSGeometry.json
Returns the GeoJSON representation of the geometry. Note that the result is not a complete GeoJSON structure
but only the geometry key content of a GeoJSON structure. See also GeoJSON Serializer.

GEOSGeometry.geojson
Alias for GEOSGeometry.json.

GEOSGeometry.kml
Returns a KML (Keyhole Markup Language) representation of the geometry. This should only be used for
geometries with an SRID of 4326 (WGS84), but this restriction is not enforced.

GEOSGeometry.ogr
Returns an OGRGeometry object corresponding to the GEOS geometry.

Note: Requires GDAL.

GEOSGeometry.wkb
Returns the WKB (Well-Known Binary) representation of this Geometry as a Python buffer. SRID value is not
included, use the GEOSGeometry.ewkb property instead.

GEOSGeometry.ewkb
Return the EWKB representation of this Geometry as a Python buffer. This is an extension of the WKB specifi-
cation that includes any SRID value that are a part of this geometry.

GEOSGeometry.wkt
Returns the Well-Known Text of the geometry (an OGC standard).

Non-significant zeros are stripped from the output.

1 See PostGIS EWKB, EWKT and Canonical Forms, PostGIS documentation at Ch. 4.1.2.

838 Chapter 6. API Reference

https://developers.google.com/kml/documentation/
http://postgis.net/docs/using_postgis_dbmanagement.html#EWKB_EWKT

Django Documentation, Release 1.10.9.dev20171123183751

Spatial Predicate Methods

All of the following spatial predicate methods take another GEOSGeometry instance (other) as a parameter, and
return a boolean.

GEOSGeometry.contains(other)
Returns True if other.within(this) returns True.

GEOSGeometry.covers(other)
Returns True if this geometry covers the specified geometry.

The covers predicate has the following equivalent definitions:

• Every point of the other geometry is a point of this geometry.

• The DE-9IM Intersection Matrix for the two geometries is T*****FF*, *T****FF*, ***T**FF*, or
****T*FF*.

If either geometry is empty, returns False.

This predicate is similar to GEOSGeometry.contains(), but is more inclusive (i.e. returns True for more
cases). In particular, unlike contains() it does not distinguish between points in the boundary and in the
interior of geometries. For most situations, covers() should be preferred to contains(). As an added
benefit, covers() is more amenable to optimization and hence should outperform contains().

GEOSGeometry.crosses(other)
Returns True if the DE-9IM intersection matrix for the two Geometries is T*T****** (for a point and a
curve,a point and an area or a line and an area) 0******** (for two curves).

GEOSGeometry.disjoint(other)
Returns True if the DE-9IM intersection matrix for the two geometries is FF*FF****.

GEOSGeometry.equals(other)
Returns True if the DE-9IM intersection matrix for the two geometries is T*F**FFF*.

GEOSGeometry.equals_exact(other, tolerance=0)
Returns true if the two geometries are exactly equal, up to a specified tolerance. The tolerance
value should be a floating point number representing the error tolerance in the comparison, e.g., poly1.
equals_exact(poly2, 0.001) will compare equality to within one thousandth of a unit.

GEOSGeometry.intersects(other)
Returns True if GEOSGeometry.disjoint() is False.

GEOSGeometry.overlaps(other)
Returns true if the DE-9IM intersection matrix for the two geometries is T*T***T** (for two points or two
surfaces) 1*T***T** (for two curves).

GEOSGeometry.relate_pattern(other, pattern)
Returns True if the elements in the DE-9IM intersection matrix for this geometry and the other matches the
given pattern – a string of nine characters from the alphabet: {T, F, *, 0}.

GEOSGeometry.touches(other)
Returns True if the DE-9IM intersection matrix for the two geometries is FT*******, F**T***** or
F***T****.

GEOSGeometry.within(other)
Returns True if the DE-9IM intersection matrix for the two geometries is T*F**F***.

6.5. contrib packages 839

Django Documentation, Release 1.10.9.dev20171123183751

Topological Methods

GEOSGeometry.buffer(width, quadsegs=8)
Returns a GEOSGeometry that represents all points whose distance from this geometry is less than or equal
to the given width. The optional quadsegs keyword sets the number of segments used to approximate a
quarter circle (defaults is 8).

GEOSGeometry.difference(other)
Returns a GEOSGeometry representing the points making up this geometry that do not make up other.

GEOSGeometry.interpolate(distance)

GEOSGeometry.interpolate_normalized(distance)
Given a distance (float), returns the point (or closest point) within the geometry (LineString or
MultiLineString) at that distance. The normalized version takes the distance as a float between 0 (ori-
gin) and 1 (endpoint).

Reverse of GEOSGeometry.project().

GEOSGeometry.intersection(other)
Returns a GEOSGeometry representing the points shared by this geometry and other.

GEOSGeometry.project(point)

GEOSGeometry.project_normalized(point)
Returns the distance (float) from the origin of the geometry (LineString or MultiLineString) to the
point projected on the geometry (that is to a point of the line the closest to the given point). The normalized
version returns the distance as a float between 0 (origin) and 1 (endpoint).

Reverse of GEOSGeometry.interpolate().

GEOSGeometry.relate(other)
Returns the DE-9IM intersection matrix (a string) representing the topological relationship between this geom-
etry and the other.

GEOSGeometry.simplify(tolerance=0.0, preserve_topology=False)
Returns a new GEOSGeometry , simplified to the specified tolerance using the Douglas-Peucker algorithm. A
higher tolerance value implies fewer points in the output. If no tolerance is provided, it defaults to 0.

By default, this function does not preserve topology. For example, Polygon objects can be split, be collapsed
into lines, or disappear. Polygon holes can be created or disappear, and lines may cross. By specifying
preserve_topology=True, the result will have the same dimension and number of components as the
input; this is significantly slower, however.

GEOSGeometry.sym_difference(other)
Returns a GEOSGeometry combining the points in this geometry not in other, and the points in other not in
this geometry.

GEOSGeometry.union(other)
Returns a GEOSGeometry representing all the points in this geometry and the other.

Topological Properties

GEOSGeometry.boundary
Returns the boundary as a newly allocated Geometry object.

GEOSGeometry.centroid
Returns a Point object representing the geometric center of the geometry. The point is not guaranteed to be
on the interior of the geometry.

840 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

GEOSGeometry.convex_hull
Returns the smallest Polygon that contains all the points in the geometry.

GEOSGeometry.envelope
Returns a Polygon that represents the bounding envelope of this geometry. Note that it can also return a
Point if the input geometry is a point.

GEOSGeometry.point_on_surface
Computes and returns a Point guaranteed to be on the interior of this geometry.

GEOSGeometry.unary_union
Computes the union of all the elements of this geometry.

The result obeys the following contract:

• Unioning a set of LineStrings has the effect of fully noding and dissolving the linework.

• Unioning a set of Polygons will always return a Polygon or MultiPolygon geometry (unlike
GEOSGeometry.union(), which may return geometries of lower dimension if a topology collapse
occurs).

Other Properties & Methods

GEOSGeometry.area
This property returns the area of the Geometry.

GEOSGeometry.extent
This property returns the extent of this geometry as a 4-tuple, consisting of (xmin, ymin, xmax, ymax).

GEOSGeometry.clone()
This method returns a GEOSGeometry that is a clone of the original.

GEOSGeometry.distance(geom)
Returns the distance between the closest points on this geometry and the given geom (another GEOSGeometry
object).

Note: GEOS distance calculations are linear – in other words, GEOS does not perform a spherical calculation
even if the SRID specifies a geographic coordinate system.

GEOSGeometry.length
Returns the length of this geometry (e.g., 0 for a Point, the length of a LineString, or the circumference
of a Polygon).

GEOSGeometry.prepared
Returns a GEOS PreparedGeometry for the contents of this geometry. PreparedGeometry objects are
optimized for the contains, intersects, covers, crosses, disjoint, overlaps, touches and within operations. Refer
to the Prepared Geometries documentation for more information.

GEOSGeometry.srs
Returns a SpatialReference object corresponding to the SRID of the geometry or None.

Note: Requires GDAL.

GEOSGeometry.transform(ct, clone=False)
Transforms the geometry according to the given coordinate transformation parameter (ct), which may be
an integer SRID, spatial reference WKT string, a PROJ.4 string, a SpatialReference object, or a

6.5. contrib packages 841

Django Documentation, Release 1.10.9.dev20171123183751

CoordTransform object. By default, the geometry is transformed in-place and nothing is returned. However
if the clone keyword is set, then the geometry is not modified and a transformed clone of the geometry is
returned instead.

Note: Requires GDAL. Raises GEOSException if GDAL is not available or if the geometry’s SRID is None
or less than 0. It doesn’t impose any constraints on the geometry’s SRID if called with a CoordTransform
object.

In previous versions, it required the geometry’s SRID to be a positive integer even if it was called with a
CoordTransform object.

Point

class Point(x=None, y=None, z=None, srid=None)
Point objects are instantiated using arguments that represent the component coordinates of the point or with a
single sequence coordinates. For example, the following are equivalent:

>>> pnt = Point(5, 23)
>>> pnt = Point([5, 23])

Empty Point objects may be instantiated by passing no arguments or an empty sequence. The following are
equivalent:

>>> pnt = Point()
>>> pnt = Point([])

In previous versions, an empty Point couldn’t be instantiated.

LineString

class LineString(*args, **kwargs)
LineString objects are instantiated using arguments that are either a sequence of coordinates or Point
objects. For example, the following are equivalent:

>>> ls = LineString((0, 0), (1, 1))
>>> ls = LineString(Point(0, 0), Point(1, 1))

In addition, LineString objects may also be created by passing in a single sequence of coordinate or Point
objects:

>>> ls = LineString(((0, 0), (1, 1)))
>>> ls = LineString([Point(0, 0), Point(1, 1)])

Empty LineString objects may be instantiated by passing no arguments or an empty sequence. The follow-
ing are equivalent:

>>> ls = LineString()
>>> ls = LineString([])

In previous versions, an empty LineString couldn’t be instantiated.

closed
Returns whether or not this LineString is closed.

842 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

LinearRing

class LinearRing(*args, **kwargs)
LinearRing objects are constructed in the exact same way as LineString objects, however the coordinates
must be closed, in other words, the first coordinates must be the same as the last coordinates. For example:

>>> ls = LinearRing((0, 0), (0, 1), (1, 1), (0, 0))

Notice that (0, 0) is the first and last coordinate – if they were not equal, an error would be raised.

Polygon

class Polygon(*args, **kwargs)
Polygon objects may be instantiated by passing in parameters that represent the rings of the polygon. The pa-
rameters must either be LinearRing instances, or a sequence that may be used to construct a LinearRing:

>>> ext_coords = ((0, 0), (0, 1), (1, 1), (1, 0), (0, 0))
>>> int_coords = ((0.4, 0.4), (0.4, 0.6), (0.6, 0.6), (0.6, 0.4), (0.4, 0.4))
>>> poly = Polygon(ext_coords, int_coords)
>>> poly = Polygon(LinearRing(ext_coords), LinearRing(int_coords))

In previous versions, an empty Polygon couldn’t be instantiated.

classmethod from_bbox(bbox)
Returns a polygon object from the given bounding-box, a 4-tuple comprising (xmin, ymin, xmax,
ymax).

num_interior_rings
Returns the number of interior rings in this geometry.

Comparing Polygons

Note that it is possible to compare Polygon objects directly with < or >, but as the comparison is made through
Polygon’s LineString, it does not mean much (but is consistent and quick). You can always force the comparison
with the area property:

>>> if poly_1.area > poly_2.area:
>>> pass

Geometry Collections

MultiPoint

class MultiPoint(*args, **kwargs)
MultiPoint objects may be instantiated by passing in Point objects as arguments, or a single sequence of
Point objects:

>>> mp = MultiPoint(Point(0, 0), Point(1, 1))
>>> mp = MultiPoint((Point(0, 0), Point(1, 1)))

In previous versions, an empty MultiPoint couldn’t be instantiated.

6.5. contrib packages 843

Django Documentation, Release 1.10.9.dev20171123183751

MultiLineString

class MultiLineString(*args, **kwargs)
MultiLineString objects may be instantiated by passing in LineString objects as arguments, or a single
sequence of LineString objects:

>>> ls1 = LineString((0, 0), (1, 1))
>>> ls2 = LineString((2, 2), (3, 3))
>>> mls = MultiLineString(ls1, ls2)
>>> mls = MultiLineString([ls1, ls2])

In previous versions, an empty MultiLineString couldn’t be instantiated.

merged
Returns a LineString representing the line merge of all the components in this MultiLineString.

closed
Returns True if and only if all elements are closed. Requires GEOS 3.5.

MultiPolygon

class MultiPolygon(*args, **kwargs)
MultiPolygon objects may be instantiated by passing Polygon objects as arguments, or a single sequence
of Polygon objects:

>>> p1 = Polygon(((0, 0), (0, 1), (1, 1), (0, 0)))
>>> p2 = Polygon(((1, 1), (1, 2), (2, 2), (1, 1)))
>>> mp = MultiPolygon(p1, p2)
>>> mp = MultiPolygon([p1, p2])

In previous versions, an empty MultiPolygon couldn’t be instantiated.

cascaded_union
Deprecated since version 1.10: Use the GEOSGeometry.unary_union property instead.

Returns a Polygon that is the union of all of the component polygons in this collection. The algorithm
employed is significantly more efficient (faster) than trying to union the geometries together individually.2

GeometryCollection

class GeometryCollection(*args, **kwargs)
GeometryCollection objects may be instantiated by passing in other GEOSGeometry as arguments, or
a single sequence of GEOSGeometry objects:

>>> poly = Polygon(((0, 0), (0, 1), (1, 1), (0, 0)))
>>> gc = GeometryCollection(Point(0, 0), MultiPoint(Point(0, 0), Point(1, 1)),
→˓poly)
>>> gc = GeometryCollection((Point(0, 0), MultiPoint(Point(0, 0), Point(1, 1)),
→˓poly))

In previous versions, an empty GeometryCollection couldn’t be instantiated.

2 For more information, read Paul Ramsey’s blog post about (Much) Faster Unions in PostGIS 1.4 and Martin Davis’ blog post on Fast polygon
merging in JTS using Cascaded Union.

844 Chapter 6. API Reference

http://blog.cleverelephant.ca/2009/01/must-faster-unions-in-postgis-14.html
http://lin-ear-th-inking.blogspot.com/2007/11/fast-polygon-merging-in-jts-using.html
http://lin-ear-th-inking.blogspot.com/2007/11/fast-polygon-merging-in-jts-using.html

Django Documentation, Release 1.10.9.dev20171123183751

Prepared Geometries

In order to obtain a prepared geometry, just access the GEOSGeometry.prepared property. Once you have a
PreparedGeometry instance its spatial predicate methods, listed below, may be used with other GEOSGeometry
objects. An operation with a prepared geometry can be orders of magnitude faster – the more complex the geometry
that is prepared, the larger the speedup in the operation. For more information, please consult the GEOS wiki page on
prepared geometries.

For example:

>>> from django.contrib.gis.geos import Point, Polygon
>>> poly = Polygon.from_bbox((0, 0, 5, 5))
>>> prep_poly = poly.prepared
>>> prep_poly.contains(Point(2.5, 2.5))
True

PreparedGeometry

class PreparedGeometry
All methods on PreparedGeometry take an other argument, which must be a GEOSGeometry instance.

contains(other)

contains_properly(other)

covers(other)

crosses(other)

disjoint(other)

intersects(other)

overlaps(other)

touches(other)

within(other)

Geometry Factories

fromfile(file_h)

Parameters file_h (a Python file object or a string path to the file) – input file that contains
spatial data

Return type a GEOSGeometry corresponding to the spatial data in the file

Example:

>>> from django.contrib.gis.geos import fromfile
>>> g = fromfile('/home/bob/geom.wkt')

fromstr(string, srid=None)

Parameters

• string (string) – string that contains spatial data

6.5. contrib packages 845

https://trac.osgeo.org/geos/wiki/PreparedGeometry
https://trac.osgeo.org/geos/wiki/PreparedGeometry
https://docs.python.org/3/library/string.html#module-string

Django Documentation, Release 1.10.9.dev20171123183751

• srid (int) – spatial reference identifier

Return type a GEOSGeometry corresponding to the spatial data in the string

fromstr(string, srid) is equivalent to GEOSGeometry(string, srid).

Example:

>>> from django.contrib.gis.geos import fromstr
>>> pnt = fromstr('POINT(-90.5 29.5)', srid=4326)

I/O Objects

Reader Objects

The reader I/O classes simply return a GEOSGeometry instance from the WKB and/or WKT input given to their
read(geom) method.

class WKBReader
Example:

>>> from django.contrib.gis.geos import WKBReader
>>> wkb_r = WKBReader()
>>> wkb_r.read('0101000000000000000000F03F000000000000F03F')
<Point object at 0x103a88910>

class WKTReader
Example:

>>> from django.contrib.gis.geos import WKTReader
>>> wkt_r = WKTReader()
>>> wkt_r.read('POINT(1 1)')
<Point object at 0x103a88b50>

Writer Objects

All writer objects have a write(geom) method that returns either the WKB or WKT of the given geometry. In
addition, WKBWriter objects also have properties that may be used to change the byte order, and or include the
SRID value (in other words, EWKB).

class WKBWriter(dim=2)
WKBWriter provides the most control over its output. By default it returns OGC-compliant WKB when its
write method is called. However, it has properties that allow for the creation of EWKB, a superset of the
WKB standard that includes additional information. See the WKBWriter.outdim documentation for more
details about the dim argument.

The ability to pass the dim argument to the constructor was added.

write(geom)

Returns the WKB of the given geometry as a Python buffer object. Example:

>>> from django.contrib.gis.geos import Point, WKBWriter
>>> pnt = Point(1, 1)
>>> wkb_w = WKBWriter()
>>> wkb_w.write(pnt)
<read-only buffer for 0x103a898f0, size -1, offset 0 at 0x103a89930>

846 Chapter 6. API Reference

https://docs.python.org/3/library/functions.html#int

Django Documentation, Release 1.10.9.dev20171123183751

write_hex(geom)

Returns WKB of the geometry in hexadecimal. Example:

>>> from django.contrib.gis.geos import Point, WKBWriter
>>> pnt = Point(1, 1)
>>> wkb_w = WKBWriter()
>>> wkb_w.write_hex(pnt)
'0101000000000000000000F03F000000000000F03F'

byteorder

This property may be set to change the byte-order of the geometry representation.

Byteorder Value Description
0 Big Endian (e.g., compatible with RISC systems)
1 Little Endian (e.g., compatible with x86 systems)

Example:

>>> from django.contrib.gis.geos import Point, WKBWriter
>>> wkb_w = WKBWriter()
>>> pnt = Point(1, 1)
>>> wkb_w.write_hex(pnt)
'0101000000000000000000F03F000000000000F03F'
>>> wkb_w.byteorder = 0
'00000000013FF00000000000003FF0000000000000'

outdim

This property may be set to change the output dimension of the geometry representation. In other words, if you
have a 3D geometry then set to 3 so that the Z value is included in the WKB.

Outdim Value Description
2 The default, output 2D WKB.
3 Output 3D WKB.

Example:

>>> from django.contrib.gis.geos import Point, WKBWriter
>>> wkb_w = WKBWriter()
>>> wkb_w.outdim
2
>>> pnt = Point(1, 1, 1)
>>> wkb_w.write_hex(pnt) # By default, no Z value included:
'0101000000000000000000F03F000000000000F03F'
>>> wkb_w.outdim = 3 # Tell writer to include Z values
>>> wkb_w.write_hex(pnt)
'0101000080000000000000F03F000000000000F03F000000000000F03F'

srid

Set this property with a boolean to indicate whether the SRID of the geometry should be included with the WKB
representation. Example:

>>> from django.contrib.gis.geos import Point, WKBWriter
>>> wkb_w = WKBWriter()
>>> pnt = Point(1, 1, srid=4326)
>>> wkb_w.write_hex(pnt) # By default, no SRID included:

6.5. contrib packages 847

Django Documentation, Release 1.10.9.dev20171123183751

'0101000000000000000000F03F000000000000F03F'
>>> wkb_w.srid = True # Tell writer to include SRID
>>> wkb_w.write_hex(pnt)
'0101000020E6100000000000000000F03F000000000000F03F'

class WKTWriter(dim=2, trim=False, precision=None)
This class allows outputting the WKT representation of a geometry. See the WKBWriter.outdim, trim,
and precision attributes for details about the constructor arguments.

The ability to pass the dim, trim, and precision arguments to the constructor was added.

write(geom)

Returns the WKT of the given geometry. Example:

>>> from django.contrib.gis.geos import Point, WKTWriter
>>> pnt = Point(1, 1)
>>> wkt_w = WKTWriter()
>>> wkt_w.write(pnt)
'POINT (1.0000000000000000 1.0000000000000000)'

outdim
See WKBWriter.outdim.

trim

This property is used to enable or disable trimming of unnecessary decimals.

>>> from django.contrib.gis.geos import Point, WKTWriter
>>> pnt = Point(1, 1)
>>> wkt_w = WKTWriter()
>>> wkt_w.trim
False
>>> wkt_w.write(pnt)
'POINT (1.0000000000000000 1.0000000000000000)'
>>> wkt_w.trim = True
>>> wkt_w.write(pnt)
'POINT (1 1)'

precision

This property controls the rounding precision of coordinates; if set to None rounding is disabled.

>>> from django.contrib.gis.geos import Point, WKTWriter
>>> pnt = Point(1.44, 1.66)
>>> wkt_w = WKTWriter()
>>> print(wkt_w.precision)
None
>>> wkt_w.write(pnt)
'POINT (1.4399999999999999 1.6599999999999999)'
>>> wkt_w.precision = 0
>>> wkt_w.write(pnt)
'POINT (1 2)'
>>> wkt_w.precision = 1
>>> wkt_w.write(pnt)
'POINT (1.4 1.7)'

848 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Settings

GEOS_LIBRARY_PATH

A string specifying the location of the GEOS C library. Typically, this setting is only used if the GEOS C library is in
a non-standard location (e.g., /home/bob/lib/libgeos_c.so).

Note: The setting must be the full path to the C shared library; in other words you want to use libgeos_c.so, not
libgeos.so.

Exceptions

exception GEOSException
The base GEOS exception, indicates a GEOS-related error.

GDAL API

GDAL stands for Geospatial Data Abstraction Library, and is a veritable “Swiss army knife” of GIS data func-
tionality. A subset of GDAL is the OGR Simple Features Library, which specializes in reading and writing vector
geographic data in a variety of standard formats.

GeoDjango provides a high-level Python interface for some of the capabilities of OGR, including the reading and
coordinate transformation of vector spatial data and minimal support for GDAL’s features with respect to raster (image)
data.

Note: Although the module is named gdal, GeoDjango only supports some of the capabilities of OGR and GDAL’s
raster features at this time.

Overview

Sample Data

The GDAL/OGR tools described here are designed to help you read in your geospatial data, in order for most of them
to be useful you have to have some data to work with. If you’re starting out and don’t yet have any data of your own to
use, GeoDjango tests contain a number of simple data sets that you can use for testing. You can download them here:

$ wget https://raw.githubusercontent.com/django/django/master/tests/gis_tests/data/
→˓cities/cities.{shp,prj,shx,dbf}
$ wget https://raw.githubusercontent.com/django/django/master/tests/gis_tests/data/
→˓rasters/raster.tif

Vector Data Source Objects

DataSource

DataSource is a wrapper for the OGR data source object that supports reading data from a variety of OGR-supported
geospatial file formats and data sources using a simple, consistent interface. Each data source is represented by a

6.5. contrib packages 849

http://www.gdal.org/
http://www.gdal.org/ogr_arch.html

Django Documentation, Release 1.10.9.dev20171123183751

DataSource object which contains one or more layers of data. Each layer, represented by a Layer object, contains
some number of geographic features (Feature), information about the type of features contained in that layer (e.g.
points, polygons, etc.), as well as the names and types of any additional fields (Field) of data that may be associated
with each feature in that layer.

class DataSource(ds_input, encoding=’utf-8’)
The constructor for DataSource only requires one parameter: the path of the file you want to read. However,
OGR also supports a variety of more complex data sources, including databases, that may be accessed by passing
a special name string instead of a path. For more information, see the OGR Vector Formats documentation. The
name property of a DataSource instance gives the OGR name of the underlying data source that it is using.

The optional encoding parameter allows you to specify a non-standard encoding of the strings in the source.
This is typically useful when you obtain DjangoUnicodeDecodeError exceptions while reading field
values.

Once you’ve created your DataSource, you can find out how many layers of data it contains by accessing
the layer_count property, or (equivalently) by using the len() function. For information on accessing the
layers of data themselves, see the next section:

>>> from django.contrib.gis.gdal import DataSource
>>> ds = DataSource('/path/to/your/cities.shp')
>>> ds.name
'/path/to/your/cities.shp'
>>> ds.layer_count # This file only contains one layer
1

layer_count

Returns the number of layers in the data source.

name

Returns the name of the data source.

Layer

class Layer
Layer is a wrapper for a layer of data in a DataSource object. You never create a Layer object directly.
Instead, you retrieve them from a DataSource object, which is essentially a standard Python container of
Layer objects. For example, you can access a specific layer by its index (e.g. ds[0] to access the first layer),
or you can iterate over all the layers in the container in a for loop. The Layer itself acts as a container for
geometric features.

Typically, all the features in a given layer have the same geometry type. The geom_type property of a layer is
an OGRGeomType that identifies the feature type. We can use it to print out some basic information about each
layer in a DataSource:

>>> for layer in ds:
... print('Layer "%s": %i %ss' % (layer.name, len(layer), layer.geom_type.
→˓name))
...
Layer "cities": 3 Points

The example output is from the cities data source, loaded above, which evidently contains one layer, called
"cities", which contains three point features. For simplicity, the examples below assume that you’ve stored
that layer in the variable layer:

850 Chapter 6. API Reference

http://www.gdal.org/ogr_formats.html

Django Documentation, Release 1.10.9.dev20171123183751

>>> layer = ds[0]

name

Returns the name of this layer in the data source.

>>> layer.name
'cities'

num_feat

Returns the number of features in the layer. Same as len(layer):

>>> layer.num_feat
3

geom_type

Returns the geometry type of the layer, as an OGRGeomType object:

>>> layer.geom_type.name
'Point'

num_fields

Returns the number of fields in the layer, i.e the number of fields of data associated with each feature in the
layer:

>>> layer.num_fields
4

fields

Returns a list of the names of each of the fields in this layer:

>>> layer.fields
['Name', 'Population', 'Density', 'Created']

Returns a list of the data types of each of the fields in this layer. These are subclasses of Field, discussed
below:

>>> [ft.__name__ for ft in layer.field_types]
['OFTString', 'OFTReal', 'OFTReal', 'OFTDate']

field_widths

Returns a list of the maximum field widths for each of the fields in this layer:

>>> layer.field_widths
[80, 11, 24, 10]

field_precisions

Returns a list of the numeric precisions for each of the fields in this layer. This is meaningless (and set to zero)
for non-numeric fields:

>>> layer.field_precisions
[0, 0, 15, 0]

extent

6.5. contrib packages 851

Django Documentation, Release 1.10.9.dev20171123183751

Returns the spatial extent of this layer, as an Envelope object:

>>> layer.extent.tuple
(-104.609252, 29.763374, -95.23506, 38.971823)

srs

Property that returns the SpatialReference associated with this layer:

>>> print(layer.srs)
GEOGCS["GCS_WGS_1984",

DATUM["WGS_1984",
SPHEROID["WGS_1984",6378137,298.257223563]],

PRIMEM["Greenwich",0],
UNIT["Degree",0.017453292519943295]]

If the Layer has no spatial reference information associated with it, None is returned.

spatial_filter

Property that may be used to retrieve or set a spatial filter for this layer. A spatial filter can only be set with an
OGRGeometry instance, a 4-tuple extent, or None. When set with something other than None, only features
that intersect the filter will be returned when iterating over the layer:

>>> print(layer.spatial_filter)
None
>>> print(len(layer))
3
>>> [feat.get('Name') for feat in layer]
['Pueblo', 'Lawrence', 'Houston']
>>> ks_extent = (-102.051, 36.99, -94.59, 40.00) # Extent for state of Kansas
>>> layer.spatial_filter = ks_extent
>>> len(layer)
1
>>> [feat.get('Name') for feat in layer]
['Lawrence']
>>> layer.spatial_filter = None
>>> len(layer)
3

get_fields()

A method that returns a list of the values of a given field for each feature in the layer:

>>> layer.get_fields('Name')
['Pueblo', 'Lawrence', 'Houston']

get_geoms(geos=False)

A method that returns a list containing the geometry of each feature in the layer. If the optional argument geos
is set to True then the geometries are converted to GEOSGeometry objects. Otherwise, they are returned as
OGRGeometry objects:

>>> [pt.tuple for pt in layer.get_geoms()]
[(-104.609252, 38.255001), (-95.23506, 38.971823), (-95.363151, 29.763374)]

test_capability(capability)

Returns a boolean indicating whether this layer supports the given capability (a string). Examples
of valid capability strings include: 'RandomRead', 'SequentialWrite', 'RandomWrite',

852 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

'FastSpatialFilter', 'FastFeatureCount', 'FastGetExtent', 'CreateField',
'Transactions', 'DeleteFeature', and 'FastSetNextByIndex'.

Feature

class Feature
Feature wraps an OGR feature. You never create a Feature object directly. Instead, you retrieve them from
a Layer object. Each feature consists of a geometry and a set of fields containing additional properties. The
geometry of a field is accessible via its geom property, which returns an OGRGeometry object. A Feature
behaves like a standard Python container for its fields, which it returns as Field objects: you can access a field
directly by its index or name, or you can iterate over a feature’s fields, e.g. in a for loop.

geom

Returns the geometry for this feature, as an OGRGeometry object:

>>> city.geom.tuple
(-104.609252, 38.255001)

get

A method that returns the value of the given field (specified by name) for this feature, not a Field wrapper
object:

>>> city.get('Population')
102121

geom_type

Returns the type of geometry for this feature, as an OGRGeomType object. This will be the same for all features
in a given layer and is equivalent to the Layer.geom_type property of the Layer object the feature came
from.

num_fields

Returns the number of fields of data associated with the feature. This will be the same for all features in a given
layer and is equivalent to the Layer.num_fields property of the Layer object the feature came from.

fields

Returns a list of the names of the fields of data associated with the feature. This will be the same for all features
in a given layer and is equivalent to the Layer.fields property of the Layer object the feature came from.

fid

Returns the feature identifier within the layer:

>>> city.fid
0

layer_name

Returns the name of the Layer that the feature came from. This will be the same for all features in a given
layer:

>>> city.layer_name
'cities'

index

6.5. contrib packages 853

Django Documentation, Release 1.10.9.dev20171123183751

A method that returns the index of the given field name. This will be the same for all features in a given layer:

>>> city.index('Population')
1

Field

class Field

name

Returns the name of this field:

>>> city['Name'].name
'Name'

type

Returns the OGR type of this field, as an integer. The FIELD_CLASSES dictionary maps these values onto
subclasses of Field:

>>> city['Density'].type
2

type_name

Returns a string with the name of the data type of this field:

>>> city['Name'].type_name
'String'

value

Returns the value of this field. The Field class itself returns the value as a string, but each subclass returns the
value in the most appropriate form:

>>> city['Population'].value
102121

width

Returns the width of this field:

>>> city['Name'].width
80

precision

Returns the numeric precision of this field. This is meaningless (and set to zero) for non-numeric fields:

>>> city['Density'].precision
15

as_double()

Returns the value of the field as a double (float):

854 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

>>> city['Density'].as_double()
874.7

as_int()

Returns the value of the field as an integer:

>>> city['Population'].as_int()
102121

as_string()

Returns the value of the field as a string:

>>> city['Name'].as_string()
'Pueblo'

as_datetime()

Returns the value of the field as a tuple of date and time components:

>>> city['Created'].as_datetime()
(c_long(1999), c_long(5), c_long(23), c_long(0), c_long(0), c_long(0), c_long(0))

Driver

class Driver(dr_input)
The Driver class is used internally to wrap an OGR DataSource driver.

driver_count

Returns the number of OGR vector drivers currently registered.

OGR Geometries

OGRGeometry

OGRGeometry objects share similar functionality with GEOSGeometry objects and are thin wrappers around
OGR’s internal geometry representation. Thus, they allow for more efficient access to data when using DataSource.
Unlike its GEOS counterpart, OGRGeometry supports spatial reference systems and coordinate transformation:

>>> from django.contrib.gis.gdal import OGRGeometry
>>> polygon = OGRGeometry('POLYGON((0 0, 5 0, 5 5, 0 5))')

class OGRGeometry(geom_input, srs=None)
This object is a wrapper for the OGR Geometry class. These objects are instantiated directly from the given
geom_input parameter, which may be a string containing WKT, HEX, GeoJSON, a buffer containing
WKB data, or an OGRGeomType object. These objects are also returned from the Feature.geom attribute,
when reading vector data from Layer (which is in turn a part of a DataSource).

classmethod from_bbox(bbox)

Constructs a Polygon from the given bounding-box (a 4-tuple).

__len__()

6.5. contrib packages 855

http://www.gdal.org/classOGRGeometry.html

Django Documentation, Release 1.10.9.dev20171123183751

Returns the number of points in a LineString, the number of rings in a Polygon, or the number of geome-
tries in a GeometryCollection. Not applicable to other geometry types.

__iter__()

Iterates over the points in a LineString, the rings in a Polygon, or the geometries in a
GeometryCollection. Not applicable to other geometry types.

__getitem__()

Returns the point at the specified index for a LineString, the interior ring at the specified index for a
Polygon, or the geometry at the specified index in a GeometryCollection. Not applicable to other
geometry types.

dimension

Returns the number of coordinated dimensions of the geometry, i.e. 0 for points, 1 for lines, and so forth:

>> polygon.dimension
2

coord_dim

Returns or sets the coordinate dimension of this geometry. For example, the value would be 2 for two-
dimensional geometries.

geom_count

Returns the number of elements in this geometry:

>>> polygon.geom_count
1

point_count

Returns the number of points used to describe this geometry:

>>> polygon.point_count
4

num_points

Alias for point_count.

num_coords

Alias for point_count.

geom_type

Returns the type of this geometry, as an OGRGeomType object.

geom_name

Returns the name of the type of this geometry:

>>> polygon.geom_name
'POLYGON'

area

Returns the area of this geometry, or 0 for geometries that do not contain an area:

>>> polygon.area
25.0

856 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

envelope

Returns the envelope of this geometry, as an Envelope object.

extent

Returns the envelope of this geometry as a 4-tuple, instead of as an Envelope object:

>>> point.extent
(0.0, 0.0, 5.0, 5.0)

srs

This property controls the spatial reference for this geometry, or None if no spatial reference system has been
assigned to it. If assigned, accessing this property returns a SpatialReference object. It may be set with
another SpatialReference object, or any input that SpatialReference accepts. Example:

>>> city.geom.srs.name
'GCS_WGS_1984'

srid

Returns or sets the spatial reference identifier corresponding to SpatialReference of this geometry. Re-
turns None if there is no spatial reference information associated with this geometry, or if an SRID cannot be
determined.

geos

Returns a GEOSGeometry object corresponding to this geometry.

gml

Returns a string representation of this geometry in GML format:

>>> OGRGeometry('POINT(1 2)').gml
'<gml:Point><gml:coordinates>1,2</gml:coordinates></gml:Point>'

hex

Returns a string representation of this geometry in HEX WKB format:

>>> OGRGeometry('POINT(1 2)').hex
'0101000000000000000000F03F0000000000000040'

json

Returns a string representation of this geometry in JSON format:

>>> OGRGeometry('POINT(1 2)').json
'{ "type": "Point", "coordinates": [1.000000, 2.000000] }'

kml

Returns a string representation of this geometry in KML format.

wkb_size

Returns the size of the WKB buffer needed to hold a WKB representation of this geometry:

>>> OGRGeometry('POINT(1 2)').wkb_size
21

6.5. contrib packages 857

Django Documentation, Release 1.10.9.dev20171123183751

wkb

Returns a buffer containing a WKB representation of this geometry.

wkt

Returns a string representation of this geometry in WKT format.

ewkt

Returns the EWKT representation of this geometry.

clone()

Returns a new OGRGeometry clone of this geometry object.

close_rings()

If there are any rings within this geometry that have not been closed, this routine will do so by adding the starting
point to the end:

>>> triangle = OGRGeometry('LINEARRING (0 0,0 1,1 0)')
>>> triangle.close_rings()
>>> triangle.wkt
'LINEARRING (0 0,0 1,1 0,0 0)'

transform(coord_trans, clone=False)

Transforms this geometry to a different spatial reference system. May take a CoordTransform object, a
SpatialReference object, or any other input accepted by SpatialReference (including spatial refer-
ence WKT and PROJ.4 strings, or an integer SRID).

By default nothing is returned and the geometry is transformed in-place. However, if the clone keyword is set
to True then a transformed clone of this geometry is returned instead.

intersects(other)

Returns True if this geometry intersects the other, otherwise returns False.

equals(other)

Returns True if this geometry is equivalent to the other, otherwise returns False.

disjoint(other)

Returns True if this geometry is spatially disjoint to (i.e. does not intersect) the other, otherwise returns False.

touches(other)

Returns True if this geometry touches the other, otherwise returns False.

crosses(other)

Returns True if this geometry crosses the other, otherwise returns False.

within(other)

Returns True if this geometry is contained within the other, otherwise returns False.

contains(other)

Returns True if this geometry contains the other, otherwise returns False.

overlaps(other)

Returns True if this geometry overlaps the other, otherwise returns False.

858 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

boundary()

The boundary of this geometry, as a new OGRGeometry object.

convex_hull

The smallest convex polygon that contains this geometry, as a new OGRGeometry object.

difference()

Returns the region consisting of the difference of this geometry and the other, as a new OGRGeometry object.

intersection()

Returns the region consisting of the intersection of this geometry and the other, as a new OGRGeometry object.

sym_difference()

Returns the region consisting of the symmetric difference of this geometry and the other, as a new
OGRGeometry object.

union()

Returns the region consisting of the union of this geometry and the other, as a new OGRGeometry object.

tuple

Returns the coordinates of a point geometry as a tuple, the coordinates of a line geometry as a tuple of tuples,
and so forth:

>>> OGRGeometry('POINT (1 2)').tuple
(1.0, 2.0)
>>> OGRGeometry('LINESTRING (1 2,3 4)').tuple
((1.0, 2.0), (3.0, 4.0))

coords

An alias for tuple.

class Point

x

Returns the X coordinate of this point:

>>> OGRGeometry('POINT (1 2)').x
1.0

y

Returns the Y coordinate of this point:

>>> OGRGeometry('POINT (1 2)').y
2.0

z

Returns the Z coordinate of this point, or None if the point does not have a Z coordinate:

>>> OGRGeometry('POINT (1 2 3)').z
3.0

6.5. contrib packages 859

Django Documentation, Release 1.10.9.dev20171123183751

class LineString

x

Returns a list of X coordinates in this line:

>>> OGRGeometry('LINESTRING (1 2,3 4)').x
[1.0, 3.0]

y

Returns a list of Y coordinates in this line:

>>> OGRGeometry('LINESTRING (1 2,3 4)').y
[2.0, 4.0]

z

Returns a list of Z coordinates in this line, or None if the line does not have Z coordinates:

>>> OGRGeometry('LINESTRING (1 2 3,4 5 6)').z
[3.0, 6.0]

class Polygon

shell

Returns the shell or exterior ring of this polygon, as a LinearRing geometry.

exterior_ring

An alias for shell.

centroid

Returns a Point representing the centroid of this polygon.

class GeometryCollection

add(geom)

Adds a geometry to this geometry collection. Not applicable to other geometry types.

OGRGeomType

class OGRGeomType(type_input)
This class allows for the representation of an OGR geometry type in any of several ways:

>>> from django.contrib.gis.gdal import OGRGeomType
>>> gt1 = OGRGeomType(3) # Using an integer for the type
>>> gt2 = OGRGeomType('Polygon') # Using a string
>>> gt3 = OGRGeomType('POLYGON') # It's case-insensitive
>>> print(gt1 == 3, gt1 == 'Polygon') # Equivalence works w/non-OGRGeomType
→˓objects
True True

name

860 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Returns a short-hand string form of the OGR Geometry type:

>>> gt1.name
'Polygon'

num

Returns the number corresponding to the OGR geometry type:

>>> gt1.num
3

django

Returns the Django field type (a subclass of GeometryField) to use for storing this OGR type, or None if there
is no appropriate Django type:

>>> gt1.django
'PolygonField'

Envelope

class Envelope(*args)
Represents an OGR Envelope structure that contains the minimum and maximum X, Y coordinates for a rect-
angle bounding box. The naming of the variables is compatible with the OGR Envelope C structure.

min_x

The value of the minimum X coordinate.

min_y

The value of the maximum X coordinate.

max_x

The value of the minimum Y coordinate.

max_y

The value of the maximum Y coordinate.

ur

The upper-right coordinate, as a tuple.

ll

The lower-left coordinate, as a tuple.

tuple

A tuple representing the envelope.

wkt

A string representing this envelope as a polygon in WKT format.

expand_to_include(*args)

6.5. contrib packages 861

Django Documentation, Release 1.10.9.dev20171123183751

Coordinate System Objects

SpatialReference

class SpatialReference(srs_input)
Spatial reference objects are initialized on the given srs_input, which may be one of the following:

• OGC Well Known Text (WKT) (a string)

• EPSG code (integer or string)

• PROJ.4 string

• A shorthand string for well-known standards ('WGS84', 'WGS72', 'NAD27', 'NAD83')

Example:

>>> wgs84 = SpatialReference('WGS84') # shorthand string
>>> wgs84 = SpatialReference(4326) # EPSG code
>>> wgs84 = SpatialReference('EPSG:4326') # EPSG string
>>> proj4 = '+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs '
>>> wgs84 = SpatialReference(proj4) # PROJ.4 string
>>> wgs84 = SpatialReference("""GEOGCS["WGS 84",
DATUM["WGS_1984",

SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG","7030"]],

AUTHORITY["EPSG","6326"]],
PRIMEM["Greenwich",0,

AUTHORITY["EPSG","8901"]],
UNIT["degree",0.01745329251994328,

AUTHORITY["EPSG","9122"]],
AUTHORITY["EPSG","4326"]]""") # OGC WKT

__getitem__(target)

Returns the value of the given string attribute node, None if the node doesn’t exist. Can also take a tuple as a
parameter, (target, child), where child is the index of the attribute in the WKT. For example:

>>> wkt = 'GEOGCS["WGS 84", DATUM["WGS_1984, ... AUTHORITY["EPSG","4326"]]')
>>> srs = SpatialReference(wkt) # could also use 'WGS84', or 4326
>>> print(srs['GEOGCS'])
WGS 84
>>> print(srs['DATUM'])
WGS_1984
>>> print(srs['AUTHORITY'])
EPSG
>>> print(srs['AUTHORITY', 1]) # The authority value
4326
>>> print(srs['TOWGS84', 4]) # the fourth value in this wkt
0
>>> print(srs['UNIT|AUTHORITY']) # For the units authority, have to use the pipe
→˓symbol.
EPSG
>>> print(srs['UNIT|AUTHORITY', 1]) # The authority value for the units
9122

attr_value(target, index=0)

The attribute value for the given target node (e.g. 'PROJCS'). The index keyword specifies an index of the
child node to return.

862 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

auth_name(target)

Returns the authority name for the given string target node.

auth_code(target)

Returns the authority code for the given string target node.

clone()

Returns a clone of this spatial reference object.

identify_epsg()

This method inspects the WKT of this SpatialReference and will add EPSG authority nodes where an
EPSG identifier is applicable.

from_esri()

Morphs this SpatialReference from ESRI’s format to EPSG

to_esri()

Morphs this SpatialReference to ESRI’s format.

validate()

Checks to see if the given spatial reference is valid, if not an exception will be raised.

import_epsg(epsg)

Import spatial reference from EPSG code.

import_proj(proj)

Import spatial reference from PROJ.4 string.

import_user_input(user_input)

import_wkt(wkt)

Import spatial reference from WKT.

import_xml(xml)

Import spatial reference from XML.

name

Returns the name of this Spatial Reference.

srid

Returns the SRID of top-level authority, or None if undefined.

linear_name

Returns the name of the linear units.

linear_units

Returns the value of the linear units.

angular_name

Returns the name of the angular units.”

angular_units

Returns the value of the angular units.

6.5. contrib packages 863

Django Documentation, Release 1.10.9.dev20171123183751

units

Returns a 2-tuple of the units value and the units name and will automatically determines whether to return the
linear or angular units.

ellipsoid

Returns a tuple of the ellipsoid parameters for this spatial reference: (semimajor axis, semiminor axis, and
inverse flattening).

semi_major

Returns the semi major axis of the ellipsoid for this spatial reference.

semi_minor

Returns the semi minor axis of the ellipsoid for this spatial reference.

inverse_flattening

Returns the inverse flattening of the ellipsoid for this spatial reference.

geographic

Returns True if this spatial reference is geographic (root node is GEOGCS).

local

Returns True if this spatial reference is local (root node is LOCAL_CS).

projected

Returns True if this spatial reference is a projected coordinate system (root node is PROJCS).

wkt

Returns the WKT representation of this spatial reference.

pretty_wkt

Returns the ‘pretty’ representation of the WKT.

proj

Returns the PROJ.4 representation for this spatial reference.

proj4

Alias for SpatialReference.proj.

xml

Returns the XML representation of this spatial reference.

CoordTransform

class CoordTransform(source, target)

Represents a coordinate system transform. It is initialized with two SpatialReference, representing the source
and target coordinate systems, respectively. These objects should be used when performing the same coordinate
transformation repeatedly on different geometries:

>>> ct = CoordTransform(SpatialReference('WGS84'), SpatialReference('NAD83'))
>>> for feat in layer:
... geom = feat.geom # getting clone of feature geometry
... geom.transform(ct) # transforming

864 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Raster Data Objects

GDALRaster

GDALRaster is a wrapper for the GDAL raster source object that supports reading data from a variety of GDAL-
supported geospatial file formats and data sources using a simple, consistent interface. Each data source is represented
by a GDALRaster object which contains one or more layers of data named bands. Each band, represented by a
GDALBand object, contains georeferenced image data. For example, an RGB image is represented as three bands:
one for red, one for green, and one for blue.

Note: For raster data there is no difference between a raster instance and its data source. Unlike for the Geometry
objects, GDALRaster objects are always a data source. Temporary rasters can be instantiated in memory using the
corresponding driver, but they will be of the same class as file-based raster sources.

class GDALRaster(ds_input, write=False)
The constructor for GDALRaster accepts two parameters. The first parameter defines the raster source, it is
either a path to a file or spatial data with values defining the properties of a new raster (such as size and name).
If the input is a file path, the second parameter specifies if the raster should be opened with write access. If the
input is raw data, the parameters width, height, and srid are required. The following example shows how
rasters can be created from different input sources (using the sample data from the GeoDjango tests, see also the
Sample Data section):

>>> from django.contrib.gis.gdal import GDALRaster
>>> rst = GDALRaster('/path/to/your/raster.tif', write=False)
>>> rst.name
'/path/to/your/raster.tif'
>>> rst.width, rst.height # This file has 163 x 174 pixels
(163, 174)
>>> rst = GDALRaster({'srid': 4326, 'width': 1, 'height': 2, 'datatype': 1
... 'bands': [{'data': [0, 1]}]}) # Creates in-memory raster
>>> rst.srs.srid
4326
>>> rst.width, rst.height
(1, 2)
>>> rst.bands[0].data()
array([[0, 1]], dtype=int8)

GDALRaster objects can now be instantiated directly from raw data. Setters have been added for the following
properties: srs, geotransform, origin, scale, and skew.

name
The name of the source which is equivalent to the input file path or the name provided upon instantiation.

>>> GDALRaster({'width': 10, 'height': 10, 'name': 'myraster', 'srid': 4326}).
→˓name
'myraster'

driver
The name of the GDAL driver used to handle the input file. For GDALRasters created from a file, the
driver type is detected automatically. The creation of rasters from scratch is a in-memory raster by default
('MEM'), but can be altered as needed. For instance, use GTiff for a GeoTiff file. For a list of file
types, see also the GDAL Raster Formats list.

An in-memory raster is created through the following example:

6.5. contrib packages 865

http://www.gdal.org/formats_list.html

Django Documentation, Release 1.10.9.dev20171123183751

>>> GDALRaster({'width': 10, 'height': 10, 'srid': 4326}).driver.name
'MEM'

A file based GeoTiff raster is created through the following example:

>>> import tempfile
>>> rstfile = tempfile.NamedTemporaryFile(suffix='.tif')
>>> rst = GDALRaster({'driver': 'GTiff', 'name': rstfile.name, 'srid': 4326,
... 'width': 255, 'height': 255, 'nr_of_bands': 1})
>>> rst.name
'/tmp/tmp7x9H4J.tif' # The exact filename will be different on your
→˓computer
>>> rst.driver.name
'GTiff'

width
The width of the source in pixels (X-axis).

>>> GDALRaster({'width': 10, 'height': 20, 'srid': 4326}).width
10

height
The height of the source in pixels (Y-axis).

>>> GDALRaster({'width': 10, 'height': 20, 'srid': 4326}).height
20

srs
The spatial reference system of the raster, as a SpatialReference instance. The SRS can be
changed by setting it to an other SpatialReference or providing any input that is accepted by the
SpatialReference constructor.

>>> rst = GDALRaster({'width': 10, 'height': 20, 'srid': 4326})
>>> rst.srs.srid
4326
>>> rst.srs = 3086
>>> rst.srs.srid
3086

srid
The Spatial Reference System Identifier (SRID) of the raster. This property is a shortcut to getting or
setting the SRID through the srs attribute.

>>> rst = GDALRaster({'width': 10, 'height': 20, 'srid': 4326})
>>> rst.srid
4326
>>> rst.srid = 3086
>>> rst.srid
3086
>>> rst.srs.srid # This is equivalent
3086

geotransform
The affine transformation matrix used to georeference the source, as a tuple of six coefficients which map
pixel/line coordinates into georeferenced space using the following relationship:

866 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Xgeo = GT(0) + Xpixel*GT(1) + Yline*GT(2)
Ygeo = GT(3) + Xpixel*GT(4) + Yline*GT(5)

The same values can be retrieved by accessing the origin (indices 0 and 3), scale (indices 1 and 5)
and skew (indices 2 and 4) properties.

The default is [0.0, 1.0, 0.0, 0.0, 0.0, -1.0].

>>> rst = GDALRaster({'width': 10, 'height': 20, 'srid': 4326})
>>> rst.geotransform
[0.0, 1.0, 0.0, 0.0, 0.0, -1.0]

origin
Coordinates of the top left origin of the raster in the spatial reference system of the source, as a point object
with x and y members.

>>> rst = GDALRaster({'width': 10, 'height': 20, 'srid': 4326})
>>> rst.origin
[0.0, 0.0]
>>> rst.origin.x = 1
>>> rst.origin
[1.0, 0.0]

scale
Pixel width and height used for georeferencing the raster, as a as a point object with x and y members.
See geotransform for more information.

>>> rst = GDALRaster({'width': 10, 'height': 20, 'srid': 4326})
>>> rst.scale
[1.0, -1.0]
>>> rst.scale.x = 2
>>> rst.scale
[2.0, -1.0]

skew
Skew coefficients used to georeference the raster, as a point object with x and y members. In case of north
up images, these coefficients are both 0.

>>> rst = GDALRaster({'width': 10, 'height': 20, 'srid': 4326})
>>> rst.skew
[0.0, 0.0]
>>> rst.skew.x = 3
>>> rst.skew
[3.0, 0.0]

extent
Extent (boundary values) of the raster source, as a 4-tuple (xmin, ymin, xmax, ymax) in the spa-
tial reference system of the source.

>>> rst = GDALRaster({'width': 10, 'height': 20, 'srid': 4326})
>>> rst.extent
(0.0, -20.0, 10.0, 0.0)
>>> rst.origin.x = 100
>>> rst.extent
(100.0, -20.0, 110.0, 0.0)

bands
List of all bands of the source, as GDALBand instances.

6.5. contrib packages 867

Django Documentation, Release 1.10.9.dev20171123183751

>>> rst = GDALRaster({"width": 1, "height": 2, 'srid': 4326,
... "bands": [{"data": [0, 1]}, {"data": [2, 3]}]})
>>> len(rst.bands)
2
>>> rst.bands[1].data()
array([[2., 3.]], dtype=float32)

warp(ds_input, resampling=’NearestNeighbour’, max_error=0.0)
Returns a warped version of this raster.

The warping parameters can be specified through the ds_input argument. The use of ds_input is
analogous to the corresponding argument of the class constructor. It is a dictionary with the characteristics
of the target raster. Allowed dictionary key values are width, height, SRID, origin, scale, skew, datatype,
driver, and name (filename).

By default, the warp functions keeps most parameters equal to the values of the original source raster, so
only parameters that should be changed need to be specified. Note that this includes the driver, so for
file-based rasters the warp function will create a new raster on disk.

The only parameter that is set differently from the source raster is the name. The default value of the the
raster name is the name of the source raster appended with '_copy' + source_driver_name. For
file-based rasters it is recommended to provide the file path of the target raster.

The resampling algorithm used for warping can be specified with the resampling argument. The de-
fault is NearestNeighbor, and the other allowed values are Bilinear, Cubic, CubicSpline,
Lanczos, Average, and Mode.

The max_error argument can be used to specify the maximum error measured in input pixels that is
allowed in approximating the transformation. The default is 0.0 for exact calculations.

For users familiar with GDAL, this function has a similar functionality to the gdalwarp command-line
utility.

For example, the warp function can be used for aggregating a raster to the double of its original pixel scale:

>>> rst = GDALRaster({
... "width": 6, "height": 6, "srid": 3086,
... "origin": [500000, 400000],
... "scale": [100, -100],
... "bands": [{"data": range(36), "nodata_value": 99}]
... })
>>> target = rst.warp({"scale": [200, -200], "width": 3, "height": 3})
>>> target.bands[0].data()
array([[7., 9., 11.],

[19., 21., 23.],
[31., 33., 35.]], dtype=float32)

transform(srid, driver=None, name=None, resampling=’NearestNeighbour’, max_error=0.0)
Returns a transformed version of this raster with the specified SRID.

This function transforms the current raster into a new spatial reference system that can be specified with
an srid. It calculates the bounds and scale of the current raster in the new spatial reference system and
warps the raster using the warp function.

By default, the driver of the source raster is used and the name of the raster is the original name ap-
pended with '_copy' + source_driver_name. A different driver or name can be specified with
the driver and name arguments.

The default resampling algorithm is NearestNeighbour but can be changed using the resampling
argument. The default maximum allowed error for resampling is 0.0 and can be changed using the

868 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

max_error argument. Consult the warp documentation for detail on those arguments.

>>> rst = GDALRaster({
... "width": 6, "height": 6, "srid": 3086,
... "origin": [500000, 400000],
... "scale": [100, -100],
... "bands": [{"data": range(36), "nodata_value": 99}]
... })
>>> target = rst.transform(4326)
>>> target.origin
[-82.98492744885776, 27.601924753080144]

GDALBand

class GDALBand
GDALBand instances are not created explicitly, but rather obtained from a GDALRaster object, through its
bands attribute. The GDALBands contain the actual pixel values of the raster.

description
The name or description of the band, if any.

width
The width of the band in pixels (X-axis).

height
The height of the band in pixels (Y-axis).

pixel_count
The total number of pixels in this band. Is equal to width * height.

statistics(refresh=False, approximate=False)
Compute statistics on the pixel values of this band. The return value is a tuple with the following structure:
(minimum, maximum, mean, standard deviation).

If the approximate argument is set to True, the statistics may be computed based on overviews or a
subset of image tiles.

If the refresh argument is set to True, the statistics will be computed from the data directly, and the
cache will be updated with the result.

If a persistent cache value is found, that value is returned. For raster formats using Persistent Auxiliary
Metadata (PAM) services, the statistics might be cached in an auxiliary file. In some cases this metadata
might be out of sync with the pixel values or cause values from a previous call to be returned which
don’t reflect the value of the approximate argument. In such cases, use the refresh argument to get
updated values and store them in the cache.

For empty bands (where all pixel values are “no data”), all statistics are returned as None.

The statistics can also be retrieved directly by accessing the min, max, mean, and std properties.

min
The minimum pixel value of the band (excluding the “no data” value).

max
The maximum pixel value of the band (excluding the “no data” value).

mean
The mean of all pixel values of the band (excluding the “no data” value).

6.5. contrib packages 869

Django Documentation, Release 1.10.9.dev20171123183751

std
The standard deviation of all pixel values of the band (excluding the “no data” value).

nodata_value
The “no data” value for a band is generally a special marker value used to mark pixels that are not valid
data. Such pixels should generally not be displayed, nor contribute to analysis operations.

To delete an existing “no data” value, set this property to None (requires GDAL ≥ 2.1).

This property can now be set as well.

The “no data” value can now be deleted by setting the nodata_value attribute to None.

datatype(as_string=False)
The data type contained in the band, as an integer constant between 0 (Unknown) and
11. If as_string is True, the data type is returned as a string with the follow-
ing possible values: GDT_Unknown, GDT_Byte, GDT_UInt16, GDT_Int16, GDT_UInt32,
GDT_Int32, GDT_Float32, GDT_Float64, GDT_CInt16, GDT_CInt32, GDT_CFloat32, and
GDT_CFloat64.

data(data=None, offset=None, size=None, shape=None)
The accessor to the pixel values of the GDALBand. Returns the complete data array if no parameters are
provided. A subset of the pixel array can be requested by specifying an offset and block size as tuples.

If NumPy is available, the data is returned as NumPy array. For performance reasons, it is highly recom-
mended to use NumPy.

Data is written to the GDALBand if the data parameter is provided. The input can be of one of the
following types - packed string, buffer, list, array, and NumPy array. The number of items in the input
should normally correspond to the total number of pixels in the band, or to the number of pixels for a
specific block of pixel values if the offset and size parameters are provided.

If the number of items in the input is different from the target pixel block, the shape parameter must be
specified. The shape is a tuple that specifies the width and height of the input data in pixels. The data is
then replicated to update the pixel values of the selected block. This is useful to fill an entire band with a
single value, for instance.

For example:

>>> rst = GDALRaster({'width': 4, 'height': 4, 'srid': 4326, 'datatype': 1,
→˓'nr_of_bands': 1})
>>> bnd = rst.bands[0]
>>> bnd.data(range(16))
>>> bnd.data()
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15]], dtype=int8)

>>> bnd.data(offset=(1, 1), size=(2, 2))
array([[5, 6],

[9, 10]], dtype=int8)
>>> bnd.data(data=[-1, -2, -3, -4], offset=(1, 1), size=(2, 2))
>>> bnd.data()
array([[0, 1, 2, 3],

[4, -1, -2, 7],
[8, -3, -4, 11],
[12, 13, 14, 15]], dtype=int8)

>>> bnd.data(data='\x9d\xa8\xb3\xbe', offset=(1, 1), size=(2, 2))
>>> bnd.data()
array([[0, 1, 2, 3],

[4, -99, -88, 7],

870 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

[8, -77, -66, 11],
[12, 13, 14, 15]], dtype=int8)

>>> bnd.data([1], shape=(1, 1))
>>> bnd.data()
array([[1, 1, 1, 1],

[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]], dtype=uint8)

>>> bnd.data(range(4), shape=(1, 4))
array([[0, 0, 0, 0],

[1, 1, 1, 1],
[2, 2, 2, 2],
[3, 3, 3, 3]], dtype=uint8)

The shape parameter and the ability to replicate data input when setting GDALBand data was added.

Settings

GDAL_LIBRARY_PATH

A string specifying the location of the GDAL library. Typically, this setting is only used if the GDAL library is in a
non-standard location (e.g., /home/john/lib/libgdal.so).

Geolocation with GeoIP

Deprecated since version 1.9: This module is deprecated in favor of django.contrib.gis.geoip2, which supports IPv6
and the GeoLite2 database format.

The GeoIP object is a ctypes wrapper for the MaxMind GeoIP C API.1

In order to perform IP-based geolocation, the GeoIP object requires the GeoIP C library and either the GeoIP Country
or City datasets in binary format (the CSV files will not work!). These datasets may be downloaded from MaxMind.
Grab the GeoLiteCountry/GeoIP.dat.gz and GeoLiteCity.dat.gz files and unzip them in a directory
corresponding to what you set GEOIP_PATH with in your settings. See the example and reference below for more
details.

Example

Assuming you have the GeoIP C library installed, here is an example of its usage:

>>> from django.contrib.gis.geoip import GeoIP
>>> g = GeoIP()
>>> g.country('google.com')
{'country_code': 'US', 'country_name': 'United States'}
>>> g.city('72.14.207.99')
{'area_code': 650,
'city': 'Mountain View',
'country_code': 'US',
'country_code3': 'USA',
'country_name': 'United States',
'dma_code': 807,
'latitude': 37.419200897216797,

1 GeoIP(R) is a registered trademark of MaxMind, LLC of Boston, Massachusetts.

6.5. contrib packages 871

https://www.maxmind.com/app/c
https://www.maxmind.com/app/country
https://www.maxmind.com/app/city
https://www.maxmind.com/download/geoip/database/

Django Documentation, Release 1.10.9.dev20171123183751

'longitude': -122.05740356445312,
'postal_code': '94043',
'region': 'CA'}
>>> g.lat_lon('salon.com')
(37.789798736572266, -122.39420318603516)
>>> g.lon_lat('uh.edu')
(-95.415199279785156, 29.77549934387207)
>>> g.geos('24.124.1.80').wkt
'POINT (-95.2087020874023438 39.0392990112304688)'

GeoIP Settings

GEOIP_PATH

A string specifying the directory where the GeoIP data files are located. This setting is required unless manually
specified with path keyword when initializing the GeoIP object.

GEOIP_LIBRARY_PATH

A string specifying the location of the GeoIP C library. Typically, this setting is only used if the GeoIP C library is in
a non-standard location (e.g., /home/sue/lib/libGeoIP.so).

GEOIP_COUNTRY

The basename to use for the GeoIP country data file. Defaults to 'GeoIP.dat'.

GEOIP_CITY

The basename to use for the GeoIP city data file. Defaults to 'GeoLiteCity.dat'.

GeoIP API

class GeoIP(path=None, cache=0, country=None, city=None)

The GeoIP object does not require any parameters to use the default settings. However, at the very least the
GEOIP_PATH setting should be set with the path of the location of your GeoIP data sets. The following initial-
ization keywords may be used to customize any of the defaults.

872 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Keyword
Arguments

Description

path Base directory to where GeoIP data is located or the full path to where the city or country data
files (.dat) are located. Assumes that both the city and country data sets are located in this
directory; overrides the GEOIP_PATH settings attribute.

cache The cache settings when opening up the GeoIP datasets, and may be an integer in (0, 1, 2, 4)
corresponding to the GEOIP_STANDARD, GEOIP_MEMORY_CACHE, GEOIP_CHECK_CACHE,
and GEOIP_INDEX_CACHE GeoIPOptions C API settings, respectively. Defaults to 0
(GEOIP_STANDARD).

country The name of the GeoIP country data file. Defaults to GeoIP.dat. Setting this keyword
overrides the GEOIP_COUNTRY settings attribute.

city The name of the GeoIP city data file. Defaults to GeoLiteCity.dat. Setting this keyword
overrides the GEOIP_CITY settings attribute.

GeoIP Methods

Querying

All the following querying routines may take either a string IP address or a fully qualified domain name (FQDN). For
example, both '205.186.163.125' and 'djangoproject.com' would be valid query parameters.

GeoIP.city(query)

Returns a dictionary of city information for the given query. Some of the values in the dictionary may be undefined
(None).

GeoIP.country(query)

Returns a dictionary with the country code and country for the given query.

GeoIP.country_code(query)

Returns only the country code corresponding to the query.

GeoIP.country_name(query)

Returns only the country name corresponding to the query.

Coordinate Retrieval

GeoIP.coords(query)

Returns a coordinate tuple of (longitude, latitude).

GeoIP.lon_lat(query)

Returns a coordinate tuple of (longitude, latitude).

GeoIP.lat_lon(query)

Returns a coordinate tuple of (latitude, longitude),

GeoIP.geos(query)

Returns a django.contrib.gis.geos.Point object corresponding to the query.

6.5. contrib packages 873

Django Documentation, Release 1.10.9.dev20171123183751

Database Information

GeoIP.country_info

This property returns information about the GeoIP country database.

GeoIP.city_info

This property returns information about the GeoIP city database.

GeoIP.info

This property returns information about all GeoIP databases (both city and country), and the version of the GeoIP C
library (if supported).

GeoIP-Python API compatibility methods

These methods exist to ease compatibility with any code using MaxMind’s existing Python API.

classmethod GeoIP.open(path, cache)

This classmethod instantiates the GeoIP object from the given database path and given cache setting.

GeoIP.region_by_addr(query)

GeoIP.region_by_name(query)

GeoIP.record_by_addr(query)

GeoIP.record_by_name(query)

GeoIP.country_code_by_addr(query)

GeoIP.country_code_by_name(query)

GeoIP.country_name_by_addr(query)

GeoIP.country_name_by_name(query)

Geolocation with GeoIP2

The GeoIP2 object is a wrapper for the MaxMind geoip2 Python library.1

In order to perform IP-based geolocation, the GeoIP2 object requires the geoip2 Python library and the GeoIP Coun-
try and/or City datasets in binary format (the CSV files will not work!). Grab the GeoLite2-Country.mmdb.gz
and GeoLite2-City.mmdb.gz files and unzip them in a directory corresponding to the GEOIP_PATH setting.

Additionally, it is recommended to install the libmaxminddb C library, so that geoip2 can leverage the C library’s
faster speed.

Example

Here is an example of its usage:

>>> from django.contrib.gis.geoip2 import GeoIP2
>>> g = GeoIP2()
>>> g.country('google.com')
{'country_code': 'US', 'country_name': 'United States'}

1 GeoIP(R) is a registered trademark of MaxMind, Inc.

874 Chapter 6. API Reference

https://geoip2.readthedocs.io/
https://pypi.python.org/pypi/geoip2
http://dev.maxmind.com/geoip/geoip2/geolite2/
https://github.com/maxmind/libmaxminddb

Django Documentation, Release 1.10.9.dev20171123183751

>>> g.city('72.14.207.99')
{'city': 'Mountain View',
'country_code': 'US',
'country_name': 'United States',
'dma_code': 807,
'latitude': 37.419200897216797,
'longitude': -122.05740356445312,
'postal_code': '94043',
'region': 'CA'}
>>> g.lat_lon('salon.com')
(39.0437, -77.4875)
>>> g.lon_lat('uh.edu')
(-95.4342, 29.834)
>>> g.geos('24.124.1.80').wkt
'POINT (-97 38)'

GeoIP Settings

GEOIP_PATH

A string specifying the directory where the GeoIP data files are located. This setting is required unless manually
specified with path keyword when initializing the GeoIP2 object.

GEOIP_COUNTRY

The basename to use for the GeoIP country data file. Defaults to 'GeoLite2-Country.mmdb'.

GEOIP_CITY

The basename to use for the GeoIP city data file. Defaults to 'GeoLite2-City.mmdb'.

GeoIP API

class GeoIP2(path=None, cache=0, country=None, city=None)

The GeoIP object does not require any parameters to use the default settings. However, at the very least the
GEOIP_PATH setting should be set with the path of the location of your GeoIP datasets. The following initialization
keywords may be used to customize any of the defaults.

6.5. contrib packages 875

Django Documentation, Release 1.10.9.dev20171123183751

Keyword
Arguments

Description

path Base directory to where GeoIP data is located or the full path to where the city or country data
files (.mmdb) are located. Assumes that both the city and country datasets are located in this
directory; overrides the GEOIP_PATH setting.

cache The cache settings when opening up the GeoIP datasets. May be an integer in (0, 1, 2, 4, 8)
corresponding to the MODE_AUTO, MODE_MMAP_EXT, MODE_MMAP, and
GEOIP_INDEX_CACHE MODE_MEMORY C API settings, respectively. Defaults to 0
(MODE_AUTO).

country The name of the GeoIP country data file. Defaults to GeoLite2-Country.mmdb. Setting this
keyword overrides the GEOIP_COUNTRY setting.

city The name of the GeoIP city data file. Defaults to GeoLite2-City.mmdb. Setting this keyword
overrides the GEOIP_CITY setting.

GeoIP Methods

Instantiating

classmethod GeoIP2.open(path, cache)

This classmethod instantiates the GeoIP object from the given database path and given cache setting.

Querying

All the following querying routines may take either a string IP address or a fully qualified domain name (FQDN). For
example, both '205.186.163.125' and 'djangoproject.com' would be valid query parameters.

GeoIP2.city(query)

Returns a dictionary of city information for the given query. Some of the values in the dictionary may be undefined
(None).

GeoIP2.country(query)

Returns a dictionary with the country code and country for the given query.

GeoIP2.country_code(query)

Returns the country code corresponding to the query.

GeoIP2.country_name(query)

Returns the country name corresponding to the query.

Coordinate Retrieval

GeoIP2.coords(query)

Returns a coordinate tuple of (longitude, latitude).

GeoIP2.lon_lat(query)

Returns a coordinate tuple of (longitude, latitude).

GeoIP2.lat_lon(query)

Returns a coordinate tuple of (latitude, longitude),

876 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

GeoIP2.geos(query)

Returns a Point object corresponding to the query.

GeoDjango Utilities

The django.contrib.gis.utils module contains various utilities that are useful in creating geospatial Web
applications.

LayerMapping data import utility

The LayerMapping class provides a way to map the contents of vector spatial data files (e.g. shapefiles) into
GeoDjango models.

This utility grew out of the author’s personal needs to eliminate the code repetition that went into pulling geometries
and fields out of a vector layer, converting to another coordinate system (e.g. WGS84), and then inserting into a
GeoDjango model.

Note: Use of LayerMapping requires GDAL.

Warning: GIS data sources, like shapefiles, may be very large. If you find that LayerMapping is using too
much memory, set DEBUG to False in your settings. When DEBUG is set to True, Django automatically logs
every SQL query – thus, when SQL statements contain geometries, it is easy to consume more memory than is
typical.

Example

1. You need a GDAL-supported data source, like a shapefile (here we’re using a simple polygon shapefile,
test_poly.shp, with three features):

>>> from django.contrib.gis.gdal import DataSource
>>> ds = DataSource('test_poly.shp')
>>> layer = ds[0]
>>> print(layer.fields) # Exploring the fields in the layer, we only want the 'str
→˓' field.
['float', 'int', 'str']
>>> print(len(layer)) # getting the number of features in the layer (should be 3)
3
>>> print(layer.geom_type) # Should be 'Polygon'
Polygon
>>> print(layer.srs) # WGS84 in WKT
GEOGCS["GCS_WGS_1984",

DATUM["WGS_1984",
SPHEROID["WGS_1984",6378137,298.257223563]],

PRIMEM["Greenwich",0],
UNIT["Degree",0.017453292519943295]]

2. Now we define our corresponding Django model (make sure to use migrate):

6.5. contrib packages 877

Django Documentation, Release 1.10.9.dev20171123183751

from django.contrib.gis.db import models

class TestGeo(models.Model):
name = models.CharField(max_length=25) # corresponds to the 'str' field
poly = models.PolygonField(srid=4269) # we want our model in a different SRID

def __str__(self): # __unicode__ on Python 2
return 'Name: %s' % self.name

3. Use LayerMapping to extract all the features and place them in the database:

>>> from django.contrib.gis.utils import LayerMapping
>>> from geoapp.models import TestGeo
>>> mapping = {'name' : 'str', # The 'name' model field maps to the 'str' layer
→˓field.

'poly' : 'POLYGON', # For geometry fields use OGC name.
} # The mapping is a dictionary

>>> lm = LayerMapping(TestGeo, 'test_poly.shp', mapping)
>>> lm.save(verbose=True) # Save the layermap, imports the data.
Saved: Name: 1
Saved: Name: 2
Saved: Name: 3

Here, LayerMapping just transformed the three geometries from the shapefile in their original spatial reference
system (WGS84) to the spatial reference system of the GeoDjango model (NAD83). If no spatial reference system is
defined for the layer, use the source_srs keyword with a SpatialReference object to specify one.

LayerMapping API

class LayerMapping(model, data_source, mapping, layer=0, source_srs=None, encoding=None, transac-
tion_mode=’commit_on_success’, transform=True, unique=True, using=’default’)

The following are the arguments and keywords that may be used during instantiation of LayerMapping objects.

Argu-
ment

Description

model The geographic model, not an instance.
data_sourceThe path to the OGR-supported data source file (e.g., a shapefile). Also accepts

django.contrib.gis.gdal.DataSource instances.
mapping A dictionary: keys are strings corresponding to the model field, and values correspond to string field

names for the OGR feature, or if the model field is a geographic then it should correspond to the
OGR geometry type, e.g., 'POINT', 'LINESTRING', 'POLYGON'.

878 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Keyword
Arguments
layer The index of the layer to use from the Data Source (defaults to 0)
source_srs Use this to specify the source SRS manually (for example, some shapefiles don’t come with a

'.prj' file). An integer SRID, WKT or PROJ.4 strings, and
django.contrib.gis.gdal.SpatialReference objects are accepted.

encoding Specifies the character set encoding of the strings in the OGR data source. For example,
'latin-1', 'utf-8', and 'cp437' are all valid encoding parameters.

transaction_modeMay be 'commit_on_success' (default) or 'autocommit'.
transform Setting this to False will disable coordinate transformations. In other words, geometries will be

inserted into the database unmodified from their original state in the data source.
unique Setting this to the name, or a tuple of names, from the given model will create models unique

only to the given name(s). Geometries from each feature will be added into the collection
associated with the unique model. Forces the transaction mode to be 'autocommit'.

using Sets the database to use when importing spatial data. Default is 'default'.

save() Keyword Arguments

LayerMapping.save(verbose=False, fid_range=False, step=False, progress=False, silent=False,
stream=sys.stdout, strict=False)

The save() method also accepts keywords. These keywords are used for controlling output logging, error handling,
and for importing specific feature ranges.

Save Keyword
Arguments

Description

fid_range May be set with a slice or tuple of (begin, end) feature ID’s to map from the data source. In
other words, this keyword enables the user to selectively import a subset range of features in
the geographic data source.

progress When this keyword is set, status information will be printed giving the number of features
processed and successfully saved. By default, progress information will be printed every 1000
features processed, however, this default may be overridden by setting this keyword with an
integer for the desired interval.

silent By default, non-fatal error notifications are printed to sys.stdout, but this keyword may be
set to disable these notifications.

step If set with an integer, transactions will occur at every step interval. For example, if
step=1000, a commit would occur after the 1,000th feature, the 2,000th feature etc.

stream Status information will be written to this file handle. Defaults to using sys.stdout, but any
object with a write method is supported.

strict Execution of the model mapping will cease upon the first error encountered. The default value
(False) behavior is to attempt to continue.

verbose If set, information will be printed subsequent to each model save executed on the database.

Troubleshooting

Running out of memory

As noted in the warning at the top of this section, Django stores all SQL queries when DEBUG=True. Set
DEBUG=False in your settings, and this should stop excessive memory use when running LayerMapping scripts.

6.5. contrib packages 879

Django Documentation, Release 1.10.9.dev20171123183751

MySQL: max_allowed_packet error

If you encounter the following error when using LayerMapping and MySQL:

OperationalError: (1153, "Got a packet bigger than 'max_allowed_packet' bytes")

Then the solution is to increase the value of the max_allowed_packet setting in your MySQL configuration.
For example, the default value may be something low like one megabyte – the setting may be modified in MySQL’s
configuration file (my.cnf) in the [mysqld] section:

max_allowed_packet = 10M

OGR Inspection

ogrinspect

ogrinspect(data_source, model_name, **kwargs)

mapping

mapping(data_source, geom_name=’geom’, layer_key=0, multi_geom=False)

GeoJSON Serializer

GeoDjango provides a specific serializer for the GeoJSON format. See Serializing Django objects for more informa-
tion on serialization.

The GDAL library is required if any of the serialized geometries need coordinate transformations (that is if the geom-
etry’s spatial reference system differs from the srid serializer option).

The GeoJSON serializer no longer needs GDAL if all geometries are in the same coordinate system as the srid
serializer option.

The geojson serializer is not meant for round-tripping data, as it has no deserializer equivalent. For example, you
cannot use loaddata to reload the output produced by this serializer. If you plan to reload the outputted data, use
the plain json serializer instead.

In addition to the options of the json serializer, the geojson serializer accepts the following additional option when
it is called by serializers.serialize():

• geometry_field: A string containing the name of a geometry field to use for the geometry key of the
GeoJSON feature. This is only needed when you have a model with more than one geometry field and you don’t
want to use the first defined geometry field (by default, the first geometry field is picked).

• srid: The SRID to use for the geometry content. Defaults to 4326 (WGS 84).

The fields option can be used to limit fields that will be present in the properties key, as it works with all other
serializers.

Example:

from django.core.serializers import serialize
from my_app.models import City

serialize('geojson', City.objects.all(),

880 Chapter 6. API Reference

http://geojson.org/

Django Documentation, Release 1.10.9.dev20171123183751

geometry_field='point',
fields=('name',))

Would output:

{
'type': 'FeatureCollection',
'crs': {
'type': 'name',
'properties': {'name': 'EPSG:4326'}

},
'features': [
{

'type': 'Feature',
'geometry': {

'type': 'Point',
'coordinates': [-87.650175, 41.850385]

},
'properties': {

'name': 'Chicago'
}

}
]

}

When the fields parameter is not specified, the geojson serializer adds a pk key to the properties dictionary
with the primary key of the object as the value.

The pk key was added to the properties dictionary.

GeoDjango Management Commands

inspectdb

django-admin inspectdb

When django.contrib.gis is in your INSTALLED_APPS, the inspectdb management command is over-
ridden with one from GeoDjango. The overridden command is spatially-aware, and places geometry fields in the
auto-generated model definition, where appropriate.

ogrinspect

django-admin ogrinspect data_source model_name

The ogrinspect management command will inspect the given OGR-compatible DataSource (e.g., a shapefile)
and will output a GeoDjango model with the given model name. There’s a detailed example of using ogrinspect
in the tutorial.

--blank BLANK
Use a comma separated list of OGR field names to add the blank=True keyword option to the field definition.
Set with true to apply to all applicable fields.

--decimal DECIMAL
Use a comma separated list of OGR float fields to generate DecimalField instead of the default
FloatField. Set to true to apply to all OGR float fields.

6.5. contrib packages 881

Django Documentation, Release 1.10.9.dev20171123183751

--geom-name GEOM_NAME
Specifies the model attribute name to use for the geometry field. Defaults to 'geom'.

--layer LAYER_KEY
The key for specifying which layer in the OGR DataSource source to use. Defaults to 0 (the first layer). May
be an integer or a string identifier for the Layer. When inspecting databases, layer is generally the table
name you want to inspect.

--mapping
Automatically generate a mapping dictionary for use with LayerMapping.

--multi-geom
When generating the geometry field, treat it as a geometry collection. For example, if this setting is enabled
then a MultiPolygonField will be placed in the generated model rather than PolygonField.

--name-field NAME_FIELD
Generates a __str__ routine (__unicode__ on Python 2) on the model that will return the given field name.

--no-imports
Suppresses the from django.contrib.gis.db import models import statement.

--null NULL
Use a comma separated list of OGR field names to add the null=True keyword option to the field definition.
Set with true to apply to all applicable fields.

--srid SRID
The SRID to use for the geometry field. If not set, ogrinspect attempts to automatically determine of the
SRID of the data source.

GeoDjango’s admin site

GeoModelAdmin

class GeoModelAdmin

default_lon

The default center longitude.

default_lat

The default center latitude.

default_zoom

The default zoom level to use. Defaults to 18.

extra_js

Sequence of URLs to any extra JavaScript to include.

map_template

Override the template used to generate the JavaScript slippy map. Default is 'gis/admin/openlayers.
html'.

map_width

Width of the map, in pixels. Defaults to 600.

map_height

882 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Height of the map, in pixels. Defaults to 400.

openlayers_url

Link to the URL of the OpenLayers JavaScript. Defaults to 'http://openlayers.org/api/2.13.1/
OpenLayers.js'.

modifiable

Defaults to True. When set to False, disables editing of existing geometry fields in the admin.

Note: This is different from adding the geometry field to readonly_fields, which will only display the
WKT of the geometry. Setting modifiable=False, actually displays the geometry in a map, but disables
the ability to edit its vertices.

OSMGeoAdmin

class OSMGeoAdmin
A subclass of GeoModelAdmin that uses a spherical mercator projection with OpenStreetMap street data tiles.
See the OSMGeoAdmin introduction in the tutorial for a usage example.

Geographic Feeds

GeoDjango has its own Feed subclass that may embed location information in RSS/Atom feeds formatted according
to either the Simple GeoRSS or W3C Geo standards. Because GeoDjango’s syndication API is a superset of Django’s,
please consult Django’s syndication documentation for details on general usage.

Example

API Reference

Feed Subclass

class Feed
In addition to methods provided by the django.contrib.syndication.views.Feed base class,
GeoDjango’s Feed class provides the following overrides. Note that these overrides may be done in multi-
ple ways:

from django.contrib.gis.feeds import Feed

class MyFeed(Feed):

First, as a class attribute.
geometry = ...
item_geometry = ...

Also a function with no arguments
def geometry(self):

...

def item_geometry(self):
...

6.5. contrib packages 883

https://www.openstreetmap.org/
http://georss.org/simple.html
http://www.w3.org/2003/01/geo/

Django Documentation, Release 1.10.9.dev20171123183751

And as a function with a single argument
def geometry(self, obj):

...

def item_geometry(self, item):
...

geometry(obj)

Takes the object returned by get_object() and returns the feed’s geometry. Typically this is a
GEOSGeometry instance, or can be a tuple to represent a point or a box. For example:

class ZipcodeFeed(Feed):

def geometry(self, obj):
Can also return: `obj.poly`, and `obj.poly.centroid`.
return obj.poly.extent # tuple like: (X0, Y0, X1, Y1).

item_geometry(item)

Set this to return the geometry for each item in the feed. This can be a GEOSGeometry instance, or a tuple that
represents a point coordinate or bounding box. For example:

class ZipcodeFeed(Feed):

def item_geometry(self, obj):
Returns the polygon.
return obj.poly

SyndicationFeed Subclasses

The following django.utils.feedgenerator.SyndicationFeed subclasses are available:

class GeoRSSFeed

class GeoAtom1Feed

class W3CGeoFeed

Note: W3C Geo formatted feeds only support PointField geometries.

Geographic Sitemaps

KML is an XML language focused on geographic visualization1. KMLSitemap and its compressed counterpart
KMZSitemap allow you to present geolocated data in a machine-readable format.

1 http://www.opengeospatial.org/standards/kml

884 Chapter 6. API Reference

http://www.w3.org/2003/01/geo/
http://www.opengeospatial.org/standards/kml

Django Documentation, Release 1.10.9.dev20171123183751

Example

Reference

KMLSitemap

KMZSitemap

Testing GeoDjango apps

Included in this documentation are some additional notes and settings for PostGIS users.

PostGIS

Settings

Note: The settings below have sensible defaults, and shouldn’t require manual setting.

POSTGIS_VERSION

When GeoDjango’s spatial backend initializes on PostGIS, it has to perform an SQL query to determine the version
in order to figure out what features are available. Advanced users wishing to prevent this additional query may set the
version manually using a 3-tuple of integers specifying the major, minor, and micro version numbers for PostGIS. For
example, to configure for PostGIS X.Y.Z you would use:

POSTGIS_VERSION = (X, Y, Z)

Obtaining sufficient privileges

Depending on your configuration, this section describes several methods to configure a database user with sufficient
privileges to run tests for GeoDjango applications on PostgreSQL. If your spatial database template was created
like in the instructions, then your testing database user only needs to have the ability to create databases. In other
configurations, you may be required to use a database superuser.

Create database user

To make a database user with the ability to create databases, use the following command:

$ createuser --createdb -R -S <user_name>

The -R -S flags indicate that we do not want the user to have the ability to create additional users (roles) or to be a
superuser, respectively.

Alternatively, you may alter an existing user’s role from the SQL shell (assuming this is done from an existing supe-
ruser account):

6.5. contrib packages 885

Django Documentation, Release 1.10.9.dev20171123183751

postgres# ALTER ROLE <user_name> CREATEDB NOSUPERUSER NOCREATEROLE;

Create database superuser

This may be done at the time the user is created, for example:

$ createuser --superuser <user_name>

Or you may alter the user’s role from the SQL shell (assuming this is done from an existing superuser account):

postgres# ALTER ROLE <user_name> SUPERUSER;

Windows

On Windows platforms the pgAdmin III utility may also be used as a simple way to add superuser privileges to your
database user.

By default, the PostGIS installer on Windows includes a template spatial database entitled template_postgis.

GeoDjango tests

To have the GeoDjango tests executed when running the Django test suite with runtests.py all of the databases
in the settings file must be using one of the spatial database backends.

Example

The following is an example bare-bones settings file with spatial backends that can be used to run the entire Django
test suite, including those in django.contrib.gis:

DATABASES = {
'default': {

'ENGINE': 'django.contrib.gis.db.backends.postgis',
'NAME': 'geodjango',
'USER': 'geodjango',

},
'other': {

'ENGINE': 'django.contrib.gis.db.backends.postgis',
'NAME': 'other',
'USER': 'geodjango',

},
}

SECRET_KEY = 'django_tests_secret_key'

Assuming the settings above were in a postgis.py file in the same directory as runtests.py, then all Django
and GeoDjango tests would be performed when executing the command:

$./runtests.py --settings=postgis

To run only the GeoDjango test suite, specify gis_tests:

886 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

$./runtests.py --settings=postgis gis_tests

Deploying GeoDjango

Basically, the deployment of a GeoDjango application is not different from the deployment of a normal Django appli-
cation. Please consult Django’s deployment documentation.

Warning: GeoDjango uses the GDAL geospatial library which is not thread safe at this time. Thus, it is highly
recommended to not use threading when deploying – in other words, use an appropriate configuration of Apache.

For example, when configuring your application with mod_wsgi, set the WSGIDaemonProcess attribute
threads to 1, unless Apache may crash when running your GeoDjango application. Increase the number of
processes instead.

6.5.6 django.contrib.humanize

A set of Django template filters useful for adding a “human touch” to data.

To activate these filters, add 'django.contrib.humanize' to your INSTALLED_APPS setting. Once you’ve
done that, use {% load humanize %} in a template, and you’ll have access to the following filters.

apnumber

For numbers 1-9, returns the number spelled out. Otherwise, returns the number. This follows Associated Press style.

Examples:

• 1 becomes one.

• 2 becomes two.

• 10 becomes 10.

You can pass in either an integer or a string representation of an integer.

intcomma

Converts an integer or float (or a string representation of either) to a string containing commas every three digits.

Examples:

• 4500 becomes 4,500.

• 4500.2 becomes 4,500.2.

• 45000 becomes 45,000.

• 450000 becomes 450,000.

• 4500000 becomes 4,500,000.

Format localization will be respected if enabled, e.g. with the 'de' language:

• 45000 becomes '45.000'.

• 450000 becomes '450.000'.

6.5. contrib packages 887

Django Documentation, Release 1.10.9.dev20171123183751

intword

Converts a large integer (or a string representation of an integer) to a friendly text representation. Works best for
numbers over 1 million.

Examples:

• 1000000 becomes 1.0 million.

• 1200000 becomes 1.2 million.

• 1200000000 becomes 1.2 billion.

Values up to 10^100 (Googol) are supported.

Format localization will be respected if enabled, e.g. with the 'de' language:

• 1000000 becomes '1,0 Million'.

• 1200000 becomes '1,2 Million'.

• 1200000000 becomes '1,2 Milliarden'.

naturalday

For dates that are the current day or within one day, return “today”, “tomorrow” or “yesterday”, as appropriate.
Otherwise, format the date using the passed in format string.

Argument: Date formatting string as described in the date tag.

Examples (when ‘today’ is 17 Feb 2007):

• 16 Feb 2007 becomes yesterday.

• 17 Feb 2007 becomes today.

• 18 Feb 2007 becomes tomorrow.

• Any other day is formatted according to given argument or the DATE_FORMAT setting if no argument is given.

naturaltime

For datetime values, returns a string representing how many seconds, minutes or hours ago it was – falling back to the
timesince format if the value is more than a day old. In case the datetime value is in the future the return value will
automatically use an appropriate phrase.

Examples (when ‘now’ is 17 Feb 2007 16:30:00):

• 17 Feb 2007 16:30:00 becomes now.

• 17 Feb 2007 16:29:31 becomes 29 seconds ago.

• 17 Feb 2007 16:29:00 becomes a minute ago.

• 17 Feb 2007 16:25:35 becomes 4 minutes ago.

• 17 Feb 2007 15:30:29 becomes 59 minutes ago.

• 17 Feb 2007 15:30:01 becomes 59 minutes ago.

• 17 Feb 2007 15:30:00 becomes an hour ago.

• 17 Feb 2007 13:31:29 becomes 2 hours ago.

• 16 Feb 2007 13:31:29 becomes 1 day, 2 hours ago.

888 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• 16 Feb 2007 13:30:01 becomes 1 day, 2 hours ago.

• 16 Feb 2007 13:30:00 becomes 1 day, 3 hours ago.

• 17 Feb 2007 16:30:30 becomes 30 seconds from now.

• 17 Feb 2007 16:30:29 becomes 29 seconds from now.

• 17 Feb 2007 16:31:00 becomes a minute from now.

• 17 Feb 2007 16:34:35 becomes 4 minutes from now.

• 17 Feb 2007 17:30:29 becomes an hour from now.

• 17 Feb 2007 18:31:29 becomes 2 hours from now.

• 18 Feb 2007 16:31:29 becomes 1 day from now.

• 26 Feb 2007 18:31:29 becomes 1 week, 2 days from now.

ordinal

Converts an integer to its ordinal as a string.

Examples:

• 1 becomes 1st.

• 2 becomes 2nd.

• 3 becomes 3rd.

You can pass in either an integer or a string representation of an integer.

6.5.7 The messages framework

Quite commonly in web applications, you need to display a one-time notification message (also known as “flash
message”) to the user after processing a form or some other types of user input.

For this, Django provides full support for cookie- and session-based messaging, for both anonymous and authenticated
users. The messages framework allows you to temporarily store messages in one request and retrieve them for display
in a subsequent request (usually the next one). Every message is tagged with a specific level that determines its
priority (e.g., info, warning, or error).

Enabling messages

Messages are implemented through a middleware class and corresponding context processor.

The default settings.py created by django-admin startproject already contains all the settings required
to enable message functionality:

• 'django.contrib.messages' is in INSTALLED_APPS.

• MIDDLEWARE contains 'django.contrib.sessions.middleware.SessionMiddleware' and
'django.contrib.messages.middleware.MessageMiddleware'.

The default storage backend relies on sessions. That’s why SessionMiddleware must be enabled and
appear before MessageMiddleware in MIDDLEWARE.

• The 'context_processors' option of the DjangoTemplates backend defined in your TEMPLATES
setting contains 'django.contrib.messages.context_processors.messages'.

6.5. contrib packages 889

Django Documentation, Release 1.10.9.dev20171123183751

If you don’t want to use messages, you can remove 'django.contrib.messages' from your
INSTALLED_APPS, the MessageMiddleware line from MIDDLEWARE, and the messages context processor
from TEMPLATES.

Configuring the message engine

Storage backends

The messages framework can use different backends to store temporary messages.

Django provides three built-in storage classes in django.contrib.messages:

class storage.session.SessionStorage
This class stores all messages inside of the request’s session. Therefore it requires Django’s contrib.
sessions application.

class storage.cookie.CookieStorage
This class stores the message data in a cookie (signed with a secret hash to prevent manipulation) to persist
notifications across requests. Old messages are dropped if the cookie data size would exceed 2048 bytes.

class storage.fallback.FallbackStorage
This class first uses CookieStorage, and falls back to using SessionStorage for the messages that could
not fit in a single cookie. It also requires Django’s contrib.sessions application.

This behavior avoids writing to the session whenever possible. It should provide the best performance in the
general case.

FallbackStorage is the default storage class. If it isn’t suitable to your needs, you can select another storage class
by setting MESSAGE_STORAGE to its full import path, for example:

MESSAGE_STORAGE = 'django.contrib.messages.storage.cookie.CookieStorage'

class storage.base.BaseStorage

To write your own storage class, subclass the BaseStorage class in django.contrib.messages.storage.
base and implement the _get and _store methods.

Message levels

The messages framework is based on a configurable level architecture similar to that of the Python logging module.
Message levels allow you to group messages by type so they can be filtered or displayed differently in views and
templates.

The built-in levels, which can be imported from django.contrib.messages directly, are:

Constant Purpose
DEBUG Development-related messages that will be ignored (or removed) in a production deployment
INFO Informational messages for the user
SUCCESS An action was successful, e.g. “Your profile was updated successfully”
WARNING A failure did not occur but may be imminent
ERROR An action was not successful or some other failure occurred

The MESSAGE_LEVEL setting can be used to change the minimum recorded level (or it can be changed per request).
Attempts to add messages of a level less than this will be ignored.

890 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Message tags

Message tags are a string representation of the message level plus any extra tags that were added directly in the view
(see Adding extra message tags below for more details). Tags are stored in a string and are separated by spaces.
Typically, message tags are used as CSS classes to customize message style based on message type. By default, each
level has a single tag that’s a lowercase version of its own constant:

Level Constant Tag
DEBUG debug
INFO info
SUCCESS success
WARNING warning
ERROR error

To change the default tags for a message level (either built-in or custom), set the MESSAGE_TAGS setting to a dictio-
nary containing the levels you wish to change. As this extends the default tags, you only need to provide tags for the
levels you wish to override:

from django.contrib.messages import constants as messages
MESSAGE_TAGS = {

messages.INFO: '',
50: 'critical',

}

Using messages in views and templates

add_message(request, level, message, extra_tags=’‘, fail_silently=False)

Adding a message

To add a message, call:

from django.contrib import messages
messages.add_message(request, messages.INFO, 'Hello world.')

Some shortcut methods provide a standard way to add messages with commonly used tags (which are usually repre-
sented as HTML classes for the message):

messages.debug(request, '%s SQL statements were executed.' % count)
messages.info(request, 'Three credits remain in your account.')
messages.success(request, 'Profile details updated.')
messages.warning(request, 'Your account expires in three days.')
messages.error(request, 'Document deleted.')

Displaying messages

get_messages(request)

In your template, use something like:

{% if messages %}
<ul class="messages">

{% for message in messages %}

6.5. contrib packages 891

Django Documentation, Release 1.10.9.dev20171123183751

<li{% if message.tags %} class="{{ message.tags }}"{% endif %}>{{ message }}
{% endfor %}

{% endif %}

If you’re using the context processor, your template should be rendered with a RequestContext. Otherwise, ensure
messages is available to the template context.

Even if you know there is only just one message, you should still iterate over the messages sequence, because
otherwise the message storage will not be cleared for the next request.

The context processor also provides a DEFAULT_MESSAGE_LEVELS variable which is a mapping of the message
level names to their numeric value:

{% if messages %}
<ul class="messages">

{% for message in messages %}
<li{% if message.tags %} class="{{ message.tags }}"{% endif %}>

{% if message.level == DEFAULT_MESSAGE_LEVELS.ERROR %}Important: {% endif %}
{{ message }}

{% endfor %}

{% endif %}

Outside of templates, you can use get_messages():

from django.contrib.messages import get_messages

storage = get_messages(request)
for message in storage:

do_something_with_the_message(message)

For instance, you can fetch all the messages to return them in a JSONResponseMixin instead of a
TemplateResponseMixin.

get_messages() will return an instance of the configured storage backend.

The Message class

class storage.base.Message
When you loop over the list of messages in a template, what you get are instances of the Message class. It’s
quite a simple object, with only a few attributes:

• message: The actual text of the message.

• level: An integer describing the type of the message (see the message levels section above).

• tags: A string combining all the message’s tags (extra_tags and level_tag) separated by spaces.

• extra_tags: A string containing custom tags for this message, separated by spaces. It’s empty by
default.

• level_tag: The string representation of the level. By default, it’s the lowercase version of the name of
the associated constant, but this can be changed if you need by using the MESSAGE_TAGS setting.

892 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Creating custom message levels

Messages levels are nothing more than integers, so you can define your own level constants and use them to create
more customized user feedback, e.g.:

CRITICAL = 50

def my_view(request):
messages.add_message(request, CRITICAL, 'A serious error occurred.')

When creating custom message levels you should be careful to avoid overloading existing levels. The values for the

built-in levels are:

Level Constant Value
DEBUG 10
INFO 20
SUCCESS 25
WARNING 30
ERROR 40

If you need to identify the custom levels in your HTML or CSS, you need to provide a mapping via the
MESSAGE_TAGS setting.

Note: If you are creating a reusable application, it is recommended to use only the built-in message levels and not
rely on any custom levels.

Changing the minimum recorded level per-request

The minimum recorded level can be set per request via the set_level method:

from django.contrib import messages

Change the messages level to ensure the debug message is added.
messages.set_level(request, messages.DEBUG)
messages.debug(request, 'Test message...')

In another request, record only messages with a level of WARNING and higher
messages.set_level(request, messages.WARNING)
messages.success(request, 'Your profile was updated.') # ignored
messages.warning(request, 'Your account is about to expire.') # recorded

Set the messages level back to default.
messages.set_level(request, None)

Similarly, the current effective level can be retrieved with get_level:

from django.contrib import messages
current_level = messages.get_level(request)

For more information on how the minimum recorded level functions, see Message levels above.

Adding extra message tags

For more direct control over message tags, you can optionally provide a string containing extra tags to any of the add
methods:

6.5. contrib packages 893

Django Documentation, Release 1.10.9.dev20171123183751

messages.add_message(request, messages.INFO, 'Over 9000!', extra_tags='dragonball')
messages.error(request, 'Email box full', extra_tags='email')

Extra tags are added before the default tag for that level and are space separated.

Failing silently when the message framework is disabled

If you’re writing a reusable app (or other piece of code) and want to include messaging functionality, but don’t
want to require your users to enable it if they don’t want to, you may pass an additional keyword argument
fail_silently=True to any of the add_message family of methods. For example:

messages.add_message(
request, messages.SUCCESS, 'Profile details updated.',
fail_silently=True,

)
messages.info(request, 'Hello world.', fail_silently=True)

Note: Setting fail_silently=True only hides the MessageFailure that would otherwise occur when the
messages framework disabled and one attempts to use one of the add_message family of methods. It does not hide
failures that may occur for other reasons.

Adding messages in class-based views

class views.SuccessMessageMixin
Adds a success message attribute to FormView based classes

get_success_message(cleaned_data)
cleaned_data is the cleaned data from the form which is used for string formatting

Example views.py:

from django.contrib.messages.views import SuccessMessageMixin
from django.views.generic.edit import CreateView
from myapp.models import Author

class AuthorCreate(SuccessMessageMixin, CreateView):
model = Author
success_url = '/success/'
success_message = "%(name)s was created successfully"

The cleaned data from the form is available for string interpolation using the %(field_name)s syntax. For
ModelForms, if you need access to fields from the saved object override the get_success_message()method.

Example views.py for ModelForms:

from django.contrib.messages.views import SuccessMessageMixin
from django.views.generic.edit import CreateView
from myapp.models import ComplicatedModel

class ComplicatedCreate(SuccessMessageMixin, CreateView):
model = ComplicatedModel
success_url = '/success/'
success_message = "%(calculated_field)s was created successfully"

894 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

def get_success_message(self, cleaned_data):
return self.success_message % dict(

cleaned_data,
calculated_field=self.object.calculated_field,

)

Expiration of messages

The messages are marked to be cleared when the storage instance is iterated (and cleared when the response is pro-
cessed).

To avoid the messages being cleared, you can set the messages storage to False after iterating:

storage = messages.get_messages(request)
for message in storage:

do_something_with(message)
storage.used = False

Behavior of parallel requests

Due to the way cookies (and hence sessions) work, the behavior of any backends that make use of cookies or
sessions is undefined when the same client makes multiple requests that set or get messages in parallel. For
example, if a client initiates a request that creates a message in one window (or tab) and then another that fetches
any uniterated messages in another window, before the first window redirects, the message may appear in the second
window instead of the first window where it may be expected.

In short, when multiple simultaneous requests from the same client are involved, messages are not guaranteed to be
delivered to the same window that created them nor, in some cases, at all. Note that this is typically not a problem
in most applications and will become a non-issue in HTML5, where each window/tab will have its own browsing
context.

Settings

A few settings give you control over message behavior:

• MESSAGE_LEVEL

• MESSAGE_STORAGE

• MESSAGE_TAGS

For backends that use cookies, the settings for the cookie are taken from the session cookie settings:

• SESSION_COOKIE_DOMAIN

• SESSION_COOKIE_SECURE

• SESSION_COOKIE_HTTPONLY

6.5.8 django.contrib.postgres

PostgreSQL has a number of features which are not shared by the other databases Django supports. This optional
module contains model fields and form fields for a number of PostgreSQL specific data types.

6.5. contrib packages 895

Django Documentation, Release 1.10.9.dev20171123183751

Psycopg2 2.5 or higher is required, though we highly recommend using the latest release. Some fields require higher
versions.

Note: Django is, and will continue to be, a database-agnostic web framework. We would encourage those writing
reusable applications for the Django community to write database-agnostic code where practical. However, we rec-
ognize that real world projects written using Django need not be database-agnostic. In fact, once a project reaches a
given size changing the underlying data store is already a significant challenge and is likely to require changing the
code base in some ways to handle differences between the data stores.

Django provides support for a number of data types which will only work with PostgreSQL. There is no fundamental
reason why (for example) a contrib.mysql module does not exist, except that PostgreSQL has the richest feature
set of the supported databases so its users have the most to gain.

PostgreSQL specific aggregation functions

These functions are described in more detail in the PostgreSQL docs.

Note: All functions come without default aliases, so you must explicitly provide one. For example:

>>> SomeModel.objects.aggregate(arr=ArrayAgg('somefield'))
{'arr': [0, 1, 2]}

General-purpose aggregation functions

ArrayAgg

class ArrayAgg(expression, **extra)
Returns a list of values, including nulls, concatenated into an array.

BitAnd

class BitAnd(expression, **extra)
Returns an int of the bitwise AND of all non-null input values, or None if all values are null.

BitOr

class BitOr(expression, **extra)
Returns an int of the bitwise OR of all non-null input values, or None if all values are null.

BoolAnd

class BoolAnd(expression, **extra)
Returns True, if all input values are true, None if all values are null or if there are no values, otherwise False
.

896 Chapter 6. API Reference

https://www.postgresql.org/docs/current/static/functions-aggregate.html

Django Documentation, Release 1.10.9.dev20171123183751

BoolOr

class BoolOr(expression, **extra)
Returns True if at least one input value is true, None if all values are null or if there are no values, otherwise
False.

StringAgg

class StringAgg(expression, delimiter)
Returns the input values concatenated into a string, separated by the delimiter string.

delimiter
Required argument. Needs to be a string.

Aggregate functions for statistics

y and x

The arguments y and x for all these functions can be the name of a field or an expression returning a numeric data.
Both are required.

Corr

class Corr(y, x)
Returns the correlation coefficient as a float, or None if there aren’t any matching rows.

CovarPop

class CovarPop(y, x, sample=False)
Returns the population covariance as a float, or None if there aren’t any matching rows.

Has one optional argument:

sample
By default CovarPop returns the general population covariance. However, if sample=True, the return
value will be the sample population covariance.

RegrAvgX

class RegrAvgX(y, x)
Returns the average of the independent variable (sum(x)/N) as a float, or None if there aren’t any matching
rows.

RegrAvgY

class RegrAvgY(y, x)
Returns the average of the dependent variable (sum(y)/N) as a float, or None if there aren’t any matching
rows.

6.5. contrib packages 897

Django Documentation, Release 1.10.9.dev20171123183751

RegrCount

class RegrCount(y, x)
Returns an int of the number of input rows in which both expressions are not null.

RegrIntercept

class RegrIntercept(y, x)
Returns the y-intercept of the least-squares-fit linear equation determined by the (x, y) pairs as a float, or
None if there aren’t any matching rows.

RegrR2

class RegrR2(y, x)
Returns the square of the correlation coefficient as a float, or None if there aren’t any matching rows.

RegrSlope

class RegrSlope(y, x)
Returns the slope of the least-squares-fit linear equation determined by the (x, y) pairs as a float, or None
if there aren’t any matching rows.

RegrSXX

class RegrSXX(y, x)
Returns sum(x^2) - sum(x)^2/N (“sum of squares” of the independent variable) as a float, or None
if there aren’t any matching rows.

RegrSXY

class RegrSXY(y, x)
Returns sum(x*y) - sum(x) * sum(y)/N (“sum of products” of independent times dependent variable)
as a float, or None if there aren’t any matching rows.

RegrSYY

class RegrSYY(y, x)
Returns sum(y^2) - sum(y)^2/N (“sum of squares” of the dependent variable) as a float, or None if
there aren’t any matching rows.

Usage examples

We will use this example table:

898 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

| FIELD1 | FIELD2 | FIELD3 |
|--------|--------|--------|
| foo | 1 | 13 |
| bar | 2 | (null) |
| test | 3 | 13 |

Here’s some examples of some of the general-purpose aggregation functions:

>>> TestModel.objects.aggregate(result=StringAgg('field1', delimiter=';'))
{'result': 'foo;bar;test'}
>>> TestModel.objects.aggregate(result=ArrayAgg('field2'))
{'result': [1, 2, 3]}
>>> TestModel.objects.aggregate(result=ArrayAgg('field1'))
{'result': ['foo', 'bar', 'test']}

The next example shows the usage of statistical aggregate functions. The underlying math will be not described (you
can read about this, for example, at wikipedia):

>>> TestModel.objects.aggregate(count=RegrCount(y='field3', x='field2'))
{'count': 2}
>>> TestModel.objects.aggregate(avgx=RegrAvgX(y='field3', x='field2'),
... avgy=RegrAvgY(y='field3', x='field2'))
{'avgx': 2, 'avgy': 13}

PostgreSQL specific model fields

All of these fields are available from the django.contrib.postgres.fields module.

ArrayField

class ArrayField(base_field, size=None, **options)
A field for storing lists of data. Most field types can be used, you simply pass another field instance as the
base_field. You may also specify a size. ArrayField can be nested to store multi-dimensional arrays.

If you give the field a default, ensure it’s a callable such as list (for an empty default) or a callable that
returns a list (such as a function). Incorrectly using default=[] creates a mutable default that is shared
between all instances of ArrayField.

base_field
This is a required argument.

Specifies the underlying data type and behavior for the array. It should be an instance of a subclass
of Field. For example, it could be an IntegerField or a CharField. Most field types are
permitted, with the exception of those handling relational data (ForeignKey , OneToOneField and
ManyToManyField).

It is possible to nest array fields - you can specify an instance of ArrayField as the base_field. For
example:

from django.db import models
from django.contrib.postgres.fields import ArrayField

class ChessBoard(models.Model):
board = ArrayField(

ArrayField(

6.5. contrib packages 899

https://en.wikipedia.org/wiki/Regression_analysis

Django Documentation, Release 1.10.9.dev20171123183751

models.CharField(max_length=10, blank=True),
size=8,

),
size=8,

)

Transformation of values between the database and the model, validation of data and configuration, and
serialization are all delegated to the underlying base field.

size
This is an optional argument.

If passed, the array will have a maximum size as specified. This will be passed to the database, although
PostgreSQL at present does not enforce the restriction.

Note: When nesting ArrayField, whether you use the size parameter or not, PostgreSQL requires that the arrays
are rectangular:

from django.contrib.postgres.fields import ArrayField
from django.db import models

class Board(models.Model):
pieces = ArrayField(ArrayField(models.IntegerField()))

Valid
Board(pieces=[

[2, 3],
[2, 1],

])

Not valid
Board(pieces=[

[2, 3],
[2],

])

If irregular shapes are required, then the underlying field should be made nullable and the values padded with None.

Querying ArrayField

There are a number of custom lookups and transforms for ArrayField. We will use the following example model:

from django.db import models
from django.contrib.postgres.fields import ArrayField

class Post(models.Model):
name = models.CharField(max_length=200)
tags = ArrayField(models.CharField(max_length=200), blank=True)

def __str__(self): # __unicode__ on Python 2
return self.name

900 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

contains

The contains lookup is overridden on ArrayField. The returned objects will be those where the values passed
are a subset of the data. It uses the SQL operator @>. For example:

>>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
>>> Post.objects.create(name='Second post', tags=['thoughts'])
>>> Post.objects.create(name='Third post', tags=['tutorial', 'django'])

>>> Post.objects.filter(tags__contains=['thoughts'])
<QuerySet [<Post: First post>, <Post: Second post>]>

>>> Post.objects.filter(tags__contains=['django'])
<QuerySet [<Post: First post>, <Post: Third post>]>

>>> Post.objects.filter(tags__contains=['django', 'thoughts'])
<QuerySet [<Post: First post>]>

contained_by

This is the inverse of the contains lookup - the objects returned will be those where the data is a subset of the values
passed. It uses the SQL operator <@. For example:

>>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
>>> Post.objects.create(name='Second post', tags=['thoughts'])
>>> Post.objects.create(name='Third post', tags=['tutorial', 'django'])

>>> Post.objects.filter(tags__contained_by=['thoughts', 'django'])
<QuerySet [<Post: First post>, <Post: Second post>]>

>>> Post.objects.filter(tags__contained_by=['thoughts', 'django', 'tutorial'])
<QuerySet [<Post: First post>, <Post: Second post>, <Post: Third post>]>

overlap

Returns objects where the data shares any results with the values passed. Uses the SQL operator &&. For example:

>>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
>>> Post.objects.create(name='Second post', tags=['thoughts'])
>>> Post.objects.create(name='Third post', tags=['tutorial', 'django'])

>>> Post.objects.filter(tags__overlap=['thoughts'])
<QuerySet [<Post: First post>, <Post: Second post>]>

>>> Post.objects.filter(tags__overlap=['thoughts', 'tutorial'])
<QuerySet [<Post: First post>, <Post: Second post>, <Post: Third post>]>

len

Returns the length of the array. The lookups available afterwards are those available for IntegerField. For
example:

6.5. contrib packages 901

Django Documentation, Release 1.10.9.dev20171123183751

>>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
>>> Post.objects.create(name='Second post', tags=['thoughts'])

>>> Post.objects.filter(tags__len=1)
<QuerySet [<Post: Second post>]>

Index transforms

This class of transforms allows you to index into the array in queries. Any non-negative integer can be used. There
are no errors if it exceeds the size of the array. The lookups available after the transform are those from the
base_field. For example:

>>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
>>> Post.objects.create(name='Second post', tags=['thoughts'])

>>> Post.objects.filter(tags__0='thoughts')
<QuerySet [<Post: First post>, <Post: Second post>]>

>>> Post.objects.filter(tags__1__iexact='Django')
<QuerySet [<Post: First post>]>

>>> Post.objects.filter(tags__276='javascript')
<QuerySet []>

Note: PostgreSQL uses 1-based indexing for array fields when writing raw SQL. However these indexes and those
used in slices use 0-based indexing to be consistent with Python.

Slice transforms

This class of transforms allow you to take a slice of the array. Any two non-negative integers can be used, separated
by a single underscore. The lookups available after the transform do not change. For example:

>>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
>>> Post.objects.create(name='Second post', tags=['thoughts'])
>>> Post.objects.create(name='Third post', tags=['django', 'python', 'thoughts'])

>>> Post.objects.filter(tags__0_1=['thoughts'])
<QuerySet [<Post: First post>, <Post: Second post>]>

>>> Post.objects.filter(tags__0_2__contains=['thoughts'])
<QuerySet [<Post: First post>, <Post: Second post>]>

Note: PostgreSQL uses 1-based indexing for array fields when writing raw SQL. However these slices and those used
in indexes use 0-based indexing to be consistent with Python.

Multidimensional arrays with indexes and slices

PostgreSQL has some rather esoteric behavior when using indexes and slices on multidimensional arrays. It will
always work to use indexes to reach down to the final underlying data, but most other slices behave strangely at the

902 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

database level and cannot be supported in a logical, consistent fashion by Django.

Indexing ArrayField

At present using db_index will create a btree index. This does not offer particularly significant help to querying.
A more useful index is a GIN index, which you should create using a RunSQL operation.

HStoreField

class HStoreField(**options)
A field for storing mappings of strings to strings. The Python data type used is a dict.

To use this field, you’ll need to:

1. Add 'django.contrib.postgres' in your INSTALLED_APPS.

2. Setup the hstore extension in PostgreSQL.

You’ll see an error like can't adapt type 'dict' if you skip the first step, or type "hstore"
does not exist if you skip the second.

Note: On occasions it may be useful to require or restrict the keys which are valid for a given field. This can be done
using the KeysValidator.

Querying HStoreField

In addition to the ability to query by key, there are a number of custom lookups available for HStoreField.

We will use the following example model:

from django.contrib.postgres.fields import HStoreField
from django.db import models

class Dog(models.Model):
name = models.CharField(max_length=200)
data = HStoreField()

def __str__(self): # __unicode__ on Python 2
return self.name

Key lookups

To query based on a given key, you simply use that key as the lookup name:

>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador'})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie'})

>>> Dog.objects.filter(data__breed='collie')
<QuerySet [<Dog: Meg>]>

You can chain other lookups after key lookups:

6.5. contrib packages 903

Django Documentation, Release 1.10.9.dev20171123183751

>>> Dog.objects.filter(data__breed__contains='l')
<QuerySet [<Dog: Rufus>, <Dog: Meg>]>

If the key you wish to query by clashes with the name of another lookup, you need to use the hstorefield.
contains lookup instead.

Warning: Since any string could be a key in a hstore value, any lookup other than those listed below will be
interpreted as a key lookup. No errors are raised. Be extra careful for typing mistakes, and always check your
queries work as you intend.

contains

The contains lookup is overridden on HStoreField. The returned objects are those where the given dict of
key-value pairs are all contained in the field. It uses the SQL operator @>. For example:

>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador', 'owner': 'Bob'})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
>>> Dog.objects.create(name='Fred', data={})

>>> Dog.objects.filter(data__contains={'owner': 'Bob'})
<QuerySet [<Dog: Rufus>, <Dog: Meg>]>

>>> Dog.objects.filter(data__contains={'breed': 'collie'})
<QuerySet [<Dog: Meg>]>

contained_by

This is the inverse of the contains lookup - the objects returned will be those where the key-value pairs on the
object are a subset of those in the value passed. It uses the SQL operator <@. For example:

>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador', 'owner': 'Bob'})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
>>> Dog.objects.create(name='Fred', data={})

>>> Dog.objects.filter(data__contained_by={'breed': 'collie', 'owner': 'Bob'})
<QuerySet [<Dog: Meg>, <Dog: Fred>]>

>>> Dog.objects.filter(data__contained_by={'breed': 'collie'})
<QuerySet [<Dog: Fred>]>

has_key

Returns objects where the given key is in the data. Uses the SQL operator ?. For example:

>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador'})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})

>>> Dog.objects.filter(data__has_key='owner')
<QuerySet [<Dog: Meg>]>

904 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

has_any_keys

Returns objects where any of the given keys are in the data. Uses the SQL operator ?|. For example:

>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador'})
>>> Dog.objects.create(name='Meg', data={'owner': 'Bob'})
>>> Dog.objects.create(name='Fred', data={})

>>> Dog.objects.filter(data__has_any_keys=['owner', 'breed'])
<QuerySet [<Dog: Rufus>, <Dog: Meg>]>

has_keys

Returns objects where all of the given keys are in the data. Uses the SQL operator ?&. For example:

>>> Dog.objects.create(name='Rufus', data={})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})

>>> Dog.objects.filter(data__has_keys=['breed', 'owner'])
<QuerySet [<Dog: Meg>]>

keys

Returns objects where the array of keys is the given value. Note that the order is not guaranteed to be reliable, so this
transform is mainly useful for using in conjunction with lookups on ArrayField. Uses the SQL function akeys().
For example:

>>> Dog.objects.create(name='Rufus', data={'toy': 'bone'})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})

>>> Dog.objects.filter(data__keys__overlap=['breed', 'toy'])
<QuerySet [<Dog: Rufus>, <Dog: Meg>]>

values

Returns objects where the array of values is the given value. Note that the order is not guaranteed to be reliable,
so this transform is mainly useful for using in conjunction with lookups on ArrayField. Uses the SQL function
avalues(). For example:

>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador'})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})

>>> Dog.objects.filter(data__values__contains=['collie'])
<QuerySet [<Dog: Meg>]>

JSONField

class JSONField(**options)
A field for storing JSON encoded data. In Python the data is represented in its Python native format: dictionaries,
lists, strings, numbers, booleans and None.

6.5. contrib packages 905

Django Documentation, Release 1.10.9.dev20171123183751

If you want to store other data types, you’ll need to serialize them first. For example, you might cast a
datetime to a string. You might also want to convert the string back to a datetime when you retrieve
the data from the database. There are some third-party JSONField implementations which do this sort of
thing automatically.

If you give the field a default, ensure it’s a callable such as dict (for an empty default) or a callable that
returns a dict (such as a function). Incorrectly using default={} creates a mutable default that is shared
between all instances of JSONField.

Note: PostgreSQL has two native JSON based data types: json and jsonb. The main difference between them is
how they are stored and how they can be queried. PostgreSQL’s json field is stored as the original string representa-
tion of the JSON and must be decoded on the fly when queried based on keys. The jsonb field is stored based on the
actual structure of the JSON which allows indexing. The trade-off is a small additional cost on writing to the jsonb
field. JSONField uses jsonb.

As a result, this field requires PostgreSQL ≥ 9.4 and Psycopg2 ≥ 2.5.4.

Querying JSONField

We will use the following example model:

from django.contrib.postgres.fields import JSONField
from django.db import models

class Dog(models.Model):
name = models.CharField(max_length=200)
data = JSONField()

def __str__(self): # __unicode__ on Python 2
return self.name

Key, index, and path lookups

To query based on a given dictionary key, simply use that key as the lookup name:

>>> Dog.objects.create(name='Rufus', data={
... 'breed': 'labrador',
... 'owner': {
... 'name': 'Bob',
... 'other_pets': [{
... 'name': 'Fishy',
... }],
... },
... })
>>> Dog.objects.create(name='Meg', data={'breed': 'collie'})

>>> Dog.objects.filter(data__breed='collie')
<QuerySet [<Dog: Meg>]>

Multiple keys can be chained together to form a path lookup:

>>> Dog.objects.filter(data__owner__name='Bob')
<QuerySet [<Dog: Rufus>]>

906 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

If the key is an integer, it will be interpreted as an index lookup in an array:

>>> Dog.objects.filter(data__owner__other_pets__0__name='Fishy')
<QuerySet [<Dog: Rufus>]>

If the key you wish to query by clashes with the name of another lookup, use the jsonfield.contains lookup
instead.

If only one key or index is used, the SQL operator -> is used. If multiple operators are used then the #> operator is
used.

Warning: Since any string could be a key in a JSON object, any lookup other than those listed below will be
interpreted as a key lookup. No errors are raised. Be extra careful for typing mistakes, and always check your
queries work as you intend.

Containment and key operations

JSONField shares lookups relating to containment and keys with HStoreField.

• contains (accepts any JSON rather than just a dictionary of strings)

• contained_by (accepts any JSON rather than just a dictionary of strings)

• has_key

• has_any_keys

• has_keys

Range Fields

There are five range field types, corresponding to the built-in range types in PostgreSQL. These fields are used to store
a range of values; for example the start and end timestamps of an event, or the range of ages an activity is suitable for.

All of the range fields translate to psycopg2 Range objects in python, but also accept tuples as input if no bounds
information is necessary. The default is lower bound included, upper bound excluded; that is, [).

IntegerRangeField

class IntegerRangeField(**options)
Stores a range of integers. Based on an IntegerField. Represented by an int4range in the database and
a NumericRange in Python.

Regardless of the bounds specified when saving the data, PostgreSQL always returns a range in a canonical form
that includes the lower bound and excludes the upper bound; that is [).

BigIntegerRangeField

class BigIntegerRangeField(**options)
Stores a range of large integers. Based on a BigIntegerField. Represented by an int8range in the
database and a NumericRange in Python.

Regardless of the bounds specified when saving the data, PostgreSQL always returns a range in a canonical form
that includes the lower bound and excludes the upper bound; that is [).

6.5. contrib packages 907

http://initd.org/psycopg/docs/extras.html#adapt-range
http://initd.org/psycopg/docs/extras.html#psycopg2.extras.NumericRange
http://initd.org/psycopg/docs/extras.html#psycopg2.extras.NumericRange

Django Documentation, Release 1.10.9.dev20171123183751

FloatRangeField

class FloatRangeField(**options)
Stores a range of floating point values. Based on a FloatField. Represented by a numrange in the database
and a NumericRange in Python.

DateTimeRangeField

class DateTimeRangeField(**options)
Stores a range of timestamps. Based on a DateTimeField. Represented by a tztsrange in the database
and a DateTimeTZRange in Python.

DateRangeField

class DateRangeField(**options)
Stores a range of dates. Based on a DateField. Represented by a daterange in the database and a
DateRange in Python.

Regardless of the bounds specified when saving the data, PostgreSQL always returns a range in a canonical form
that includes the lower bound and excludes the upper bound; that is [).

Querying Range Fields

There are a number of custom lookups and transforms for range fields. They are available on all the above fields, but
we will use the following example model:

from django.contrib.postgres.fields import IntegerRangeField
from django.db import models

class Event(models.Model):
name = models.CharField(max_length=200)
ages = IntegerRangeField()
start = models.DateTimeField()

def __str__(self): # __unicode__ on Python 2
return self.name

We will also use the following example objects:

>>> import datetime
>>> from django.utils import timezone
>>> now = timezone.now()
>>> Event.objects.create(name='Soft play', ages=(0, 10), start=now)
>>> Event.objects.create(name='Pub trip', ages=(21, None), start=now - datetime.
→˓timedelta(days=1))

and NumericRange:

>>> from psycopg2.extras import NumericRange

908 Chapter 6. API Reference

http://initd.org/psycopg/docs/extras.html#psycopg2.extras.NumericRange
http://initd.org/psycopg/docs/extras.html#psycopg2.extras.DateTimeTZRange
http://initd.org/psycopg/docs/extras.html#psycopg2.extras.DateRange

Django Documentation, Release 1.10.9.dev20171123183751

Containment functions

As with other PostgreSQL fields, there are three standard containment operators: contains, contained_by and
overlap, using the SQL operators @>, <@, and && respectively.

contains

>>> Event.objects.filter(ages__contains=NumericRange(4, 5))
<QuerySet [<Event: Soft play>]>

contained_by

>>> Event.objects.filter(ages__contained_by=NumericRange(0, 15))
<QuerySet [<Event: Soft play>]>

The contained_by lookup is also available on the non-range field types: IntegerField,
BigIntegerField, FloatField, DateField, and DateTimeField. For example:

>>> from psycopg2.extras import DateTimeTZRange
>>> Event.objects.filter(start__contained_by=DateTimeTZRange(
... timezone.now() - datetime.timedelta(hours=1),
... timezone.now() + datetime.timedelta(hours=1),
...)
<QuerySet [<Event: Soft play>]>

overlap

>>> Event.objects.filter(ages__overlap=NumericRange(8, 12))
<QuerySet [<Event: Soft play>]>

Comparison functions

Range fields support the standard lookups: lt, gt, lte and gte. These are not particularly helpful - they compare
the lower bounds first and then the upper bounds only if necessary. This is also the strategy used to order by a range
field. It is better to use the specific range comparison operators.

fully_lt

The returned ranges are strictly less than the passed range. In other words, all the points in the returned range are less
than all those in the passed range.

>>> Event.objects.filter(ages__fully_lt=NumericRange(11, 15))
<QuerySet [<Event: Soft play>]>

6.5. contrib packages 909

Django Documentation, Release 1.10.9.dev20171123183751

fully_gt

The returned ranges are strictly greater than the passed range. In other words, the all the points in the returned range
are greater than all those in the passed range.

>>> Event.objects.filter(ages__fully_gt=NumericRange(11, 15))
<QuerySet [<Event: Pub trip>]>

not_lt

The returned ranges do not contain any points less than the passed range, that is the lower bound of the returned range
is at least the lower bound of the passed range.

>>> Event.objects.filter(ages__not_lt=NumericRange(0, 15))
<QuerySet [<Event: Soft play>, <Event: Pub trip>]>

not_gt

The returned ranges do not contain any points greater than the passed range, that is the upper bound of the returned
range is at most the upper bound of the passed range.

>>> Event.objects.filter(ages__not_gt=NumericRange(3, 10))
<QuerySet [<Event: Soft play>]>

adjacent_to

The returned ranges share a bound with the passed range.

>>> Event.objects.filter(ages__adjacent_to=NumericRange(10, 21))
<QuerySet [<Event: Soft play>, <Event: Pub trip>]>

Querying using the bounds

There are three transforms available for use in queries. You can extract the lower or upper bound, or query based on
emptiness.

startswith

Returned objects have the given lower bound. Can be chained to valid lookups for the base field.

>>> Event.objects.filter(ages__startswith=21)
<QuerySet [<Event: Pub trip>]>

endswith

Returned objects have the given upper bound. Can be chained to valid lookups for the base field.

910 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

>>> Event.objects.filter(ages__endswith=10)
<QuerySet [<Event: Soft play>]>

isempty

Returned objects are empty ranges. Can be chained to valid lookups for a BooleanField.

>>> Event.objects.filter(ages__isempty=True)
<QuerySet []>

Defining your own range types

PostgreSQL allows the definition of custom range types. Django’s model and form field implementations use base
classes below, and psycopg2 provides a register_range() to allow use of custom range types.

class RangeField(**options)
Base class for model range fields.

base_field
The model field class to use.

range_type
The psycopg2 range type to use.

form_field
The form field class to use. Should be a subclass of django.contrib.postgres.forms.
BaseRangeField.

class django.contrib.postgres.forms.BaseRangeField
Base class for form range fields.

base_field
The form field to use.

range_type
The psycopg2 range type to use.

PostgreSQL specific form fields and widgets

All of these fields and widgets are available from the django.contrib.postgres.forms module.

Fields

SimpleArrayField

class SimpleArrayField(base_field, delimiter=’, ‘, max_length=None, min_length=None)
A simple field which maps to an array. It is represented by an HTML <input>.

base_field
This is a required argument.

It specifies the underlying form field for the array. This is not used to render any HTML, but it is used to
process the submitted data and validate it. For example:

6.5. contrib packages 911

http://initd.org/psycopg/docs/extras.html#psycopg2.extras.register_range

Django Documentation, Release 1.10.9.dev20171123183751

>>> from django.contrib.postgres.forms import SimpleArrayField
>>> from django import forms

>>> class NumberListForm(forms.Form):
... numbers = SimpleArrayField(forms.IntegerField())

>>> form = NumberListForm({'numbers': '1,2,3'})
>>> form.is_valid()
True
>>> form.cleaned_data
{'numbers': [1, 2, 3]}

>>> form = NumberListForm({'numbers': '1,2,a'})
>>> form.is_valid()
False

delimiter
This is an optional argument which defaults to a comma: ,. This value is used to split the submitted data.
It allows you to chain SimpleArrayField for multidimensional data:

>>> from django.contrib.postgres.forms import SimpleArrayField
>>> from django import forms

>>> class GridForm(forms.Form):
... places = SimpleArrayField(SimpleArrayField(IntegerField()), delimiter=
→˓'|')

>>> form = GridForm({'places': '1,2|2,1|4,3'})
>>> form.is_valid()
True
>>> form.cleaned_data
{'places': [[1, 2], [2, 1], [4, 3]]}

Note: The field does not support escaping of the delimiter, so be careful in cases where the delimiter is a
valid character in the underlying field. The delimiter does not need to be only one character.

max_length
This is an optional argument which validates that the array does not exceed the stated length.

min_length
This is an optional argument which validates that the array reaches at least the stated length.

User friendly forms

SimpleArrayField is not particularly user friendly in most cases, however it is a useful way to format data
from a client-side widget for submission to the server.

SplitArrayField

class SplitArrayField(base_field, size, remove_trailing_nulls=False)
This field handles arrays by reproducing the underlying field a fixed number of times.

912 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

base_field
This is a required argument. It specifies the form field to be repeated.

size
This is the fixed number of times the underlying field will be used.

remove_trailing_nulls
By default, this is set to False. When False, each value from the repeated fields is stored. When set
to True, any trailing values which are blank will be stripped from the result. If the underlying field has
required=True, but remove_trailing_nulls is True, then null values are only allowed at the
end, and will be stripped.

Some examples:

SplitArrayField(IntegerField(required=True), size=3, remove_trailing_
→˓nulls=False)

['1', '2', '3'] # -> [1, 2, 3]
['1', '2', ''] # -> ValidationError - third entry required.
['1', '', '3'] # -> ValidationError - second entry required.
['', '2', ''] # -> ValidationError - first and third entries required.

SplitArrayField(IntegerField(required=False), size=3, remove_trailing_
→˓nulls=False)

['1', '2', '3'] # -> [1, 2, 3]
['1', '2', ''] # -> [1, 2, None]
['1', '', '3'] # -> [1, None, 3]
['', '2', ''] # -> [None, 2, None]

SplitArrayField(IntegerField(required=True), size=3, remove_trailing_
→˓nulls=True)

['1', '2', '3'] # -> [1, 2, 3]
['1', '2', ''] # -> [1, 2]
['1', '', '3'] # -> ValidationError - second entry required.
['', '2', ''] # -> ValidationError - first entry required.

SplitArrayField(IntegerField(required=False), size=3, remove_trailing_
→˓nulls=True)

['1', '2', '3'] # -> [1, 2, 3]
['1', '2', ''] # -> [1, 2]
['1', '', '3'] # -> [1, None, 3]
['', '2', ''] # -> [None, 2]

HStoreField

class HStoreField
A field which accepts JSON encoded data for an HStoreField. It will cast all the values to strings. It is
represented by an HTML <textarea>.

User friendly forms

HStoreField is not particularly user friendly in most cases, however it is a useful way to format data from a
client-side widget for submission to the server.

6.5. contrib packages 913

Django Documentation, Release 1.10.9.dev20171123183751

Note: On occasions it may be useful to require or restrict the keys which are valid for a given field. This can
be done using the KeysValidator.

JSONField

class JSONField
A field which accepts JSON encoded data for a JSONField. It is represented by an HTML <textarea>.

User friendly forms

JSONField is not particularly user friendly in most cases, however it is a useful way to format data from a
client-side widget for submission to the server.

Range Fields

This group of fields all share similar functionality for accepting range data. They are based on MultiValueField.
They treat one omitted value as an unbounded range. They also validate that the lower bound is not greater than the
upper bound. All of these fields use RangeWidget.

IntegerRangeField

class IntegerRangeField
Based on IntegerField and translates its input into NumericRange. Default for
IntegerRangeField and BigIntegerRangeField.

FloatRangeField

class FloatRangeField
Based on FloatField and translates its input into NumericRange. Default for FloatRangeField.

DateTimeRangeField

class DateTimeRangeField
Based on DateTimeField and translates its input into DateTimeTZRange. Default for
DateTimeRangeField.

DateRangeField

class DateRangeField
Based on DateField and translates its input into DateRange. Default for DateRangeField.

914 Chapter 6. API Reference

http://initd.org/psycopg/docs/extras.html#psycopg2.extras.NumericRange
http://initd.org/psycopg/docs/extras.html#psycopg2.extras.NumericRange
http://initd.org/psycopg/docs/extras.html#psycopg2.extras.DateTimeTZRange
http://initd.org/psycopg/docs/extras.html#psycopg2.extras.DateRange

Django Documentation, Release 1.10.9.dev20171123183751

Widgets

RangeWidget

class RangeWidget(base_widget, attrs=None)
Widget used by all of the range fields. Based on MultiWidget.

RangeWidget has one required argument:

base_widget
A RangeWidget comprises a 2-tuple of base_widget.

decompress(value)
Takes a single “compressed” value of a field, for example a DateRangeField, and returns a tuple
representing and lower and upper bound.

PostgreSQL specific database functions

All of these functions are available from the django.contrib.postgres.functions module.

TransactionNow

class TransactionNow

Returns the date and time on the database server that the current transaction started. If you are not in a transaction it
will return the date and time of the current statement. This is a complement to django.db.models.functions.
Now , which returns the date and time of the current statement.

Note that only the outermost call to atomic() sets up a transaction and thus sets the time that TransactionNow()
will return; nested calls create savepoints which do not affect the transaction time.

Usage example:

>>> from django.contrib.postgres.functions import TransactionNow
>>> Article.objects.filter(published__lte=TransactionNow())
<QuerySet [<Article: How to Django>]>

PostgreSQL specific lookups

Trigram similarity

The trigram_similar lookup allows you to perform trigram lookups, measuring the number of trigrams (three
consecutive characters) shared, using a dedicated PostgreSQL extension. A trigram lookup is given an expression and
returns results that have a similarity measurement greater than the current similarity threshold.

To use it, add 'django.contrib.postgres' in your INSTALLED_APPS and activate the pg_trgm extension
on PostgreSQL. You can install the extension using the TrigramExtension migration operation.

The trigram_similar lookup can be used on CharField and TextField:

>>> City.objects.filter(name__trigram_similar="Middlesborough")
['<City: Middlesbrough>']

6.5. contrib packages 915

https://www.postgresql.org/docs/current/static/pgtrgm.html

Django Documentation, Release 1.10.9.dev20171123183751

Unaccent

The unaccent lookup allows you to perform accent-insensitive lookups using a dedicated PostgreSQL extension.

This lookup is implemented using Transform, so it can be chained with other lookup functions. To use it, you
need to add 'django.contrib.postgres' in your INSTALLED_APPS and activate the unaccent extension
on PostgreSQL. The UnaccentExtension migration operation is available if you want to perform this activation
using migrations).

The unaccent lookup can be used on CharField and TextField:

>>> City.objects.filter(name__unaccent="México")
['<City: Mexico>']

>>> User.objects.filter(first_name__unaccent__startswith="Jerem")
['<User: Jeremy>', '<User: Jérémy>', '<User: Jérémie>', '<User: Jeremie>']

Warning: unaccent lookups should perform fine in most use cases. However, queries using this filter will
generally perform full table scans, which can be slow on large tables. In those cases, using dedicated full text
indexing tools might be appropriate.

Database migration operations

All of these operations are available from the django.contrib.postgres.operations module.

Creating extension using migrations

You can create a PostgreSQL extension in your database using a migration file. This example creates an hstore
extension, but the same principles apply for other extensions.

Set up the hstore extension in PostgreSQL before the first CreateModel or AddField operation that involves
HStoreField by adding a migration with the HStoreExtension operation. For example:

from django.contrib.postgres.operations import HStoreExtension

class Migration(migrations.Migration):
...

operations = [
HStoreExtension(),
...

]

Creating the extension requires a database user with superuser privileges. If the Django database user doesn’t have
superuser privileges, you’ll have to create the extension outside of Django migrations with a user that has the appro-
priate privileges. In that case, connect to your Django database and run the query CREATE EXTENSION IF NOT
EXISTS hstore;.

CreateExtension

class CreateExtension(name)
An Operation subclass which installs PostgreSQL extensions.

916 Chapter 6. API Reference

https://www.postgresql.org/docs/current/static/unaccent.html
https://www.postgresql.org/docs/current/static/unaccent.html

Django Documentation, Release 1.10.9.dev20171123183751

name
This is a required argument. The name of the extension to be installed.

HStoreExtension

class HStoreExtension
Installs the hstore extension and also sets up the connection to interpret hstore data for possible use in subse-
quent migrations.

TrigramExtension

class TrigramExtension
Installs the pg_trgm extension.

UnaccentExtension

class UnaccentExtension
Installs the unaccent extension.

Full text search

The database functions in the django.contrib.postgres.search module ease the use of PostgreSQL’s full
text search engine.

For the examples in this document, we’ll use the models defined in Making queries.

See also:

For a high-level overview of searching, see the topic documentation.

The search lookup

The simplest way to use full text search is to search a single term against a single column in the database. For example:

>>> Entry.objects.filter(body_text__search='Cheese')
[<Entry: Cheese on Toast recipes>, <Entry: Pizza Recipes>]

This creates a to_tsvector in the database from the body_text field and a plainto_tsquery from the
search term 'Cheese', both using the default database search configuration. The results are obtained by matching
the query and the vector.

To use the search lookup, 'django.contrib.postgres' must be in your INSTALLED_APPS.

SearchVector

class SearchVector(*expressions, config=None, weight=None)

Searching against a single field is great but rather limiting. The Entry instances we’re searching belong to a Blog,
which has a tagline field. To query against both fields, use a SearchVector:

6.5. contrib packages 917

https://www.postgresql.org/docs/current/static/textsearch.html
https://www.postgresql.org/docs/current/static/textsearch.html

Django Documentation, Release 1.10.9.dev20171123183751

>>> from django.contrib.postgres.search import SearchVector
>>> Entry.objects.annotate(
... search=SearchVector('body_text', 'blog__tagline'),
...).filter(search='Cheese')
[<Entry: Cheese on Toast recipes>, <Entry: Pizza Recipes>]

The arguments to SearchVector can be any Expression or the name of a field. Multiple arguments will be
concatenated together using a space so that the search document includes them all.

SearchVector objects can be combined together, allowing you to reuse them. For example:

>>> Entry.objects.annotate(
... search=SearchVector('body_text') + SearchVector('blog__tagline'),
...).filter(search='Cheese')
[<Entry: Cheese on Toast recipes>, <Entry: Pizza Recipes>]

See Changing the search configuration and Weighting queries for an explanation of the config and weight param-
eters.

SearchQuery

class SearchQuery(value, config=None)

SearchQuery translates the terms the user provides into a search query object that the database compares to a search
vector. By default, all the words the user provides are passed through the stemming algorithms, and then it looks for
matches for all of the resulting terms.

SearchQuery terms can be combined logically to provide more flexibility:

>>> from django.contrib.postgres.search import SearchQuery
>>> SearchQuery('potato') & SearchQuery('ireland') # potato AND ireland
>>> SearchQuery('potato') | SearchQuery('penguin') # potato OR penguin
>>> ~SearchQuery('sausage') # NOT sausage

See Changing the search configuration for an explanation of the config parameter.

SearchRank

class SearchRank(vector, query, weights=None)

So far, we’ve just returned the results for which any match between the vector and the query are possible. It’s likely
you may wish to order the results by some sort of relevancy. PostgreSQL provides a ranking function which takes into
account how often the query terms appear in the document, how close together the terms are in the document, and
how important the part of the document is where they occur. The better the match, the higher the value of the rank. To
order by relevancy:

>>> from django.contrib.postgres.search import SearchQuery, SearchRank, SearchVector
>>> vector = SearchVector('body_text')
>>> query = SearchQuery('cheese')
>>> Entry.objects.annotate(rank=SearchRank(vector, query)).order_by('-rank')
[<Entry: Cheese on Toast recipes>, <Entry: Pizza recipes>]

See Weighting queries for an explanation of the weights parameter.

918 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Changing the search configuration

You can specify the config attribute to a SearchVector and SearchQuery to use a different search configu-
ration. This allows using a different language parsers and dictionaries as defined by the database:

>>> from django.contrib.postgres.search import SearchQuery, SearchVector
>>> Entry.objects.annotate(
... search=SearchVector('body_text', config='french'),
...).filter(search=SearchQuery('œuf', config='french'))
[<Entry: Pain perdu>]

The value of config could also be stored in another column:

>>> from django.db.models import F
>>> Entry.objects.annotate(
... search=SearchVector('body_text', config=F('blog__language')),
...).filter(search=SearchQuery('œuf', config=F('blog__language')))
[<Entry: Pain perdu>]

Weighting queries

Every field may not have the same relevance in a query, so you can set weights of various vectors before you combine
them:

>>> from django.contrib.postgres.search import SearchQuery, SearchRank, SearchVector
>>> vector = SearchVector('body_text', weight='A') + SearchVector('blog__tagline',
→˓weight='B')
>>> query = SearchQuery('cheese')
>>> Entry.objects.annotate(rank=SearchRank(vector, query)).filter(rank__gte=0.3).
→˓order_by('rank')

The weight should be one of the following letters: D, C, B, A. By default, these weights refer to the numbers 0.1,
0.2, 0.4, and 1.0, respectively. If you wish to weight them differently, pass a list of four floats to SearchRank
as weights in the same order above:

>>> rank = SearchRank(vector, query, weights=[0.2, 0.4, 0.6, 0.8])
>>> Entry.objects.annotate(rank=rank).filter(rank__gte=0.3).order_by('-rank')

Performance

Special database configuration isn’t necessary to use any of these functions, however, if you’re searching more than a
few hundred records, you’re likely to run into performance problems. Full text search is a more intensive process than
comparing the size of an integer, for example.

In the event that all the fields you’re querying on are contained within one particular model, you can create a functional
index which matches the search vector you wish to use. The PostgreSQL documentation has details on creating indexes
for full text search.

SearchVectorField

class SearchVectorField

6.5. contrib packages 919

https://www.postgresql.org/docs/current/static/textsearch-tables.html#TEXTSEARCH-TABLES-INDEX
https://www.postgresql.org/docs/current/static/textsearch-tables.html#TEXTSEARCH-TABLES-INDEX

Django Documentation, Release 1.10.9.dev20171123183751

If this approach becomes too slow, you can add a SearchVectorField to your model. You’ll need to keep it
populated with triggers, for example, as described in the PostgreSQL documentation. You can then query the field as
if it were an annotated SearchVector:

>>> Entry.objects.update(search_vector=SearchVector('body_text'))
>>> Entry.objects.filter(search_vector='cheese')
[<Entry: Cheese on Toast recipes>, <Entry: Pizza recipes>]

Trigram similarity

Another approach to searching is trigram similarity. A trigram is a group of three consecutive characters. In addition
to the trigram_similar lookup, you can use a couple of other expressions.

To use them, you need to activate the pg_trgm extension on PostgreSQL. You can install it using the
TrigramExtension migration operation.

TrigramSimilarity

class TrigramSimilarity(expression, string, **extra)

Accepts a field name or expression, and a string or expression. Returns the trigram similarity between the two argu-
ments.

Usage example:

>>> from django.contrib.postgres.search import TrigramSimilarity
>>> Author.objects.create(name='Katy Stevens')
>>> Author.objects.create(name='Stephen Keats')
>>> test = 'Katie Stephens'
>>> Author.objects.annotate(
... similarity=TrigramSimilarity('name', test),
...).filter(similarity__gt=0.3).order_by('-similarity')
[<Author: Katy Stevens>, <Author: Stephen Keats>]

TrigramDistance

class TrigramDistance(expression, string, **extra)

Accepts a field name or expression, and a string or expression. Returns the trigram distance between the two argu-
ments.

Usage example:

>>> from django.contrib.postgres.search import TrigramDistance
>>> Author.objects.create(name='Katy Stevens')
>>> Author.objects.create(name='Stephen Keats')
>>> test = 'Katie Stephens'
>>> Author.objects.annotate(
... distance=TrigramDistance('name', test),
...).filter(distance__lte=0.7).order_by('distance')
[<Author: Katy Stevens>, <Author: Stephen Keats>]

920 Chapter 6. API Reference

https://www.postgresql.org/docs/current/static/textsearch-features.html#TEXTSEARCH-UPDATE-TRIGGERS
https://www.postgresql.org/docs/current/static/pgtrgm.html

Django Documentation, Release 1.10.9.dev20171123183751

Validators

KeysValidator

class KeysValidator(keys, strict=False, messages=None)
Validates that the given keys are contained in the value. If strict is True, then it also checks that there are
no other keys present.

The messages passed should be a dict containing the keys missing_keys and/or extra_keys.

Note: Note that this checks only for the existence of a given key, not that the value of a key is non-empty.

Range validators

RangeMaxValueValidator

class RangeMaxValueValidator(limit_value, message=None)
Validates that the upper bound of the range is not greater than limit_value.

RangeMinValueValidator

class RangeMinValueValidator(limit_value, message=None)
Validates that the lower bound of the range is not less than the limit_value.

6.5.9 The redirects app

Django comes with an optional redirects application. It lets you store simple redirects in a database and handles the
redirecting for you. It uses the HTTP response status code 301 Moved Permanently by default.

Installation

To install the redirects app, follow these steps:

1. Ensure that the django.contrib.sites framework is installed.

2. Add 'django.contrib.redirects' to your INSTALLED_APPS setting.

3. Add 'django.contrib.redirects.middleware.RedirectFallbackMiddleware' to your
MIDDLEWARE setting.

4. Run the command manage.py migrate.

How it works

manage.py migrate creates a django_redirect table in your database. This is a simple lookup table with
site_id, old_path and new_path fields.

The RedirectFallbackMiddleware does all of the work. Each time any Django application raises a 404 error,
this middleware checks the redirects database for the requested URL as a last resort. Specifically, it checks for a
redirect with the given old_path with a site ID that corresponds to the SITE_ID setting.

6.5. contrib packages 921

Django Documentation, Release 1.10.9.dev20171123183751

• If it finds a match, and new_path is not empty, it redirects to new_path using a 301 (“Moved Permanently”)
redirect. You can subclass RedirectFallbackMiddleware and set response_redirect_class to
django.http.HttpResponseRedirect to use a 302 Moved Temporarily redirect instead.

• If it finds a match, and new_path is empty, it sends a 410 (“Gone”) HTTP header and empty (content-less)
response.

• If it doesn’t find a match, the request continues to be processed as usual.

The middleware only gets activated for 404s – not for 500s or responses of any other status code.

Note that the order of MIDDLEWARE matters. Generally, you can put RedirectFallbackMiddleware at the
end of the list, because it’s a last resort.

For more on middleware, read the middleware docs.

How to add, change and delete redirects

Via the admin interface

If you’ve activated the automatic Django admin interface, you should see a “Redirects” section on the admin index
page. Edit redirects as you edit any other object in the system.

Via the Python API

class models.Redirect
Redirects are represented by a standard Django model, which lives in django/contrib/redirects/models.py. You
can access redirect objects via the Django database API.

Middleware

class middleware.RedirectFallbackMiddleware
You can change the HttpResponse classes used by the middleware by creating a sub-
class of RedirectFallbackMiddleware and overriding response_gone_class and/or
response_redirect_class.

response_gone_class
The HttpResponse class used when a Redirect is not found for the requested path or has a blank
new_path value.

Defaults to HttpResponseGone.

response_redirect_class
The HttpResponse class that handles the redirect.

Defaults to HttpResponsePermanentRedirect.

6.5.10 The sitemap framework

Django comes with a high-level sitemap-generating framework that makes creating sitemap XML files easy.

922 Chapter 6. API Reference

https://github.com/django/django/blob/master/django/contrib/redirects/models.py
http://www.sitemaps.org/

Django Documentation, Release 1.10.9.dev20171123183751

Overview

A sitemap is an XML file on your website that tells search-engine indexers how frequently your pages change and
how “important” certain pages are in relation to other pages on your site. This information helps search engines index
your site.

The Django sitemap framework automates the creation of this XML file by letting you express this information in
Python code.

It works much like Django’s syndication framework. To create a sitemap, just write a Sitemap class and point to it
in your URLconf .

Installation

To install the sitemap app, follow these steps:

1. Add 'django.contrib.sitemaps' to your INSTALLED_APPS setting.

2. Make sure your TEMPLATES setting contains a DjangoTemplates backend whose APP_DIRS options is
set to True. It’s in there by default, so you’ll only need to change this if you’ve changed that setting.

3. Make sure you’ve installed the sites framework.

(Note: The sitemap application doesn’t install any database tables. The only reason it needs to go into
INSTALLED_APPS is so that the Loader() template loader can find the default templates.)

Initialization

views.sitemap(request, sitemaps, section=None, template_name=’sitemap.xml’, con-
tent_type=’application/xml’)

To activate sitemap generation on your Django site, add this line to your URLconf :

from django.contrib.sitemaps.views import sitemap

url(r'^sitemap\.xml$', sitemap, {'sitemaps': sitemaps},
name='django.contrib.sitemaps.views.sitemap')

This tells Django to build a sitemap when a client accesses /sitemap.xml.

The name of the sitemap file is not important, but the location is. Search engines will only index links in your sitemap
for the current URL level and below. For instance, if sitemap.xml lives in your root directory, it may reference any
URL in your site. However, if your sitemap lives at /content/sitemap.xml, it may only reference URLs that
begin with /content/.

The sitemap view takes an extra, required argument: {'sitemaps': sitemaps}. sitemaps should be a
dictionary that maps a short section label (e.g., blog or news) to its Sitemap class (e.g., BlogSitemap or
NewsSitemap). It may also map to an instance of a Sitemap class (e.g., BlogSitemap(some_var)).

Sitemap classes

A Sitemap class is a simple Python class that represents a “section” of entries in your sitemap. For example, one
Sitemap class could represent all the entries of your Weblog, while another could represent all of the events in your
events calendar.

In the simplest case, all these sections get lumped together into one sitemap.xml, but it’s also possible to use
the framework to generate a sitemap index that references individual sitemap files, one per section. (See Creating a
sitemap index below.)

6.5. contrib packages 923

Django Documentation, Release 1.10.9.dev20171123183751

Sitemap classes must subclass django.contrib.sitemaps.Sitemap. They can live anywhere in your code-
base.

A simple example

Let’s assume you have a blog system, with an Entry model, and you want your sitemap to include all the links to
your individual blog entries. Here’s how your sitemap class might look:

from django.contrib.sitemaps import Sitemap
from blog.models import Entry

class BlogSitemap(Sitemap):
changefreq = "never"
priority = 0.5

def items(self):
return Entry.objects.filter(is_draft=False)

def lastmod(self, obj):
return obj.pub_date

Note:

• changefreq and priority are class attributes corresponding to <changefreq> and <priority> el-
ements, respectively. They can be made callable as functions, as lastmod was in the example.

• items() is simply a method that returns a list of objects. The objects returned will get passed to any callable
methods corresponding to a sitemap property (location, lastmod, changefreq , and priority).

• lastmod should return a datetime.

• There is no location method in this example, but you can provide it in order to specify the URL for your
object. By default, location() calls get_absolute_url() on each object and returns the result.

Sitemap class reference

class Sitemap
A Sitemap class can define the following methods/attributes:

items
Required. A method that returns a list of objects. The framework doesn’t care what type of objects they
are; all that matters is that these objects get passed to the location(), lastmod(), changefreq()
and priority() methods.

location
Optional. Either a method or attribute.

If it’s a method, it should return the absolute path for a given object as returned by items().

If it’s an attribute, its value should be a string representing an absolute path to use for every object returned
by items().

In both cases, “absolute path” means a URL that doesn’t include the protocol or domain. Examples:

• Good: '/foo/bar/'

• Bad: 'example.com/foo/bar/'

• Bad: 'https://example.com/foo/bar/'

924 Chapter 6. API Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime

Django Documentation, Release 1.10.9.dev20171123183751

If location isn’t provided, the framework will call the get_absolute_url() method on each
object as returned by items().

To specify a protocol other than 'http', use protocol.

lastmod
Optional. Either a method or attribute.

If it’s a method, it should take one argument – an object as returned by items() – and return that object’s
last-modified date/time as a datetime.

If it’s an attribute, its value should be a datetime representing the last-modified date/time for every
object returned by items().

If all items in a sitemap have a lastmod, the sitemap generated by views.sitemap()
will have a Last-Modified header equal to the latest lastmod. You can activate the
ConditionalGetMiddleware to make Django respond appropriately to requests with an
If-Modified-Since header which will prevent sending the sitemap if it hasn’t changed.

changefreq
Optional. Either a method or attribute.

If it’s a method, it should take one argument – an object as returned by items() – and return that object’s
change frequency as a string.

If it’s an attribute, its value should be a string representing the change frequency of every object returned
by items().

Possible values for changefreq , whether you use a method or attribute, are:

• 'always'

• 'hourly'

• 'daily'

• 'weekly'

• 'monthly'

• 'yearly'

• 'never'

priority
Optional. Either a method or attribute.

If it’s a method, it should take one argument – an object as returned by items() – and return that object’s
priority as either a string or float.

If it’s an attribute, its value should be either a string or float representing the priority of every object
returned by items().

Example values for priority: 0.4, 1.0. The default priority of a page is 0.5. See the sitemaps.org
documentation for more.

protocol
Optional.

This attribute defines the protocol ('http' or 'https') of the URLs in the sitemap. If it isn’t set, the
protocol with which the sitemap was requested is used. If the sitemap is built outside the context of a
request, the default is 'http'.

limit
Optional.

6.5. contrib packages 925

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
http://www.sitemaps.org/protocol.html#prioritydef
http://www.sitemaps.org/protocol.html#prioritydef

Django Documentation, Release 1.10.9.dev20171123183751

This attribute defines the maximum number of URLs included on each page of the sitemap. Its value
should not exceed the default value of 50000, which is the upper limit allowed in the Sitemaps protocol.

i18n
Optional.

A boolean attribute that defines if the URLs of this sitemap should be generated using all of your
LANGUAGES. The default is False.

Shortcuts

The sitemap framework provides a convenience class for a common case:

class GenericSitemap
The django.contrib.sitemaps.GenericSitemap class allows you to create a sitemap by passing it
a dictionary which has to contain at least a queryset entry. This queryset will be used to generate the items
of the sitemap. It may also have a date_field entry that specifies a date field for objects retrieved from
the queryset. This will be used for the lastmod attribute in the generated sitemap. You may also pass
priority and changefreq keyword arguments to the GenericSitemap constructor to specify these
attributes for all URLs.

Example

Here’s an example of a URLconf using GenericSitemap:

from django.conf.urls import url
from django.contrib.sitemaps import GenericSitemap
from django.contrib.sitemaps.views import sitemap
from blog.models import Entry

info_dict = {
'queryset': Entry.objects.all(),
'date_field': 'pub_date',

}

urlpatterns = [
some generic view using info_dict
...

the sitemap
url(r'^sitemap\.xml$', sitemap,

{'sitemaps': {'blog': GenericSitemap(info_dict, priority=0.6)}},
name='django.contrib.sitemaps.views.sitemap'),

]

Sitemap for static views

Often you want the search engine crawlers to index views which are neither object detail pages nor flatpages. The
solution is to explicitly list URL names for these views in items and call reverse() in the location method of
the sitemap. For example:

sitemaps.py
from django.contrib import sitemaps
from django.urls import reverse

926 Chapter 6. API Reference

http://www.sitemaps.org/protocol.html#index

Django Documentation, Release 1.10.9.dev20171123183751

class StaticViewSitemap(sitemaps.Sitemap):
priority = 0.5
changefreq = 'daily'

def items(self):
return ['main', 'about', 'license']

def location(self, item):
return reverse(item)

urls.py
from django.conf.urls import url
from django.contrib.sitemaps.views import sitemap

from .sitemaps import StaticViewSitemap
from . import views

sitemaps = {
'static': StaticViewSitemap,

}

urlpatterns = [
url(r'^$', views.main, name='main'),
url(r'^about/$', views.about, name='about'),
url(r'^license/$', views.license, name='license'),
...
url(r'^sitemap\.xml$', sitemap, {'sitemaps': sitemaps},

name='django.contrib.sitemaps.views.sitemap')
]

Creating a sitemap index

views.index(request, sitemaps, template_name=’sitemap_index.xml’, content_type=’application/xml’,
sitemap_url_name=’django.contrib.sitemaps.views.sitemap’)

The sitemap framework also has the ability to create a sitemap index that references individual sitemap files, one per
each section defined in your sitemaps dictionary. The only differences in usage are:

• You use two views in your URLconf: django.contrib.sitemaps.views.index() and django.
contrib.sitemaps.views.sitemap().

• The django.contrib.sitemaps.views.sitemap() view should take a section keyword argu-
ment.

Here’s what the relevant URLconf lines would look like for the example above:

from django.contrib.sitemaps import views

urlpatterns = [
url(r'^sitemap\.xml$', views.index, {'sitemaps': sitemaps}),
url(r'^sitemap-(?P<section>.+)\.xml$', views.sitemap, {'sitemaps': sitemaps},

name='django.contrib.sitemaps.views.sitemap'),
]

This will automatically generate a sitemap.xml file that references both sitemap-flatpages.xml and
sitemap-blog.xml. The Sitemap classes and the sitemaps dict don’t change at all.

6.5. contrib packages 927

Django Documentation, Release 1.10.9.dev20171123183751

You should create an index file if one of your sitemaps has more than 50,000 URLs. In this case, Django will auto-
matically paginate the sitemap, and the index will reflect that.

If you’re not using the vanilla sitemap view – for example, if it’s wrapped with a caching decorator – you must name
your sitemap view and pass sitemap_url_name to the index view:

from django.contrib.sitemaps import views as sitemaps_views
from django.views.decorators.cache import cache_page

urlpatterns = [
url(r'^sitemap\.xml$',

cache_page(86400)(sitemaps_views.index),
{'sitemaps': sitemaps, 'sitemap_url_name': 'sitemaps'}),

url(r'^sitemap-(?P<section>.+)\.xml$',
cache_page(86400)(sitemaps_views.sitemap),
{'sitemaps': sitemaps}, name='sitemaps'),

]

Template customization

If you wish to use a different template for each sitemap or sitemap index available on your site, you may specify it by
passing a template_name parameter to the sitemap and index views via the URLconf:

from django.contrib.sitemaps import views

urlpatterns = [
url(r'^custom-sitemap\.xml$', views.index, {

'sitemaps': sitemaps,
'template_name': 'custom_sitemap.html'

}),
url(r'^custom-sitemap-(?P<section>.+)\.xml$', views.sitemap, {

'sitemaps': sitemaps,
'template_name': 'custom_sitemap.html'

}, name='django.contrib.sitemaps.views.sitemap'),
]

These views return TemplateResponse instances which allow you to easily customize the response data before
rendering. For more details, see the TemplateResponse documentation.

Context variables

When customizing the templates for the index() and sitemap() views, you can rely on the following context
variables.

Index

The variable sitemaps is a list of absolute URLs to each of the sitemaps.

Sitemap

The variable urlset is a list of URLs that should appear in the sitemap. Each URL exposes attributes as defined in
the Sitemap class:

928 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• changefreq

• item

• lastmod

• location

• priority

The item attribute has been added for each URL to allow more flexible customization of the templates, such as
Google news sitemaps. Assuming Sitemap’s items() would return a list of items with publication_data and
a tags field something like this would generate a Google News compatible sitemap:

<?xml version="1.0" encoding="UTF-8"?>
<urlset

xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"
xmlns:news="http://www.google.com/schemas/sitemap-news/0.9">

{% spaceless %}
{% for url in urlset %}
<url>
<loc>{{ url.location }}</loc>
{% if url.lastmod %}<lastmod>{{ url.lastmod|date:"Y-m-d" }}</lastmod>{% endif %}
{% if url.changefreq %}<changefreq>{{ url.changefreq }}</changefreq>{% endif %}
{% if url.priority %}<priority>{{ url.priority }}</priority>{% endif %}
<news:news>

{% if url.item.publication_date %}<news:publication_date>{{ url.item.
→˓publication_date|date:"Y-m-d" }}</news:publication_date>{% endif %}

{% if url.item.tags %}<news:keywords>{{ url.item.tags }}</news:keywords>{%
→˓endif %}

</news:news>
</url>

{% endfor %}
{% endspaceless %}
</urlset>

Pinging Google

You may want to “ping” Google when your sitemap changes, to let it know to reindex your site. The sitemaps
framework provides a function to do just that: django.contrib.sitemaps.ping_google().

ping_google()
ping_google() takes an optional argument, sitemap_url, which should be the absolute path to your
site’s sitemap (e.g., '/sitemap.xml'). If this argument isn’t provided, ping_google() will attempt to
figure out your sitemap by performing a reverse looking in your URLconf.

ping_google() raises the exception django.contrib.sitemaps.SitemapNotFound if it cannot
determine your sitemap URL.

Register with Google first!

The ping_google() command only works if you have registered your site with Google Webmaster Tools.

One useful way to call ping_google() is from a model’s save() method:

from django.contrib.sitemaps import ping_google

class Entry(models.Model):

6.5. contrib packages 929

https://support.google.com/news/publisher/answer/74288?hl=en
https://www.google.com/webmasters/tools/

Django Documentation, Release 1.10.9.dev20171123183751

...
def save(self, force_insert=False, force_update=False):

super(Entry, self).save(force_insert, force_update)
try:

ping_google()
except Exception:

Bare 'except' because we could get a variety
of HTTP-related exceptions.
pass

A more efficient solution, however, would be to call ping_google() from a cron script, or some other scheduled
task. The function makes an HTTP request to Google’s servers, so you may not want to introduce that network
overhead each time you call save().

Pinging Google via manage.py

django-admin ping_google [sitemap_url]

Once the sitemaps application is added to your project, you may also ping Google using the ping_google manage-
ment command:

python manage.py ping_google [/sitemap.xml]

6.5.11 The “sites” framework

Django comes with an optional “sites” framework. It’s a hook for associating objects and functionality to particular
websites, and it’s a holding place for the domain names and “verbose” names of your Django-powered sites.

Use it if your single Django installation powers more than one site and you need to differentiate between those sites in
some way.

The sites framework is mainly based on a simple model:

class models.Site
A model for storing the domain and name attributes of a website.

domain
The fully qualified domain name associated with the website. For example, www.example.com.

The domain field was set to be unique.

name
A human-readable “verbose” name for the website.

The SITE_ID setting specifies the database ID of the Site object associated with that particular settings file. If the
setting is omitted, the get_current_site() function will try to get the current site by comparing the domain
with the host name from the request.get_host() method.

How you use this is up to you, but Django uses it in a couple of ways automatically via simple conventions.

Example usage

Why would you use sites? It’s best explained through examples.

930 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Associating content with multiple sites

The Django-powered sites LJWorld.com and Lawrence.com are operated by the same news organization – the
Lawrence Journal-World newspaper in Lawrence, Kansas. LJWorld.com focuses on news, while Lawrence.com fo-
cuses on local entertainment. But sometimes editors want to publish an article on both sites.

The naive way of solving the problem would be to require site producers to publish the same story twice: once for
LJWorld.com and again for Lawrence.com. But that’s inefficient for site producers, and it’s redundant to store multiple
copies of the same story in the database.

The better solution is simple: Both sites use the same article database, and an article is associated with one or more
sites. In Django model terminology, that’s represented by a ManyToManyField in the Article model:

from django.db import models
from django.contrib.sites.models import Site

class Article(models.Model):
headline = models.CharField(max_length=200)
...
sites = models.ManyToManyField(Site)

This accomplishes several things quite nicely:

• It lets the site producers edit all content – on both sites – in a single interface (the Django admin).

• It means the same story doesn’t have to be published twice in the database; it only has a single record in the
database.

• It lets the site developers use the same Django view code for both sites. The view code that displays a given
story just checks to make sure the requested story is on the current site. It looks something like this:

from django.contrib.sites.shortcuts import get_current_site

def article_detail(request, article_id):
try:

a = Article.objects.get(id=article_id, sites__id=get_current_
→˓site(request).id)

except Article.DoesNotExist:
raise Http404("Article does not exist on this site")

...

Associating content with a single site

Similarly, you can associate a model to the Site model in a many-to-one relationship, using ForeignKey .

For example, if an article is only allowed on a single site, you’d use a model like this:

from django.db import models
from django.contrib.sites.models import Site

class Article(models.Model):
headline = models.CharField(max_length=200)
...
site = models.ForeignKey(Site, on_delete=models.CASCADE)

This has the same benefits as described in the last section.

6.5. contrib packages 931

http://www.ljworld.com/
http://www.lawrence.com/

Django Documentation, Release 1.10.9.dev20171123183751

Hooking into the current site from views

You can use the sites framework in your Django views to do particular things based on the site in which the view is
being called. For example:

from django.conf import settings

def my_view(request):
if settings.SITE_ID == 3:

Do something.
pass

else:
Do something else.
pass

Of course, it’s ugly to hard-code the site IDs like that. This sort of hard-coding is best for hackish fixes that you need
done quickly. The cleaner way of accomplishing the same thing is to check the current site’s domain:

from django.contrib.sites.shortcuts import get_current_site

def my_view(request):
current_site = get_current_site(request)
if current_site.domain == 'foo.com':

Do something
pass

else:
Do something else.
pass

This has also the advantage of checking if the sites framework is installed, and return a RequestSite instance if it
is not.

If you don’t have access to the request object, you can use the get_current() method of the Site model’s
manager. You should then ensure that your settings file does contain the SITE_ID setting. This example is equivalent
to the previous one:

from django.contrib.sites.models import Site

def my_function_without_request():
current_site = Site.objects.get_current()
if current_site.domain == 'foo.com':

Do something
pass

else:
Do something else.
pass

Getting the current domain for display

LJWorld.com and Lawrence.com both have email alert functionality, which lets readers sign up to get notifications
when news happens. It’s pretty basic: A reader signs up on a Web form and immediately gets an email saying,
“Thanks for your subscription.”

It’d be inefficient and redundant to implement this sign up processing code twice, so the sites use the same code behind
the scenes. But the “thank you for signing up” notice needs to be different for each site. By using Site objects, we
can abstract the “thank you” notice to use the values of the current site’s name and domain.

932 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Here’s an example of what the form-handling view looks like:

from django.contrib.sites.shortcuts import get_current_site
from django.core.mail import send_mail

def register_for_newsletter(request):
Check form values, etc., and subscribe the user.
...

current_site = get_current_site(request)
send_mail(

'Thanks for subscribing to %s alerts' % current_site.name,
'Thanks for your subscription. We appreciate it.\n\n-The %s team.' % (

current_site.name,
),
'editor@%s' % current_site.domain,
[user.email],

)

...

On Lawrence.com, this email has the subject line “Thanks for subscribing to lawrence.com alerts.” On LJWorld.com,
the email has the subject “Thanks for subscribing to LJWorld.com alerts.” Same goes for the email’s message body.

Note that an even more flexible (but more heavyweight) way of doing this would be to use Django’s template system.
Assuming Lawrence.com and LJWorld.com have different template directories (DIRS), you could simply farm out to
the template system like so:

from django.core.mail import send_mail
from django.template import loader, Context

def register_for_newsletter(request):
Check form values, etc., and subscribe the user.
...

subject = loader.get_template('alerts/subject.txt').render(Context({}))
message = loader.get_template('alerts/message.txt').render(Context({}))
send_mail(subject, message, 'editor@ljworld.com', [user.email])

...

In this case, you’d have to create subject.txt and message.txt template files for both the LJWorld.com and
Lawrence.com template directories. That gives you more flexibility, but it’s also more complex.

It’s a good idea to exploit the Site objects as much as possible, to remove unneeded complexity and redundancy.

Getting the current domain for full URLs

Django’s get_absolute_url() convention is nice for getting your objects’ URL without the domain name, but
in some cases you might want to display the full URL – with http:// and the domain and everything – for an object.
To do this, you can use the sites framework. A simple example:

>>> from django.contrib.sites.models import Site
>>> obj = MyModel.objects.get(id=3)
>>> obj.get_absolute_url()
'/mymodel/objects/3/'
>>> Site.objects.get_current().domain

6.5. contrib packages 933

Django Documentation, Release 1.10.9.dev20171123183751

'example.com'
>>> 'https://%s%s' % (Site.objects.get_current().domain, obj.get_absolute_url())
'https://example.com/mymodel/objects/3/'

Enabling the sites framework

To enable the sites framework, follow these steps:

1. Add 'django.contrib.sites' to your INSTALLED_APPS setting.

2. Define a SITE_ID setting:

SITE_ID = 1

3. Run migrate.

django.contrib.sites registers a post_migrate signal handler which creates a default site named
example.com with the domain example.com. This site will also be created after Django creates the test database.
To set the correct name and domain for your project, you can use a data migration.

In order to serve different sites in production, you’d create a separate settings file with each SITE_ID (per-
haps importing from a common settings file to avoid duplicating shared settings) and then specify the appropriate
DJANGO_SETTINGS_MODULE for each site.

Caching the current Site object

As the current site is stored in the database, each call to Site.objects.get_current() could result in a
database query. But Django is a little cleverer than that: on the first request, the current site is cached, and any
subsequent call returns the cached data instead of hitting the database.

If for any reason you want to force a database query, you can tell Django to clear the cache using Site.objects.
clear_cache():

First call; current site fetched from database.
current_site = Site.objects.get_current()
...

Second call; current site fetched from cache.
current_site = Site.objects.get_current()
...

Force a database query for the third call.
Site.objects.clear_cache()
current_site = Site.objects.get_current()

The CurrentSiteManager

class managers.CurrentSiteManager

If Site plays a key role in your application, consider using the helpful CurrentSiteManager in your model(s).
It’s a model manager that automatically filters its queries to include only objects associated with the current Site.

Mandatory SITE_ID

934 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

The CurrentSiteManager is only usable when the SITE_ID setting is defined in your settings.

Use CurrentSiteManager by adding it to your model explicitly. For example:

from django.db import models
from django.contrib.sites.models import Site
from django.contrib.sites.managers import CurrentSiteManager

class Photo(models.Model):
photo = models.FileField(upload_to='/home/photos')
photographer_name = models.CharField(max_length=100)
pub_date = models.DateField()
site = models.ForeignKey(Site, on_delete=models.CASCADE)
objects = models.Manager()
on_site = CurrentSiteManager()

With this model, Photo.objects.all() will return all Photo objects in the database, but Photo.on_site.
all() will return only the Photo objects associated with the current site, according to the SITE_ID setting.

Put another way, these two statements are equivalent:

Photo.objects.filter(site=settings.SITE_ID)
Photo.on_site.all()

How did CurrentSiteManager know which field of Photo was the Site? By default,
CurrentSiteManager looks for a either a ForeignKey called site or a ManyToManyField called sites
to filter on. If you use a field named something other than site or sites to identify which Site objects your object
is related to, then you need to explicitly pass the custom field name as a parameter to CurrentSiteManager on
your model. The following model, which has a field called publish_on, demonstrates this:

from django.db import models
from django.contrib.sites.models import Site
from django.contrib.sites.managers import CurrentSiteManager

class Photo(models.Model):
photo = models.FileField(upload_to='/home/photos')
photographer_name = models.CharField(max_length=100)
pub_date = models.DateField()
publish_on = models.ForeignKey(Site, on_delete=models.CASCADE)
objects = models.Manager()
on_site = CurrentSiteManager('publish_on')

If you attempt to use CurrentSiteManager and pass a field name that doesn’t exist, Django will raise a
ValueError.

Finally, note that you’ll probably want to keep a normal (non-site-specific) Manager on your model, even if you
use CurrentSiteManager. As explained in the manager documentation, if you define a manager manually, then
Django won’t create the automatic objects = models.Manager() manager for you. Also note that certain
parts of Django – namely, the Django admin site and generic views – use whichever manager is defined first in the
model, so if you want your admin site to have access to all objects (not just site-specific ones), put objects =
models.Manager() in your model, before you define CurrentSiteManager.

Site middleware

If you often use this pattern:

6.5. contrib packages 935

Django Documentation, Release 1.10.9.dev20171123183751

from django.contrib.sites.models import Site

def my_view(request):
site = Site.objects.get_current()
...

there is simple way to avoid repetitions. Add django.contrib.sites.middleware.
CurrentSiteMiddleware to MIDDLEWARE. The middleware sets the site attribute on every request
object, so you can use request.site to get the current site.

How Django uses the sites framework

Although it’s not required that you use the sites framework, it’s strongly encouraged, because Django takes advantage
of it in a few places. Even if your Django installation is powering only a single site, you should take the two seconds
to create the site object with your domain and name, and point to its ID in your SITE_ID setting.

Here’s how Django uses the sites framework:

• In the redirects framework, each redirect object is associated with a particular site. When Django
searches for a redirect, it takes into account the current site.

• In the flatpages framework, each flatpage is associated with a particular site. When a flatpage is cre-
ated, you specify its Site, and the FlatpageFallbackMiddleware checks the current site in retrieving
flatpages to display.

• In the syndication framework, the templates for title and description automatically have access
to a variable {{ site }}, which is the Site object representing the current site. Also, the hook for providing
item URLs will use the domain from the current Site object if you don’t specify a fully-qualified domain.

• In the authentication framework, the django.contrib.auth.views.login() view passes
the current Site name to the template as {{ site_name }}.

• The shortcut view (django.contrib.contenttypes.views.shortcut) uses the domain of the cur-
rent Site object when calculating an object’s URL.

• In the admin framework, the “view on site” link uses the current Site to work out the domain for the site that
it will redirect to.

RequestSite objects

Some django.contrib applications take advantage of the sites framework but are architected in a way that doesn’t
require the sites framework to be installed in your database. (Some people don’t want to, or just aren’t able to install
the extra database table that the sites framework requires.) For those cases, the framework provides a django.
contrib.sites.requests.RequestSite class, which can be used as a fallback when the database-backed
sites framework is not available.

class requests.RequestSite
A class that shares the primary interface of Site (i.e., it has domain and name attributes) but gets its data
from a Django HttpRequest object rather than from a database.

__init__(request)
Sets the name and domain attributes to the value of get_host().

A RequestSite object has a similar interface to a normal Site object, except its __init__() method takes an
HttpRequest object. It’s able to deduce the domain and name by looking at the request’s domain. It has save()
and delete() methods to match the interface of Site, but the methods raise NotImplementedError.

936 Chapter 6. API Reference

https://docs.python.org/3/library/exceptions.html#NotImplementedError

Django Documentation, Release 1.10.9.dev20171123183751

get_current_site shortcut

Finally, to avoid repetitive fallback code, the framework provides a django.contrib.sites.shortcuts.
get_current_site() function.

shortcuts.get_current_site(request)
A function that checks if django.contrib.sites is installed and returns either the current Site object or
a RequestSite object based on the request. It looks up the current site based on request.get_host()
if the SITE_ID setting is not defined.

Both a domain and a port may be returned by request.get_host() when the Host header has a port
explicitly specified, e.g. example.com:80. In such cases, if the lookup fails because the host does not match
a record in the database, the port is stripped and the lookup is retried with the domain part only. This does not
apply to RequestSite which will always use the unmodified host.

Retrying the lookup with the port stripped was added.

6.5.12 The staticfiles app

django.contrib.staticfiles collects static files from each of your applications (and any other places you
specify) into a single location that can easily be served in production.

See also:

For an introduction to the static files app and some usage examples, see Managing static files (e.g. images, JavaScript,
CSS). For guidelines on deploying static files, see Deploying static files.

Settings

See staticfiles settings for details on the following settings:

• STATIC_ROOT

• STATIC_URL

• STATICFILES_DIRS

• STATICFILES_STORAGE

• STATICFILES_FINDERS

Management Commands

django.contrib.staticfiles exposes three management commands.

collectstatic

django-admin collectstatic

Collects the static files into STATIC_ROOT.

Duplicate file names are by default resolved in a similar way to how template resolution works: the file that is first
found in one of the specified locations will be used. If you’re confused, the findstatic command can help show
you which files are found.

On subsequent collectstatic runs (if STATIC_ROOT isn’t empty), files are copied only if they have a modified
timestamp greater than the timestamp of the file in STATIC_ROOT. Therefore if you remove an application from

6.5. contrib packages 937

Django Documentation, Release 1.10.9.dev20171123183751

INSTALLED_APPS, it’s a good idea to use the collectstatic --clear option in order to remove stale static
files.

Files are searched by using the enabled finders. The default is to look in all locations defined in
STATICFILES_DIRS and in the 'static' directory of apps specified by the INSTALLED_APPS setting.

The collectstatic management command calls the post_process() method of the
STATICFILES_STORAGE after each run and passes a list of paths that have been found by the man-
agement command. It also receives all command line options of collectstatic. This is used by the
CachedStaticFilesStorage by default.

By default, collected files receive permissions from FILE_UPLOAD_PERMISSIONS and collected directories
receive permissions from FILE_UPLOAD_DIRECTORY_PERMISSIONS. If you would like different permis-
sions for these files and/or directories, you can subclass either of the static files storage classes and specify the
file_permissions_mode and/or directory_permissions_mode parameters, respectively. For example:

from django.contrib.staticfiles import storage

class MyStaticFilesStorage(storage.StaticFilesStorage):
def __init__(self, *args, **kwargs):

kwargs['file_permissions_mode'] = 0o640
kwargs['directory_permissions_mode'] = 0o760
super(MyStaticFilesStorage, self).__init__(*args, **kwargs)

Then set the STATICFILES_STORAGE setting to 'path.to.MyStaticFilesStorage'.

Some commonly used options are:

--noinput, --no-input
Do NOT prompt the user for input of any kind.

The --no-input alias was added.

--ignore PATTERN, -i PATTERN
Ignore files or directories matching this glob-style pattern. Use multiple times to ignore more.

--dry-run, -n
Do everything except modify the filesystem.

--clear, -c
Clear the existing files before trying to copy or link the original file.

--link, -l
Create a symbolic link to each file instead of copying.

--no-post-process
Don’t call the post_process() method of the configured STATICFILES_STORAGE storage backend.

--no-default-ignore
Don’t ignore the common private glob-style patterns 'CVS', '.*' and '*~'.

For a full list of options, refer to the commands own help by running:

$ python manage.py collectstatic --help

Customizing the ignored pattern list

The default ignored pattern list, ['CVS', '.*', '*~'], can be customized in a more persistent way than pro-
viding the --ignore command option at each collectstatic invocation. Provide a custom AppConfig class,

938 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

override the ignore_patterns attribute of this class and replace 'django.contrib.staticfiles' with
that class path in your INSTALLED_APPS setting:

from django.contrib.staticfiles.apps import StaticFilesConfig

class MyStaticFilesConfig(StaticFilesConfig):
ignore_patterns = [...] # your custom ignore list

findstatic

django-admin findstatic staticfile [staticfile ...]

Searches for one or more relative paths with the enabled finders.

For example:

$ python manage.py findstatic css/base.css admin/js/core.js
Found 'css/base.css' here:

/home/special.polls.com/core/static/css/base.css
/home/polls.com/core/static/css/base.css

Found 'admin/js/core.js' here:
/home/polls.com/src/django/contrib/admin/media/js/core.js

findstatic --first

By default, all matching locations are found. To only return the first match for each relative path, use the --first
option:

$ python manage.py findstatic css/base.css --first
Found 'css/base.css' here:

/home/special.polls.com/core/static/css/base.css

This is a debugging aid; it’ll show you exactly which static file will be collected for a given path.

By setting the --verbosity flag to 0, you can suppress the extra output and just get the path names:

$ python manage.py findstatic css/base.css --verbosity 0
/home/special.polls.com/core/static/css/base.css
/home/polls.com/core/static/css/base.css

On the other hand, by setting the --verbosity flag to 2, you can get all the directories which were searched:

$ python manage.py findstatic css/base.css --verbosity 2
Found 'css/base.css' here:

/home/special.polls.com/core/static/css/base.css
/home/polls.com/core/static/css/base.css

Looking in the following locations:
/home/special.polls.com/core/static
/home/polls.com/core/static
/some/other/path/static

runserver

django-admin runserver [addrport]

Overrides the core runserver command if the staticfiles app is installed and adds automatic serving of
static files and the following new options.

6.5. contrib packages 939

Django Documentation, Release 1.10.9.dev20171123183751

--nostatic

Use the --nostatic option to disable serving of static files with the staticfiles app entirely. This option is only
available if the staticfiles app is in your project’s INSTALLED_APPS setting.

Example usage:

django-admin runserver --nostatic

--insecure

Use the --insecure option to force serving of static files with the staticfiles app even if the DEBUG set-
ting is False. By using this you acknowledge the fact that it’s grossly inefficient and probably insecure.
This is only intended for local development, should never be used in production and is only available if the
staticfiles app is in your project’s INSTALLED_APPS setting. runserver --insecure doesn’t work with
CachedStaticFilesStorage.

Example usage:

django-admin runserver --insecure

Storages

StaticFilesStorage

class storage.StaticFilesStorage

A subclass of the FileSystemStorage storage backend that uses the STATIC_ROOT setting as the base file
system location and the STATIC_URL setting respectively as the base URL.

storage.StaticFilesStorage.post_process(paths, **options)

This method is called by the collectstatic management command after each run and gets passed the local
storages and paths of found files as a dictionary, as well as the command line options.

The CachedStaticFilesStorage uses this behind the scenes to replace the paths with their hashed counterparts
and update the cache appropriately.

ManifestStaticFilesStorage

class storage.ManifestStaticFilesStorage

A subclass of the StaticFilesStorage storage backend which stores the file names it handles by appending the
MD5 hash of the file’s content to the filename. For example, the file css/styles.css would also be saved as
css/styles.55e7cbb9ba48.css.

The purpose of this storage is to keep serving the old files in case some pages still refer to those files, e.g. because they
are cached by you or a 3rd party proxy server. Additionally, it’s very helpful if you want to apply far future Expires
headers to the deployed files to speed up the load time for subsequent page visits.

The storage backend automatically replaces the paths found in the saved files matching other saved files with the path of
the cached copy (using the post_process() method). The regular expressions used to find those paths (django.
contrib.staticfiles.storage.HashedFilesMixin.patterns) by default covers the @import rule
and url() statement of Cascading Style Sheets. For example, the 'css/styles.css' file with the content

@import url("../admin/css/base.css");

940 Chapter 6. API Reference

https://developer.yahoo.com/performance/rules.html#expires
https://developer.yahoo.com/performance/rules.html#expires
http://www.w3.org/TR/CSS2/cascade.html#at-import
http://www.w3.org/TR/CSS2/syndata.html#uri
http://www.w3.org/Style/CSS/

Django Documentation, Release 1.10.9.dev20171123183751

would be replaced by calling the url() method of the ManifestStaticFilesStorage storage backend, ulti-
mately saving a 'css/styles.55e7cbb9ba48.css' file with the following content:

@import url("../admin/css/base.27e20196a850.css");

To enable the ManifestStaticFilesStorage you have to make sure the following requirements are met:

• the STATICFILES_STORAGE setting is set to 'django.contrib.staticfiles.storage.
ManifestStaticFilesStorage'

• the DEBUG setting is set to False

• you’ve collected all your static files by using the collectstatic management command

In older versions, you also had to use {% load static from staticfiles %} in your template. The
static template tag ({% load static %}) now uses django.contrib.staticfiles if it’s installed.

Since creating the MD5 hash can be a performance burden to your website during runtime, staticfiles will
automatically store the mapping with hashed names for all processed files in a file called staticfiles.json.
This happens once when you run the collectstatic management command.

Due to the requirement of running collectstatic, this storage typically shouldn’t be used when run-
ning tests as collectstatic isn’t run as part of the normal test setup. During testing, ensure that
the STATICFILES_STORAGE setting is set to something else like 'django.contrib.staticfiles.
storage.StaticFilesStorage' (the default).

storage.ManifestStaticFilesStorage.file_hash(name, content=None)

The method that is used when creating the hashed name of a file. Needs to return a hash for the given file name and
content. By default it calculates a MD5 hash from the content’s chunks as mentioned above. Feel free to override this
method to use your own hashing algorithm.

CachedStaticFilesStorage

class storage.CachedStaticFilesStorage

CachedStaticFilesStorage is a similar class like the ManifestStaticFilesStorage class but uses
Django’s caching framework for storing the hashed names of processed files instead of a static manifest file called
staticfiles.json. This is mostly useful for situations in which you don’t have access to the file system.

If you want to override certain options of the cache backend the storage uses, simply specify a custom entry in the
CACHES setting named 'staticfiles'. It falls back to using the 'default' cache backend.

Finders Module

staticfiles finders has a searched_locations attribute which is a list of directory paths in which the finders
searched. Example usage:

from django.contrib.staticfiles import finders

result = finders.find('css/base.css')
searched_locations = finders.searched_locations

Other Helpers

There are a few other helpers outside of the staticfiles app to work with static files:

6.5. contrib packages 941

Django Documentation, Release 1.10.9.dev20171123183751

• The django.template.context_processors.static() context processor which adds
STATIC_URL to every template context rendered with RequestContext contexts.

• The builtin template tag static which takes a path and urljoins it with the static prefix
STATIC_URL. If django.contrib.staticfiles is installed, the tag uses the url() method of the
STATICFILES_STORAGE instead.

• The builtin template tag get_static_prefix which populates a template variable with the static prefix
STATIC_URL to be used as a variable or directly.

• The similar template tag get_media_prefix which works like get_static_prefix but uses
MEDIA_URL.

Static file development view

The static files tools are mostly designed to help with getting static files successfully deployed into production. This
usually means a separate, dedicated static file server, which is a lot of overhead to mess with when developing locally.
Thus, the staticfiles app ships with a quick and dirty helper view that you can use to serve files locally in
development.

views.serve(request, path)

This view function serves static files in development.

Warning: This view will only work if DEBUG is True.

That’s because this view is grossly inefficient and probably insecure. This is only intended for local development,
and should never be used in production.

Note: To guess the served files’ content types, this view relies on the mimetypes module from the Python standard
library, which itself relies on the underlying platform’s map files. If you find that this view doesn’t return proper
content types for certain files, it is most likely that the platform’s map files need to be updated. This can be achieved,
for example, by installing or updating the mailcap package on a Red Hat distribution, or mime-support on a
Debian distribution.

This view is automatically enabled by runserver (with a DEBUG setting set to True). To use the view with a
different local development server, add the following snippet to the end of your primary URL configuration:

from django.conf import settings
from django.contrib.staticfiles import views

if settings.DEBUG:
urlpatterns += [

url(r'^static/(?P<path>.*)$', views.serve),
]

Note, the beginning of the pattern (r'^static/') should be your STATIC_URL setting.

Since this is a bit finicky, there’s also a helper function that’ll do this for you:

urls.staticfiles_urlpatterns()

This will return the proper URL pattern for serving static files to your already defined pattern list. Use it like this:

942 Chapter 6. API Reference

https://docs.python.org/3/library/mimetypes.html#module-mimetypes

Django Documentation, Release 1.10.9.dev20171123183751

from django.contrib.staticfiles.urls import staticfiles_urlpatterns

... the rest of your URLconf here ...

urlpatterns += staticfiles_urlpatterns()

This will inspect your STATIC_URL setting and wire up the view to serve static files accordingly. Don’t forget to
set the STATICFILES_DIRS setting appropriately to let django.contrib.staticfiles know where to look
for files in addition to files in app directories.

Warning: This helper function will only work if DEBUG is True and your STATIC_URL setting is neither
empty nor a full URL such as http://static.example.com/.

That’s because this view is grossly inefficient and probably insecure. This is only intended for local development,
and should never be used in production.

Specialized test case to support ‘live testing’

class testing.StaticLiveServerTestCase

This unittest TestCase subclass extends django.test.LiveServerTestCase.

Just like its parent, you can use it to write tests that involve running the code under test and consuming it with testing
tools through HTTP (e.g. Selenium, PhantomJS, etc.), because of which it’s needed that the static assets are also
published.

But given the fact that it makes use of the django.contrib.staticfiles.views.serve() view described
above, it can transparently overlay at test execution-time the assets provided by the staticfiles finders. This
means you don’t need to run collectstatic before or as a part of your tests setup.

6.5.13 The syndication feed framework

Django comes with a high-level syndication-feed-generating framework that makes creating RSS and Atom feeds
easy.

To create any syndication feed, all you have to do is write a short Python class. You can create as many feeds as you
want.

Django also comes with a lower-level feed-generating API. Use this if you want to generate feeds outside of a Web
context, or in some other lower-level way.

The high-level framework

Overview

The high-level feed-generating framework is supplied by the Feed class. To create a feed, write a Feed class and
point to an instance of it in your URLconf .

6.5. contrib packages 943

http://www.whatisrss.com/
https://tools.ietf.org/html/rfc4287

Django Documentation, Release 1.10.9.dev20171123183751

Feed classes

A Feed class is a Python class that represents a syndication feed. A feed can be simple (e.g., a “site news” feed, or
a basic feed displaying the latest entries of a blog) or more complex (e.g., a feed displaying all the blog entries in a
particular category, where the category is variable).

Feed classes subclass django.contrib.syndication.views.Feed. They can live anywhere in your code-
base.

Instances of Feed classes are views which can be used in your URLconf .

A simple example

This simple example, taken from a hypothetical police beat news site describes a feed of the latest five news items:

from django.contrib.syndication.views import Feed
from django.urls import reverse
from policebeat.models import NewsItem

class LatestEntriesFeed(Feed):
title = "Police beat site news"
link = "/sitenews/"
description = "Updates on changes and additions to police beat central."

def items(self):
return NewsItem.objects.order_by('-pub_date')[:5]

def item_title(self, item):
return item.title

def item_description(self, item):
return item.description

item_link is only needed if NewsItem has no get_absolute_url method.
def item_link(self, item):

return reverse('news-item', args=[item.pk])

To connect a URL to this feed, put an instance of the Feed object in your URLconf . For example:

from django.conf.urls import url
from myproject.feeds import LatestEntriesFeed

urlpatterns = [
...
url(r'^latest/feed/$', LatestEntriesFeed()),
...

]

Note:

• The Feed class subclasses django.contrib.syndication.views.Feed.

• title, link and description correspond to the standard RSS <title>, <link> and
<description> elements, respectively.

• items() is, simply, a method that returns a list of objects that should be included in the feed as <item> ele-
ments. Although this example returns NewsItem objects using Django’s object-relational mapper, items()

944 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

doesn’t have to return model instances. Although you get a few bits of functionality “for free” by using Django
models, items() can return any type of object you want.

• If you’re creating an Atom feed, rather than an RSS feed, set the subtitle attribute instead of the
description attribute. See Publishing Atom and RSS feeds in tandem, later, for an example.

One thing is left to do. In an RSS feed, each <item> has a <title>, <link> and <description>. We need to
tell the framework what data to put into those elements.

• For the contents of <title> and <description>, Django tries calling the methods item_title() and
item_description() on the Feed class. They are passed a single parameter, item, which is the object
itself. These are optional; by default, the unicode representation of the object is used for both.

If you want to do any special formatting for either the title or description, Django templates can be used instead.
Their paths can be specified with the title_template and description_template attributes on the
Feed class. The templates are rendered for each item and are passed two template context variables:

– {{ obj }} – The current object (one of whichever objects you returned in items()).

– {{ site }} – A django.contrib.sites.models.Site object representing the current site.
This is useful for {{ site.domain }} or {{ site.name }}. If you do not have the Django sites
framework installed, this will be set to a RequestSite object. See the RequestSite section of the sites
framework documentation for more.

See a complex example below that uses a description template.

Feed.get_context_data(**kwargs)
There is also a way to pass additional information to title and description templates, if you need
to supply more than the two variables mentioned before. You can provide your implementation of
get_context_data method in your Feed subclass. For example:

from mysite.models import Article
from django.contrib.syndication.views import Feed

class ArticlesFeed(Feed):
title = "My articles"
description_template = "feeds/articles.html"

def items(self):
return Article.objects.order_by('-pub_date')[:5]

def get_context_data(self, **kwargs):
context = super(ArticlesFeed, self).get_context_data(**kwargs)
context['foo'] = 'bar'
return context

And the template:

Something about {{ foo }}: {{ obj.description }}

This method will be called once per each item in the list returned by items() with the following keyword
arguments:

– item: the current item. For backward compatibility reasons, the name of this context variable is {{ obj
}}.

– obj: the object returned by get_object(). By default this is not exposed to the templates
to avoid confusion with {{ obj }} (see above), but you can use it in your implementation of
get_context_data().

– site: current site as described above.

6.5. contrib packages 945

Django Documentation, Release 1.10.9.dev20171123183751

– request: current request.

The behavior of get_context_data() mimics that of generic views - you’re supposed to call super() to
retrieve context data from parent class, add your data and return the modified dictionary.

• To specify the contents of <link>, you have two options. For each item in items(), Django first tries calling
the item_link() method on the Feed class. In a similar way to the title and description, it is passed it
a single parameter, item. If that method doesn’t exist, Django tries executing a get_absolute_url()
method on that object. Both get_absolute_url() and item_link() should return the item’s URL as
a normal Python string. As with get_absolute_url(), the result of item_link() will be included
directly in the URL, so you are responsible for doing all necessary URL quoting and conversion to ASCII inside
the method itself.

A complex example

The framework also supports more complex feeds, via arguments.

For example, a website could offer an RSS feed of recent crimes for every police beat in a city. It’d be silly to create a
separate Feed class for each police beat; that would violate the DRY principle and would couple data to programming
logic. Instead, the syndication framework lets you access the arguments passed from your URLconf so feeds can
output items based on information in the feed’s URL.

The police beat feeds could be accessible via URLs like this:

• /beats/613/rss/ – Returns recent crimes for beat 613.

• /beats/1424/rss/ – Returns recent crimes for beat 1424.

These can be matched with a URLconf line such as:

url(r'^beats/(?P<beat_id>[0-9]+)/rss/$', BeatFeed()),

Like a view, the arguments in the URL are passed to the get_object() method along with the request object.

Here’s the code for these beat-specific feeds:

from django.contrib.syndication.views import Feed

class BeatFeed(Feed):
description_template = 'feeds/beat_description.html'

def get_object(self, request, beat_id):
return Beat.objects.get(pk=beat_id)

def title(self, obj):
return "Police beat central: Crimes for beat %s" % obj.beat

def link(self, obj):
return obj.get_absolute_url()

def description(self, obj):
return "Crimes recently reported in police beat %s" % obj.beat

def items(self, obj):
return Crime.objects.filter(beat=obj).order_by('-crime_date')[:30]

To generate the feed’s <title>, <link> and <description>, Django uses the title(), link() and
description() methods. In the previous example, they were simple string class attributes, but this example

946 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

illustrates that they can be either strings or methods. For each of title, link and description, Django follows
this algorithm:

• First, it tries to call a method, passing the obj argument, where obj is the object returned by get_object().

• Failing that, it tries to call a method with no arguments.

• Failing that, it uses the class attribute.

Also note that items() also follows the same algorithm – first, it tries items(obj), then items(), then finally
an items class attribute (which should be a list).

We are using a template for the item descriptions. It can be very simple:

{{ obj.description }}

However, you are free to add formatting as desired.

The ExampleFeed class below gives full documentation on methods and attributes of Feed classes.

Specifying the type of feed

By default, feeds produced in this framework use RSS 2.0.

To change that, add a feed_type attribute to your Feed class, like so:

from django.utils.feedgenerator import Atom1Feed

class MyFeed(Feed):
feed_type = Atom1Feed

Note that you set feed_type to a class object, not an instance.

Currently available feed types are:

• django.utils.feedgenerator.Rss201rev2Feed (RSS 2.01. Default.)

• django.utils.feedgenerator.RssUserland091Feed (RSS 0.91.)

• django.utils.feedgenerator.Atom1Feed (Atom 1.0.)

Enclosures

To specify enclosures, such as those used in creating podcast feeds, use the item_enclosures
hook or, alternatively and if you only have a single enclosure per item, the item_enclosure_url,
item_enclosure_length, and item_enclosure_mime_type hooks. See the ExampleFeed class be-
low for usage examples.

Support for multiple enclosures per feed item was added through the item_enclosures hook.

Language

Feeds created by the syndication framework automatically include the appropriate <language> tag (RSS 2.0) or
xml:lang attribute (Atom). This comes directly from your LANGUAGE_CODE setting.

6.5. contrib packages 947

Django Documentation, Release 1.10.9.dev20171123183751

URLs

The link method/attribute can return either an absolute path (e.g. "/blog/") or a URL with the fully-qualified
domain and protocol (e.g. "https://www.example.com/blog/"). If link doesn’t return the domain, the
syndication framework will insert the domain of the current site, according to your SITE_ID setting.

Atom feeds require a <link rel="self"> that defines the feed’s current location. The syndication framework
populates this automatically, using the domain of the current site according to the SITE_ID setting.

Publishing Atom and RSS feeds in tandem

Some developers like to make available both Atom and RSS versions of their feeds. That’s easy to do with Django:
Just create a subclass of your Feed class and set the feed_type to something different. Then update your URLconf
to add the extra versions.

Here’s a full example:

from django.contrib.syndication.views import Feed
from policebeat.models import NewsItem
from django.utils.feedgenerator import Atom1Feed

class RssSiteNewsFeed(Feed):
title = "Police beat site news"
link = "/sitenews/"
description = "Updates on changes and additions to police beat central."

def items(self):
return NewsItem.objects.order_by('-pub_date')[:5]

class AtomSiteNewsFeed(RssSiteNewsFeed):
feed_type = Atom1Feed
subtitle = RssSiteNewsFeed.description

Note: In this example, the RSS feed uses a description while the Atom feed uses a subtitle. That’s because
Atom feeds don’t provide for a feed-level “description,” but they do provide for a “subtitle.”

If you provide a description in your Feed class, Django will not automatically put that into the subtitle
element, because a subtitle and description are not necessarily the same thing. Instead, you should define a subtitle
attribute.

In the above example, we simply set the Atom feed’s subtitle to the RSS feed’s description, because it’s
quite short already.

And the accompanying URLconf:

from django.conf.urls import url
from myproject.feeds import RssSiteNewsFeed, AtomSiteNewsFeed

urlpatterns = [
...
url(r'^sitenews/rss/$', RssSiteNewsFeed()),
url(r'^sitenews/atom/$', AtomSiteNewsFeed()),
...

]

948 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Feed class reference

class views.Feed

This example illustrates all possible attributes and methods for a Feed class:

from django.contrib.syndication.views import Feed
from django.utils import feedgenerator

class ExampleFeed(Feed):

FEED TYPE -- Optional. This should be a class that subclasses
django.utils.feedgenerator.SyndicationFeed. This designates
which type of feed this should be: RSS 2.0, Atom 1.0, etc. If
you don't specify feed_type, your feed will be RSS 2.0. This
should be a class, not an instance of the class.

feed_type = feedgenerator.Rss201rev2Feed

TEMPLATE NAMES -- Optional. These should be strings
representing names of Django templates that the system should
use in rendering the title and description of your feed items.
Both are optional. If a template is not specified, the
item_title() or item_description() methods are used instead.

title_template = None
description_template = None

TITLE -- One of the following three is required. The framework
looks for them in this order.

def title(self, obj):
"""
Takes the object returned by get_object() and returns the
feed's title as a normal Python string.
"""

def title(self):
"""
Returns the feed's title as a normal Python string.
"""

title = 'foo' # Hard-coded title.

LINK -- One of the following three is required. The framework
looks for them in this order.

def link(self, obj):
"""
Takes the object returned by get_object() and returns the URL
of the HTML version of the feed as a normal Python string.
"""

def link(self):
"""
Returns the URL of the HTML version of the feed as a normal Python
string.
"""

6.5. contrib packages 949

Django Documentation, Release 1.10.9.dev20171123183751

link = '/blog/' # Hard-coded URL.

FEED_URL -- One of the following three is optional. The framework
looks for them in this order.

def feed_url(self, obj):
"""
Takes the object returned by get_object() and returns the feed's
own URL as a normal Python string.
"""

def feed_url(self):
"""
Returns the feed's own URL as a normal Python string.
"""

feed_url = '/blog/rss/' # Hard-coded URL.

GUID -- One of the following three is optional. The framework looks
for them in this order. This property is only used for Atom feeds
(where it is the feed-level ID element). If not provided, the feed
link is used as the ID.

def feed_guid(self, obj):
"""
Takes the object returned by get_object() and returns the globally
unique ID for the feed as a normal Python string.
"""

def feed_guid(self):
"""
Returns the feed's globally unique ID as a normal Python string.
"""

feed_guid = '/foo/bar/1234' # Hard-coded guid.

DESCRIPTION -- One of the following three is required. The framework
looks for them in this order.

def description(self, obj):
"""
Takes the object returned by get_object() and returns the feed's
description as a normal Python string.
"""

def description(self):
"""
Returns the feed's description as a normal Python string.
"""

description = 'Foo bar baz.' # Hard-coded description.

AUTHOR NAME --One of the following three is optional. The framework
looks for them in this order.

def author_name(self, obj):
"""

950 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Takes the object returned by get_object() and returns the feed's
author's name as a normal Python string.
"""

def author_name(self):
"""
Returns the feed's author's name as a normal Python string.
"""

author_name = 'Sally Smith' # Hard-coded author name.

AUTHOR EMAIL --One of the following three is optional. The framework
looks for them in this order.

def author_email(self, obj):
"""
Takes the object returned by get_object() and returns the feed's
author's email as a normal Python string.
"""

def author_email(self):
"""
Returns the feed's author's email as a normal Python string.
"""

author_email = 'test@example.com' # Hard-coded author email.

AUTHOR LINK --One of the following three is optional. The framework
looks for them in this order. In each case, the URL should include
the "http://" and domain name.

def author_link(self, obj):
"""
Takes the object returned by get_object() and returns the feed's
author's URL as a normal Python string.
"""

def author_link(self):
"""
Returns the feed's author's URL as a normal Python string.
"""

author_link = 'https://www.example.com/' # Hard-coded author URL.

CATEGORIES -- One of the following three is optional. The framework
looks for them in this order. In each case, the method/attribute
should return an iterable object that returns strings.

def categories(self, obj):
"""
Takes the object returned by get_object() and returns the feed's
categories as iterable over strings.
"""

def categories(self):
"""
Returns the feed's categories as iterable over strings.
"""

6.5. contrib packages 951

Django Documentation, Release 1.10.9.dev20171123183751

categories = ("python", "django") # Hard-coded list of categories.

COPYRIGHT NOTICE -- One of the following three is optional. The
framework looks for them in this order.

def feed_copyright(self, obj):
"""
Takes the object returned by get_object() and returns the feed's
copyright notice as a normal Python string.
"""

def feed_copyright(self):
"""
Returns the feed's copyright notice as a normal Python string.
"""

feed_copyright = 'Copyright (c) 2007, Sally Smith' # Hard-coded copyright notice.

TTL -- One of the following three is optional. The framework looks
for them in this order. Ignored for Atom feeds.

def ttl(self, obj):
"""
Takes the object returned by get_object() and returns the feed's
TTL (Time To Live) as a normal Python string.
"""

def ttl(self):
"""
Returns the feed's TTL as a normal Python string.
"""

ttl = 600 # Hard-coded Time To Live.

ITEMS -- One of the following three is required. The framework looks
for them in this order.

def items(self, obj):
"""
Takes the object returned by get_object() and returns a list of
items to publish in this feed.
"""

def items(self):
"""
Returns a list of items to publish in this feed.
"""

items = ('Item 1', 'Item 2') # Hard-coded items.

GET_OBJECT -- This is required for feeds that publish different data
for different URL parameters. (See "A complex example" above.)

def get_object(self, request, *args, **kwargs):
"""
Takes the current request and the arguments from the URL, and
returns an object represented by this feed. Raises

952 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

django.core.exceptions.ObjectDoesNotExist on error.
"""

ITEM TITLE AND DESCRIPTION -- If title_template or
description_template are not defined, these are used instead. Both are
optional, by default they will use the unicode representation of the
item.

def item_title(self, item):
"""
Takes an item, as returned by items(), and returns the item's
title as a normal Python string.
"""

def item_title(self):
"""
Returns the title for every item in the feed.
"""

item_title = 'Breaking News: Nothing Happening' # Hard-coded title.

def item_description(self, item):
"""
Takes an item, as returned by items(), and returns the item's
description as a normal Python string.
"""

def item_description(self):
"""
Returns the description for every item in the feed.
"""

item_description = 'A description of the item.' # Hard-coded description.

def get_context_data(self, **kwargs):
"""
Returns a dictionary to use as extra context if either
description_template or item_template are used.

Default implementation preserves the old behavior
of using {'obj': item, 'site': current_site} as the context.
"""

ITEM LINK -- One of these three is required. The framework looks for
them in this order.

First, the framework tries the two methods below, in
order. Failing that, it falls back to the get_absolute_url()
method on each item returned by items().

def item_link(self, item):
"""
Takes an item, as returned by items(), and returns the item's URL.
"""

def item_link(self):
"""
Returns the URL for every item in the feed.

6.5. contrib packages 953

Django Documentation, Release 1.10.9.dev20171123183751

"""

ITEM_GUID -- The following method is optional. If not provided, the
item's link is used by default.

def item_guid(self, obj):
"""
Takes an item, as return by items(), and returns the item's ID.
"""

ITEM_GUID_IS_PERMALINK -- The following method is optional. If
provided, it sets the 'isPermaLink' attribute of an item's
GUID element. This method is used only when 'item_guid' is
specified.

def item_guid_is_permalink(self, obj):
"""
Takes an item, as returned by items(), and returns a boolean.
"""

item_guid_is_permalink = False # Hard coded value

ITEM AUTHOR NAME -- One of the following three is optional. The
framework looks for them in this order.

def item_author_name(self, item):
"""
Takes an item, as returned by items(), and returns the item's
author's name as a normal Python string.
"""

def item_author_name(self):
"""
Returns the author name for every item in the feed.
"""

item_author_name = 'Sally Smith' # Hard-coded author name.

ITEM AUTHOR EMAIL --One of the following three is optional. The
framework looks for them in this order.
#
If you specify this, you must specify item_author_name.

def item_author_email(self, obj):
"""
Takes an item, as returned by items(), and returns the item's
author's email as a normal Python string.
"""

def item_author_email(self):
"""
Returns the author email for every item in the feed.
"""

item_author_email = 'test@example.com' # Hard-coded author email.

ITEM AUTHOR LINK -- One of the following three is optional. The
framework looks for them in this order. In each case, the URL should

954 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

include the "http://" and domain name.
#
If you specify this, you must specify item_author_name.

def item_author_link(self, obj):
"""
Takes an item, as returned by items(), and returns the item's
author's URL as a normal Python string.
"""

def item_author_link(self):
"""
Returns the author URL for every item in the feed.
"""

item_author_link = 'https://www.example.com/' # Hard-coded author URL.

ITEM ENCLOSURES -- One of the following three is optional. The
framework looks for them in this order. If one of them is defined,
``item_enclosure_url``, ``item_enclosure_length``, and
``item_enclosure_mime_type`` will have no effect.

def item_enclosures(self, item):
"""
Takes an item, as returned by items(), and returns a list of
``django.utils.feedgenerator.Enclosure`` objects.
"""

def item_enclosures(self):
"""
Returns the ``django.utils.feedgenerator.Enclosure`` list for every
item in the feed.
"""

item_enclosures = [] # Hard-coded enclosure list

ITEM ENCLOSURE URL -- One of these three is required if you're
publishing enclosures and you're not using ``item_enclosures``. The
framework looks for them in this order.

def item_enclosure_url(self, item):
"""
Takes an item, as returned by items(), and returns the item's
enclosure URL.
"""

def item_enclosure_url(self):
"""
Returns the enclosure URL for every item in the feed.
"""

item_enclosure_url = "/foo/bar.mp3" # Hard-coded enclosure link.

ITEM ENCLOSURE LENGTH -- One of these three is required if you're
publishing enclosures and you're not using ``item_enclosures``. The
framework looks for them in this order. In each case, the returned
value should be either an integer, or a string representation of the
integer, in bytes.

6.5. contrib packages 955

Django Documentation, Release 1.10.9.dev20171123183751

def item_enclosure_length(self, item):
"""
Takes an item, as returned by items(), and returns the item's
enclosure length.
"""

def item_enclosure_length(self):
"""
Returns the enclosure length for every item in the feed.
"""

item_enclosure_length = 32000 # Hard-coded enclosure length.

ITEM ENCLOSURE MIME TYPE -- One of these three is required if you're
publishing enclosures and you're not using ``item_enclosures``. The
framework looks for them in this order.

def item_enclosure_mime_type(self, item):
"""
Takes an item, as returned by items(), and returns the item's
enclosure MIME type.
"""

def item_enclosure_mime_type(self):
"""
Returns the enclosure MIME type for every item in the feed.
"""

item_enclosure_mime_type = "audio/mpeg" # Hard-coded enclosure MIME type.

ITEM PUBDATE -- It's optional to use one of these three. This is a
hook that specifies how to get the pubdate for a given item.
In each case, the method/attribute should return a Python
datetime.datetime object.

def item_pubdate(self, item):
"""
Takes an item, as returned by items(), and returns the item's
pubdate.
"""

def item_pubdate(self):
"""
Returns the pubdate for every item in the feed.
"""

item_pubdate = datetime.datetime(2005, 5, 3) # Hard-coded pubdate.

ITEM UPDATED -- It's optional to use one of these three. This is a
hook that specifies how to get the updateddate for a given item.
In each case, the method/attribute should return a Python
datetime.datetime object.

def item_updateddate(self, item):
"""
Takes an item, as returned by items(), and returns the item's
updateddate.

956 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

"""

def item_updateddate(self):
"""
Returns the updateddate for every item in the feed.
"""

item_updateddate = datetime.datetime(2005, 5, 3) # Hard-coded updateddate.

ITEM CATEGORIES -- It's optional to use one of these three. This is
a hook that specifies how to get the list of categories for a given
item. In each case, the method/attribute should return an iterable
object that returns strings.

def item_categories(self, item):
"""
Takes an item, as returned by items(), and returns the item's
categories.
"""

def item_categories(self):
"""
Returns the categories for every item in the feed.
"""

item_categories = ("python", "django") # Hard-coded categories.

ITEM COPYRIGHT NOTICE (only applicable to Atom feeds) -- One of the
following three is optional. The framework looks for them in this
order.

def item_copyright(self, obj):
"""
Takes an item, as returned by items(), and returns the item's
copyright notice as a normal Python string.
"""

def item_copyright(self):
"""
Returns the copyright notice for every item in the feed.
"""

item_copyright = 'Copyright (c) 2007, Sally Smith' # Hard-coded copyright notice.

The low-level framework

Behind the scenes, the high-level RSS framework uses a lower-level framework for generating feeds’ XML. This
framework lives in a single module: django/utils/feedgenerator.py.

You use this framework on your own, for lower-level feed generation. You can also create custom feed generator
subclasses for use with the feed_type Feed option.

SyndicationFeed classes

The feedgenerator module contains a base class:

6.5. contrib packages 957

https://github.com/django/django/blob/master/django/utils/feedgenerator.py

Django Documentation, Release 1.10.9.dev20171123183751

• django.utils.feedgenerator.SyndicationFeed

and several subclasses:

• django.utils.feedgenerator.RssUserland091Feed

• django.utils.feedgenerator.Rss201rev2Feed

• django.utils.feedgenerator.Atom1Feed

Each of these three classes knows how to render a certain type of feed as XML. They share this interface:

SyndicationFeed.__init__() Initialize the feed with the given dictionary of metadata, which applies to the
entire feed. Required keyword arguments are:

• title

• link

• description

There’s also a bunch of other optional keywords:

• language

• author_email

• author_name

• author_link

• subtitle

• categories

• feed_url

• feed_copyright

• feed_guid

• ttl

Any extra keyword arguments you pass to __init__ will be stored in self.feed for use with custom feed
generators.

All parameters should be Unicode objects, except categories, which should be a sequence of Unicode
objects. Beware that some control characters are not allowed in XML documents. If your content has some of
them, you might encounter a ValueError when producing the feed.

SyndicationFeed.add_item() Add an item to the feed with the given parameters.

Required keyword arguments are:

• title

• link

• description

Optional keyword arguments are:

• author_email

• author_name

• author_link

• pubdate

958 Chapter 6. API Reference

http://www.w3.org/International/questions/qa-controls
https://docs.python.org/3/library/exceptions.html#ValueError

Django Documentation, Release 1.10.9.dev20171123183751

• comments

• unique_id

• enclosure

• enclosures

• categories

• item_copyright

• ttl

• updateddate

Extra keyword arguments will be stored for custom feed generators.

All parameters, if given, should be Unicode objects, except:

• pubdate should be a Python datetime object.

• updateddate should be a Python datetime object.

• enclosure should be an instance of django.utils.feedgenerator.Enclosure.

• enclosures should be a list of django.utils.feedgenerator.Enclosure instances.

• categories should be a sequence of Unicode objects.

Deprecated since version 1.9: The enclosure keyword argument is deprecated in favor of the enclosures
keyword argument.

SyndicationFeed.write() Outputs the feed in the given encoding to outfile, which is a file-like object.

SyndicationFeed.writeString() Returns the feed as a string in the given encoding.

For example, to create an Atom 1.0 feed and print it to standard output:

>>> from django.utils import feedgenerator
>>> from datetime import datetime
>>> f = feedgenerator.Atom1Feed(
... title="My Weblog",
... link="https://www.example.com/",
... description="In which I write about what I ate today.",
... language="en",
... author_name="Myself",
... feed_url="https://example.com/atom.xml")
>>> f.add_item(title="Hot dog today",
... link="https://www.example.com/entries/1/",
... pubdate=datetime.now(),
... description="<p>Today I had a Vienna Beef hot dog. It was pink, plump and
→˓perfect.</p>")
>>> print(f.writeString('UTF-8'))
<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom" xml:lang="en">
...
</feed>

Custom feed generators

If you need to produce a custom feed format, you’ve got a couple of options.

6.5. contrib packages 959

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

Django Documentation, Release 1.10.9.dev20171123183751

If the feed format is totally custom, you’ll want to subclass SyndicationFeed and completely replace the
write() and writeString() methods.

However, if the feed format is a spin-off of RSS or Atom (i.e. GeoRSS, Apple’s iTunes podcast format, etc.), you’ve
got a better choice. These types of feeds typically add extra elements and/or attributes to the underlying format, and
there are a set of methods that SyndicationFeed calls to get these extra attributes. Thus, you can subclass the
appropriate feed generator class (Atom1Feed or Rss201rev2Feed) and extend these callbacks. They are:

SyndicationFeed.root_attributes(self,) Return a dict of attributes to add to the root feed element
(feed/channel).

SyndicationFeed.add_root_elements(self, handler) Callback to add elements inside the root feed
element (feed/channel). handler is an XMLGenerator from Python’s built-in SAX library; you’ll call
methods on it to add to the XML document in process.

SyndicationFeed.item_attributes(self, item) Return a dict of attributes to add to each item
(item/entry) element. The argument, item, is a dictionary of all the data passed to SyndicationFeed.
add_item().

SyndicationFeed.add_item_elements(self, handler, item) Callback to add elements to each
item (item/entry) element. handler and item are as above.

Warning: If you override any of these methods, be sure to call the superclass methods since they add the required
elements for each feed format.

For example, you might start implementing an iTunes RSS feed generator like so:

class iTunesFeed(Rss201rev2Feed):
def root_attributes(self):

attrs = super(iTunesFeed, self).root_attributes()
attrs['xmlns:itunes'] = 'http://www.itunes.com/dtds/podcast-1.0.dtd'
return attrs

def add_root_elements(self, handler):
super(iTunesFeed, self).add_root_elements(handler)
handler.addQuickElement('itunes:explicit', 'clean')

Obviously there’s a lot more work to be done for a complete custom feed class, but the above example should demon-
strate the basic idea.

6.5.14 admin

The automatic Django administrative interface. For more information, see Tutorial 2 and the admin documentation.

Requires the auth and contenttypes contrib packages to be installed.

6.5.15 auth

Django’s authentication framework.

See User authentication in Django.

6.5.16 contenttypes

A light framework for hooking into “types” of content, where each installed Django model is a separate content type.

960 Chapter 6. API Reference

http://georss.org/
https://www.apple.com/itunes/podcasts/specs.html
https://docs.python.org/3/library/xml.sax.utils.html#xml.sax.saxutils.XMLGenerator

Django Documentation, Release 1.10.9.dev20171123183751

See the contenttypes documentation.

6.5.17 flatpages

A framework for managing simple “flat” HTML content in a database.

See the flatpages documentation.

Requires the sites contrib package to be installed as well.

6.5.18 gis

A world-class geospatial framework built on top of Django, that enables storage, manipulation and display of spatial
data.

See the GeoDjango documentation for more.

6.5.19 humanize

A set of Django template filters useful for adding a “human touch” to data.

See the humanize documentation.

6.5.20 messages

A framework for storing and retrieving temporary cookie- or session-based messages

See the messages documentation.

6.5.21 postgres

A collection of PostgreSQL specific features.

See the contrib.postgres documentation.

6.5.22 redirects

A framework for managing redirects.

See the redirects documentation.

6.5.23 sessions

A framework for storing data in anonymous sessions.

See the sessions documentation.

6.5. contrib packages 961

Django Documentation, Release 1.10.9.dev20171123183751

6.5.24 sites

A light framework that lets you operate multiple websites off of the same database and Django installation. It gives
you hooks for associating objects to one or more sites.

See the sites documentation.

6.5.25 sitemaps

A framework for generating Google sitemap XML files.

See the sitemaps documentation.

6.5.26 syndication

A framework for generating syndication feeds, in RSS and Atom, quite easily.

See the syndication documentation.

6.5.27 Other add-ons

If you have an idea for functionality to include in contrib, let us know! Code it up, and post it to the django-users
mailing list.

6.6 Cross Site Request Forgery protection

The CSRF middleware and template tag provides easy-to-use protection against Cross Site Request Forgeries. This
type of attack occurs when a malicious website contains a link, a form button or some JavaScript that is intended to
perform some action on your website, using the credentials of a logged-in user who visits the malicious site in their
browser. A related type of attack, ‘login CSRF’, where an attacking site tricks a user’s browser into logging into a site
with someone else’s credentials, is also covered.

The first defense against CSRF attacks is to ensure that GET requests (and other ‘safe’ methods, as defined by RFC
7231#section-4.2.1) are side effect free. Requests via ‘unsafe’ methods, such as POST, PUT, and DELETE, can then
be protected by following the steps below.

6.6.1 How to use it

To take advantage of CSRF protection in your views, follow these steps:

1. The CSRF middleware is activated by default in the MIDDLEWARE setting. If you override that setting, remem-
ber that 'django.middleware.csrf.CsrfViewMiddleware' should come before any view middle-
ware that assume that CSRF attacks have been dealt with.

If you disabled it, which is not recommended, you can use csrf_protect() on particular views you want
to protect (see below).

2. In any template that uses a POST form, use the csrf_token tag inside the <form> element if the form is for
an internal URL, e.g.:

<form action="" method="post">{% csrf_token %}

962 Chapter 6. API Reference

https://www.squarefree.com/securitytips/web-developers.html#CSRF
https://tools.ietf.org/html/rfc7231.html#section-4.2.1
https://tools.ietf.org/html/rfc7231.html#section-4.2.1

Django Documentation, Release 1.10.9.dev20171123183751

This should not be done for POST forms that target external URLs, since that would cause the CSRF token to
be leaked, leading to a vulnerability.

3. In the corresponding view functions, ensure that RequestContext is used to render the response so that {%
csrf_token %} will work properly. If you’re using the render() function, generic views, or contrib apps,
you are covered already since these all use RequestContext.

AJAX

While the above method can be used for AJAX POST requests, it has some inconveniences: you have to remember
to pass the CSRF token in as POST data with every POST request. For this reason, there is an alternative method:
on each XMLHttpRequest, set a custom X-CSRFToken header to the value of the CSRF token. This is often easier,
because many JavaScript frameworks provide hooks that allow headers to be set on every request.

As a first step, you must get the CSRF token itself. The recommended source for the token is the csrftoken cookie,
which will be set if you’ve enabled CSRF protection for your views as outlined above.

Note: The CSRF token cookie is named csrftoken by default, but you can control the cookie name via the
CSRF_COOKIE_NAME setting.

The CSRF header name is HTTP_X_CSRFTOKEN by default, but you can customize it using the
CSRF_HEADER_NAME setting.

Acquiring the token is straightforward:

// using jQuery
function getCookie(name) {

var cookieValue = null;
if (document.cookie && document.cookie !== '') {

var cookies = document.cookie.split(';');
for (var i = 0; i < cookies.length; i++) {

var cookie = jQuery.trim(cookies[i]);
// Does this cookie string begin with the name we want?
if (cookie.substring(0, name.length + 1) === (name + '=')) {

cookieValue = decodeURIComponent(cookie.substring(name.length + 1));
break;

}
}

}
return cookieValue;

}
var csrftoken = getCookie('csrftoken');

The above code could be simplified by using the JavaScript Cookie library to replace getCookie:

var csrftoken = Cookies.get('csrftoken');

Note: The CSRF token is also present in the DOM, but only if explicitly included using csrf_token in a template.
The cookie contains the canonical token; the CsrfViewMiddleware will prefer the cookie to the token in the
DOM. Regardless, you’re guaranteed to have the cookie if the token is present in the DOM, so you should use the
cookie!

6.6. Cross Site Request Forgery protection 963

https://github.com/js-cookie/js-cookie/

Django Documentation, Release 1.10.9.dev20171123183751

Warning: If your view is not rendering a template containing the csrf_token template tag, Django might not
set the CSRF token cookie. This is common in cases where forms are dynamically added to the page. To address
this case, Django provides a view decorator which forces setting of the cookie: ensure_csrf_cookie().

Finally, you’ll have to actually set the header on your AJAX request, while protecting the CSRF token from being sent
to other domains using settings.crossDomain in jQuery 1.5.1 and newer:

function csrfSafeMethod(method) {
// these HTTP methods do not require CSRF protection
return (/^(GET|HEAD|OPTIONS|TRACE)$/.test(method));

}
$.ajaxSetup({

beforeSend: function(xhr, settings) {
if (!csrfSafeMethod(settings.type) && !this.crossDomain) {

xhr.setRequestHeader("X-CSRFToken", csrftoken);
}

}
});

If you’re using AngularJS 1.1.3 and newer, it’s sufficient to configure the $http provider with the cookie and header
names:

$httpProvider.defaults.xsrfCookieName = 'csrftoken';
$httpProvider.defaults.xsrfHeaderName = 'X-CSRFToken';

Using CSRF in Jinja2 templates

Django’s Jinja2 template backend adds {{ csrf_input }} to the context of all templates which is equivalent
to {% csrf_token %} in the Django template language. For example:

<form action="" method="post">{{ csrf_input }}

The decorator method

Rather than adding CsrfViewMiddleware as a blanket protection, you can use the csrf_protect decorator,
which has exactly the same functionality, on particular views that need the protection. It must be used both on views
that insert the CSRF token in the output, and on those that accept the POST form data. (These are often the same view
function, but not always).

Use of the decorator by itself is not recommended, since if you forget to use it, you will have a security hole. The
‘belt and braces’ strategy of using both is fine, and will incur minimal overhead.

csrf_protect(view)
Decorator that provides the protection of CsrfViewMiddleware to a view.

Usage:

from django.views.decorators.csrf import csrf_protect
from django.shortcuts import render

@csrf_protect
def my_view(request):

c = {}

964 Chapter 6. API Reference

https://api.jquery.com/jQuery.ajax

Django Documentation, Release 1.10.9.dev20171123183751

...
return render(request, "a_template.html", c)

If you are using class-based views, you can refer to Decorating class-based views.

6.6.2 Rejected requests

By default, a ‘403 Forbidden’ response is sent to the user if an incoming request fails the checks performed by
CsrfViewMiddleware. This should usually only be seen when there is a genuine Cross Site Request Forgery, or
when, due to a programming error, the CSRF token has not been included with a POST form.

The error page, however, is not very friendly, so you may want to provide your own view for handling this condition.
To do this, simply set the CSRF_FAILURE_VIEW setting.

CSRF failures are logged as warnings to the django.request logger.

6.6.3 How it works

The CSRF protection is based on the following things:

1. A CSRF cookie that is based on a random secret value, which other sites will not have access to.

This cookie is set by CsrfViewMiddleware. It is sent with every response that has called django.
middleware.csrf.get_token() (the function used internally to retrieve the CSRF token), if it wasn’t
already set on the request.

In order to protect against BREACH attacks, the token is not simply the secret; a random salt is prepended to
the secret and used to scramble it.

For security reasons, the value of the secret is changed each time a user logs in.

2. A hidden form field with the name ‘csrfmiddlewaretoken’ present in all outgoing POST forms. The value of
this field is, again, the value of the secret, with a salt which is both added to it and used to scramble it. The salt
is regenerated on every call to get_token() so that the form field value is changed in every such response.

This part is done by the template tag.

3. For all incoming requests that are not using HTTP GET, HEAD, OPTIONS or TRACE, a CSRF cookie must be
present, and the ‘csrfmiddlewaretoken’ field must be present and correct. If it isn’t, the user will get a 403 error.

When validating the ‘csrfmiddlewaretoken’ field value, only the secret, not the full token, is compared with the
secret in the cookie value. This allows the use of ever-changing tokens. While each request may use its own
token, the secret remains common to all.

This check is done by CsrfViewMiddleware.

4. In addition, for HTTPS requests, strict referer checking is done by CsrfViewMiddleware. This means that
even if a subdomain can set or modify cookies on your domain, it can’t force a user to post to your application
since that request won’t come from your own exact domain.

This also addresses a man-in-the-middle attack that’s possible under HTTPS when using a session independent
secret, due to the fact that HTTP Set-Cookie headers are (unfortunately) accepted by clients even when they
are talking to a site under HTTPS. (Referer checking is not done for HTTP requests because the presence of the
Referer header isn’t reliable enough under HTTP.)

If the CSRF_COOKIE_DOMAIN setting is set, the referer is compared against it. This setting supports sub-
domains. For example, CSRF_COOKIE_DOMAIN = '.example.com' will allow POST requests from
www.example.com and api.example.com. If the setting is not set, then the referer must match the
HTTP Host header.

6.6. Cross Site Request Forgery protection 965

http://breachattack.com/

Django Documentation, Release 1.10.9.dev20171123183751

Expanding the accepted referers beyond the current host or cookie domain can be done with the
CSRF_TRUSTED_ORIGINS setting.

This ensures that only forms that have originated from trusted domains can be used to POST data back.

It deliberately ignores GET requests (and other requests that are defined as ‘safe’ by RFC 7231). These requests ought
never to have any potentially dangerous side effects , and so a CSRF attack with a GET request ought to be harmless.
RFC 7231 defines POST, PUT, and DELETE as ‘unsafe’, and all other methods are also assumed to be unsafe, for
maximum protection.

The CSRF protection cannot protect against man-in-the-middle attacks, so use HTTPS with HTTP Strict Transport
Security. It also assumes validation of the HOST header and that there aren’t any cross-site scripting vulnerabilities
on your site (because XSS vulnerabilities already let an attacker do anything a CSRF vulnerability allows and much
worse).

Checking against the CSRF_COOKIE_DOMAIN setting was added.

Added salting to the token and started changing it with each request to protect against BREACH attacks.

6.6.4 Caching

If the csrf_token template tag is used by a template (or the get_token function is called some other way),
CsrfViewMiddleware will add a cookie and a Vary: Cookie header to the response. This means that the
middleware will play well with the cache middleware if it is used as instructed (UpdateCacheMiddleware goes
before all other middleware).

However, if you use cache decorators on individual views, the CSRF middleware will not yet have been able to
set the Vary header or the CSRF cookie, and the response will be cached without either one. In this case, on any
views that will require a CSRF token to be inserted you should use the django.views.decorators.csrf.
csrf_protect() decorator first:

from django.views.decorators.cache import cache_page
from django.views.decorators.csrf import csrf_protect

@cache_page(60 * 15)
@csrf_protect
def my_view(request):

...

If you are using class-based views, you can refer to Decorating class-based views.

6.6.5 Testing

The CsrfViewMiddleware will usually be a big hindrance to testing view functions, due to the need for the CSRF
token which must be sent with every POST request. For this reason, Django’s HTTP client for tests has been modified
to set a flag on requests which relaxes the middleware and the csrf_protect decorator so that they no longer
rejects requests. In every other respect (e.g. sending cookies etc.), they behave the same.

If, for some reason, you want the test client to perform CSRF checks, you can create an instance of the test client that
enforces CSRF checks:

>>> from django.test import Client
>>> csrf_client = Client(enforce_csrf_checks=True)

966 Chapter 6. API Reference

https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
http://breachattack.com/

Django Documentation, Release 1.10.9.dev20171123183751

6.6.6 Limitations

Subdomains within a site will be able to set cookies on the client for the whole domain. By setting the cookie and using
a corresponding token, subdomains will be able to circumvent the CSRF protection. The only way to avoid this is to
ensure that subdomains are controlled by trusted users (or, are at least unable to set cookies). Note that even without
CSRF, there are other vulnerabilities, such as session fixation, that make giving subdomains to untrusted parties a bad
idea, and these vulnerabilities cannot easily be fixed with current browsers.

6.6.7 Edge cases

Certain views can have unusual requirements that mean they don’t fit the normal pattern envisaged here. A number of
utilities can be useful in these situations. The scenarios they might be needed in are described in the following section.

Utilities

The examples below assume you are using function-based views. If you are working with class-based views, you can
refer to Decorating class-based views.

csrf_exempt(view)
This decorator marks a view as being exempt from the protection ensured by the middleware. Example:

from django.views.decorators.csrf import csrf_exempt
from django.http import HttpResponse

@csrf_exempt
def my_view(request):

return HttpResponse('Hello world')

requires_csrf_token(view)
Normally the csrf_token template tag will not work if CsrfViewMiddleware.process_view or an
equivalent like csrf_protect has not run. The view decorator requires_csrf_token can be used to
ensure the template tag does work. This decorator works similarly to csrf_protect, but never rejects an
incoming request.

Example:

from django.views.decorators.csrf import requires_csrf_token
from django.shortcuts import render

@requires_csrf_token
def my_view(request):

c = {}
...
return render(request, "a_template.html", c)

ensure_csrf_cookie(view)
This decorator forces a view to send the CSRF cookie.

Scenarios

CSRF protection should be disabled for just a few views

Most views requires CSRF protection, but a few do not.

6.6. Cross Site Request Forgery protection 967

Django Documentation, Release 1.10.9.dev20171123183751

Solution: rather than disabling the middleware and applying csrf_protect to all the views that need it, enable the
middleware and use csrf_exempt().

CsrfViewMiddleware.process_view not used

There are cases when CsrfViewMiddleware.process_view may not have run before your view is run - 404
and 500 handlers, for example - but you still need the CSRF token in a form.

Solution: use requires_csrf_token()

Unprotected view needs the CSRF token

There may be some views that are unprotected and have been exempted by csrf_exempt, but still need to include
the CSRF token.

Solution: use csrf_exempt() followed by requires_csrf_token(). (i.e. requires_csrf_token
should be the innermost decorator).

View needs protection for one path

A view needs CSRF protection under one set of conditions only, and mustn’t have it for the rest of the time.

Solution: use csrf_exempt() for the whole view function, and csrf_protect() for the path within it that
needs protection. Example:

from django.views.decorators.csrf import csrf_exempt, csrf_protect

@csrf_exempt
def my_view(request):

@csrf_protect
def protected_path(request):

do_something()

if some_condition():
return protected_path(request)

else:
do_something_else()

Page uses AJAX without any HTML form

A page makes a POST request via AJAX, and the page does not have an HTML form with a csrf_token that would
cause the required CSRF cookie to be sent.

Solution: use ensure_csrf_cookie() on the view that sends the page.

6.6.8 Contrib and reusable apps

Because it is possible for the developer to turn off the CsrfViewMiddleware, all relevant views in contrib apps
use the csrf_protect decorator to ensure the security of these applications against CSRF. It is recommended that
the developers of other reusable apps that want the same guarantees also use the csrf_protect decorator on their
views.

968 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

6.6.9 Settings

A number of settings can be used to control Django’s CSRF behavior:

• CSRF_COOKIE_AGE

• CSRF_COOKIE_DOMAIN

• CSRF_COOKIE_HTTPONLY

• CSRF_COOKIE_NAME

• CSRF_COOKIE_PATH

• CSRF_COOKIE_SECURE

• CSRF_FAILURE_VIEW

• CSRF_HEADER_NAME

• CSRF_TRUSTED_ORIGINS

6.6.10 Frequently Asked Questions

Is posting an arbitrary CSRF token pair (cookie and POST data) a vulnerability?

No, this is by design. Without a man-in-the-middle attack, there is no way for an attacker to send a CSRF token cookie
to a victim’s browser, so a successful attack would need to obtain the victim’s browser’s cookie via XSS or similar, in
which case an attacker usually doesn’t need CSRF attacks.

Some security audit tools flag this as a problem but as mentioned before, an attacker cannot steal a user’s browser’s
CSRF cookie. “Stealing” or modifying your own token using Firebug, Chrome dev tools, etc. isn’t a vulnerability.

Is the fact that Django’s CSRF protection isn’t linked to a session a problem?

No, this is by design. Not linking CSRF protection to a session allows using the protection on sites such as a pastebin
that allow submissions from anonymous users which don’t have a session.

Why might a user encounter a CSRF validation failure after logging in?

For security reasons, CSRF tokens are rotated each time a user logs in. Any page with a form generated before a login
will have an old, invalid CSRF token and need to be reloaded. This might happen if a user uses the back button after a
login or if they log in in a different browser tab.

6.7 Databases

Django attempts to support as many features as possible on all database backends. However, not all database backends
are alike, and we’ve had to make design decisions on which features to support and which assumptions we can make
safely.

This file describes some of the features that might be relevant to Django usage. Of course, it is not intended as a
replacement for server-specific documentation or reference manuals.

6.7. Databases 969

Django Documentation, Release 1.10.9.dev20171123183751

6.7.1 General notes

Persistent connections

Persistent connections avoid the overhead of re-establishing a connection to the database in each request. They’re
controlled by the CONN_MAX_AGE parameter which defines the maximum lifetime of a connection. It can be set
independently for each database.

The default value is 0, preserving the historical behavior of closing the database connection at the end of each request.
To enable persistent connections, set CONN_MAX_AGE to a positive number of seconds. For unlimited persistent
connections, set it to None.

Connection management

Django opens a connection to the database when it first makes a database query. It keeps this connection open
and reuses it in subsequent requests. Django closes the connection once it exceeds the maximum age defined by
CONN_MAX_AGE or when it isn’t usable any longer.

In detail, Django automatically opens a connection to the database whenever it needs one and doesn’t have one already
— either because this is the first connection, or because the previous connection was closed.

At the beginning of each request, Django closes the connection if it has reached its maximum age. If your database
terminates idle connections after some time, you should set CONN_MAX_AGE to a lower value, so that Django doesn’t
attempt to use a connection that has been terminated by the database server. (This problem may only affect very low
traffic sites.)

At the end of each request, Django closes the connection if it has reached its maximum age or if it is in an unrecoverable
error state. If any database errors have occurred while processing the requests, Django checks whether the connection
still works, and closes it if it doesn’t. Thus, database errors affect at most one request; if the connection becomes
unusable, the next request gets a fresh connection.

Caveats

Since each thread maintains its own connection, your database must support at least as many simultaneous connections
as you have worker threads.

Sometimes a database won’t be accessed by the majority of your views, for example because it’s the database of an
external system, or thanks to caching. In such cases, you should set CONN_MAX_AGE to a low value or even 0,
because it doesn’t make sense to maintain a connection that’s unlikely to be reused. This will help keep the number of
simultaneous connections to this database small.

The development server creates a new thread for each request it handles, negating the effect of persistent connections.
Don’t enable them during development.

When Django establishes a connection to the database, it sets up appropriate parameters, depending on the backend
being used. If you enable persistent connections, this setup is no longer repeated every request. If you modify
parameters such as the connection’s isolation level or time zone, you should either restore Django’s defaults at the end
of each request, force an appropriate value at the beginning of each request, or disable persistent connections.

Encoding

Django assumes that all databases use UTF-8 encoding. Using other encodings may result in unexpected behavior
such as “value too long” errors from your database for data that is valid in Django. See the database specific notes
below for information on how to set up your database correctly.

970 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

6.7.2 PostgreSQL notes

Django supports PostgreSQL 9.2 and higher. It requires the use of psycopg2 2.4.5 or higher (or 2.5+ if you want to
use django.contrib.postgres).

PostgreSQL connection settings

See HOST for details.

Optimizing PostgreSQL’s configuration

Django needs the following parameters for its database connections:

• client_encoding: 'UTF8',

• default_transaction_isolation: 'read committed' by default, or the value set in the connec-
tion options (see below),

• timezone: 'UTC' when USE_TZ is True, value of TIME_ZONE otherwise.

If these parameters already have the correct values, Django won’t set them for every new connection, which improves
performance slightly. You can configure them directly in postgresql.conf or more conveniently per database
user with ALTER ROLE.

Django will work just fine without this optimization, but each new connection will do some additional queries to set
these parameters.

Isolation level

Like PostgreSQL itself, Django defaults to the READ COMMITTED isolation level. If you need a higher isolation
level such as REPEATABLE READ or SERIALIZABLE, set it in the OPTIONS part of your database configuration
in DATABASES:

import psycopg2.extensions

DATABASES = {
...
'OPTIONS': {

'isolation_level': psycopg2.extensions.ISOLATION_LEVEL_SERIALIZABLE,
},

}

Note: Under higher isolation levels, your application should be prepared to handle exceptions raised on serialization
failures. This option is designed for advanced uses.

Indexes for varchar and text columns

When specifying db_index=True on your model fields, Django typically outputs a single CREATE INDEX
statement. However, if the database type for the field is either varchar or text (e.g., used by CharField,
FileField, and TextField), then Django will create an additional index that uses an appropriate PostgreSQL
operator class for the column. The extra index is necessary to correctly perform lookups that use the LIKE operator
in their SQL, as is done with the contains and startswith lookup types.

6.7. Databases 971

http://initd.org/psycopg/
https://www.postgresql.org/docs/current/static/sql-alterrole.html
https://www.postgresql.org/docs/current/static/transaction-iso.html
https://www.postgresql.org/docs/current/static/indexes-opclass.html
https://www.postgresql.org/docs/current/static/indexes-opclass.html

Django Documentation, Release 1.10.9.dev20171123183751

Migration operation for adding extensions

If you need to add a PostgreSQL extension (like hstore, postgis, etc.) using a migration, use the
CreateExtension operation.

Speeding up test execution with non-durable settings

You can speed up test execution times by configuring PostgreSQL to be non-durable.

Warning: This is dangerous: it will make your database more susceptible to data loss or corruption in the case
of a server crash or power loss. Only use this on a development machine where you can easily restore the entire
contents of all databases in the cluster.

6.7.3 MySQL notes

Version support

Django supports MySQL 5.5 and higher.

Django’s inspectdb feature uses the information_schema database, which contains detailed data on all
database schemas.

Django expects the database to support Unicode (UTF-8 encoding) and delegates to it the task of enforcing transactions
and referential integrity. It is important to be aware of the fact that the two latter ones aren’t actually enforced by
MySQL when using the MyISAM storage engine, see the next section.

Storage engines

MySQL has several storage engines. You can change the default storage engine in the server configuration.

Until MySQL 5.5.4, the default engine was MyISAM1. The main drawbacks of MyISAM are that it doesn’t support
transactions or enforce foreign-key constraints. On the plus side, it was the only engine that supported full-text
indexing and searching until MySQL 5.6.4.

Since MySQL 5.5.5, the default storage engine is InnoDB. This engine is fully transactional and supports foreign key
references. It’s probably the best choice at this point. However, note that the InnoDB autoincrement counter is lost on
a MySQL restart because it does not remember the AUTO_INCREMENT value, instead recreating it as “max(id)+1”.
This may result in an inadvertent reuse of AutoField values.

If you upgrade an existing project to MySQL 5.5.5 and subsequently add some tables, ensure that your tables are using
the same storage engine (i.e. MyISAM vs. InnoDB). Specifically, if tables that have a ForeignKey between them
use different storage engines, you may see an error like the following when running migrate:

_mysql_exceptions.OperationalError: (
1005, "Can't create table '\\db_name\\.#sql-4a8_ab' (errno: 150)"

)

1 Unless this was changed by the packager of your MySQL package. We’ve had reports that the Windows Community Server installer sets up
InnoDB as the default storage engine, for example.

972 Chapter 6. API Reference

https://www.postgresql.org/docs/current/static/non-durability.html
https://dev.mysql.com/doc/refman/en/storage-engines.html
https://dev.mysql.com/doc/refman/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/en/innodb-storage-engine.html

Django Documentation, Release 1.10.9.dev20171123183751

MySQL DB API Drivers

The Python Database API is described in PEP 249. MySQL has three prominent drivers that implement this API:

• MySQLdb is a native driver that has been developed and supported for over a decade by Andy Dustman.

• mysqlclient is a fork of MySQLdb which notably supports Python 3 and can be used as a drop-in replacement
for MySQLdb. At the time of this writing, this is the recommended choice for using MySQL with Django.

• MySQL Connector/Python is a pure Python driver from Oracle that does not require the MySQL client library
or any Python modules outside the standard library.

All these drivers are thread-safe and provide connection pooling. MySQLdb is the only one not supporting Python 3
currently.

In addition to a DB API driver, Django needs an adapter to access the database drivers from its ORM. Django provides
an adapter for MySQLdb/mysqlclient while MySQL Connector/Python includes its own.

MySQLdb

Django requires MySQLdb version 1.2.1p2 or later.

At the time of writing, the latest release of MySQLdb (1.2.5) doesn’t support Python 3. In order to use MySQLdb
under Python 3, you’ll have to install mysqlclient instead.

Note: There are known issues with the way MySQLdb converts date strings into datetime objects. Specifically, date
strings with value 0000-00-00 are valid for MySQL but will be converted into None by MySQLdb.

This means you should be careful while using loaddata and dumpdata with rows that may have 0000-00-00
values, as they will be converted to None.

mysqlclient

Django requires mysqlclient 1.3.3 or later. Note that Python 3.2 is not supported. Except for the Python 3.3+ support,
mysqlclient should mostly behave the same as MySQLDB.

MySQL Connector/Python

MySQL Connector/Python is available from the download page. The Django adapter is available in versions 1.1.X
and later. It may not support the most recent releases of Django.

Time zone definitions

If you plan on using Django’s timezone support, use mysql_tzinfo_to_sql to load time zone tables into the MySQL
database. This needs to be done just once for your MySQL server, not per database.

Creating your database

You can create your database using the command-line tools and this SQL:

CREATE DATABASE <dbname> CHARACTER SET utf8;

6.7. Databases 973

https://www.python.org/dev/peps/pep-0249
https://pypi.python.org/pypi/MySQL-python/1.2.4
https://pypi.python.org/pypi/mysqlclient
https://dev.mysql.com/downloads/connector/python
https://dev.mysql.com/doc/connector-python/en/connector-python-django-backend.html
https://pypi.python.org/pypi/mysqlclient
https://dev.mysql.com/downloads/connector/python/
https://dev.mysql.com/doc/refman/en/mysql-tzinfo-to-sql.html
https://dev.mysql.com/doc/refman/en/create-database.html

Django Documentation, Release 1.10.9.dev20171123183751

This ensures all tables and columns will use UTF-8 by default.

Collation settings

The collation setting for a column controls the order in which data is sorted as well as what strings compare as equal. It
can be set on a database-wide level and also per-table and per-column. This is documented thoroughly in the MySQL
documentation. In all cases, you set the collation by directly manipulating the database tables; Django doesn’t provide
a way to set this on the model definition.

By default, with a UTF-8 database, MySQL will use the utf8_general_ci collation. This results in all string
equality comparisons being done in a case-insensitive manner. That is, "Fred" and "freD" are considered equal at
the database level. If you have a unique constraint on a field, it would be illegal to try to insert both "aa" and "AA"
into the same column, since they compare as equal (and, hence, non-unique) with the default collation.

In many cases, this default will not be a problem. However, if you really want case-sensitive comparisons on a particu-
lar column or table, you would change the column or table to use the utf8_bin collation. The main thing to be aware
of in this case is that if you are using MySQLdb 1.2.2, the database backend in Django will then return bytestrings
(instead of unicode strings) for any character fields it receive from the database. This is a strong variation from
Django’s normal practice of always returning unicode strings. It is up to you, the developer, to handle the fact that you
will receive bytestrings if you configure your table(s) to use utf8_bin collation. Django itself should mostly work
smoothly with such columns (except for the contrib.sessions Session and contrib.admin LogEntry
tables described below), but your code must be prepared to call django.utils.encoding.smart_text() at
times if it really wants to work with consistent data – Django will not do this for you (the database backend layer and
the model population layer are separated internally so the database layer doesn’t know it needs to make this conversion
in this one particular case).

If you’re using MySQLdb 1.2.1p2, Django’s standard CharField class will return unicode strings even with
utf8_bin collation. However, TextField fields will be returned as an array.array instance (from Python’s
standard array module). There isn’t a lot Django can do about that, since, again, the information needed to make the
necessary conversions isn’t available when the data is read in from the database. This problem was fixed in MySQLdb
1.2.2, so if you want to use TextField with utf8_bin collation, upgrading to version 1.2.2 and then dealing with
the bytestrings (which shouldn’t be too difficult) as described above is the recommended solution.

Should you decide to use utf8_bin collation for some of your tables with MySQLdb 1.2.1p2 or 1.2.2, you should
still use utf8_general_ci (the default) collation for the django.contrib.sessions.models.Session
table (usually called django_session) and the django.contrib.admin.models.LogEntry table (usu-
ally called django_admin_log). Those are the two standard tables that use TextField internally.

Please note that according to MySQL Unicode Character Sets, comparisons for the utf8_general_ci collation are
faster, but slightly less correct, than comparisons for utf8_unicode_ci. If this is acceptable for your application,
you should use utf8_general_ci because it is faster. If this is not acceptable (for example, if you require German
dictionary order), use utf8_unicode_ci because it is more accurate.

Warning: Model formsets validate unique fields in a case-sensitive manner. Thus when using a case-insensitive
collation, a formset with unique field values that differ only by case will pass validation, but upon calling save(),
an IntegrityError will be raised.

Connecting to the database

Refer to the settings documentation.

Connection settings are used in this order:

1. OPTIONS.

974 Chapter 6. API Reference

https://dev.mysql.com/doc/refman/en/charset.html
http://sourceforge.net/tracker/index.php?func=detail&aid=1495765&group_id=22307&atid=374932
http://sourceforge.net/tracker/index.php?func=detail&aid=1495765&group_id=22307&atid=374932
https://dev.mysql.com/doc/refman/en/charset-unicode-sets.html

Django Documentation, Release 1.10.9.dev20171123183751

2. NAME, USER, PASSWORD, HOST, PORT

3. MySQL option files.

In other words, if you set the name of the database in OPTIONS, this will take precedence over NAME, which would
override anything in a MySQL option file.

Here’s a sample configuration which uses a MySQL option file:

settings.py
DATABASES = {

'default': {
'ENGINE': 'django.db.backends.mysql',
'OPTIONS': {

'read_default_file': '/path/to/my.cnf',
},

}
}

my.cnf
[client]
database = NAME
user = USER
password = PASSWORD
default-character-set = utf8

Several other MySQLdb connection options may be useful, such as ssl, init_command, and sql_mode. Consult
the MySQLdb documentation for more details.

Setting sql_mode

From MySQL 5.7 onwards and on fresh installs of MySQL 5.6, the default value of the sql_mode op-
tion contains STRICT_TRANS_TABLES. That option escalates warnings into errors when data are truncated
upon insertion, so Django highly recommends activating a strict mode for MySQL to prevent data loss (either
STRICT_TRANS_TABLES or STRICT_ALL_TABLES).

If you need to customize the SQL mode, you can set the sql_mode variable like other MySQL options: either in
a config file or with the entry 'init_command': "SET sql_mode='STRICT_TRANS_TABLES'" in the
OPTIONS part of your database configuration in DATABASES.

Creating your tables

When Django generates the schema, it doesn’t specify a storage engine, so tables will be created with whatever default
storage engine your database server is configured for. The easiest solution is to set your database server’s default
storage engine to the desired engine.

If you’re using a hosting service and can’t change your server’s default storage engine, you have a couple of options.

• After the tables are created, execute an ALTER TABLE statement to convert a table to a new storage engine
(such as InnoDB):

ALTER TABLE <tablename> ENGINE=INNODB;

This can be tedious if you have a lot of tables.

• Another option is to use the init_command option for MySQLdb prior to creating your tables:

6.7. Databases 975

https://dev.mysql.com/doc/refman/en/option-files.html
http://mysql-python.sourceforge.net/
https://dev.mysql.com/doc/refman/en/sql-mode.html#sql-mode-strict

Django Documentation, Release 1.10.9.dev20171123183751

'OPTIONS': {
'init_command': 'SET default_storage_engine=INNODB',

}

This sets the default storage engine upon connecting to the database. After your tables have been created,
you should remove this option as it adds a query that is only needed during table creation to each database
connection.

Table names

There are known issues in even the latest versions of MySQL that can cause the case of a table name to be altered
when certain SQL statements are executed under certain conditions. It is recommended that you use lowercase table
names, if possible, to avoid any problems that might arise from this behavior. Django uses lowercase table names
when it auto-generates table names from models, so this is mainly a consideration if you are overriding the table name
via the db_table parameter.

Savepoints

Both the Django ORM and MySQL (when using the InnoDB storage engine) support database savepoints.

If you use the MyISAM storage engine please be aware of the fact that you will receive database-generated errors if
you try to use the savepoint-related methods of the transactions API. The reason for this is that detecting the storage
engine of a MySQL database/table is an expensive operation so it was decided it isn’t worth to dynamically convert
these methods in no-op’s based in the results of such detection.

Notes on specific fields

Character fields

Any fields that are stored with VARCHAR column types have their max_length restricted to 255 char-
acters if you are using unique=True for the field. This affects CharField, SlugField and
CommaSeparatedIntegerField.

TextField limitations

MySQL can index only the first N chars of a BLOB or TEXT column. Since TextField doesn’t have a defined
length, you can’t mark it as unique=True. MySQL will report: “BLOB/TEXT column ‘<db_column>’ used in key
specification without a key length”.

Fractional seconds support for Time and DateTime fields

MySQL 5.6.4 and later can store fractional seconds, provided that the column definition includes a fractional indication
(e.g. DATETIME(6)). Earlier versions do not support them at all. In addition, versions of MySQLdb older than 1.2.5
have a bug that also prevents the use of fractional seconds with MySQL.

Django will not upgrade existing columns to include fractional seconds if the database server supports it. If you want
to enable them on an existing database, it’s up to you to either manually update the column on the target database, by
executing a command like:

976 Chapter 6. API Reference

https://bugs.mysql.com/bug.php?id=48875
https://github.com/farcepest/MySQLdb1/issues/24

Django Documentation, Release 1.10.9.dev20171123183751

ALTER TABLE `your_table` MODIFY `your_datetime_column` DATETIME(6)

or using a RunSQL operation in a data migration.

TIMESTAMP columns

If you are using a legacy database that contains TIMESTAMP columns, you must set USE_TZ = False to avoid
data corruption. inspectdb maps these columns to DateTimeField and if you enable timezone support, both
MySQL and Django will attempt to convert the values from UTC to local time.

Row locking with QuerySet.select_for_update()

MySQL does not support the NOWAIT option to the SELECT ... FOR UPDATE statement. If
select_for_update() is used with nowait=True then a DatabaseError will be raised.

Automatic typecasting can cause unexpected results

When performing a query on a string type, but with an integer value, MySQL will coerce the types of all values in the
table to an integer before performing the comparison. If your table contains the values 'abc', 'def' and you query
for WHERE mycolumn=0, both rows will match. Similarly, WHERE mycolumn=1 will match the value 'abc1'.
Therefore, string type fields included in Django will always cast the value to a string before using it in a query.

If you implement custom model fields that inherit from Field directly, are overriding get_prep_value(), or
use RawSQL, extra(), or raw(), you should ensure that you perform appropriate typecasting.

6.7.4 SQLite notes

SQLite provides an excellent development alternative for applications that are predominantly read-only or require a
smaller installation footprint. As with all database servers, though, there are some differences that are specific to
SQLite that you should be aware of.

Substring matching and case sensitivity

For all SQLite versions, there is some slightly counter-intuitive behavior when attempting to match some types of
strings. These are triggered when using the iexact or contains filters in Querysets. The behavior splits into two
cases:

1. For substring matching, all matches are done case-insensitively. That is a filter such as
filter(name__contains="aa") will match a name of "Aabb".

2. For strings containing characters outside the ASCII range, all exact string matches are performed case-sensitively,
even when the case-insensitive options are passed into the query. So the iexact filter will behave exactly the same
as the exact filter in these cases.

Some possible workarounds for this are documented at sqlite.org, but they aren’t utilized by the default SQLite backend
in Django, as incorporating them would be fairly difficult to do robustly. Thus, Django exposes the default SQLite
behavior and you should be aware of this when doing case-insensitive or substring filtering.

6.7. Databases 977

https://www.sqlite.org/
https://www.sqlite.org/faq.html#q18

Django Documentation, Release 1.10.9.dev20171123183751

Old SQLite and CASE expressions

SQLite 3.6.23.1 and older contains a bug when handling query parameters in a CASE expression that contains an
ELSE and arithmetic.

SQLite 3.6.23.1 was released in March 2010, and most current binary distributions for different platforms include a
newer version of SQLite, with the notable exception of the Python 2.7 installers for Windows.

As of this writing, the latest release for Windows - Python 2.7.10 - includes SQLite 3.6.21. You can install
pysqlite2 or replace sqlite3.dll (by default installed in C:\Python27\DLLs) with a newer version from
https://www.sqlite.org/ to remedy this issue.

Using newer versions of the SQLite DB-API 2.0 driver

Django will use a pysqlite2 module in preference to sqlite3 as shipped with the Python standard library if it
finds one is available.

This provides the ability to upgrade both the DB-API 2.0 interface or SQLite 3 itself to versions newer than the ones
included with your particular Python binary distribution, if needed.

“Database is locked” errors

SQLite is meant to be a lightweight database, and thus can’t support a high level of concurrency.
OperationalError: database is locked errors indicate that your application is experiencing more con-
currency than sqlite can handle in default configuration. This error means that one thread or process has an exclu-
sive lock on the database connection and another thread timed out waiting for the lock the be released.

Python’s SQLite wrapper has a default timeout value that determines how long the second thread is allowed to wait on
the lock before it times out and raises the OperationalError: database is locked error.

If you’re getting this error, you can solve it by:

• Switching to another database backend. At a certain point SQLite becomes too “lite” for real-world applications,
and these sorts of concurrency errors indicate you’ve reached that point.

• Rewriting your code to reduce concurrency and ensure that database transactions are short-lived.

• Increase the default timeout value by setting the timeout database option:

'OPTIONS': {
...
'timeout': 20,
...

}

This will simply make SQLite wait a bit longer before throwing “database is locked” errors; it won’t really do
anything to solve them.

QuerySet.select_for_update() not supported

SQLite does not support the SELECT ... FOR UPDATE syntax. Calling it will have no effect.

978 Chapter 6. API Reference

https://code.djangoproject.com/ticket/24148
https://www.sqlite.org/

Django Documentation, Release 1.10.9.dev20171123183751

“pyformat” parameter style in raw queries not supported

For most backends, raw queries (Manager.raw() or cursor.execute()) can use the “pyformat” parameter
style, where placeholders in the query are given as '%(name)s' and the parameters are passed as a dictionary rather
than a list. SQLite does not support this.

6.7.5 Oracle notes

Django supports Oracle Database Server versions 11.2 and higher. Versions 4.3.1 through 5.2.1 of the cx_Oracle
Python driver are supported, although 5.1.3 or later is recommended as these versions support Python 3.

Note that due to a Unicode-corruption bug in cx_Oracle 5.0, that version of the driver should not be used with
Django; cx_Oracle 5.0.1 resolved this issue, so if you’d like to use a more recent cx_Oracle, use version 5.0.1.

cx_Oracle 5.0.1 or greater can optionally be compiled with the WITH_UNICODE environment variable. This is
recommended but not required.

In order for the python manage.py migrate command to work, your Oracle database user must have privileges
to run the following commands:

• CREATE TABLE

• CREATE SEQUENCE

• CREATE PROCEDURE

• CREATE TRIGGER

To run a project’s test suite, the user usually needs these additional privileges:

• CREATE USER

• ALTER USER

• DROP USER

• CREATE TABLESPACE

• DROP TABLESPACE

• CREATE SESSION WITH ADMIN OPTION

• CREATE TABLE WITH ADMIN OPTION

• CREATE SEQUENCE WITH ADMIN OPTION

• CREATE PROCEDURE WITH ADMIN OPTION

• CREATE TRIGGER WITH ADMIN OPTION

Note that, while the RESOURCE role has the required CREATE TABLE, CREATE SEQUENCE, CREATE PRO-
CEDURE and CREATE TRIGGER privileges, and a user granted RESOURCE WITH ADMIN OPTION can grant
RESOURCE, such a user cannot grant the individual privileges (e.g. CREATE TABLE), and thus RESOURCE WITH
ADMIN OPTION is not usually sufficient for running tests.

Some test suites also create views; to run these, the user also needs the CREATE VIEW WITH ADMIN OPTION
privilege. In particular, this is needed for Django’s own test suite.

All of these privileges are included in the DBA role, which is appropriate for use on a private developer’s database.

The Oracle database backend uses the SYS.DBMS_LOB and SYS.DBMS_RANDOM packages, so your user will require
execute permissions on it. It’s normally accessible to all users by default, but in case it is not, you’ll need to grant
permissions like so:

6.7. Databases 979

http://www.oracle.com/
http://cx-oracle.sourceforge.net/

Django Documentation, Release 1.10.9.dev20171123183751

GRANT EXECUTE ON SYS.DBMS_LOB TO user;
GRANT EXECUTE ON SYS.DBMS_RANDOM TO user;

Connecting to the database

To connect using the service name of your Oracle database, your settings.py file should look something like this:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.oracle',
'NAME': 'xe',
'USER': 'a_user',
'PASSWORD': 'a_password',
'HOST': '',
'PORT': '',

}
}

In this case, you should leave both HOST and PORT empty. However, if you don’t use a tnsnames.ora file or a
similar naming method and want to connect using the SID (“xe” in this example), then fill in both HOST and PORT
like so:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.oracle',
'NAME': 'xe',
'USER': 'a_user',
'PASSWORD': 'a_password',
'HOST': 'dbprod01ned.mycompany.com',
'PORT': '1540',

}
}

You should either supply both HOST and PORT, or leave both as empty strings. Django will use a different connect
descriptor depending on that choice.

Threaded option

If you plan to run Django in a multithreaded environment (e.g. Apache using the default MPM module on any modern
operating system), then you must set the threaded option of your Oracle database configuration to True:

'OPTIONS': {
'threaded': True,

},

Failure to do this may result in crashes and other odd behavior.

INSERT ... RETURNING INTO

By default, the Oracle backend uses a RETURNING INTO clause to efficiently retrieve the value of an AutoField
when inserting new rows. This behavior may result in a DatabaseError in certain unusual setups, such as when
inserting into a remote table, or into a view with an INSTEAD OF trigger. The RETURNING INTO clause can be
disabled by setting the use_returning_into option of the database configuration to False:

980 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

'OPTIONS': {
'use_returning_into': False,

},

In this case, the Oracle backend will use a separate SELECT query to retrieve AutoField values.

Naming issues

Oracle imposes a name length limit of 30 characters. To accommodate this, the backend truncates database identifiers
to fit, replacing the final four characters of the truncated name with a repeatable MD5 hash value. Additionally, the
backend turns database identifiers to all-uppercase.

To prevent these transformations (this is usually required only when dealing with legacy databases or accessing tables
which belong to other users), use a quoted name as the value for db_table:

class LegacyModel(models.Model):
class Meta:

db_table = '"name_left_in_lowercase"'

class ForeignModel(models.Model):
class Meta:

db_table = '"OTHER_USER"."NAME_ONLY_SEEMS_OVER_30"'

Quoted names can also be used with Django’s other supported database backends; except for Oracle, however, the
quotes have no effect.

When running migrate, an ORA-06552 error may be encountered if certain Oracle keywords are used as the name
of a model field or the value of a db_column option. Django quotes all identifiers used in queries to prevent most
such problems, but this error can still occur when an Oracle datatype is used as a column name. In particular, take care
to avoid using the names date, timestamp, number or float as a field name.

NULL and empty strings

Django generally prefers to use the empty string (‘’) rather than NULL, but Oracle treats both identically. To get
around this, the Oracle backend ignores an explicit null option on fields that have the empty string as a possible
value and generates DDL as if null=True. When fetching from the database, it is assumed that a NULL value in
one of these fields really means the empty string, and the data is silently converted to reflect this assumption.

TextField limitations

The Oracle backend stores TextFields as NCLOB columns. Oracle imposes some limitations on the usage of such
LOB columns in general:

• LOB columns may not be used as primary keys.

• LOB columns may not be used in indexes.

• LOB columns may not be used in a SELECT DISTINCT list. This means that attempting to use the
QuerySet.distinct method on a model that includes TextField columns will result in an ORA-00932
error when run against Oracle. As a workaround, use the QuerySet.defer method in conjunction with
distinct() to prevent TextField columns from being included in the SELECT DISTINCT list.

6.7. Databases 981

Django Documentation, Release 1.10.9.dev20171123183751

6.7.6 Using a 3rd-party database backend

In addition to the officially supported databases, there are backends provided by 3rd parties that allow you to use other
databases with Django:

• SAP SQL Anywhere

• IBM DB2

• Microsoft SQL Server

• Firebird

• ODBC

The Django versions and ORM features supported by these unofficial backends vary considerably. Queries regarding
the specific capabilities of these unofficial backends, along with any support queries, should be directed to the support
channels provided by each 3rd party project.

6.8 django-admin and manage.py

django-admin is Django’s command-line utility for administrative tasks. This document outlines all it can do.

In addition, manage.py is automatically created in each Django project. manage.py does the same thing as
django-admin but takes care of a few things for you:

• It puts your project’s package on sys.path.

• It sets the DJANGO_SETTINGS_MODULE environment variable so that it points to your project’s settings.
py file.

The django-admin script should be on your system path if you installed Django via its setup.py utility. If it’s
not on your path, you can find it in site-packages/django/bin within your Python installation. Consider
symlinking it from some place on your path, such as /usr/local/bin.

For Windows users, who do not have symlinking functionality available, you can copy django-admin.exe to a
location on your existing path or edit the PATH settings (under Settings - Control Panel - System -
Advanced - Environment...) to point to its installed location.

Generally, when working on a single Django project, it’s easier to use manage.py than django-admin. If you
need to switch between multiple Django settings files, use django-admin with DJANGO_SETTINGS_MODULE or
the --settings command line option.

The command-line examples throughout this document use django-admin to be consistent, but any example can
use manage.py or python -m django just as well.

python -m django was added.

6.8.1 Usage

$ django-admin <command> [options]
$ manage.py <command> [options]
$ python -m django <command> [options]

command should be one of the commands listed in this document. options, which is optional, should be zero or
more of the options available for the given command.

982 Chapter 6. API Reference

https://github.com/sqlanywhere/sqlany-django
https://pypi.python.org/pypi/ibm_db/
https://django-mssql.readthedocs.io/en/latest/
https://github.com/maxirobaina/django-firebird
https://github.com/lionheart/django-pyodbc/

Django Documentation, Release 1.10.9.dev20171123183751

Getting runtime help

django-admin help

Run django-admin help to display usage information and a list of the commands provided by each application.

Run django-admin help --commands to display a list of all available commands.

Run django-admin help <command> to display a description of the given command and a list of its available
options.

App names

Many commands take a list of “app names.” An “app name” is the basename of the package containing your models.
For example, if your INSTALLED_APPS contains the string 'mysite.blog', the app name is blog.

Determining the version

django-admin version

Run django-admin version to display the current Django version.

The output follows the schema described in PEP 440:

1.4.dev17026
1.4a1
1.4

Displaying debug output

Use --verbosity to specify the amount of notification and debug information that django-admin prints to the
console.

6.8.2 Available commands

check

django-admin check [app_label [app_label ...]]

Uses the system check framework to inspect the entire Django project for common problems.

By default, all apps will be checked. You can check a subset of apps by providing a list of app labels as arguments:

django-admin check auth admin myapp

If you do not specify any app, all apps will be checked.

--tag TAGS, -t TAGS

The system check framework performs many different types of checks that are categorized with tags. You can use
these tags to restrict the checks performed to just those in a particular category. For example, to perform only models
and compatibility checks, run:

django-admin check --tag models --tag compatibility

--list-tags

6.8. django-admin and manage.py 983

https://www.python.org/dev/peps/pep-0440

Django Documentation, Release 1.10.9.dev20171123183751

Lists all available tags.

--deploy

Activates some additional checks that are only relevant in a deployment setting.

You can use this option in your local development environment, but since your local development settings module may
not have many of your production settings, you will probably want to point the check command at a different settings
module, either by setting the DJANGO_SETTINGS_MODULE environment variable, or by passing the --settings
option:

django-admin check --deploy --settings=production_settings

Or you could run it directly on a production or staging deployment to verify that the correct settings are in use (omitting
--settings). You could even make it part of your integration test suite.

--fail-level {CRITICAL,ERROR,WARNING,INFO,DEBUG}

Specifies the message level that will cause the command to exit with a non-zero status. Default is ERROR.

compilemessages

django-admin compilemessages

Compiles .po files created by makemessages to .mo files for use with the built-in gettext support. See Interna-
tionalization and localization.

--locale LOCALE, -l LOCALE

Specifies the locale(s) to process. If not provided, all locales are processed.

--exclude EXCLUDE, -x EXCLUDE

Specifies the locale(s) to exclude from processing. If not provided, no locales are excluded.

--use-fuzzy, -f

Includes fuzzy translations into compiled files.

compilemessages now matches the operation of makemessages, scanning the project tree for .po files to
compile.

Example usage:

django-admin compilemessages --locale=pt_BR
django-admin compilemessages --locale=pt_BR --locale=fr -f
django-admin compilemessages -l pt_BR
django-admin compilemessages -l pt_BR -l fr --use-fuzzy
django-admin compilemessages --exclude=pt_BR
django-admin compilemessages --exclude=pt_BR --exclude=fr
django-admin compilemessages -x pt_BR
django-admin compilemessages -x pt_BR -x fr

createcachetable

django-admin createcachetable

Creates the cache tables for use with the database cache backend using the information from your settings file. See
Django’s cache framework for more information.

--database DATABASE

984 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Specifies the database in which the cache table(s) will be created. Defaults to default.

--dry-run

Prints the SQL that would be run without actually running it, so you can customize it or use the migrations framework.

The --dry-run option was added.

dbshell

django-admin dbshell

Runs the command-line client for the database engine specified in your ENGINE setting, with the connection param-
eters specified in your USER, PASSWORD, etc., settings.

• For PostgreSQL, this runs the psql command-line client.

• For MySQL, this runs the mysql command-line client.

• For SQLite, this runs the sqlite3 command-line client.

• For Oracle, this runs the sqlplus command-line client.

This command assumes the programs are on your PATH so that a simple call to the program name (psql, mysql,
sqlite3, sqlplus) will find the program in the right place. There’s no way to specify the location of the program
manually.

--database DATABASE

Specifies the database onto which to open a shell. Defaults to default.

diffsettings

django-admin diffsettings

Displays differences between the current settings file and Django’s default settings.

Settings that don’t appear in the defaults are followed by "###". For example, the default settings don’t define
ROOT_URLCONF, so ROOT_URLCONF is followed by "###" in the output of diffsettings.

--all

Displays all settings, even if they have Django’s default value. Such settings are prefixed by "###".

dumpdata

django-admin dumpdata [app_label[.ModelName] [app_label[.ModelName] ...]]

Outputs to standard output all data in the database associated with the named application(s).

If no application name is provided, all installed applications will be dumped.

The output of dumpdata can be used as input for loaddata.

Note that dumpdata uses the default manager on the model for selecting the records to dump. If you’re using a
custom manager as the default manager and it filters some of the available records, not all of the objects will be
dumped.

--all, -a

Uses Django’s base manager, dumping records which might otherwise be filtered or modified by a custom manager.

--format FORMAT

6.8. django-admin and manage.py 985

Django Documentation, Release 1.10.9.dev20171123183751

Specifies the serialization format of the output. Defaults to JSON. Supported formats are listed in Serialization formats.

--indent INDENT

Specifies the number of indentation spaces to use in the output. Defaults to None which displays all data on single
line.

--exclude EXCLUDE, -e EXCLUDE

Prevents specific applications or models (specified in the form of app_label.ModelName) from being dumped. If
you specify a model name, the output will be restricted to that model, rather than the entire application. You can also
mix application names and model names.

If you want to exclude multiple applications, pass --exclude more than once:

django-admin dumpdata --exclude=auth --exclude=contenttypes

--database DATABASE

Specifies the database from which data will be dumped. Defaults to default.

--natural-foreign

Uses the natural_key() model method to serialize any foreign key and many-to-many relationship to objects
of the type that defines the method. If you’re dumping contrib.auth Permission objects or contrib.
contenttypes ContentType objects, you should probably use this flag. See the natural keys documentation for
more details on this and the next option.

--natural-primary

Omits the primary key in the serialized data of this object since it can be calculated during deserialization.

--pks PRIMARY_KEYS

Outputs only the objects specified by a comma separated list of primary keys. This is only available when dumping
one model. By default, all the records of the model are output.

--output OUTPUT, -o OUTPUT

Specifies a file to write the serialized data to. By default, the data goes to standard output.

When this option is set and --verbosity is greater than 0 (the default), a progress bar is shown in the terminal.

The progress bar in the terminal was added.

flush

django-admin flush

Removes all data from the database and re-executes any post-synchronization handlers. The table of which migrations
have been applied is not cleared.

If you would rather start from an empty database and re-run all migrations, you should drop and recreate the database
and then run migrate instead.

--noinput, --no-input

Suppresses all user prompts.

The --no-input alias was added.

--database DATABASE

Specifies the database to flush. Defaults to default.

986 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

inspectdb

django-admin inspectdb [table [table ...]]

Introspects the database tables in the database pointed-to by the NAME setting and outputs a Django model module (a
models.py file) to standard output. You may choose what tables to inspect by passing their names as arguments.

Use this if you have a legacy database with which you’d like to use Django. The script will inspect the database and
create a model for each table within it.

As you might expect, the created models will have an attribute for every field in the table. Note that inspectdb has
a few special cases in its field-name output:

• If inspectdb cannot map a column’s type to a model field type, it’ll use TextField and will insert the
Python comment 'This field type is a guess.' next to the field in the generated model.

• If the database column name is a Python reserved word (such as 'pass', 'class' or 'for'), inspectdb
will append '_field' to the attribute name. For example, if a table has a column 'for', the generated model
will have a field 'for_field', with the db_column attribute set to 'for'. inspectdb will insert the
Python comment 'Field renamed because it was a Python reserved word.' next to the
field.

This feature is meant as a shortcut, not as definitive model generation. After you run it, you’ll want to look over
the generated models yourself to make customizations. In particular, you’ll need to rearrange models’ order, so that
models that refer to other models are ordered properly.

Primary keys are automatically introspected for PostgreSQL, MySQL and SQLite, in which case Django puts in the
primary_key=True where needed.

inspectdb works with PostgreSQL, MySQL and SQLite. Foreign-key detection only works in PostgreSQL and
with certain types of MySQL tables.

Django doesn’t create database defaults when a default is specified on a model field. Similarly, database defaults
aren’t translated to model field defaults or detected in any fashion by inspectdb.

By default, inspectdb creates unmanaged models. That is, managed = False in the model’s Meta class tells
Django not to manage each table’s creation, modification, and deletion. If you do want to allow Django to manage the
table’s lifecycle, you’ll need to change the managed option to True (or simply remove it because True is its default
value).

Support for the table argument(s) to choose what tables should be inspected was added.

--database DATABASE

Specifies the database to introspect. Defaults to default.

loaddata

django-admin loaddata fixture [fixture ...]

Searches for and loads the contents of the named fixture into the database.

--database DATABASE

Specifies the database into which the data will be loaded. Defaults to default.

--ignorenonexistent, -i

Ignores fields and models that may have been removed since the fixture was originally generated.

--app APP_LABEL

Specifies a single app to look for fixtures in rather than looking in all apps.

6.8. django-admin and manage.py 987

Django Documentation, Release 1.10.9.dev20171123183751

What’s a “fixture”?

A fixture is a collection of files that contain the serialized contents of the database. Each fixture has a unique name,
and the files that comprise the fixture can be distributed over multiple directories, in multiple applications.

Django will search in three locations for fixtures:

1. In the fixtures directory of every installed application

2. In any directory named in the FIXTURE_DIRS setting

3. In the literal path named by the fixture

Django will load any and all fixtures it finds in these locations that match the provided fixture names.

If the named fixture has a file extension, only fixtures of that type will be loaded. For example:

django-admin loaddata mydata.json

would only load JSON fixtures called mydata. The fixture extension must correspond to the registered name of a
serializer (e.g., json or xml).

If you omit the extensions, Django will search all available fixture types for a matching fixture. For example:

django-admin loaddata mydata

would look for any fixture of any fixture type called mydata. If a fixture directory contained mydata.json, that
fixture would be loaded as a JSON fixture.

The fixtures that are named can include directory components. These directories will be included in the search path.
For example:

django-admin loaddata foo/bar/mydata.json

would search <app_label>/fixtures/foo/bar/mydata.json for each installed application,
<dirname>/foo/bar/mydata.json for each directory in FIXTURE_DIRS, and the literal path foo/
bar/mydata.json.

When fixture files are processed, the data is saved to the database as is. Model defined save() methods are not
called, and any pre_save or post_save signals will be called with raw=True since the instance only contains
attributes that are local to the model. You may, for example, want to disable handlers that access related fields that
aren’t present during fixture loading and would otherwise raise an exception:

from django.db.models.signals import post_save
from .models import MyModel

def my_handler(**kwargs):
disable the handler during fixture loading
if kwargs['raw']:

return
...

post_save.connect(my_handler, sender=MyModel)

You could also write a simple decorator to encapsulate this logic:

from functools import wraps

def disable_for_loaddata(signal_handler):
"""

988 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Decorator that turns off signal handlers when loading fixture data.
"""
@wraps(signal_handler)
def wrapper(*args, **kwargs):

if kwargs['raw']:
return

signal_handler(*args, **kwargs)
return wrapper

@disable_for_loaddata
def my_handler(**kwargs):

...

Just be aware that this logic will disable the signals whenever fixtures are deserialized, not just during loaddata.

Note that the order in which fixture files are processed is undefined. However, all fixture data is installed as a single
transaction, so data in one fixture can reference data in another fixture. If the database backend supports row-level
constraints, these constraints will be checked at the end of the transaction.

The dumpdata command can be used to generate input for loaddata.

Compressed fixtures

Fixtures may be compressed in zip, gz, or bz2 format. For example:

django-admin loaddata mydata.json

would look for any of mydata.json, mydata.json.zip, mydata.json.gz, or mydata.json.bz2. The
first file contained within a zip-compressed archive is used.

Note that if two fixtures with the same name but different fixture type are discovered (for example, if mydata.json
and mydata.xml.gz were found in the same fixture directory), fixture installation will be aborted, and any data
installed in the call to loaddata will be removed from the database.

MySQL with MyISAM and fixtures

The MyISAM storage engine of MySQL doesn’t support transactions or constraints, so if you use MyISAM, you
won’t get validation of fixture data, or a rollback if multiple transaction files are found.

Database-specific fixtures

If you’re in a multi-database setup, you might have fixture data that you want to load onto one database, but not onto
another. In this situation, you can add a database identifier into the names of your fixtures.

For example, if your DATABASES setting has a ‘master’ database defined, name the fixture mydata.master.json
or mydata.master.json.gz and the fixture will only be loaded when you specify you want to load data into the
master database.

makemessages

django-admin makemessages

6.8. django-admin and manage.py 989

Django Documentation, Release 1.10.9.dev20171123183751

Runs over the entire source tree of the current directory and pulls out all strings marked for translation. It creates (or
updates) a message file in the conf/locale (in the Django tree) or locale (for project and application) directory. After
making changes to the messages files you need to compile them with compilemessages for use with the builtin
gettext support. See the i18n documentation for details.

--all, -a

Updates the message files for all available languages.

--extension EXTENSIONS, -e EXTENSIONS

Specifies a list of file extensions to examine (default: html, txt, py or js if --domain is js).

Example usage:

django-admin makemessages --locale=de --extension xhtml

Separate multiple extensions with commas or use -e or --extension multiple times:

django-admin makemessages --locale=de --extension=html,txt --extension xml

--locale LOCALE, -l LOCALE

Specifies the locale(s) to process.

--exclude EXCLUDE, -x EXCLUDE

Specifies the locale(s) to exclude from processing. If not provided, no locales are excluded.

Example usage:

django-admin makemessages --locale=pt_BR
django-admin makemessages --locale=pt_BR --locale=fr
django-admin makemessages -l pt_BR
django-admin makemessages -l pt_BR -l fr
django-admin makemessages --exclude=pt_BR
django-admin makemessages --exclude=pt_BR --exclude=fr
django-admin makemessages -x pt_BR
django-admin makemessages -x pt_BR -x fr

--domain DOMAIN, -d DOMAIN

Specifies the domain of the messages files. Supported options are:

• django for all *.py, *.html and *.txt files (default)

• djangojs for *.js files

--symlinks, -s

Follows symlinks to directories when looking for new translation strings.

Example usage:

django-admin makemessages --locale=de --symlinks

--ignore PATTERN, -i PATTERN

Ignores files or directories matching the given glob-style pattern. Use multiple times to ignore more.

These patterns are used by default: 'CVS', '.*', '*~', '*.pyc'.

Example usage:

990 Chapter 6. API Reference

https://docs.python.org/3/library/glob.html#module-glob

Django Documentation, Release 1.10.9.dev20171123183751

django-admin makemessages --locale=en_US --ignore=apps/* --ignore=secret/*.html

--no-default-ignore

Disables the default values of --ignore.

--no-wrap

Disables breaking long message lines into several lines in language files.

--no-location

Suppresses writing ‘#: filename:line’ comment lines in language files. Using this option makes it harder for
technically skilled translators to understand each message’s context.

--keep-pot

Prevents deleting the temporary .pot files generated before creating the .po file. This is useful for debugging errors
which may prevent the final language files from being created.

See also:

See Customizing the makemessages command for instructions on how to customize the keywords that
makemessages passes to xgettext.

makemigrations

django-admin makemigrations [app_label [app_label ...]]

Creates new migrations based on the changes detected to your models. Migrations, their relationship with apps and
more are covered in depth in the migrations documentation.

Providing one or more app names as arguments will limit the migrations created to the app(s) specified and any
dependencies needed (the table at the other end of a ForeignKey, for example).

--noinput, --no-input

Suppresses all user prompts. If a suppressed prompt cannot be resolved automatically, the command will exit with
error code 3.

The --no-input alias was added.

--empty

Outputs an empty migration for the specified apps, for manual editing. This is for advanced users and should not
be used unless you are familiar with the migration format, migration operations, and the dependencies between your
migrations.

--dry-run

Shows what migrations would be made without actually writing any migrations files to disk. Using this option along
with --verbosity 3 will also show the complete migrations files that would be written.

--merge

Enables fixing of migration conflicts.

--name NAME, -n NAME

Allows naming the generated migration(s) instead of using a generated name.

--exit, -e

6.8. django-admin and manage.py 991

Django Documentation, Release 1.10.9.dev20171123183751

Deprecated since version 1.10: Use the --check option instead.

Makes makemigrations exit with error code 1 when no migrations are created (or would have been created, if
combined with --dry-run).

--check

Makes makemigrations exit with a non-zero status when model changes without migrations are detected.

migrate

django-admin migrate [app_label] [migration_name]

Synchronizes the database state with the current set of models and migrations. Migrations, their relationship with apps
and more are covered in depth in the migrations documentation.

The behavior of this command changes depending on the arguments provided:

• No arguments: All apps have all of their migrations run.

• <app_label>: The specified app has its migrations run, up to the most recent migration. This may involve
running other apps’ migrations too, due to dependencies.

• <app_label> <migrationname>: Brings the database schema to a state where the named migration is
applied, but no later migrations in the same app are applied. This may involve unapplying migrations if you
have previously migrated past the named migration. Use the name zero to unapply all migrations for an app.

--database DATABASE

Specifies the database to migrate. Defaults to default.

--fake

Tells Django to mark the migrations as having been applied or unapplied, but without actually running the SQL to
change your database schema.

This is intended for advanced users to manipulate the current migration state directly if they’re manually applying
changes; be warned that using --fake runs the risk of putting the migration state table into a state where manual
recovery will be needed to make migrations run correctly.

--fake-initial

Allows Django to skip an app’s initial migration if all database tables with the names of all models created by all
CreateModel operations in that migration already exist. This option is intended for use when first running mi-
grations against a database that preexisted the use of migrations. This option does not, however, check for matching
database schema beyond matching table names and so is only safe to use if you are confident that your existing schema
matches what is recorded in your initial migration.

--run-syncdb

Allows creating tables for apps without migrations. While this isn’t recommended, the migrations framework is
sometimes too slow on large projects with hundreds of models.

--noinput, --no-input

Suppresses all user prompts. An example prompt is asking about removing stale content types.

The --no-input alias was added.

runserver

django-admin runserver [addrport]

992 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Starts a lightweight development Web server on the local machine. By default, the server runs on port 8000 on the IP
address 127.0.0.1. You can pass in an IP address and port number explicitly.

If you run this script as a user with normal privileges (recommended), you might not have access to start a port on a
low port number. Low port numbers are reserved for the superuser (root).

This server uses the WSGI application object specified by the WSGI_APPLICATION setting.

DO NOT USE THIS SERVER IN A PRODUCTION SETTING. It has not gone through security audits or performance
tests. (And that’s how it’s gonna stay. We’re in the business of making Web frameworks, not Web servers, so improving
this server to be able to handle a production environment is outside the scope of Django.)

The development server automatically reloads Python code for each request, as needed. You don’t need to restart the
server for code changes to take effect. However, some actions like adding files don’t trigger a restart, so you’ll have to
restart the server in these cases.

If you are using Linux and install pyinotify, kernel signals will be used to autoreload the server (rather than polling
file modification timestamps each second). This offers better scaling to large projects, reduction in response time to
code modification, more robust change detection, and battery usage reduction.

When you start the server, and each time you change Python code while the server is running, the system check
framework will check your entire Django project for some common errors (see the check command). If any errors
are found, they will be printed to standard output.

You can run as many concurrent servers as you want, as long as they’re on separate ports. Just execute
django-admin runserver more than once.

Note that the default IP address, 127.0.0.1, is not accessible from other machines on your network. To make
your development server viewable to other machines on the network, use its own IP address (e.g. 192.168.2.1) or
0.0.0.0 or :: (with IPv6 enabled).

You can provide an IPv6 address surrounded by brackets (e.g. [200a::1]:8000). This will automatically enable
IPv6 support.

A hostname containing ASCII-only characters can also be used.

If the staticfiles contrib app is enabled (default in new projects) the runserver command will be overridden with
its own runserver command.

If migrate was not previously executed, the table that stores the history of migrations is created at first run of
runserver.

Logging of each request and response of the server is sent to the django.server logger.

In older versions, log messages were written to sys.stderr instead of being handled through Python logging.

--noreload

Disables the auto-reloader. This means any Python code changes you make while the server is running will not take
effect if the particular Python modules have already been loaded into memory.

--nothreading

Disables use of threading in the development server. The server is multithreaded by default.

--ipv6, -6

Uses IPv6 for the development server. This changes the default IP address from 127.0.0.1 to ::1.

Examples of using different ports and addresses

Port 8000 on IP address 127.0.0.1:

6.8. django-admin and manage.py 993

https://pypi.python.org/pypi/pyinotify/

Django Documentation, Release 1.10.9.dev20171123183751

django-admin runserver

Port 8000 on IP address 1.2.3.4:

django-admin runserver 1.2.3.4:8000

Port 7000 on IP address 127.0.0.1:

django-admin runserver 7000

Port 7000 on IP address 1.2.3.4:

django-admin runserver 1.2.3.4:7000

Port 8000 on IPv6 address ::1:

django-admin runserver -6

Port 7000 on IPv6 address ::1:

django-admin runserver -6 7000

Port 7000 on IPv6 address 2001:0db8:1234:5678::9:

django-admin runserver [2001:0db8:1234:5678::9]:7000

Port 8000 on IPv4 address of host localhost:

django-admin runserver localhost:8000

Port 8000 on IPv6 address of host localhost:

django-admin runserver -6 localhost:8000

Serving static files with the development server

By default, the development server doesn’t serve any static files for your site (such as CSS files, images, things under
MEDIA_URL and so forth). If you want to configure Django to serve static media, read Managing static files (e.g.
images, JavaScript, CSS).

sendtestemail

django-admin sendtestemail [email [email ...]]

Sends a test email (to confirm email sending through Django is working) to the recipient(s) specified. For example:

django-admin sendtestemail foo@example.com bar@example.com

There are a couple of options, and you may use any combination of them together:

--managers

Mails the email addresses specified in MANAGERS using mail_managers().

--admins

Mails the email addresses specified in ADMINS using mail_admins().

994 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

shell

django-admin shell

Starts the Python interactive interpreter.

--interface {ipython,bpython,python}, -i {ipython,bpython,python}

Specifies the shell to use. By default, Django will use IPython or bpython if either is installed. If both are installed,
specify which one you want like so:

IPython:

django-admin shell -i ipython

bpython:

django-admin shell -i bpython

If you have a “rich” shell installed but want to force use of the “plain” Python interpreter, use python as the interface
name, like so:

django-admin shell -i python

Deprecated since version 1.10: In older versions, use the --plain option instead of -i python. This is deprecated
and will be removed in Django 2.0.

--nostartup

Disables reading the startup script for the “plain” Python interpreter. By default, the script pointed to by the
PYTHONSTARTUP environment variable or the ~/.pythonrc.py script is read.

--command COMMAND, -c COMMAND

Lets you pass a command as a string to execute it as Django, like so:

django-admin shell --command="import django; print(django.__version__)"

showmigrations

django-admin showmigrations [app_label [app_label ...]]

Shows all migrations in a project. You can choose from one of two formats:

--list, -l

Lists all of the apps Django knows about, the migrations available for each app, and whether or not each migration is
applied (marked by an [X] next to the migration name).

Apps without migrations are also listed, but have (no migrations) printed under them.

This is the default output format.

--plan, -p

Shows the migration plan Django will follow to apply migrations. Any supplied app labels are ignored because the
plan might go beyond those apps. Like --list, applied migrations are marked by an [X]. For a --verbosity of
2 and above, all dependencies of a migration will also be shown.

--database DATABASE

Specifies the database to examine. Defaults to default.

6.8. django-admin and manage.py 995

https://ipython.org/
http://bpython-interpreter.org/
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONSTARTUP

Django Documentation, Release 1.10.9.dev20171123183751

sqlflush

django-admin sqlflush

Prints the SQL statements that would be executed for the flush command.

--database DATABASE

Specifies the database for which to print the SQL. Defaults to default.

sqlmigrate

django-admin sqlmigrate app_label migration_name

Prints the SQL for the named migration. This requires an active database connection, which it will use to resolve
constraint names; this means you must generate the SQL against a copy of the database you wish to later apply it on.

Note that sqlmigrate doesn’t colorize its output.

--backwards

Generates the SQL for unapplying the migration. By default, the SQL created is for running the migration in the
forwards direction.

--database DATABASE

Specifies the database for which to generate the SQL. Defaults to default.

To increase the readability of the overall SQL output the SQL code generated for each migration operation is preceded
by the operation’s description.

sqlsequencereset

django-admin sqlsequencereset app_label [app_label ...]

Prints the SQL statements for resetting sequences for the given app name(s).

Sequences are indexes used by some database engines to track the next available number for automatically incremented
fields.

Use this command to generate SQL which will fix cases where a sequence is out of sync with its automatically
incremented field data.

--database DATABASE

Specifies the database for which to print the SQL. Defaults to default.

squashmigrations

django-admin squashmigrations app_label [start_migration_name] migration_name

Squashes the migrations for app_label up to and including migration_name down into fewer migrations, if
possible. The resulting squashed migrations can live alongside the unsquashed ones safely. For more information,
please read Squashing migrations.

When start_migration_name is given, Django will only include migrations starting from and including this
migration. This helps to mitigate the squashing limitation of RunPython and django.db.migrations.
operations.RunSQL migration operations.

--no-optimize

996 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Disables the optimizer when generating a squashed migration. By default, Django will try to optimize the operations
in your migrations to reduce the size of the resulting file. Use this option if this process is failing or creating incorrect
migrations, though please also file a Django bug report about the behavior, as optimization is meant to be safe.

--noinput, --no-input

Suppresses all user prompts.

The --no-input alias was added.

startapp

django-admin startapp name [directory]

Creates a Django app directory structure for the given app name in the current directory or the given destination.

By default the directory created contains a models.py file and other app template files. (See the source for more
details.) If only the app name is given, the app directory will be created in the current working directory.

If the optional destination is provided, Django will use that existing directory rather than creating a new one. You can
use ‘.’ to denote the current working directory.

For example:

django-admin startapp myapp /Users/jezdez/Code/myapp

--template TEMPLATE

Provides the path to a directory with a custom app template file or a path to a compressed file (.tar.gz, .tar.bz2,
.tgz, .tbz, .zip) containing the app template files.

For example, this would look for an app template in the given directory when creating the myapp app:

django-admin startapp --template=/Users/jezdez/Code/my_app_template myapp

Django will also accept URLs (http, https, ftp) to compressed archives with the app template files, downloading
and extracting them on the fly.

For example, taking advantage of GitHub’s feature to expose repositories as zip files, you can use a URL like:

django-admin startapp --template=https://github.com/githubuser/django-app-template/
→˓archive/master.zip myapp

--extension EXTENSIONS, -e EXTENSIONS

Specifies which file extensions in the app template should be rendered with the template engine. Defaults to py.

--name FILES, -n FILES

Specifies which files in the app template (in addition to those matching --extension) should be rendered with the
template engine. Defaults to an empty list.

The template context used for all matching files is:

• Any option passed to the startapp command (among the command’s supported options)

• app_name – the app name as passed to the command

• app_directory – the full path of the newly created app

• camel_case_app_name – the app name in camel case format

• docs_version – the version of the documentation: 'dev' or '1.x'

6.8. django-admin and manage.py 997

https://github.com/django/django/tree/master/django/conf/app_template/

Django Documentation, Release 1.10.9.dev20171123183751

camel_case_app_name was added.

Warning: When the app template files are rendered with the Django template engine (by default all *.py files),
Django will also replace all stray template variables contained. For example, if one of the Python files contains a
docstring explaining a particular feature related to template rendering, it might result in an incorrect example.

To work around this problem, you can use the templatetag templatetag to “escape” the various parts of the
template syntax.

In addition, to allow Python template files that contain Django template language syntax while also preventing
packaging systems from trying to byte-compile invalid *.py files, template files ending with .py-tpl will be
renamed to .py.

Renaming of .py-tpl to .py was added.

startproject

django-admin startproject name [directory]

Creates a Django project directory structure for the given project name in the current directory or the given destination.

By default, the new directory contains manage.py and a project package (containing a settings.py and other
files). See the template source for details.

If only the project name is given, both the project directory and project package will be named <projectname>
and the project directory will be created in the current working directory.

If the optional destination is provided, Django will use that existing directory as the project directory, and create
manage.py and the project package within it. Use ‘.’ to denote the current working directory.

For example:

django-admin startproject myproject /Users/jezdez/Code/myproject_repo

--template TEMPLATE

Specifies a directory, file path, or URL of a custom project template. See the startapp --template documenta-
tion for examples and usage.

--extension EXTENSIONS, -e EXTENSIONS

Specifies which file extensions in the project template should be rendered with the template engine. Defaults to py.

--name FILES, -n FILES

Specifies which files in the project template (in addition to those matching --extension) should be rendered with
the template engine. Defaults to an empty list.

The template context used is:

• Any option passed to the startproject command (among the command’s supported options)

• project_name – the project name as passed to the command

• project_directory – the full path of the newly created project

• secret_key – a random key for the SECRET_KEY setting

• docs_version – the version of the documentation: 'dev' or '1.x'

Please also see the rendering warning as mentioned for startapp.

998 Chapter 6. API Reference

https://github.com/django/django/tree/master/django/conf/project_template/

Django Documentation, Release 1.10.9.dev20171123183751

test

django-admin test [test_label [test_label ...]]

Runs tests for all installed apps. See Testing in Django for more information.

--failfast

Stops running tests and reports the failure immediately after a test fails.

--testrunner TESTRUNNER

Controls the test runner class that is used to execute tests. This value overrides the value provided by the
TEST_RUNNER setting.

--liveserver LIVESERVER

Overrides the default address where the live server (used with LiveServerTestCase) is expected to run from.
The default value is localhost:8081-8179.

In earlier versions, the default value was localhost:8081.

--noinput, --no-input

Suppresses all user prompts. A typical prompt is a warning about deleting an existing test database.

The --no-input alias was added.

Test runner options

The test command receives options on behalf of the specified --testrunner. These are the options of the default
test runner: DiscoverRunner.

--keepdb, -k

Preserves the test database between test runs. This has the advantage of skipping both the create and destroy actions
which can greatly decrease the time to run tests, especially those in a large test suite. If the test database does not exist,
it will be created on the first run and then preserved for each subsequent run. Any unapplied migrations will also be
applied to the test database before running the test suite.

--reverse, -r

Sorts test cases in the opposite execution order. This may help in debugging the side effects of tests that aren’t properly
isolated. Grouping by test class is preserved when using this option.

--debug-sql, -d

Enables SQL logging for failing tests. If --verbosity is 2, then queries in passing tests are also output.

--parallel [N]

Runs tests in separate parallel processes. Since modern processors have multiple cores, this allows running tests
significantly faster.

By default --parallel runs one process per core according to multiprocessing.cpu_count(). You can
adjust the number of processes either by providing it as the option’s value, e.g. --parallel=4, or by setting the
DJANGO_TEST_PROCESSES environment variable.

Django distributes test cases — unittest.TestCase subclasses — to subprocesses. If there are fewer test cases
than configured processes, Django will reduce the number of processes accordingly.

Each process gets its own database. You must ensure that different test cases don’t access the same resources. For
instance, test cases that touch the filesystem should create a temporary directory for their own use.

6.8. django-admin and manage.py 999

https://docs.python.org/3/library/multiprocessing.html#multiprocessing.cpu_count
https://docs.python.org/3/library/unittest.html#unittest.TestCase

Django Documentation, Release 1.10.9.dev20171123183751

This option requires the third-party tblib package to display tracebacks correctly:

$ pip install tblib

This feature isn’t available on Windows. It doesn’t work with the Oracle database backend either.

If you want to use pdb while debugging tests, you must disable parallel execution (--parallel=1). You’ll see
something like bdb.BdbQuit if you don’t.

Warning: When test parallelization is enabled and a test fails, Django may be unable to display the excep-
tion traceback. This can make debugging difficult. If you encounter this problem, run the affected test without
parallelization to see the traceback of the failure.

This is a known limitation. It arises from the need to serialize objects in order to exchange them between processes.
See What can be pickled and unpickled? for details.

--tag TAGS

Runs only tests marked with the specified tags. May be specified multiple times and combined with test
--exclude-tag.

--exclude-tag EXCLUDE_TAGS

Excludes tests marked with the specified tags. May be specified multiple times and combined with test --tag.

testserver

django-admin testserver [fixture [fixture ...]]

Runs a Django development server (as in runserver) using data from the given fixture(s).

For example, this command:

django-admin testserver mydata.json

...would perform the following steps:

1. Create a test database, as described in The test database.

2. Populate the test database with fixture data from the given fixtures. (For more on fixtures, see the documentation
for loaddata above.)

3. Runs the Django development server (as in runserver), pointed at this newly created test database instead of
your production database.

This is useful in a number of ways:

• When you’re writing unit tests of how your views act with certain fixture data, you can use testserver to
interact with the views in a Web browser, manually.

• Let’s say you’re developing your Django application and have a “pristine” copy of a database that you’d like to
interact with. You can dump your database to a fixture (using the dumpdata command, explained above), then
use testserver to run your Web application with that data. With this arrangement, you have the flexibility
of messing up your data in any way, knowing that whatever data changes you’re making are only being made to
a test database.

Note that this server does not automatically detect changes to your Python source code (as runserver does). It
does, however, detect changes to templates.

--addrport ADDRPORT

1000 Chapter 6. API Reference

https://docs.python.org/3/library/pdb.html#module-pdb
https://docs.python.org/3/library/pickle.html#pickle-picklable

Django Documentation, Release 1.10.9.dev20171123183751

Specifies a different port, or IP address and port, from the default of 127.0.0.1:8000. This value follows exactly
the same format and serves exactly the same function as the argument to the runserver command.

Examples:

To run the test server on port 7000 with fixture1 and fixture2:

django-admin testserver --addrport 7000 fixture1 fixture2
django-admin testserver fixture1 fixture2 --addrport 7000

(The above statements are equivalent. We include both of them to demonstrate that it doesn’t matter whether the
options come before or after the fixture arguments.)

To run on 1.2.3.4:7000 with a test fixture:

django-admin testserver --addrport 1.2.3.4:7000 test

--noinput, --no-input

Suppresses all user prompts. A typical prompt is a warning about deleting an existing test database.

The --no-input alias was added.

6.8.3 Commands provided by applications

Some commands are only available when the django.contrib application that implements them has been
enabled. This section describes them grouped by their application.

django.contrib.auth

changepassword

django-admin changepassword [<username>]

This command is only available if Django’s authentication system (django.contrib.auth) is installed.

Allows changing a user’s password. It prompts you to enter a new password twice for the given user. If the entries
are identical, this immediately becomes the new password. If you do not supply a user, the command will attempt to
change the password whose username matches the current user.

--database DATABASE

Specifies the database to query for the user. Defaults to default.

Example usage:

django-admin changepassword ringo

createsuperuser

django-admin createsuperuser

This command is only available if Django’s authentication system (django.contrib.auth) is installed.

Creates a superuser account (a user who has all permissions). This is useful if you need to create an initial superuser
account or if you need to programmatically generate superuser accounts for your site(s).

6.8. django-admin and manage.py 1001

Django Documentation, Release 1.10.9.dev20171123183751

When run interactively, this command will prompt for a password for the new superuser account. When run non-
interactively, no password will be set, and the superuser account will not be able to log in until a password has been
manually set for it.

--username USERNAME

--email EMAIL

The username and email address for the new account can be supplied by using the --username and --email
arguments on the command line. If either of those is not supplied, createsuperuser will prompt for it when
running interactively.

--database DATABASE

Specifies the database into which the superuser object will be saved.

You can subclass the management command and override get_input_data() if you want to customize data input
and validation. Consult the source code for details on the existing implementation and the method’s parameters. For
example, it could be useful if you have a ForeignKey in REQUIRED_FIELDS and want to allow creating an
instance instead of entering the primary key of an existing instance.

django.contrib.gis

ogrinspect

This command is only available if GeoDjango (django.contrib.gis) is installed.

Please refer to its description in the GeoDjango documentation.

django.contrib.sessions

clearsessions

django-admin clearsessions

Can be run as a cron job or directly to clean out expired sessions.

django.contrib.sitemaps

ping_google

This command is only available if the Sitemaps framework (django.contrib.sitemaps) is installed.

Please refer to its description in the Sitemaps documentation.

django.contrib.staticfiles

collectstatic

This command is only available if the static files application (django.contrib.staticfiles) is installed.

Please refer to its description in the staticfiles documentation.

1002 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

findstatic

This command is only available if the static files application (django.contrib.staticfiles) is installed.

Please refer to its description in the staticfiles documentation.

6.8.4 Default options

Although some commands may allow their own custom options, every command allows for the following options:

--pythonpath PYTHONPATH

Adds the given filesystem path to the Python import search path. If this isn’t provided, django-admin will use the
PYTHONPATH environment variable.

This option is unnecessary in manage.py, because it takes care of setting the Python path for you.

Example usage:

django-admin migrate --pythonpath='/home/djangoprojects/myproject'

--settings SETTINGS

Specifies the settings module to use. The settings module should be in Python package syntax, e.g. mysite.
settings. If this isn’t provided, django-admin will use the DJANGO_SETTINGS_MODULE environment vari-
able.

This option is unnecessary in manage.py, because it uses settings.py from the current project by default.

Example usage:

django-admin migrate --settings=mysite.settings

--traceback

Displays a full stack trace when a CommandError is raised. By default, django-admin will show a simple error
message when a CommandError occurs and a full stack trace for any other exception.

Example usage:

django-admin migrate --traceback

--verbosity {0,1,2,3}, -v {0,1,2,3}

Specifies the amount of notification and debug information that a command should print to the console.

• 0 means no output.

• 1 means normal output (default).

• 2 means verbose output.

• 3 means very verbose output.

Example usage:

django-admin migrate --verbosity 2

--no-color

6.8. django-admin and manage.py 1003

http://www.diveintopython.net/getting_to_know_python/everything_is_an_object.html

Django Documentation, Release 1.10.9.dev20171123183751

Disables colorized command output. Some commands format their output to be colorized. For example, errors will be
printed to the console in red and SQL statements will be syntax highlighted.

Example usage:

django-admin runserver --no-color

6.8.5 Extra niceties

Syntax coloring

The django-admin / manage.py commands will use pretty color-coded output if your terminal supports ANSI-
colored output. It won’t use the color codes if you’re piping the command’s output to another program.

Under Windows, the native console doesn’t support ANSI escape sequences so by default there is no color output. But
you can install the ANSICON third-party tool, the Django commands will detect its presence and will make use of its
services to color output just like on Unix-based platforms.

The colors used for syntax highlighting can be customized. Django ships with three color palettes:

• dark, suited to terminals that show white text on a black background. This is the default palette.

• light, suited to terminals that show black text on a white background.

• nocolor, which disables syntax highlighting.

You select a palette by setting a DJANGO_COLORS environment variable to specify the palette you want to use. For
example, to specify the light palette under a Unix or OS/X BASH shell, you would run the following at a command
prompt:

export DJANGO_COLORS="light"

You can also customize the colors that are used. Django specifies a number of roles in which color is used:

• error - A major error.

• notice - A minor error.

• success - A success.

• warning - A warning.

• sql_field - The name of a model field in SQL.

• sql_coltype - The type of a model field in SQL.

• sql_keyword - An SQL keyword.

• sql_table - The name of a model in SQL.

• http_info - A 1XX HTTP Informational server response.

• http_success - A 2XX HTTP Success server response.

• http_not_modified - A 304 HTTP Not Modified server response.

• http_redirect - A 3XX HTTP Redirect server response other than 304.

• http_not_found - A 404 HTTP Not Found server response.

• http_bad_request - A 4XX HTTP Bad Request server response other than 404.

• http_server_error - A 5XX HTTP Server Error response.

1004 Chapter 6. API Reference

http://adoxa.altervista.org/ansicon/

Django Documentation, Release 1.10.9.dev20171123183751

• migrate_heading - A heading in a migrations management command.

• migrate_label - A migration name.

success was added.

Each of these roles can be assigned a specific foreground and background color, from the following list:

• black

• red

• green

• yellow

• blue

• magenta

• cyan

• white

Each of these colors can then be modified by using the following display options:

• bold

• underscore

• blink

• reverse

• conceal

A color specification follows one of the following patterns:

• role=fg

• role=fg/bg

• role=fg,option,option

• role=fg/bg,option,option

where role is the name of a valid color role, fg is the foreground color, bg is the background color and each option
is one of the color modifying options. Multiple color specifications are then separated by a semicolon. For example:

export DJANGO_COLORS="error=yellow/blue,blink;notice=magenta"

would specify that errors be displayed using blinking yellow on blue, and notices displayed using magenta. All other
color roles would be left uncolored.

Colors can also be specified by extending a base palette. If you put a palette name in a color specification, all the
colors implied by that palette will be loaded. So:

export DJANGO_COLORS="light;error=yellow/blue,blink;notice=magenta"

would specify the use of all the colors in the light color palette, except for the colors for errors and notices which
would be overridden as specified.

6.8. django-admin and manage.py 1005

Django Documentation, Release 1.10.9.dev20171123183751

Bash completion

If you use the Bash shell, consider installing the Django bash completion script, which lives in extras/
django_bash_completion in the Django distribution. It enables tab-completion of django-admin and
manage.py commands, so you can, for instance...

• Type django-admin.

• Press [TAB] to see all available options.

• Type sql, then [TAB], to see all available options whose names start with sql.

See Writing custom django-admin commands for how to add customized actions.

6.9 Running management commands from your code

django.core.management.call_command(name, *args, **options)

To call a management command from code use call_command.

name the name of the command to call or a command object. Passing the name is preferred unless the object is
required for testing.

*args a list of arguments accepted by the command. Arguments are passed to the argument parser, so you
can use the same style as you would on the command line. For example, call_command('flush',
'--verbosity=0').

**options named options accepted on the command-line. Options are passed to the command with-
out triggering the argument parser, which means you’ll need to pass the correct type. For example,
call_command('flush', verbosity=0) (zero must be an integer rather than a string).

Examples:

from django.core import management
from django.core.management.commands import loaddata

management.call_command('flush', verbosity=0, interactive=False)
management.call_command('loaddata', 'test_data', verbosity=0)
management.call_command(loaddata.Command(), 'test_data', verbosity=0)

Note that command options that take no arguments are passed as keywords with True or False, as you can see with
the interactive option above.

Named arguments can be passed by using either one of the following syntaxes:

Similar to the command line
management.call_command('dumpdata', '--natural-foreign')

Named argument similar to the command line minus the initial dashes and
with internal dashes replaced by underscores
management.call_command('dumpdata', natural_foreign=True)

`use_natural_foreign_keys` is the option destination variable
management.call_command('dumpdata', use_natural_foreign_keys=True)

Command options which take multiple options are passed a list:

management.call_command('dumpdata', exclude=['contenttypes', 'auth'])

1006 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

The return value of the call_command() function is the same as the return value of the handle() method of the
command.

call_command() now returns the value received from the command.handle() method. It now also accepts a
command object as the first argument.

6.9.1 Output redirection

Note that you can redirect standard output and error streams as all commands support the stdout and stderr
options. For example, you could write:

with open('/path/to/command_output') as f:
management.call_command('dumpdata', stdout=f)

6.10 Django Exceptions

Django raises some of its own exceptions as well as standard Python exceptions.

6.10.1 Django Core Exceptions

Django core exception classes are defined in django.core.exceptions.

AppRegistryNotReady

exception AppRegistryNotReady
This exception is raised when attempting to use models before the app loading process, which initializes the
ORM, is complete.

ObjectDoesNotExist

exception ObjectDoesNotExist
The base class for DoesNotExist exceptions; a try/except for ObjectDoesNotExist will catch
DoesNotExist exceptions for all models.

See get() for further information on ObjectDoesNotExist and DoesNotExist.

FieldDoesNotExist

exception FieldDoesNotExist
The FieldDoesNotExist exception is raised by a model’s _meta.get_field() method when the re-
quested field does not exist on the model or on the model’s parents.

MultipleObjectsReturned

exception MultipleObjectsReturned
The MultipleObjectsReturned exception is raised by a query if only one object is expected, but multiple
objects are returned. A base version of this exception is provided in django.core.exceptions; each
model class contains a subclassed version that can be used to identify the specific object type that has returned
multiple objects.

6.10. Django Exceptions 1007

Django Documentation, Release 1.10.9.dev20171123183751

See get() for further information.

SuspiciousOperation

exception SuspiciousOperation
The SuspiciousOperation exception is raised when a user has performed an operation that should be
considered suspicious from a security perspective, such as tampering with a session cookie. Subclasses of
SuspiciousOperation include:

• DisallowedHost

• DisallowedModelAdminLookup

• DisallowedModelAdminToField

• DisallowedRedirect

• InvalidSessionKey

• RequestDataTooBig

• SuspiciousFileOperation

• SuspiciousMultipartForm

• SuspiciousSession

• TooManyFieldsSent

If a SuspiciousOperation exception reaches the WSGI handler level it is logged at the Error level and
results in a HttpResponseBadRequest. See the logging documentation for more information.

PermissionDenied

exception PermissionDenied
The PermissionDenied exception is raised when a user does not have permission to perform the action
requested.

ViewDoesNotExist

exception ViewDoesNotExist
The ViewDoesNotExist exception is raised by django.urls when a requested view does not exist.

MiddlewareNotUsed

exception MiddlewareNotUsed
The MiddlewareNotUsed exception is raised when a middleware is not used in the server configuration.

ImproperlyConfigured

exception ImproperlyConfigured
The ImproperlyConfigured exception is raised when Django is somehow improperly configured – for
example, if a value in settings.py is incorrect or unparseable.

1008 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

FieldError

exception FieldError
The FieldError exception is raised when there is a problem with a model field. This can happen for several
reasons:

• A field in a model clashes with a field of the same name from an abstract base class

• An infinite loop is caused by ordering

• A keyword cannot be parsed from the filter parameters

• A field cannot be determined from a keyword in the query parameters

• A join is not permitted on the specified field

• A field name is invalid

• A query contains invalid order_by arguments

ValidationError

exception ValidationError
The ValidationError exception is raised when data fails form or model field validation. For more infor-
mation about validation, see Form and Field Validation, Model Field Validation and the Validator Reference.

NON_FIELD_ERRORS

NON_FIELD_ERRORS

ValidationErrors that don’t belong to a particular field in a form or model are classified as
NON_FIELD_ERRORS. This constant is used as a key in dictionaries that otherwise map fields to their respective
list of errors.

6.10.2 URL Resolver exceptions

URL Resolver exceptions are defined in django.urls.

Deprecated since version 1.10: In older versions, these exceptions are located in django.core.urlresolvers.
Importing from the old location will continue to work until Django 2.0.

Resolver404

exception Resolver404
The Resolver404 exception is raised by resolve() if the path passed to resolve() doesn’t map to a
view. It’s a subclass of django.http.Http404.

NoReverseMatch

exception NoReverseMatch
The NoReverseMatch exception is raised by django.urls when a matching URL in your URLconf can-
not be identified based on the parameters supplied.

6.10. Django Exceptions 1009

Django Documentation, Release 1.10.9.dev20171123183751

6.10.3 Database Exceptions

Database exceptions may be imported from django.db.

Django wraps the standard database exceptions so that your Django code has a guaranteed common implementation
of these classes.

exception Error

exception InterfaceError

exception DatabaseError

exception DataError

exception OperationalError

exception IntegrityError

exception InternalError

exception ProgrammingError

exception NotSupportedError

The Django wrappers for database exceptions behave exactly the same as the underlying database exceptions. See
PEP 249, the Python Database API Specification v2.0, for further information.

As per PEP 3134, a __cause__ attribute is set with the original (underlying) database exception, allowing access to
any additional information provided. (Note that this attribute is available under both Python 2 and Python 3, although
PEP 3134 normally only applies to Python 3. To avoid unexpected differences with Python 3, Django will also ensure
that the exception made available via __cause__ has a usable __traceback__ attribute.)

The __traceback__ attribute described above was added.

exception models.ProtectedError

Raised to prevent deletion of referenced objects when using django.db.models.PROTECT. models.
ProtectedError is a subclass of IntegrityError.

6.10.4 Http Exceptions

Http exceptions may be imported from django.http.

UnreadablePostError

exception UnreadablePostError
UnreadablePostError is raised when a user cancels an upload.

6.10.5 Transaction Exceptions

Transaction exceptions are defined in django.db.transaction.

TransactionManagementError

exception TransactionManagementError
TransactionManagementError is raised for any and all problems related to database transactions.

1010 Chapter 6. API Reference

https://www.python.org/dev/peps/pep-0249
https://www.python.org/dev/peps/pep-3134
https://www.python.org/dev/peps/pep-3134

Django Documentation, Release 1.10.9.dev20171123183751

6.10.6 Testing Framework Exceptions

Exceptions provided by the django.test package.

RedirectCycleError

exception client.RedirectCycleError
RedirectCycleError is raised when the test client detects a loop or an overly long chain of redirects.

6.10.7 Python Exceptions

Django raises built-in Python exceptions when appropriate as well. See the Python documentation for further infor-
mation on the Built-in Exceptions.

6.11 File handling

6.11.1 The File object

The django.core.files module and its submodules contain built-in classes for basic file handling in Django.

The File class

class File(file_object)
The File class is a thin wrapper around a Python file object with some Django-specific additions. Internally,
Django uses this class when it needs to represent a file.

File objects have the following attributes and methods:

name
The name of the file including the relative path from MEDIA_ROOT.

size
The size of the file in bytes.

file
The underlying file object that this class wraps.

Be careful with this attribute in subclasses.

Some subclasses of File, including ContentFile and FieldFile, may replace this attribute with
an object other than a Python file object. In these cases, this attribute may itself be a File subclass (and
not necessarily the same subclass). Whenever possible, use the attributes and methods of the subclass itself
rather than the those of the subclass’s file attribute.

mode
The read/write mode for the file.

open(mode=None)
Open or reopen the file (which also does File.seek(0)). The mode argument allows the same values
as Python’s built-in open().

6.11. File handling 1011

https://docs.python.org/3/library/exceptions.html#bltin-exceptions
https://docs.python.org/3/glossary.html#term-file-object
https://docs.python.org/3/glossary.html#term-file-object
https://docs.python.org/3/glossary.html#term-file-object
https://docs.python.org/3/library/functions.html#open

Django Documentation, Release 1.10.9.dev20171123183751

When reopening a file, mode will override whatever mode the file was originally opened with; None
means to reopen with the original mode.

read(num_bytes=None)
Read content from the file. The optional size is the number of bytes to read; if not specified, the file will
be read to the end.

__iter__()
Iterate over the file yielding one line at a time.

chunks(chunk_size=None)
Iterate over the file yielding “chunks” of a given size. chunk_size defaults to 64 KB.

This is especially useful with very large files since it allows them to be streamed off disk and avoids storing
the whole file in memory.

multiple_chunks(chunk_size=None)
Returns True if the file is large enough to require multiple chunks to access all of its content give some
chunk_size.

write(content)
Writes the specified content string to the file. Depending on the storage system behind the scenes, this
content might not be fully committed until close() is called on the file.

close()
Close the file.

In addition to the listed methods, File exposes the following attributes and methods of its file ob-
ject: encoding, fileno, flush, isatty, newlines, read, readinto, readlines, seek,
softspace, tell, truncate, writelines, xreadlines. If you are using Python 3, the seekable
method is also available.

The seekable method was added.

The ContentFile class

class ContentFile(File)
The ContentFile class inherits from File, but unlike File it operates on string content (bytes also sup-
ported), rather than an actual file. For example:

from __future__ import unicode_literals
from django.core.files.base import ContentFile

f1 = ContentFile("esta sentencia está en español")
f2 = ContentFile(b"these are bytes")

The ImageFile class

class ImageFile(file_object)
Django provides a built-in class specifically for images. django.core.files.images.ImageFile in-
herits all the attributes and methods of File, and additionally provides the following:

width
Width of the image in pixels.

height
Height of the image in pixels.

1012 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Additional methods on files attached to objects

Any File that is associated with an object (as with Car.photo, below) will also have a couple of extra methods:

File.save(name, content, save=True)
Saves a new file with the file name and contents provided. This will not replace the existing file, but will create
a new file and update the object to point to it. If save is True, the model’s save() method will be called
once the file is saved. That is, these two lines:

>>> car.photo.save('myphoto.jpg', content, save=False)
>>> car.save()

are equivalent to:

>>> car.photo.save('myphoto.jpg', content, save=True)

Note that the content argument must be an instance of either File or of a subclass of File, such as
ContentFile.

File.delete(save=True)
Removes the file from the model instance and deletes the underlying file. If save is True, the model’s save()
method will be called once the file is deleted.

6.11.2 File storage API

Getting the current storage class

Django provides two convenient ways to access the current storage class:

class DefaultStorage
DefaultStorage provides lazy access to the current default storage system as defined by
DEFAULT_FILE_STORAGE. DefaultStorage uses get_storage_class() internally.

get_storage_class(import_path=None)
Returns a class or module which implements the storage API.

When called without the import_path parameter get_storage_class will return the current
default storage system as defined by DEFAULT_FILE_STORAGE. If import_path is provided,
get_storage_class will attempt to import the class or module from the given path and will return it if
successful. An exception will be raised if the import is unsuccessful.

The FileSystemStorage class

class FileSystemStorage(location=None, base_url=None, file_permissions_mode=None, direc-
tory_permissions_mode=None)

The FileSystemStorage class implements basic file storage on a local filesystem. It inherits from
Storage and provides implementations for all the public methods thereof.

location
Absolute path to the directory that will hold the files. Defaults to the value of your MEDIA_ROOT setting.

base_url
URL that serves the files stored at this location. Defaults to the value of your MEDIA_URL setting.

file_permissions_mode
The file system permissions that the file will receive when it is saved. Defaults to
FILE_UPLOAD_PERMISSIONS.

6.11. File handling 1013

Django Documentation, Release 1.10.9.dev20171123183751

directory_permissions_mode
The file system permissions that the directory will receive when it is saved. Defaults to
FILE_UPLOAD_DIRECTORY_PERMISSIONS.

Note: The FileSystemStorage.delete() method will not raise an exception if the given file name
does not exist.

The Storage class

class Storage
The Storage class provides a standardized API for storing files, along with a set of default behaviors that all
other storage systems can inherit or override as necessary.

Note: When methods return naive datetime objects, the effective timezone used will be the current value of
os.environ['TZ']; note that this is usually set from Django’s TIME_ZONE.

accessed_time(name)
Returns a naive datetime object containing the last accessed time of the file. For storage systems that
aren’t able to return the last accessed time this will raise NotImplementedError instead.

Deprecated since version 1.10: Use get_accessed_time() instead.

created_time(name)
Returns a naive datetime object containing the creation time of the file. For storage systems that aren’t
able to return the creation time this will raise NotImplementedError instead.

Deprecated since version 1.10: Use get_created_time() instead.

delete(name)
Deletes the file referenced by name. If deletion is not supported on the target storage system this will raise
NotImplementedError instead

exists(name)
Returns True if a file referenced by the given name already exists in the storage system, or False if the
name is available for a new file.

get_accessed_time(name)
Returns a datetime of the last accessed time of the file. For storage systems unable to return the last
accessed time this will raise NotImplementedError.

If USE_TZ is True, returns an aware datetime, otherwise returns a naive datetime in the local
timezone.

get_available_name(name, max_length=None)
Returns a filename based on the name parameter that’s free and available for new content to be written to
on the target storage system.

The length of the filename will not exceed max_length, if provided. If a free unique filename cannot be
found, a SuspiciousFileOperation exception will be raised.

If a file with name already exists, an underscore plus a random 7 character alphanumeric string is appended
to the filename before the extension.

get_created_time(name)
Returns a datetime of the creation time of the file. For storage systems unable to return the creation
time this will raise NotImplementedError.

1014 Chapter 6. API Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/exceptions.html#NotImplementedError

Django Documentation, Release 1.10.9.dev20171123183751

If USE_TZ is True, returns an aware datetime, otherwise returns a naive datetime in the local
timezone.

get_modified_time(name)
Returns a datetime of the last modified time of the file. For storage systems unable to return the last
modified time this will raise NotImplementedError.

If USE_TZ is True, returns an aware datetime, otherwise returns a naive datetime in the local
timezone.

get_valid_name(name)
Returns a filename based on the name parameter that’s suitable for use on the target storage system.

generate_filename(filename)
Validates the filename by calling get_valid_name() and returns a filename to be passed to the
save() method.

The filename argument may include a path as returned by FileField.upload_to. In that case,
the path won’t be passed to get_valid_name() but will be prepended back to the resulting name.

The default implementation uses os.path operations. Override this method if that’s not appropriate for
your storage.

listdir(path)
Lists the contents of the specified path, returning a 2-tuple of lists; the first item being directories, the
second item being files. For storage systems that aren’t able to provide such a listing, this will raise a
NotImplementedError instead.

modified_time(name)
Returns a naive datetime object containing the last modified time. For storage systems that aren’t able
to return the last modified time, this will raise NotImplementedError instead.

Deprecated since version 1.10: Use get_modified_time() instead.

open(name, mode=’rb’)
Opens the file given by name. Note that although the returned file is guaranteed to be a File object, it
might actually be some subclass. In the case of remote file storage this means that reading/writing could
be quite slow, so be warned.

path(name)
The local filesystem path where the file can be opened using Python’s standard open(). For storage
systems that aren’t accessible from the local filesystem, this will raise NotImplementedError instead.

save(name, content, max_length=None)
Saves a new file using the storage system, preferably with the name specified. If there already exists a file
with this name name, the storage system may modify the filename as necessary to get a unique name. The
actual name of the stored file will be returned.

The max_length argument is passed along to get_available_name().

The content argument must be an instance of django.core.files.File or a file-like object that
can be wrapped in File.

size(name)
Returns the total size, in bytes, of the file referenced by name. For storage systems that aren’t able to
return the file size this will raise NotImplementedError instead.

url(name)
Returns the URL where the contents of the file referenced by name can be accessed. For storage systems
that don’t support access by URL this will raise NotImplementedError instead.

6.11. File handling 1015

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/os.path.html#module-os.path

Django Documentation, Release 1.10.9.dev20171123183751

6.11.3 Uploaded Files and Upload Handlers

Uploaded files

class UploadedFile

During file uploads, the actual file data is stored in request.FILES. Each entry in this dictionary is an
UploadedFile object (or a subclass) – a simple wrapper around an uploaded file. You’ll usually use one of these
methods to access the uploaded content:

UploadedFile.read()
Read the entire uploaded data from the file. Be careful with this method: if the uploaded file is huge it can
overwhelm your system if you try to read it into memory. You’ll probably want to use chunks() instead; see
below.

UploadedFile.multiple_chunks(chunk_size=None)
Returns True if the uploaded file is big enough to require reading in multiple chunks. By default this will be
any file larger than 2.5 megabytes, but that’s configurable; see below.

UploadedFile.chunks(chunk_size=None)
A generator returning chunks of the file. If multiple_chunks() is True, you should use this method in a
loop instead of read().

In practice, it’s often easiest simply to use chunks() all the time. Looping over chunks() instead of using
read() ensures that large files don’t overwhelm your system’s memory.

Here are some useful attributes of UploadedFile:

UploadedFile.name
The name of the uploaded file (e.g. my_file.txt).

UploadedFile.size
The size, in bytes, of the uploaded file.

UploadedFile.content_type
The content-type header uploaded with the file (e.g. text/plain or application/pdf). Like any data
supplied by the user, you shouldn’t trust that the uploaded file is actually this type. You’ll still need to validate
that the file contains the content that the content-type header claims – “trust but verify.”

UploadedFile.content_type_extra
A dictionary containing extra parameters passed to the content-type header. This is typically provided by
services, such as Google App Engine, that intercept and handle file uploads on your behalf. As a result your
handler may not receive the uploaded file content, but instead a URL or other pointer to the file. (see RFC 2388
section 5.3).

UploadedFile.charset
For text/* content-types, the character set (i.e. utf8) supplied by the browser. Again, “trust but verify” is
the best policy here.

Note: Like regular Python files, you can read the file line-by-line simply by iterating over the uploaded file:

for line in uploadedfile:
do_something_with(line)

Lines are split using universal newlines. The following are recognized as ending a line: the Unix end-of-line conven-
tion '\n', the Windows convention '\r\n', and the old Macintosh convention '\r'.

Subclasses of UploadedFile include:

1016 Chapter 6. API Reference

https://www.ietf.org/rfc/rfc2388.txt
https://www.python.org/dev/peps/pep-0278

Django Documentation, Release 1.10.9.dev20171123183751

class TemporaryUploadedFile
A file uploaded to a temporary location (i.e. stream-to-disk). This class is used by the
TemporaryFileUploadHandler. In addition to the methods from UploadedFile, it has one addi-
tional method:

TemporaryUploadedFile.temporary_file_path()
Returns the full path to the temporary uploaded file.

class InMemoryUploadedFile
A file uploaded into memory (i.e. stream-to-memory). This class is used by the
MemoryFileUploadHandler.

Built-in upload handlers

Together the MemoryFileUploadHandler and TemporaryFileUploadHandler provide Django’s default
file upload behavior of reading small files into memory and large ones onto disk. They are located in django.core.
files.uploadhandler.

class MemoryFileUploadHandler

File upload handler to stream uploads into memory (used for small files).

class TemporaryFileUploadHandler

Upload handler that streams data into a temporary file using TemporaryUploadedFile.

Writing custom upload handlers

class FileUploadHandler

All file upload handlers should be subclasses of django.core.files.uploadhandler.
FileUploadHandler. You can define upload handlers wherever you wish.

Required methods

Custom file upload handlers must define the following methods:

FileUploadHandler.receive_data_chunk(raw_data, start)
Receives a “chunk” of data from the file upload.

raw_data is a byte string containing the uploaded data.

start is the position in the file where this raw_data chunk begins.

The data you return will get fed into the subsequent upload handlers’ receive_data_chunk methods. In
this way, one handler can be a “filter” for other handlers.

Return None from receive_data_chunk to short-circuit remaining upload handlers from getting this
chunk. This is useful if you’re storing the uploaded data yourself and don’t want future handlers to store a
copy of the data.

If you raise a StopUpload or a SkipFile exception, the upload will abort or the file will be completely
skipped.

FileUploadHandler.file_complete(file_size)
Called when a file has finished uploading.

The handler should return an UploadedFile object that will be stored in request.FILES. Handlers may
also return None to indicate that the UploadedFile object should come from subsequent upload handlers.

6.11. File handling 1017

Django Documentation, Release 1.10.9.dev20171123183751

Optional methods

Custom upload handlers may also define any of the following optional methods or attributes:

FileUploadHandler.chunk_size
Size, in bytes, of the “chunks” Django should store into memory and feed into the handler. That is, this attribute
controls the size of chunks fed into FileUploadHandler.receive_data_chunk.

For maximum performance the chunk sizes should be divisible by 4 and should not exceed 2 GB (231 bytes) in
size. When there are multiple chunk sizes provided by multiple handlers, Django will use the smallest chunk
size defined by any handler.

The default is 64*210 bytes, or 64 KB.

FileUploadHandler.new_file(field_name, file_name, content_type, content_length, charset, con-
tent_type_extra)

Callback signaling that a new file upload is starting. This is called before any data has been fed to any upload
handlers.

field_name is a string name of the file <input> field.

file_name is the unicode filename that was provided by the browser.

content_type is the MIME type provided by the browser – E.g. 'image/jpeg'.

content_length is the length of the image given by the browser. Sometimes this won’t be provided and
will be None.

charset is the character set (i.e. utf8) given by the browser. Like content_length, this sometimes
won’t be provided.

content_type_extra is extra information about the file from the content-type header. See
UploadedFile.content_type_extra.

This method may raise a StopFutureHandlers exception to prevent future handlers from handling this file.

FileUploadHandler.upload_complete()
Callback signaling that the entire upload (all files) has completed.

FileUploadHandler.handle_raw_input(input_data, META, content_length, boundary, encoding)
Allows the handler to completely override the parsing of the raw HTTP input.

input_data is a file-like object that supports read()-ing.

META is the same object as request.META.

content_length is the length of the data in input_data. Don’t read more than content_length
bytes from input_data.

boundary is the MIME boundary for this request.

encoding is the encoding of the request.

Return None if you want upload handling to continue, or a tuple of (POST, FILES) if you want to return
the new data structures suitable for the request directly.

6.12 Forms

Detailed form API reference. For introductory material, see the Working with forms topic guide.

1018 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

6.12.1 The Forms API

About this document

This document covers the gritty details of Django’s forms API. You should read the introduction to working with forms
first.

Bound and unbound forms

A Form instance is either bound to a set of data, or unbound.

• If it’s bound to a set of data, it’s capable of validating that data and rendering the form as HTML with the data
displayed in the HTML.

• If it’s unbound, it cannot do validation (because there’s no data to validate!), but it can still render the blank
form as HTML.

class Form

To create an unbound Form instance, simply instantiate the class:

>>> f = ContactForm()

To bind data to a form, pass the data as a dictionary as the first parameter to your Form class constructor:

>>> data = {'subject': 'hello',
... 'message': 'Hi there',
... 'sender': 'foo@example.com',
... 'cc_myself': True}
>>> f = ContactForm(data)

In this dictionary, the keys are the field names, which correspond to the attributes in your Form class. The values are
the data you’re trying to validate. These will usually be strings, but there’s no requirement that they be strings; the
type of data you pass depends on the Field, as we’ll see in a moment.

Form.is_bound

If you need to distinguish between bound and unbound form instances at runtime, check the value of the form’s
is_bound attribute:

>>> f = ContactForm()
>>> f.is_bound
False
>>> f = ContactForm({'subject': 'hello'})
>>> f.is_bound
True

Note that passing an empty dictionary creates a bound form with empty data:

>>> f = ContactForm({})
>>> f.is_bound
True

If you have a bound Form instance and want to change the data somehow, or if you want to bind an unbound Form
instance to some data, create another Form instance. There is no way to change data in a Form instance. Once a
Form instance has been created, you should consider its data immutable, whether it has data or not.

6.12. Forms 1019

Django Documentation, Release 1.10.9.dev20171123183751

Using forms to validate data

Form.clean()

Implement a clean()method on your Formwhen you must add custom validation for fields that are interdependent.
See Cleaning and validating fields that depend on each other for example usage.

Form.is_valid()

The primary task of a Form object is to validate data. With a bound Form instance, call the is_valid() method
to run validation and return a boolean designating whether the data was valid:

>>> data = {'subject': 'hello',
... 'message': 'Hi there',
... 'sender': 'foo@example.com',
... 'cc_myself': True}
>>> f = ContactForm(data)
>>> f.is_valid()
True

Let’s try with some invalid data. In this case, subject is blank (an error, because all fields are required by default)
and sender is not a valid email address:

>>> data = {'subject': '',
... 'message': 'Hi there',
... 'sender': 'invalid email address',
... 'cc_myself': True}
>>> f = ContactForm(data)
>>> f.is_valid()
False

Form.errors

Access the errors attribute to get a dictionary of error messages:

>>> f.errors
{'sender': ['Enter a valid email address.'], 'subject': ['This field is required.']}

In this dictionary, the keys are the field names, and the values are lists of Unicode strings representing the error
messages. The error messages are stored in lists because a field can have multiple error messages.

You can access errors without having to call is_valid() first. The form’s data will be validated the first time
either you call is_valid() or access errors.

The validation routines will only get called once, regardless of how many times you access errors or call
is_valid(). This means that if validation has side effects, those side effects will only be triggered once.

Form.errors.as_data()

Returns a dict that maps fields to their original ValidationError instances.

>>> f.errors.as_data()
{'sender': [ValidationError(['Enter a valid email address.'])],
'subject': [ValidationError(['This field is required.'])]}

Use this method anytime you need to identify an error by its code. This enables things like rewriting the error’s
message or writing custom logic in a view when a given error is present. It can also be used to serialize the errors in a
custom format (e.g. XML); for instance, as_json() relies on as_data().

The need for the as_data() method is due to backwards compatibility. Previously ValidationError instances
were lost as soon as their rendered error messages were added to the Form.errors dictionary. Ideally Form.

1020 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

errors would have stored ValidationError instances and methods with an as_ prefix could render them, but
it had to be done the other way around in order not to break code that expects rendered error messages in Form.
errors.

Form.errors.as_json(escape_html=False)

Returns the errors serialized as JSON.

>>> f.errors.as_json()
{"sender": [{"message": "Enter a valid email address.", "code": "invalid"}],
"subject": [{"message": "This field is required.", "code": "required"}]}

By default, as_json() does not escape its output. If you are using it for something like AJAX requests to a form
view where the client interprets the response and inserts errors into the page, you’ll want to be sure to escape the
results on the client-side to avoid the possibility of a cross-site scripting attack. It’s trivial to do so using a JavaScript
library like jQuery - simply use $(el).text(errorText) rather than .html().

If for some reason you don’t want to use client-side escaping, you can also set escape_html=True and error
messages will be escaped so you can use them directly in HTML.

Form.add_error(field, error)

This method allows adding errors to specific fields from within the Form.clean() method, or from outside the
form altogether; for instance from a view.

The field argument is the name of the field to which the errors should be added. If its value is None the error will
be treated as a non-field error as returned by Form.non_field_errors().

The error argument can be a simple string, or preferably an instance of ValidationError. See Raising Valida-
tionError for best practices when defining form errors.

Note that Form.add_error() automatically removes the relevant field from cleaned_data.

Form.has_error(field, code=None)

This method returns a boolean designating whether a field has an error with a specific error code. If code is None,
it will return True if the field contains any errors at all.

To check for non-field errors use NON_FIELD_ERRORS as the field parameter.

Form.non_field_errors()

This method returns the list of errors from Form.errors that aren’t associated with a particular field. This includes
ValidationErrors that are raised in Form.clean() and errors added using Form.add_error(None, ".
..").

Behavior of unbound forms

It’s meaningless to validate a form with no data, but, for the record, here’s what happens with unbound forms:

>>> f = ContactForm()
>>> f.is_valid()
False
>>> f.errors
{}

Dynamic initial values

Form.initial

6.12. Forms 1021

Django Documentation, Release 1.10.9.dev20171123183751

Use initial to declare the initial value of form fields at runtime. For example, you might want to fill in a username
field with the username of the current session.

To accomplish this, use the initial argument to a Form. This argument, if given, should be a dictionary mapping
field names to initial values. Only include the fields for which you’re specifying an initial value; it’s not necessary to
include every field in your form. For example:

>>> f = ContactForm(initial={'subject': 'Hi there!'})

These values are only displayed for unbound forms, and they’re not used as fallback values if a particular value isn’t
provided.

If a Field defines initial and you include initial when instantiating the Form, then the latter initial will
have precedence. In this example, initial is provided both at the field level and at the form instance level, and the
latter gets precedence:

>>> from django import forms
>>> class CommentForm(forms.Form):
... name = forms.CharField(initial='class')
... url = forms.URLField()
... comment = forms.CharField()
>>> f = CommentForm(initial={'name': 'instance'}, auto_id=False)
>>> print(f)
<tr><th>Name:</th><td><input type="text" name="name" value="instance" required /></td>
→˓</tr>
<tr><th>Url:</th><td><input type="url" name="url" required /></td></tr>
<tr><th>Comment:</th><td><input type="text" name="comment" required /></td></tr>

Checking which form data has changed

Form.has_changed()

Use the has_changed() method on your Form when you need to check if the form data has been changed from
the initial data.

>>> data = {'subject': 'hello',
... 'message': 'Hi there',
... 'sender': 'foo@example.com',
... 'cc_myself': True}
>>> f = ContactForm(data, initial=data)
>>> f.has_changed()
False

When the form is submitted, we reconstruct it and provide the original data so that the comparison can be done:

>>> f = ContactForm(request.POST, initial=data)
>>> f.has_changed()

has_changed() will be True if the data from request.POST differs from what was provided in initial or
False otherwise. The result is computed by calling Field.has_changed() for each field in the form.

Form.changed_data

The changed_data attribute returns a list of the names of the fields whose values in the form’s bound data (usually
request.POST) differ from what was provided in initial. It returns an empty list if no data differs.

1022 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

>>> f = ContactForm(request.POST, initial=data)
>>> if f.has_changed():
... print("The following fields changed: %s" % ", ".join(f.changed_data))

Accessing the fields from the form

Form.fields

You can access the fields of Form instance from its fields attribute:

>>> for row in f.fields.values(): print(row)
...
<django.forms.fields.CharField object at 0x7ffaac632510>
<django.forms.fields.URLField object at 0x7ffaac632f90>
<django.forms.fields.CharField object at 0x7ffaac3aa050>
>>> f.fields['name']
<django.forms.fields.CharField object at 0x7ffaac6324d0>

You can alter the field of Form instance to change the way it is presented in the form:

>>> f.as_table().split('\n')[0]
'<tr><th>Name:</th><td><input name="name" type="text" value="instance" required /></
→˓td></tr>'
>>> f.fields['name'].label = "Username"
>>> f.as_table().split('\n')[0]
'<tr><th>Username:</th><td><input name="name" type="text" value="instance" required />
→˓</td></tr>'

Beware not to alter the base_fields attribute because this modification will influence all subsequent
ContactForm instances within the same Python process:

>>> f.base_fields['name'].label = "Username"
>>> another_f = CommentForm(auto_id=False)
>>> another_f.as_table().split('\n')[0]
'<tr><th>Username:</th><td><input name="name" type="text" value="class" required /></
→˓td></tr>'

Accessing “clean” data

Form.cleaned_data

Each field in a Form class is responsible not only for validating data, but also for “cleaning” it – normalizing it to a
consistent format. This is a nice feature, because it allows data for a particular field to be input in a variety of ways,
always resulting in consistent output.

For example, DateField normalizes input into a Python datetime.date object. Regardless of whether you pass
it a string in the format '1994-07-15', a datetime.date object, or a number of other formats, DateField
will always normalize it to a datetime.date object as long as it’s valid.

Once you’ve created a Form instance with a set of data and validated it, you can access the clean data via its
cleaned_data attribute:

>>> data = {'subject': 'hello',
... 'message': 'Hi there',
... 'sender': 'foo@example.com',
... 'cc_myself': True}

6.12. Forms 1023

Django Documentation, Release 1.10.9.dev20171123183751

>>> f = ContactForm(data)
>>> f.is_valid()
True
>>> f.cleaned_data
{'cc_myself': True, 'message': 'Hi there', 'sender': 'foo@example.com', 'subject':
→˓'hello'}

Note that any text-based field – such as CharField or EmailField – always cleans the input into a Unicode
string. We’ll cover the encoding implications later in this document.

If your data does not validate, the cleaned_data dictionary contains only the valid fields:

>>> data = {'subject': '',
... 'message': 'Hi there',
... 'sender': 'invalid email address',
... 'cc_myself': True}
>>> f = ContactForm(data)
>>> f.is_valid()
False
>>> f.cleaned_data
{'cc_myself': True, 'message': 'Hi there'}

cleaned_data will always only contain a key for fields defined in the Form, even if you pass extra data when
you define the Form. In this example, we pass a bunch of extra fields to the ContactForm constructor, but
cleaned_data contains only the form’s fields:

>>> data = {'subject': 'hello',
... 'message': 'Hi there',
... 'sender': 'foo@example.com',
... 'cc_myself': True,
... 'extra_field_1': 'foo',
... 'extra_field_2': 'bar',
... 'extra_field_3': 'baz'}
>>> f = ContactForm(data)
>>> f.is_valid()
True
>>> f.cleaned_data # Doesn't contain extra_field_1, etc.
{'cc_myself': True, 'message': 'Hi there', 'sender': 'foo@example.com', 'subject':
→˓'hello'}

When the Form is valid, cleaned_data will include a key and value for all its fields, even if the data didn’t include
a value for some optional fields. In this example, the data dictionary doesn’t include a value for the nick_name field,
but cleaned_data includes it, with an empty value:

>>> from django import forms
>>> class OptionalPersonForm(forms.Form):
... first_name = forms.CharField()
... last_name = forms.CharField()
... nick_name = forms.CharField(required=False)
>>> data = {'first_name': 'John', 'last_name': 'Lennon'}
>>> f = OptionalPersonForm(data)
>>> f.is_valid()
True
>>> f.cleaned_data
{'nick_name': '', 'first_name': 'John', 'last_name': 'Lennon'}

In this above example, the cleaned_data value for nick_name is set to an empty string, because nick_name is
CharField, and CharFields treat empty values as an empty string. Each field type knows what its “blank” value

1024 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

is – e.g., for DateField, it’s None instead of the empty string. For full details on each field’s behavior in this case,
see the “Empty value” note for each field in the “Built-in Field classes” section below.

You can write code to perform validation for particular form fields (based on their name) or for the form as a whole
(considering combinations of various fields). More information about this is in Form and field validation.

Outputting forms as HTML

The second task of a Form object is to render itself as HTML. To do so, simply print it:

>>> f = ContactForm()
>>> print(f)
<tr><th><label for="id_subject">Subject:</label></th><td><input id="id_subject" type=
→˓"text" name="subject" maxlength="100" required /></td></tr>
<tr><th><label for="id_message">Message:</label></th><td><input type="text" name=
→˓"message" id="id_message" required /></td></tr>
<tr><th><label for="id_sender">Sender:</label></th><td><input type="email" name=
→˓"sender" id="id_sender" required /></td></tr>
<tr><th><label for="id_cc_myself">Cc myself:</label></th><td><input type="checkbox"
→˓name="cc_myself" id="id_cc_myself" /></td></tr>

If the form is bound to data, the HTML output will include that data appropriately. For example, if a field is represented
by an <input type="text">, the data will be in the value attribute. If a field is represented by an <input
type="checkbox">, then that HTML will include checked="checked" if appropriate:

>>> data = {'subject': 'hello',
... 'message': 'Hi there',
... 'sender': 'foo@example.com',
... 'cc_myself': True}
>>> f = ContactForm(data)
>>> print(f)
<tr><th><label for="id_subject">Subject:</label></th><td><input id="id_subject" type=
→˓"text" name="subject" maxlength="100" value="hello" required /></td></tr>
<tr><th><label for="id_message">Message:</label></th><td><input type="text" name=
→˓"message" id="id_message" value="Hi there" required /></td></tr>
<tr><th><label for="id_sender">Sender:</label></th><td><input type="email" name=
→˓"sender" id="id_sender" value="foo@example.com" required /></td></tr>
<tr><th><label for="id_cc_myself">Cc myself:</label></th><td><input type="checkbox"
→˓name="cc_myself" id="id_cc_myself" checked="checked" /></td></tr>

This default output is a two-column HTML table, with a <tr> for each field. Notice the following:

• For flexibility, the output does not include the <table> and </table> tags, nor does it include the <form>
and </form> tags or an <input type="submit"> tag. It’s your job to do that.

• Each field type has a default HTML representation. CharField is represented by an <input
type="text"> and EmailField by an <input type="email">. BooleanField is represented by
an <input type="checkbox">. Note these are merely sensible defaults; you can specify which HTML
to use for a given field by using widgets, which we’ll explain shortly.

• The HTML name for each tag is taken directly from its attribute name in the ContactForm class.

• The text label for each field – e.g. 'Subject:', 'Message:' and 'Cc myself:' is generated from the
field name by converting all underscores to spaces and upper-casing the first letter. Again, note these are merely
sensible defaults; you can also specify labels manually.

• Each text label is surrounded in an HTML <label> tag, which points to the appropriate form field via its id.
Its id, in turn, is generated by prepending 'id_' to the field name. The id attributes and <label> tags are
included in the output by default, to follow best practices, but you can change that behavior.

6.12. Forms 1025

Django Documentation, Release 1.10.9.dev20171123183751

Although <table> output is the default output style when you print a form, other output styles are available. Each
style is available as a method on a form object, and each rendering method returns a Unicode object.

as_p()

Form.as_p()

as_p() renders the form as a series of <p> tags, with each <p> containing one field:

>>> f = ContactForm()
>>> f.as_p()
'<p><label for="id_subject">Subject:</label> <input id="id_subject" type="text" name=
→˓"subject" maxlength="100" required /></p>\n<p><label for="id_message">Message:</
→˓label> <input type="text" name="message" id="id_message" required /></p>\n<p><label
→˓for="id_sender">Sender:</label> <input type="text" name="sender" id="id_sender"
→˓required /></p>\n<p><label for="id_cc_myself">Cc myself:</label> <input type=
→˓"checkbox" name="cc_myself" id="id_cc_myself" /></p>'
>>> print(f.as_p())
<p><label for="id_subject">Subject:</label> <input id="id_subject" type="text" name=
→˓"subject" maxlength="100" required /></p>
<p><label for="id_message">Message:</label> <input type="text" name="message" id="id_
→˓message" required /></p>
<p><label for="id_sender">Sender:</label> <input type="email" name="sender" id="id_
→˓sender" required /></p>
<p><label for="id_cc_myself">Cc myself:</label> <input type="checkbox" name="cc_myself
→˓" id="id_cc_myself" /></p>

as_ul()

Form.as_ul()

as_ul() renders the form as a series of tags, with each containing one field. It does not include the
 or , so that you can specify any HTML attributes on the for flexibility:

>>> f = ContactForm()
>>> f.as_ul()
'<label for="id_subject">Subject:</label> <input id="id_subject" type="text" name=
→˓"subject" maxlength="100" required />\n<label for="id_message">Message:</
→˓label> <input type="text" name="message" id="id_message" required />\n
→˓<label for="id_sender">Sender:</label> <input type="email" name="sender" id="id_
→˓sender" required />\n<label for="id_cc_myself">Cc myself:</label> <input
→˓type="checkbox" name="cc_myself" id="id_cc_myself" />'
>>> print(f.as_ul())
<label for="id_subject">Subject:</label> <input id="id_subject" type="text" name=
→˓"subject" maxlength="100" required />
<label for="id_message">Message:</label> <input type="text" name="message" id="id_
→˓message" required />
<label for="id_sender">Sender:</label> <input type="email" name="sender" id="id_
→˓sender" required />
<label for="id_cc_myself">Cc myself:</label> <input type="checkbox" name="cc_
→˓myself" id="id_cc_myself" />

1026 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

as_table()

Form.as_table()

Finally, as_table() outputs the form as an HTML <table>. This is exactly the same as print. In fact, when
you print a form object, it calls its as_table() method behind the scenes:

>>> f = ContactForm()
>>> f.as_table()
'<tr><th><label for="id_subject">Subject:</label></th><td><input id="id_subject" type=
→˓"text" name="subject" maxlength="100" required /></td></tr>\n<tr><th><label for="id_
→˓message">Message:</label></th><td><input type="text" name="message" id="id_message"
→˓required /></td></tr>\n<tr><th><label for="id_sender">Sender:</label></th><td>
→˓<input type="email" name="sender" id="id_sender" required /></td></tr>\n<tr><th>
→˓<label for="id_cc_myself">Cc myself:</label></th><td><input type="checkbox" name=
→˓"cc_myself" id="id_cc_myself" /></td></tr>'
>>> print(f)
<tr><th><label for="id_subject">Subject:</label></th><td><input id="id_subject" type=
→˓"text" name="subject" maxlength="100" required /></td></tr>
<tr><th><label for="id_message">Message:</label></th><td><input type="text" name=
→˓"message" id="id_message" required /></td></tr>
<tr><th><label for="id_sender">Sender:</label></th><td><input type="email" name=
→˓"sender" id="id_sender" required /></td></tr>
<tr><th><label for="id_cc_myself">Cc myself:</label></th><td><input type="checkbox"
→˓name="cc_myself" id="id_cc_myself" /></td></tr>

Styling required or erroneous form rows

Form.error_css_class

Form.required_css_class

It’s pretty common to style form rows and fields that are required or have errors. For example, you might want to
present required form rows in bold and highlight errors in red.

The Form class has a couple of hooks you can use to add class attributes to required rows or to rows with errors:
simply set the Form.error_css_class and/or Form.required_css_class attributes:

from django import forms

class ContactForm(forms.Form):
error_css_class = 'error'
required_css_class = 'required'

... and the rest of your fields here

Once you’ve done that, rows will be given "error" and/or "required" classes, as needed. The HTML will look
something like:

>>> f = ContactForm(data)
>>> print(f.as_table())
<tr class="required"><th><label class="required" for="id_subject">Subject:</label>
→˓...
<tr class="required"><th><label class="required" for="id_message">Message:</label>
→˓...
<tr class="required error"><th><label class="required" for="id_sender">Sender:</label>
→˓ ...

6.12. Forms 1027

Django Documentation, Release 1.10.9.dev20171123183751

<tr><th><label for="id_cc_myself">Cc myself:<label> ...
>>> f['subject'].label_tag()
<label class="required" for="id_subject">Subject:</label>
>>> f['subject'].label_tag(attrs={'class': 'foo'})
<label for="id_subject" class="foo required">Subject:</label>

Configuring form elements’ HTML id attributes and <label> tags

Form.auto_id

By default, the form rendering methods include:

• HTML id attributes on the form elements.

• The corresponding <label> tags around the labels. An HTML <label> tag designates which label text is
associated with which form element. This small enhancement makes forms more usable and more accessible to
assistive devices. It’s always a good idea to use <label> tags.

The id attribute values are generated by prepending id_ to the form field names. This behavior is configurable,
though, if you want to change the id convention or remove HTML id attributes and <label> tags entirely.

Use the auto_id argument to the Form constructor to control the id and label behavior. This argument must be
True, False or a string.

If auto_id is False, then the form output will not include <label> tags nor id attributes:

>>> f = ContactForm(auto_id=False)
>>> print(f.as_table())
<tr><th>Subject:</th><td><input type="text" name="subject" maxlength="100" required />
→˓</td></tr>
<tr><th>Message:</th><td><input type="text" name="message" required /></td></tr>
<tr><th>Sender:</th><td><input type="email" name="sender" required /></td></tr>
<tr><th>Cc myself:</th><td><input type="checkbox" name="cc_myself" /></td></tr>
>>> print(f.as_ul())
Subject: <input type="text" name="subject" maxlength="100" required />
Message: <input type="text" name="message" required />
Sender: <input type="email" name="sender" required />
Cc myself: <input type="checkbox" name="cc_myself" />
>>> print(f.as_p())
<p>Subject: <input type="text" name="subject" maxlength="100" required /></p>
<p>Message: <input type="text" name="message" required /></p>
<p>Sender: <input type="email" name="sender" required /></p>
<p>Cc myself: <input type="checkbox" name="cc_myself" /></p>

If auto_id is set to True, then the form output will include <label> tags and will simply use the field name as its
id for each form field:

>>> f = ContactForm(auto_id=True)
>>> print(f.as_table())
<tr><th><label for="subject">Subject:</label></th><td><input id="subject" type="text"
→˓name="subject" maxlength="100" required /></td></tr>
<tr><th><label for="message">Message:</label></th><td><input type="text" name="message
→˓" id="message" required /></td></tr>
<tr><th><label for="sender">Sender:</label></th><td><input type="email" name="sender"
→˓id="sender" required /></td></tr>
<tr><th><label for="cc_myself">Cc myself:</label></th><td><input type="checkbox" name=
→˓"cc_myself" id="cc_myself" /></td></tr>
>>> print(f.as_ul())

1028 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

<label for="subject">Subject:</label> <input id="subject" type="text" name=
→˓"subject" maxlength="100" required />
<label for="message">Message:</label> <input type="text" name="message" id=
→˓"message" required />
<label for="sender">Sender:</label> <input type="email" name="sender" id="sender"
→˓required />
<label for="cc_myself">Cc myself:</label> <input type="checkbox" name="cc_myself"
→˓id="cc_myself" />
>>> print(f.as_p())
<p><label for="subject">Subject:</label> <input id="subject" type="text" name="subject
→˓" maxlength="100" required /></p>
<p><label for="message">Message:</label> <input type="text" name="message" id="message
→˓" required /></p>
<p><label for="sender">Sender:</label> <input type="email" name="sender" id="sender"
→˓required /></p>
<p><label for="cc_myself">Cc myself:</label> <input type="checkbox" name="cc_myself"
→˓id="cc_myself" /></p>

If auto_id is set to a string containing the format character '%s', then the form output will include <label> tags,
and will generate id attributes based on the format string. For example, for a format string 'field_%s', a field
named subject will get the id value 'field_subject'. Continuing our example:

>>> f = ContactForm(auto_id='id_for_%s')
>>> print(f.as_table())
<tr><th><label for="id_for_subject">Subject:</label></th><td><input id="id_for_subject
→˓" type="text" name="subject" maxlength="100" required /></td></tr>
<tr><th><label for="id_for_message">Message:</label></th><td><input type="text" name=
→˓"message" id="id_for_message" required /></td></tr>
<tr><th><label for="id_for_sender">Sender:</label></th><td><input type="email" name=
→˓"sender" id="id_for_sender" required /></td></tr>
<tr><th><label for="id_for_cc_myself">Cc myself:</label></th><td><input type="checkbox
→˓" name="cc_myself" id="id_for_cc_myself" /></td></tr>
>>> print(f.as_ul())
<label for="id_for_subject">Subject:</label> <input id="id_for_subject" type="text
→˓" name="subject" maxlength="100" required />
<label for="id_for_message">Message:</label> <input type="text" name="message" id=
→˓"id_for_message" required />
<label for="id_for_sender">Sender:</label> <input type="email" name="sender" id=
→˓"id_for_sender" required />
<label for="id_for_cc_myself">Cc myself:</label> <input type="checkbox" name="cc_
→˓myself" id="id_for_cc_myself" />
>>> print(f.as_p())
<p><label for="id_for_subject">Subject:</label> <input id="id_for_subject" type="text
→˓" name="subject" maxlength="100" required /></p>
<p><label for="id_for_message">Message:</label> <input type="text" name="message" id=
→˓"id_for_message" required /></p>
<p><label for="id_for_sender">Sender:</label> <input type="email" name="sender" id=
→˓"id_for_sender" required /></p>
<p><label for="id_for_cc_myself">Cc myself:</label> <input type="checkbox" name="cc_
→˓myself" id="id_for_cc_myself" /></p>

If auto_id is set to any other true value – such as a string that doesn’t include %s – then the library will act as if
auto_id is True.

By default, auto_id is set to the string 'id_%s'.

Form.label_suffix

A translatable string (defaults to a colon (:) in English) that will be appended after any label name when a form is

6.12. Forms 1029

Django Documentation, Release 1.10.9.dev20171123183751

rendered.

It’s possible to customize that character, or omit it entirely, using the label_suffix parameter:

>>> f = ContactForm(auto_id='id_for_%s', label_suffix='')
>>> print(f.as_ul())
<label for="id_for_subject">Subject</label> <input id="id_for_subject" type="text
→˓" name="subject" maxlength="100" required />
<label for="id_for_message">Message</label> <input type="text" name="message" id=
→˓"id_for_message" required />
<label for="id_for_sender">Sender</label> <input type="email" name="sender" id=
→˓"id_for_sender" required />
<label for="id_for_cc_myself">Cc myself</label> <input type="checkbox" name="cc_
→˓myself" id="id_for_cc_myself" />
>>> f = ContactForm(auto_id='id_for_%s', label_suffix=' ->')
>>> print(f.as_ul())
<label for="id_for_subject">Subject -></label> <input id="id_for_subject" type=
→˓"text" name="subject" maxlength="100" required />
<label for="id_for_message">Message -></label> <input type="text" name="message"
→˓id="id_for_message" required />
<label for="id_for_sender">Sender -></label> <input type="email" name="sender" id=
→˓"id_for_sender" required />
<label for="id_for_cc_myself">Cc myself -></label> <input type="checkbox" name=
→˓"cc_myself" id="id_for_cc_myself" />

Note that the label suffix is added only if the last character of the label isn’t a punctuation character (in English, those
are ., !, ? or :).

Fields can also define their own label_suffix. This will take precedence over Form.label_suffix. The
suffix can also be overridden at runtime using the label_suffix parameter to label_tag().

Form.use_required_attribute

When set to True (the default), required form fields will have the required HTML attribute.

Formsets instantiate forms with use_required_attribute=False to avoid incorrect browser validation when
adding and deleting forms from a formset.

Notes on field ordering

In the as_p(), as_ul() and as_table() shortcuts, the fields are displayed in the order in which you define
them in your form class. For example, in the ContactForm example, the fields are defined in the order subject,
message, sender, cc_myself. To reorder the HTML output, just change the order in which those fields are listed
in the class.

There are several other ways to customize the order:

Form.field_order

By default Form.field_order=None, which retains the order in which you define the fields in your form class. If
field_order is a list of field names, the fields are ordered as specified by the list and remaining fields are appended
according to the default order. Unknown field names in the list are ignored. This makes it possible to disable a field in
a subclass by setting it to None without having to redefine ordering.

You can also use the Form.field_order argument to a Form to override the field order. If a Form defines
field_order and you include field_order when instantiating the Form, then the latter field_order will
have precedence.

Form.order_fields(field_order)

1030 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

You may rearrange the fields any time using order_fields() with a list of field names as in field_order.

How errors are displayed

If you render a bound Form object, the act of rendering will automatically run the form’s validation if it hasn’t already
happened, and the HTML output will include the validation errors as a <ul class="errorlist"> near the field.
The particular positioning of the error messages depends on the output method you’re using:

>>> data = {'subject': '',
... 'message': 'Hi there',
... 'sender': 'invalid email address',
... 'cc_myself': True}
>>> f = ContactForm(data, auto_id=False)
>>> print(f.as_table())
<tr><th>Subject:</th><td><ul class="errorlist">This field is required.
→˓<input type="text" name="subject" maxlength="100" required /></td></tr>
<tr><th>Message:</th><td><input type="text" name="message" value="Hi there" required /
→˓></td></tr>
<tr><th>Sender:</th><td><ul class="errorlist">Enter a valid email address.</
→˓ul><input type="email" name="sender" value="invalid email address" required /></td>
→˓</tr>
<tr><th>Cc myself:</th><td><input checked="checked" type="checkbox" name="cc_myself" /
→˓></td></tr>
>>> print(f.as_ul())
<ul class="errorlist">This field is required.Subject: <input type=
→˓"text" name="subject" maxlength="100" required />
Message: <input type="text" name="message" value="Hi there" required />
<ul class="errorlist">Enter a valid email address.Sender: <input
→˓type="email" name="sender" value="invalid email address" required />
Cc myself: <input checked="checked" type="checkbox" name="cc_myself" />
>>> print(f.as_p())
<p><ul class="errorlist">This field is required.</p>
<p>Subject: <input type="text" name="subject" maxlength="100" required /></p>
<p>Message: <input type="text" name="message" value="Hi there" required /></p>
<p><ul class="errorlist">Enter a valid email address.</p>
<p>Sender: <input type="email" name="sender" value="invalid email address" required />
→˓</p>
<p>Cc myself: <input checked="checked" type="checkbox" name="cc_myself" /></p>

Customizing the error list format

By default, forms use django.forms.utils.ErrorList to format validation errors. If you’d like to use an
alternate class for displaying errors, you can pass that in at construction time (replace __str__ by __unicode__
on Python 2):

>>> from django.forms.utils import ErrorList
>>> class DivErrorList(ErrorList):
... def __str__(self): # __unicode__ on Python 2
... return self.as_divs()
... def as_divs(self):
... if not self: return ''
... return '<div class="errorlist">%s</div>' % ''.join(['<div class="error">%s
→˓</div>' % e for e in self])
>>> f = ContactForm(data, auto_id=False, error_class=DivErrorList)
>>> f.as_p()

6.12. Forms 1031

Django Documentation, Release 1.10.9.dev20171123183751

<div class="errorlist"><div class="error">This field is required.</div></div>
<p>Subject: <input type="text" name="subject" maxlength="100" required /></p>
<p>Message: <input type="text" name="message" value="Hi there" required /></p>
<div class="errorlist"><div class="error">Enter a valid email address.</div></div>
<p>Sender: <input type="email" name="sender" value="invalid email address" required />
→˓</p>
<p>Cc myself: <input checked="checked" type="checkbox" name="cc_myself" /></p>

More granular output

The as_p(), as_ul(), and as_table() methods are simply shortcuts – they’re not the only way a form object
can be displayed.

class BoundField
Used to display HTML or access attributes for a single field of a Form instance.

The __str__() (__unicode__ on Python 2) method of this object displays the HTML for this field.

To retrieve a single BoundField, use dictionary lookup syntax on your form using the field’s name as the key:

>>> form = ContactForm()
>>> print(form['subject'])
<input id="id_subject" type="text" name="subject" maxlength="100" required />

To retrieve all BoundField objects, iterate the form:

>>> form = ContactForm()
>>> for boundfield in form: print(boundfield)
<input id="id_subject" type="text" name="subject" maxlength="100" required />
<input type="text" name="message" id="id_message" required />
<input type="email" name="sender" id="id_sender" required />
<input type="checkbox" name="cc_myself" id="id_cc_myself" />

The field-specific output honors the form object’s auto_id setting:

>>> f = ContactForm(auto_id=False)
>>> print(f['message'])
<input type="text" name="message" required />
>>> f = ContactForm(auto_id='id_%s')
>>> print(f['message'])
<input type="text" name="message" id="id_message" required />

Attributes of BoundField

BoundField.auto_id
The HTML ID attribute for this BoundField. Returns an empty string if Form.auto_id is False.

BoundField.data
This property returns the data for this BoundField extracted by the widget’s value_from_datadict()
method, or None if it wasn’t given:

>>> unbound_form = ContactForm()
>>> print(unbound_form['subject'].data)
None
>>> bound_form = ContactForm(data={'subject': 'My Subject'})

1032 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

>>> print(bound_form['subject'].data)
My Subject

BoundField.errors
A list-like object that is displayed as an HTML <ul class="errorlist"> when printed:

>>> data = {'subject': 'hi', 'message': '', 'sender': '', 'cc_myself': ''}
>>> f = ContactForm(data, auto_id=False)
>>> print(f['message'])
<input type="text" name="message" required />
>>> f['message'].errors
['This field is required.']
>>> print(f['message'].errors)
<ul class="errorlist">This field is required.
>>> f['subject'].errors
[]
>>> print(f['subject'].errors)

>>> str(f['subject'].errors)
''

BoundField.field
The form Field instance from the form class that this BoundField wraps.

BoundField.form
The Form instance this BoundField is bound to.

BoundField.help_text
The help_text of the field.

BoundField.html_name
The name that will be used in the widget’s HTML name attribute. It takes the form prefix into account.

BoundField.id_for_label
Use this property to render the ID of this field. For example, if you are manually constructing a <label> in
your template (despite the fact that label_tag() will do this for you):

<label for="{{ form.my_field.id_for_label }}">...</label>{{ my_field }}

By default, this will be the field’s name prefixed by id_ (“id_my_field” for the example above). You may
modify the ID by setting attrs on the field’s widget. For example, declaring a field like this:

my_field = forms.CharField(widget=forms.TextInput(attrs={'id': 'myFIELD'}))

and using the template above, would render something like:

<label for="myFIELD">...</label><input id="myFIELD" type="text" name="my_field"
→˓required />

BoundField.is_hidden
Returns True if this BoundField‘s widget is hidden.

BoundField.label
The label of the field. This is used in label_tag().

BoundField.name
The name of this field in the form:

6.12. Forms 1033

Django Documentation, Release 1.10.9.dev20171123183751

>>> f = ContactForm()
>>> print(f['subject'].name)
subject
>>> print(f['message'].name)
message

Methods of BoundField

BoundField.as_hidden(attrs=None, **kwargs)
Returns a string of HTML for representing this as an <input type="hidden">.

**kwargs are passed to as_widget().

This method is primarily used internally. You should use a widget instead.

BoundField.as_widget(widget=None, attrs=None, only_initial=False)
Renders the field by rendering the passed widget, adding any HTML attributes passed as attrs. If no widget
is specified, then the field’s default widget will be used.

only_initial is used by Django internals and should not be set explicitly.

BoundField.css_classes()
When you use Django’s rendering shortcuts, CSS classes are used to indicate required form fields or fields that
contain errors. If you’re manually rendering a form, you can access these CSS classes using the css_classes
method:

>>> f = ContactForm(data={'message': ''})
>>> f['message'].css_classes()
'required'

If you want to provide some additional classes in addition to the error and required classes that may be required,
you can provide those classes as an argument:

>>> f = ContactForm(data={'message': ''})
>>> f['message'].css_classes('foo bar')
'foo bar required'

BoundField.label_tag(contents=None, attrs=None, label_suffix=None)
To separately render the label tag of a form field, you can call its label_tag() method:

>>> f = ContactForm(data={'message': ''})
>>> print(f['message'].label_tag())
<label for="id_message">Message:</label>

You can provide the contents parameter which will replace the auto-generated label tag. An attrs dictio-
nary may contain additional attributes for the <label> tag.

The HTML that’s generated includes the form’s label_suffix (a colon, by default) or, if set, the current
field’s label_suffix. The optional label_suffix parameter allows you to override any previously set
suffix. For example, you can use an empty string to hide the label on selected fields. If you need to do this in a
template, you could write a custom filter to allow passing parameters to label_tag.

BoundField.value()
Use this method to render the raw value of this field as it would be rendered by a Widget:

>>> initial = {'subject': 'welcome'}
>>> unbound_form = ContactForm(initial=initial)

1034 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

>>> bound_form = ContactForm(data={'subject': 'hi'}, initial=initial)
>>> print(unbound_form['subject'].value())
welcome
>>> print(bound_form['subject'].value())
hi

Customizing BoundField

If you need to access some additional information about a form field in a template and using a subclass of Field isn’t
sufficient, consider also customizing BoundField.

A custom form field can override get_bound_field():

Field.get_bound_field(form, field_name)
Takes an instance of Form and the name of the field. The return value will be used when accessing the field in
a template. Most likely it will be an instance of a subclass of BoundField.

If you have a GPSCoordinatesField, for example, and want to be able to access additional information about
the coordinates in a template, this could be implemented as follows:

class GPSCoordinatesBoundField(BoundField):
@property
def country(self):

"""
Return the country the coordinates lie in or None if it can't be
determined.
"""
value = self.value()
if value:

return get_country_from_coordinates(value)
else:

return None

class GPSCoordinatesField(Field):
def get_bound_field(self, form, field_name):

return GPSCoordinatesBoundField(form, self, field_name)

Now you can access the country in a template with {{ form.coordinates.country }}.

Binding uploaded files to a form

Dealing with forms that have FileField and ImageField fields is a little more complicated than a normal form.

Firstly, in order to upload files, you’ll need to make sure that your <form> element correctly defines the enctype
as "multipart/form-data":

<form enctype="multipart/form-data" method="post" action="/foo/">

Secondly, when you use the form, you need to bind the file data. File data is handled separately to normal form data,
so when your form contains a FileField and ImageField, you will need to specify a second argument when you
bind your form. So if we extend our ContactForm to include an ImageField called mugshot, we need to bind the
file data containing the mugshot image:

Bound form with an image field
>>> from django.core.files.uploadedfile import SimpleUploadedFile
>>> data = {'subject': 'hello',

6.12. Forms 1035

Django Documentation, Release 1.10.9.dev20171123183751

... 'message': 'Hi there',

... 'sender': 'foo@example.com',

... 'cc_myself': True}
>>> file_data = {'mugshot': SimpleUploadedFile('face.jpg', <file data>)}
>>> f = ContactFormWithMugshot(data, file_data)

In practice, you will usually specify request.FILES as the source of file data (just like you use request.POST
as the source of form data):

Bound form with an image field, data from the request
>>> f = ContactFormWithMugshot(request.POST, request.FILES)

Constructing an unbound form is the same as always – just omit both form data and file data:

Unbound form with an image field
>>> f = ContactFormWithMugshot()

Testing for multipart forms

Form.is_multipart()

If you’re writing reusable views or templates, you may not know ahead of time whether your form is a multipart form
or not. The is_multipart() method tells you whether the form requires multipart encoding for submission:

>>> f = ContactFormWithMugshot()
>>> f.is_multipart()
True

Here’s an example of how you might use this in a template:

{% if form.is_multipart %}
<form enctype="multipart/form-data" method="post" action="/foo/">

{% else %}
<form method="post" action="/foo/">

{% endif %}
{{ form }}
</form>

Subclassing forms

If you have multiple Form classes that share fields, you can use subclassing to remove redundancy.

When you subclass a custom Form class, the resulting subclass will include all fields of the parent class(es), followed
by the fields you define in the subclass.

In this example, ContactFormWithPriority contains all the fields from ContactForm, plus an additional
field, priority. The ContactForm fields are ordered first:

>>> class ContactFormWithPriority(ContactForm):
... priority = forms.CharField()
>>> f = ContactFormWithPriority(auto_id=False)
>>> print(f.as_ul())
Subject: <input type="text" name="subject" maxlength="100" required />
Message: <input type="text" name="message" required />
Sender: <input type="email" name="sender" required />

1036 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Cc myself: <input type="checkbox" name="cc_myself" />
Priority: <input type="text" name="priority" required />

It’s possible to subclass multiple forms, treating forms as mixins. In this example, BeatleForm subclasses both
PersonForm and InstrumentForm (in that order), and its field list includes the fields from the parent classes:

>>> from django import forms
>>> class PersonForm(forms.Form):
... first_name = forms.CharField()
... last_name = forms.CharField()
>>> class InstrumentForm(forms.Form):
... instrument = forms.CharField()
>>> class BeatleForm(InstrumentForm, PersonForm):
... haircut_type = forms.CharField()
>>> b = BeatleForm(auto_id=False)
>>> print(b.as_ul())
First name: <input type="text" name="first_name" required />
Last name: <input type="text" name="last_name" required />
Instrument: <input type="text" name="instrument" required />
Haircut type: <input type="text" name="haircut_type" required />

It’s possible to declaratively remove a Field inherited from a parent class by setting the name of the field to None
on the subclass. For example:

>>> from django import forms

>>> class ParentForm(forms.Form):
... name = forms.CharField()
... age = forms.IntegerField()

>>> class ChildForm(ParentForm):
... name = None

>>> ChildForm().fields.keys()
... ['age']

Prefixes for forms

Form.prefix

You can put several Django forms inside one <form> tag. To give each Form its own namespace, use the prefix
keyword argument:

>>> mother = PersonForm(prefix="mother")
>>> father = PersonForm(prefix="father")
>>> print(mother.as_ul())
<label for="id_mother-first_name">First name:</label> <input type="text" name=
→˓"mother-first_name" id="id_mother-first_name" required />
<label for="id_mother-last_name">Last name:</label> <input type="text" name=
→˓"mother-last_name" id="id_mother-last_name" required />
>>> print(father.as_ul())
<label for="id_father-first_name">First name:</label> <input type="text" name=
→˓"father-first_name" id="id_father-first_name" required />
<label for="id_father-last_name">Last name:</label> <input type="text" name=
→˓"father-last_name" id="id_father-last_name" required />

The prefix can also be specified on the form class:

6.12. Forms 1037

Django Documentation, Release 1.10.9.dev20171123183751

>>> class PersonForm(forms.Form):
... ...
... prefix = 'person'

The ability to specify prefix on the form class was added.

6.12.2 Form fields

class Field(**kwargs)

When you create a Form class, the most important part is defining the fields of the form. Each field has custom
validation logic, along with a few other hooks.

Field.clean(value)

Although the primary way you’ll use Field classes is in Form classes, you can also instantiate them and use them
directly to get a better idea of how they work. Each Field instance has a clean() method, which takes a single
argument and either raises a django.forms.ValidationError exception or returns the clean value:

>>> from django import forms
>>> f = forms.EmailField()
>>> f.clean('foo@example.com')
'foo@example.com'
>>> f.clean('invalid email address')
Traceback (most recent call last):
...
ValidationError: ['Enter a valid email address.']

Core field arguments

Each Field class constructor takes at least these arguments. Some Field classes take additional, field-specific
arguments, but the following should always be accepted:

required

Field.required

By default, each Field class assumes the value is required, so if you pass an empty value – either None or the empty
string ("") – then clean() will raise a ValidationError exception:

>>> from django import forms
>>> f = forms.CharField()
>>> f.clean('foo')
'foo'
>>> f.clean('')
Traceback (most recent call last):
...
ValidationError: ['This field is required.']
>>> f.clean(None)
Traceback (most recent call last):
...
ValidationError: ['This field is required.']
>>> f.clean(' ')
' '
>>> f.clean(0)

1038 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

'0'
>>> f.clean(True)
'True'
>>> f.clean(False)
'False'

To specify that a field is not required, pass required=False to the Field constructor:

>>> f = forms.CharField(required=False)
>>> f.clean('foo')
'foo'
>>> f.clean('')
''
>>> f.clean(None)
''
>>> f.clean(0)
'0'
>>> f.clean(True)
'True'
>>> f.clean(False)
'False'

If a Field has required=False and you pass clean() an empty value, then clean() will return a normalized
empty value rather than raising ValidationError. For CharField, this will be a Unicode empty string. For
other Field classes, it might be None. (This varies from field to field.)

Widgets of required form fields have the requiredHTML attribute. Set the Form.use_required_attribute
attribute to False to disable it. The required attribute isn’t included on forms of formsets because the browser
validation may not be correct when adding and deleting formsets.

Support for the required HTML attribute was added.

label

Field.label

The label argument lets you specify the “human-friendly” label for this field. This is used when the Field is
displayed in a Form.

As explained in “Outputting forms as HTML” above, the default label for a Field is generated from the field name by
converting all underscores to spaces and upper-casing the first letter. Specify label if that default behavior doesn’t
result in an adequate label.

Here’s a full example Form that implements label for two of its fields. We’ve specified auto_id=False to
simplify the output:

>>> from django import forms
>>> class CommentForm(forms.Form):
... name = forms.CharField(label='Your name')
... url = forms.URLField(label='Your website', required=False)
... comment = forms.CharField()
>>> f = CommentForm(auto_id=False)
>>> print(f)
<tr><th>Your name:</th><td><input type="text" name="name" required /></td></tr>
<tr><th>Your website:</th><td><input type="url" name="url" /></td></tr>
<tr><th>Comment:</th><td><input type="text" name="comment" required /></td></tr>

6.12. Forms 1039

Django Documentation, Release 1.10.9.dev20171123183751

label_suffix

Field.label_suffix

The label_suffix argument lets you override the form’s label_suffix on a per-field basis:

>>> class ContactForm(forms.Form):
... age = forms.IntegerField()
... nationality = forms.CharField()
... captcha_answer = forms.IntegerField(label='2 + 2', label_suffix=' =')
>>> f = ContactForm(label_suffix='?')
>>> print(f.as_p())
<p><label for="id_age">Age?</label> <input id="id_age" name="age" type="number"
→˓required /></p>
<p><label for="id_nationality">Nationality?</label> <input id="id_nationality" name=
→˓"nationality" type="text" required /></p>
<p><label for="id_captcha_answer">2 + 2 =</label> <input id="id_captcha_answer" name=
→˓"captcha_answer" type="number" required /></p>

initial

Field.initial

The initial argument lets you specify the initial value to use when rendering this Field in an unbound Form.

To specify dynamic initial data, see the Form.initial parameter.

The use-case for this is when you want to display an “empty” form in which a field is initialized to a particular value.
For example:

>>> from django import forms
>>> class CommentForm(forms.Form):
... name = forms.CharField(initial='Your name')
... url = forms.URLField(initial='http://')
... comment = forms.CharField()
>>> f = CommentForm(auto_id=False)
>>> print(f)
<tr><th>Name:</th><td><input type="text" name="name" value="Your name" required /></
→˓td></tr>
<tr><th>Url:</th><td><input type="url" name="url" value="http://" required /></td></
→˓tr>
<tr><th>Comment:</th><td><input type="text" name="comment" required /></td></tr>

You may be thinking, why not just pass a dictionary of the initial values as data when displaying the form? Well, if
you do that, you’ll trigger validation, and the HTML output will include any validation errors:

>>> class CommentForm(forms.Form):
... name = forms.CharField()
... url = forms.URLField()
... comment = forms.CharField()
>>> default_data = {'name': 'Your name', 'url': 'http://'}
>>> f = CommentForm(default_data, auto_id=False)
>>> print(f)
<tr><th>Name:</th><td><input type="text" name="name" value="Your name" required /></
→˓td></tr>
<tr><th>Url:</th><td><ul class="errorlist">Enter a valid URL.<input
→˓type="url" name="url" value="http://" required /></td></tr>
<tr><th>Comment:</th><td><ul class="errorlist">This field is required.
→˓<input type="text" name="comment" required /></td></tr>

1040 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

This is why initial values are only displayed for unbound forms. For bound forms, the HTML output will use the
bound data.

Also note that initial values are not used as “fallback” data in validation if a particular field’s value is not given.
initial values are only intended for initial form display:

>>> class CommentForm(forms.Form):
... name = forms.CharField(initial='Your name')
... url = forms.URLField(initial='http://')
... comment = forms.CharField()
>>> data = {'name': '', 'url': '', 'comment': 'Foo'}
>>> f = CommentForm(data)
>>> f.is_valid()
False
The form does *not* fall back to using the initial values.
>>> f.errors
{'url': ['This field is required.'], 'name': ['This field is required.']}

Instead of a constant, you can also pass any callable:

>>> import datetime
>>> class DateForm(forms.Form):
... day = forms.DateField(initial=datetime.date.today)
>>> print(DateForm())
<tr><th>Day:</th><td><input type="text" name="day" value="12/23/2008" required /><td>
→˓</tr>

The callable will be evaluated only when the unbound form is displayed, not when it is defined.

widget

Field.widget

The widget argument lets you specify a Widget class to use when rendering this Field. See Widgets for more
information.

help_text

Field.help_text

The help_text argument lets you specify descriptive text for this Field. If you provide help_text, it will be
displayed next to the Field when the Field is rendered by one of the convenience Form methods (e.g., as_ul()).

Like the model field’s help_text, this value isn’t HTML-escaped in automatically-generated forms.

Here’s a full example Form that implements help_text for two of its fields. We’ve specified auto_id=False
to simplify the output:

>>> from django import forms
>>> class HelpTextContactForm(forms.Form):
... subject = forms.CharField(max_length=100, help_text='100 characters max.')
... message = forms.CharField()
... sender = forms.EmailField(help_text='A valid email address, please.')
... cc_myself = forms.BooleanField(required=False)
>>> f = HelpTextContactForm(auto_id=False)

6.12. Forms 1041

Django Documentation, Release 1.10.9.dev20171123183751

>>> print(f.as_table())
<tr><th>Subject:</th><td><input type="text" name="subject" maxlength="100" required />
→˓
100 characters max.</td></tr>
<tr><th>Message:</th><td><input type="text" name="message" required /></td></tr>
<tr><th>Sender:</th><td><input type="email" name="sender" required />
A valid
→˓email address, please.</td></tr>
<tr><th>Cc myself:</th><td><input type="checkbox" name="cc_myself" /></td></tr>
>>> print(f.as_ul()))
Subject: <input type="text" name="subject" maxlength="100" required /> 100 characters max.
Message: <input type="text" name="message" required />
Sender: <input type="email" name="sender" required /> A valid email address,
→˓please.
Cc myself: <input type="checkbox" name="cc_myself" />
>>> print(f.as_p())
<p>Subject: <input type="text" name="subject" maxlength="100" required /> <span class=
→˓"helptext">100 characters max.</p>
<p>Message: <input type="text" name="message" required /></p>
<p>Sender: <input type="email" name="sender" required /> A valid email address,
→˓please.</p>
<p>Cc myself: <input type="checkbox" name="cc_myself" /></p>

error_messages

Field.error_messages

The error_messages argument lets you override the default messages that the field will raise. Pass in a dictionary
with keys matching the error messages you want to override. For example, here is the default error message:

>>> from django import forms
>>> generic = forms.CharField()
>>> generic.clean('')
Traceback (most recent call last):

...
ValidationError: ['This field is required.']

And here is a custom error message:

>>> name = forms.CharField(error_messages={'required': 'Please enter your name'})
>>> name.clean('')
Traceback (most recent call last):

...
ValidationError: ['Please enter your name']

In the built-in Field classes section below, each Field defines the error message keys it uses.

validators

Field.validators

The validators argument lets you provide a list of validation functions for this field.

See the validators documentation for more information.

1042 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

localize

Field.localize

The localize argument enables the localization of form data input, as well as the rendered output.

See the format localization documentation for more information.

disabled

Field.disabled

The disabled boolean argument, when set to True, disables a form field using the disabled HTML attribute
so that it won’t be editable by users. Even if a user tampers with the field’s value submitted to the server, it will be
ignored in favor of the value from the form’s initial data.

Checking if the field data has changed

has_changed()

Field.has_changed()

The has_changed() method is used to determine if the field value has changed from the initial value. Returns
True or False.

See the Form.has_changed() documentation for more information.

Built-in Field classes

Naturally, the forms library comes with a set of Field classes that represent common validation needs. This section
documents each built-in field.

For each field, we describe the default widget used if you don’t specify widget. We also specify the value returned
when you provide an empty value (see the section on required above to understand what that means).

BooleanField

class BooleanField(**kwargs)

• Default widget: CheckboxInput

• Empty value: False

• Normalizes to: A Python True or False value.

• Validates that the value is True (e.g. the check box is checked) if the field has required=True.

• Error message keys: required

Note: Since all Field subclasses have required=True by default, the validation condition here is im-
portant. If you want to include a boolean in your form that can be either True or False (e.g. a checked or
unchecked checkbox), you must remember to pass in required=False when creating the BooleanField.

6.12. Forms 1043

Django Documentation, Release 1.10.9.dev20171123183751

CharField

class CharField(**kwargs)

• Default widget: TextInput

• Empty value: '' (an empty string)

• Normalizes to: A Unicode object.

• Validates max_length or min_length, if they are provided. Otherwise, all inputs are valid.

• Error message keys: required, max_length, min_length

Has three optional arguments for validation:

max_length

min_length

If provided, these arguments ensure that the string is at most or at least the given length.

strip
If True (default), the value will be stripped of leading and trailing whitespace.

ChoiceField

class ChoiceField(**kwargs)

• Default widget: Select

• Empty value: '' (an empty string)

• Normalizes to: A Unicode object.

• Validates that the given value exists in the list of choices.

• Error message keys: required, invalid_choice

The invalid_choice error message may contain %(value)s, which will be replaced with the selected
choice.

Takes one extra required argument:

choices
Either an iterable (e.g., a list or tuple) of 2-tuples to use as choices for this field, or a callable that returns
such an iterable. This argument accepts the same formats as the choices argument to a model field. See
the model field reference documentation on choices for more details. If the argument is a callable, it is
evaluated each time the field’s form is initialized.

TypedChoiceField

class TypedChoiceField(**kwargs)
Just like a ChoiceField, except TypedChoiceField takes two extra arguments, coerce and
empty_value.

• Default widget: Select

• Empty value: Whatever you’ve given as empty_value.

• Normalizes to: A value of the type provided by the coerce argument.

• Validates that the given value exists in the list of choices and can be coerced.

1044 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• Error message keys: required, invalid_choice

Takes extra arguments:

coerce
A function that takes one argument and returns a coerced value. Examples include the built-in int,
float, bool and other types. Defaults to an identity function. Note that coercion happens after input
validation, so it is possible to coerce to a value not present in choices.

empty_value
The value to use to represent “empty.” Defaults to the empty string; None is another common choice
here. Note that this value will not be coerced by the function given in the coerce argument, so choose it
accordingly.

DateField

class DateField(**kwargs)

• Default widget: DateInput

• Empty value: None

• Normalizes to: A Python datetime.date object.

• Validates that the given value is either a datetime.date, datetime.datetime or string formatted
in a particular date format.

• Error message keys: required, invalid

Takes one optional argument:

input_formats
A list of formats used to attempt to convert a string to a valid datetime.date object.

If no input_formats argument is provided, the default input formats are:

['%Y-%m-%d', # '2006-10-25'
'%m/%d/%Y', # '10/25/2006'
'%m/%d/%y'] # '10/25/06'

Additionally, if you specify USE_L10N=False in your settings, the following will also be included in the
default input formats:

['%b %d %Y', # 'Oct 25 2006'
'%b %d, %Y', # 'Oct 25, 2006'
'%d %b %Y', # '25 Oct 2006'
'%d %b, %Y', # '25 Oct, 2006'
'%B %d %Y', # 'October 25 2006'
'%B %d, %Y', # 'October 25, 2006'
'%d %B %Y', # '25 October 2006'
'%d %B, %Y'] # '25 October, 2006'

See also format localization.

DateTimeField

class DateTimeField(**kwargs)

• Default widget: DateTimeInput

6.12. Forms 1045

Django Documentation, Release 1.10.9.dev20171123183751

• Empty value: None

• Normalizes to: A Python datetime.datetime object.

• Validates that the given value is either a datetime.datetime, datetime.date or string formatted
in a particular datetime format.

• Error message keys: required, invalid

Takes one optional argument:

input_formats
A list of formats used to attempt to convert a string to a valid datetime.datetime object.

If no input_formats argument is provided, the default input formats are:

['%Y-%m-%d %H:%M:%S', # '2006-10-25 14:30:59'
'%Y-%m-%d %H:%M', # '2006-10-25 14:30'
'%Y-%m-%d', # '2006-10-25'
'%m/%d/%Y %H:%M:%S', # '10/25/2006 14:30:59'
'%m/%d/%Y %H:%M', # '10/25/2006 14:30'
'%m/%d/%Y', # '10/25/2006'
'%m/%d/%y %H:%M:%S', # '10/25/06 14:30:59'
'%m/%d/%y %H:%M', # '10/25/06 14:30'
'%m/%d/%y'] # '10/25/06'

See also format localization.

DecimalField

class DecimalField(**kwargs)

• Default widget: NumberInput when Field.localize is False, else TextInput.

• Empty value: None

• Normalizes to: A Python decimal.

• Validates that the given value is a decimal. Leading and trailing whitespace is ignored.

• Error message keys: required, invalid, max_value, min_value, max_digits,
max_decimal_places, max_whole_digits

The max_value and min_value error messages may contain %(limit_value)s, which will
be substituted by the appropriate limit. Similarly, the max_digits, max_decimal_places and
max_whole_digits error messages may contain %(max)s.

Takes four optional arguments:

max_value

min_value
These control the range of values permitted in the field, and should be given as decimal.Decimal
values.

max_digits
The maximum number of digits (those before the decimal point plus those after the decimal point, with
leading zeros stripped) permitted in the value.

decimal_places
The maximum number of decimal places permitted.

1046 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

DurationField

class DurationField(**kwargs)

• Default widget: TextInput

• Empty value: None

• Normalizes to: A Python timedelta.

• Validates that the given value is a string which can be converted into a timedelta.

• Error message keys: required, invalid.

Accepts any format understood by parse_duration().

EmailField

class EmailField(**kwargs)

• Default widget: EmailInput

• Empty value: '' (an empty string)

• Normalizes to: A Unicode object.

• Validates that the given value is a valid email address, using a moderately complex regular expression.

• Error message keys: required, invalid

Has two optional arguments for validation, max_length and min_length. If provided, these arguments
ensure that the string is at most or at least the given length.

FileField

class FileField(**kwargs)

• Default widget: ClearableFileInput

• Empty value: None

• Normalizes to: An UploadedFile object that wraps the file content and file name into a single object.

• Can validate that non-empty file data has been bound to the form.

• Error message keys: required, invalid, missing, empty, max_length

Has two optional arguments for validation, max_length and allow_empty_file. If provided, these
ensure that the file name is at most the given length, and that validation will succeed even if the file content is
empty.

To learn more about the UploadedFile object, see the file uploads documentation.

When you use a FileField in a form, you must also remember to bind the file data to the form.

The max_length error refers to the length of the filename. In the error message for that key, %(max)d will
be replaced with the maximum filename length and %(length)d will be replaced with the current filename
length.

6.12. Forms 1047

https://docs.python.org/3/library/datetime.html#datetime.timedelta

Django Documentation, Release 1.10.9.dev20171123183751

FilePathField

class FilePathField(**kwargs)

• Default widget: Select

• Empty value: None

• Normalizes to: A unicode object

• Validates that the selected choice exists in the list of choices.

• Error message keys: required, invalid_choice

The field allows choosing from files inside a certain directory. It takes five extra arguments; only path is
required:

path
The absolute path to the directory whose contents you want listed. This directory must exist.

recursive
If False (the default) only the direct contents of path will be offered as choices. If True, the directory
will be descended into recursively and all descendants will be listed as choices.

match
A regular expression pattern; only files with names matching this expression will be allowed as choices.

allow_files
Optional. Either True or False. Default is True. Specifies whether files in the specified location should
be included. Either this or allow_folders must be True.

allow_folders
Optional. Either True or False. Default is False. Specifies whether folders in the specified location
should be included. Either this or allow_files must be True.

FloatField

class FloatField(**kwargs)

• Default widget: NumberInput when Field.localize is False, else TextInput.

• Empty value: None

• Normalizes to: A Python float.

• Validates that the given value is a float. Leading and trailing whitespace is allowed, as in Python’s
float() function.

• Error message keys: required, invalid, max_value, min_value

Takes two optional arguments for validation, max_value and min_value. These control the range of values
permitted in the field.

ImageField

class ImageField(**kwargs)

• Default widget: ClearableFileInput

• Empty value: None

• Normalizes to: An UploadedFile object that wraps the file content and file name into a single object.

1048 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• Validates that file data has been bound to the form, and that the file is of an image format understood by
Pillow.

• Error message keys: required, invalid, missing, empty, invalid_image

Using an ImageField requires that Pillow is installed with support for the image formats you use. If you
encounter a corrupt image error when you upload an image, it usually means that Pillow doesn’t understand
its format. To fix this, install the appropriate library and reinstall Pillow.

When you use an ImageField on a form, you must also remember to bind the file data to the form.

After the field has been cleaned and validated, the UploadedFile object will have an additional image at-
tribute containing the Pillow Image instance used to check if the file was a valid image. Also, UploadedFile.
content_type will be updated with the image’s content type if Pillow can determine it, otherwise it will be
set to None.

IntegerField

class IntegerField(**kwargs)

• Default widget: NumberInput when Field.localize is False, else TextInput.

• Empty value: None

• Normalizes to: A Python integer or long integer.

• Validates that the given value is an integer. Leading and trailing whitespace is allowed, as in Python’s
int() function.

• Error message keys: required, invalid, max_value, min_value

The max_value and min_value error messages may contain %(limit_value)s, which will be substi-
tuted by the appropriate limit.

Takes two optional arguments for validation:

max_value

min_value

These control the range of values permitted in the field.

GenericIPAddressField

class GenericIPAddressField(**kwargs)
A field containing either an IPv4 or an IPv6 address.

• Default widget: TextInput

• Empty value: '' (an empty string)

• Normalizes to: A Unicode object. IPv6 addresses are normalized as described below.

• Validates that the given value is a valid IP address.

• Error message keys: required, invalid

The IPv6 address normalization follows RFC 4291#section-2.2 section 2.2, including using the IPv4 format
suggested in paragraph 3 of that section, like ::ffff:192.0.2.0. For example, 2001:0::0:01 would
be normalized to 2001::1, and ::ffff:0a0a:0a0a to ::ffff:10.10.10.10. All characters are
converted to lowercase.

6.12. Forms 1049

https://pillow.readthedocs.io/en/latest/
https://pillow.readthedocs.io/en/latest/reference/Image.html
https://tools.ietf.org/html/rfc4291.html#section-2.2

Django Documentation, Release 1.10.9.dev20171123183751

Takes two optional arguments:

protocol
Limits valid inputs to the specified protocol. Accepted values are both (default), IPv4 or IPv6. Match-
ing is case insensitive.

unpack_ipv4
Unpacks IPv4 mapped addresses like ::ffff:192.0.2.1. If this option is enabled that address would
be unpacked to 192.0.2.1. Default is disabled. Can only be used when protocol is set to 'both'.

MultipleChoiceField

class MultipleChoiceField(**kwargs)

• Default widget: SelectMultiple

• Empty value: [] (an empty list)

• Normalizes to: A list of Unicode objects.

• Validates that every value in the given list of values exists in the list of choices.

• Error message keys: required, invalid_choice, invalid_list

The invalid_choice error message may contain %(value)s, which will be replaced with the selected
choice.

Takes one extra required argument, choices, as for ChoiceField.

TypedMultipleChoiceField

class TypedMultipleChoiceField(**kwargs)
Just like a MultipleChoiceField, except TypedMultipleChoiceField takes two extra arguments,
coerce and empty_value.

• Default widget: SelectMultiple

• Empty value: Whatever you’ve given as empty_value

• Normalizes to: A list of values of the type provided by the coerce argument.

• Validates that the given values exists in the list of choices and can be coerced.

• Error message keys: required, invalid_choice

The invalid_choice error message may contain %(value)s, which will be replaced with the selected
choice.

Takes two extra arguments, coerce and empty_value, as for TypedChoiceField.

NullBooleanField

class NullBooleanField(**kwargs)

• Default widget: NullBooleanSelect

• Empty value: None

• Normalizes to: A Python True, False or None value.

• Validates nothing (i.e., it never raises a ValidationError).

1050 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

RegexField

class RegexField(**kwargs)

• Default widget: TextInput

• Empty value: '' (an empty string)

• Normalizes to: A Unicode object.

• Validates that the given value matches against a certain regular expression.

• Error message keys: required, invalid

Takes one required argument:

regex
A regular expression specified either as a string or a compiled regular expression object.

Also takes max_length, min_length, and strip, which work just as they do for CharField.

strip
Defaults to False. If enabled, stripping will be applied before the regex validation.

SlugField

class SlugField(**kwargs)

• Default widget: TextInput

• Empty value: '' (an empty string)

• Normalizes to: A Unicode object.

• Validates that the given value contains only letters, numbers, underscores, and hyphens.

• Error messages: required, invalid

This field is intended for use in representing a model SlugField in forms.

Takes an optional parameter:

allow_unicode
A boolean instructing the field to accept Unicode letters in addition to ASCII letters. Defaults to False.

TimeField

class TimeField(**kwargs)

• Default widget: TextInput

• Empty value: None

• Normalizes to: A Python datetime.time object.

• Validates that the given value is either a datetime.time or string formatted in a particular time format.

• Error message keys: required, invalid

Takes one optional argument:

input_formats
A list of formats used to attempt to convert a string to a valid datetime.time object.

6.12. Forms 1051

Django Documentation, Release 1.10.9.dev20171123183751

If no input_formats argument is provided, the default input formats are:

'%H:%M:%S', # '14:30:59'
'%H:%M', # '14:30'

URLField

class URLField(**kwargs)

• Default widget: URLInput

• Empty value: '' (an empty string)

• Normalizes to: A Unicode object.

• Validates that the given value is a valid URL.

• Error message keys: required, invalid

Takes the following optional arguments:

max_length

min_length

These are the same as CharField.max_length and CharField.min_length.

UUIDField

class UUIDField(**kwargs)

• Default widget: TextInput

• Empty value: '' (an empty string)

• Normalizes to: A UUID object.

• Error message keys: required, invalid

This field will accept any string format accepted as the hex argument to the UUID constructor.

Slightly complex built-in Field classes

ComboField

class ComboField(**kwargs)

• Default widget: TextInput

• Empty value: '' (an empty string)

• Normalizes to: A Unicode object.

• Validates the given value against each of the fields specified as an argument to the ComboField.

• Error message keys: required, invalid

Takes one extra required argument:

fields
The list of fields that should be used to validate the field’s value (in the order in which they are provided).

1052 Chapter 6. API Reference

https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/uuid.html#uuid.UUID

Django Documentation, Release 1.10.9.dev20171123183751

>>> from django.forms import ComboField
>>> f = ComboField(fields=[CharField(max_length=20), EmailField()])
>>> f.clean('test@example.com')
'test@example.com'
>>> f.clean('longemailaddress@example.com')
Traceback (most recent call last):
...
ValidationError: ['Ensure this value has at most 20 characters (it has 28).']

MultiValueField

class MultiValueField(fields=(), **kwargs)

• Default widget: TextInput

• Empty value: '' (an empty string)

• Normalizes to: the type returned by the compress method of the subclass.

• Validates the given value against each of the fields specified as an argument to the MultiValueField.

• Error message keys: required, invalid, incomplete

Aggregates the logic of multiple fields that together produce a single value.

This field is abstract and must be subclassed. In contrast with the single-value fields, subclasses of
MultiValueField must not implement clean() but instead - implement compress().

Takes one extra required argument:

fields
A tuple of fields whose values are cleaned and subsequently combined into a single value. Each value
of the field is cleaned by the corresponding field in fields – the first value is cleaned by the first field,
the second value is cleaned by the second field, etc. Once all fields are cleaned, the list of clean values is
combined into a single value by compress().

Also takes one extra optional argument:

require_all_fields
Defaults to True, in which case a required validation error will be raised if no value is supplied for
any field.

When set to False, the Field.required attribute can be set to False for individual fields to make
them optional. If no value is supplied for a required field, an incomplete validation error will be raised.

A default incomplete error message can be defined on the MultiValueField subclass, or different
messages can be defined on each individual field. For example:

from django.core.validators import RegexValidator

class PhoneField(MultiValueField):
def __init__(self, *args, **kwargs):

Define one message for all fields.
error_messages = {

'incomplete': 'Enter a country calling code and a phone number.',
}
Or define a different message for each field.
fields = (

CharField(
error_messages={'incomplete': 'Enter a country calling code.'}

→˓,

6.12. Forms 1053

Django Documentation, Release 1.10.9.dev20171123183751

validators=[
RegexValidator(r'^[0-9]+$', 'Enter a valid country

→˓calling code.'),
],

),
CharField(

error_messages={'incomplete': 'Enter a phone number.'},
validators=[RegexValidator(r'^[0-9]+$', 'Enter a valid phone

→˓number.')],
),
CharField(

validators=[RegexValidator(r'^[0-9]+$', 'Enter a valid
→˓extension.')],

required=False,
),

)
super(PhoneField, self).__init__(

error_messages=error_messages, fields=fields,
require_all_fields=False, *args, **kwargs

)

widget
Must be a subclass of django.forms.MultiWidget. Default value is TextInput, which probably
is not very useful in this case.

compress(data_list)
Takes a list of valid values and returns a “compressed” version of those values – in a single value. For
example, SplitDateTimeField is a subclass which combines a time field and a date field into a
datetime object.

This method must be implemented in the subclasses.

SplitDateTimeField

class SplitDateTimeField(**kwargs)

• Default widget: SplitDateTimeWidget

• Empty value: None

• Normalizes to: A Python datetime.datetime object.

• Validates that the given value is a datetime.datetime or string formatted in a particular datetime
format.

• Error message keys: required, invalid, invalid_date, invalid_time

Takes two optional arguments:

input_date_formats
A list of formats used to attempt to convert a string to a valid datetime.date object.

If no input_date_formats argument is provided, the default input formats for DateField are used.

input_time_formats
A list of formats used to attempt to convert a string to a valid datetime.time object.

If no input_time_formats argument is provided, the default input formats for TimeField are used.

1054 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Fields which handle relationships

Two fields are available for representing relationships between models: ModelChoiceField and
ModelMultipleChoiceField. Both of these fields require a single queryset parameter that is used to
create the choices for the field. Upon form validation, these fields will place either one model object (in the case
of ModelChoiceField) or multiple model objects (in the case of ModelMultipleChoiceField) into the
cleaned_data dictionary of the form.

For more complex uses, you can specify queryset=None when declaring the form field and then populate the
queryset in the form’s __init__() method:

class FooMultipleChoiceForm(forms.Form):
foo_select = forms.ModelMultipleChoiceField(queryset=None)

def __init__(self, *args, **kwargs):
super(FooMultipleChoiceForm, self).__init__(*args, **kwargs)
self.fields['foo_select'].queryset = ...

ModelChoiceField

class ModelChoiceField(**kwargs)

• Default widget: Select

• Empty value: None

• Normalizes to: A model instance.

• Validates that the given id exists in the queryset.

• Error message keys: required, invalid_choice

Allows the selection of a single model object, suitable for representing a foreign key. Note that the default widget
for ModelChoiceField becomes impractical when the number of entries increases. You should avoid using
it for more than 100 items.

A single argument is required:

queryset
A QuerySet of model objects from which the choices for the field will be derived, and which will be
used to validate the user’s selection.

ModelChoiceField also takes two optional arguments:

empty_label
By default the <select> widget used by ModelChoiceField will have an empty choice at the
top of the list. You can change the text of this label (which is "---------" by default) with the
empty_label attribute, or you can disable the empty label entirely by setting empty_label to None:

A custom empty label
field1 = forms.ModelChoiceField(queryset=..., empty_label="(Nothing)")

No empty label
field2 = forms.ModelChoiceField(queryset=..., empty_label=None)

Note that if a ModelChoiceField is required and has a default initial value, no empty choice is created
(regardless of the value of empty_label).

6.12. Forms 1055

Django Documentation, Release 1.10.9.dev20171123183751

to_field_name
This optional argument is used to specify the field to use as the value of the choices in the field’s widget.
Be sure it’s a unique field for the model, otherwise the selected value could match more than one object.
By default it is set to None, in which case the primary key of each object will be used. For example:

No custom to_field_name
field1 = forms.ModelChoiceField(queryset=...)

would yield:

<select id="id_field1" name="field1">
<option value="obj1.pk">Object1</option>
<option value="obj2.pk">Object2</option>
...
</select>

and:

to_field_name provided
field2 = forms.ModelChoiceField(queryset=..., to_field_name="name")

would yield:

<select id="id_field2" name="field2">
<option value="obj1.name">Object1</option>
<option value="obj2.name">Object2</option>
...
</select>

The __str__ (__unicode__ on Python 2) method of the model will be called to generate string rep-
resentations of the objects for use in the field’s choices; to provide customized representations, subclass
ModelChoiceField and override label_from_instance. This method will receive a model object,
and should return a string suitable for representing it. For example:

from django.forms import ModelChoiceField

class MyModelChoiceField(ModelChoiceField):
def label_from_instance(self, obj):

return "My Object #%i" % obj.id

ModelMultipleChoiceField

class ModelMultipleChoiceField(**kwargs)

• Default widget: SelectMultiple

• Empty value: An empty QuerySet (self.queryset.none())

• Normalizes to: A QuerySet of model instances.

• Validates that every id in the given list of values exists in the queryset.

• Error message keys: required, list, invalid_choice, invalid_pk_value

The invalid_choice message may contain %(value)s and the invalid_pk_value message may
contain %(pk)s, which will be substituted by the appropriate values.

Allows the selection of one or more model objects, suitable for representing a many-to-many relation. As with
ModelChoiceField, you can use label_from_instance to customize the object representations.

1056 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

A single argument is required:

queryset
Same as ModelChoiceField.queryset.

Takes one optional argument:

to_field_name
Same as ModelChoiceField.to_field_name.

Creating custom fields

If the built-in Field classes don’t meet your needs, you can easily create custom Field classes. To do this, just
create a subclass of django.forms.Field. Its only requirements are that it implement a clean() method
and that its __init__() method accept the core arguments mentioned above (required, label, initial,
widget, help_text).

You can also customize how a field will be accessed by overriding get_bound_field().

6.12.3 Model Form Functions

Model Form API reference. For introductory material about model forms, see the Creating forms from models topic
guide.

modelform_factory

modelform_factory(model, form=ModelForm, fields=None, exclude=None, formfield_callback=None,
widgets=None, localized_fields=None, labels=None, help_texts=None, er-
ror_messages=None, field_classes=None)

Returns a ModelForm class for the given model. You can optionally pass a form argument to use as a starting
point for constructing the ModelForm.

fields is an optional list of field names. If provided, only the named fields will be included in the returned
fields.

exclude is an optional list of field names. If provided, the named fields will be excluded from the returned
fields, even if they are listed in the fields argument.

formfield_callback is a callable that takes a model field and returns a form field.

widgets is a dictionary of model field names mapped to a widget.

localized_fields is a list of names of fields which should be localized.

labels is a dictionary of model field names mapped to a label.

help_texts is a dictionary of model field names mapped to a help text.

error_messages is a dictionary of model field names mapped to a dictionary of error messages.

field_classes is a dictionary of model field names mapped to a form field class.

See ModelForm factory function for example usage.

You must provide the list of fields explicitly, either via keyword arguments fields or exclude, or the
corresponding attributes on the form’s inner Meta class. See Selecting the fields to use for more information.
Omitting any definition of the fields to use will result in an ImproperlyConfigured exception.

The field_classes keyword argument was added.

6.12. Forms 1057

Django Documentation, Release 1.10.9.dev20171123183751

modelformset_factory

modelformset_factory(model, form=ModelForm, formfield_callback=None, form-
set=BaseModelFormSet, extra=1, can_delete=False, can_order=False,
max_num=None, fields=None, exclude=None, widgets=None, vali-
date_max=False, localized_fields=None, labels=None, help_texts=None,
error_messages=None, min_num=None, validate_min=False,
field_classes=None)

Returns a FormSet class for the given model class.

Arguments model, form, fields, exclude, formfield_callback, widgets,
localized_fields, labels, help_texts, error_messages, and field_classes are all
passed through to modelform_factory().

Arguments formset, extra, max_num, can_order, can_delete and validate_max are passed
through to formset_factory(). See formsets for details.

See Model formsets for example usage.

The field_classes keyword argument was added.

inlineformset_factory

inlineformset_factory(parent_model, model, form=ModelForm, formset=BaseInlineFormSet,
fk_name=None, fields=None, exclude=None, extra=3, can_order=False,
can_delete=True, max_num=None, formfield_callback=None, wid-
gets=None, validate_max=False, localized_fields=None, labels=None,
help_texts=None, error_messages=None, min_num=None, vali-
date_min=False, field_classes=None)

Returns an InlineFormSet using modelformset_factory() with defaults of
formset=BaseInlineFormSet, can_delete=True, and extra=3.

If your model has more than one ForeignKey to the parent_model, you must specify a fk_name.

See Inline formsets for example usage.

The field_classes keyword argument was added.

6.12.4 Formset Functions

Formset API reference. For introductory material about formsets, see the Formsets topic guide.

formset_factory

formset_factory(form, formset=BaseFormSet, extra=1, can_order=False, can_delete=False,
max_num=None, validate_max=False, min_num=None, validate_min=False)

Returns a FormSet class for the given form class.

See formsets for example usage.

6.12.5 Widgets

A widget is Django’s representation of an HTML input element. The widget handles the rendering of the HTML, and
the extraction of data from a GET/POST dictionary that corresponds to the widget.

1058 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Tip: Widgets should not be confused with the form fields. Form fields deal with the logic of input validation and are
used directly in templates. Widgets deal with rendering of HTML form input elements on the web page and extraction
of raw submitted data. However, widgets do need to be assigned to form fields.

Specifying widgets

Whenever you specify a field on a form, Django will use a default widget that is appropriate to the type of data that is
to be displayed. To find which widget is used on which field, see the documentation about Built-in Field classes.

However, if you want to use a different widget for a field, you can just use the widget argument on the field definition.
For example:

from django import forms

class CommentForm(forms.Form):
name = forms.CharField()
url = forms.URLField()
comment = forms.CharField(widget=forms.Textarea)

This would specify a form with a comment that uses a larger Textarea widget, rather than the default TextInput
widget.

Setting arguments for widgets

Many widgets have optional extra arguments; they can be set when defining the widget on the field. In the following
example, the years attribute is set for a SelectDateWidget:

from django import forms

BIRTH_YEAR_CHOICES = ('1980', '1981', '1982')
FAVORITE_COLORS_CHOICES = (

('blue', 'Blue'),
('green', 'Green'),
('black', 'Black'),

)

class SimpleForm(forms.Form):
birth_year = forms.DateField(widget=forms.SelectDateWidget(years=BIRTH_YEAR_

→˓CHOICES))
favorite_colors = forms.MultipleChoiceField(

required=False,
widget=forms.CheckboxSelectMultiple,
choices=FAVORITE_COLORS_CHOICES,

)

See the Built-in widgets for more information about which widgets are available and which arguments they accept.

Widgets inheriting from the Select widget

Widgets inheriting from the Select widget deal with choices. They present the user with a list of options to choose
from. The different widgets present this choice differently; the Select widget itself uses a <select> HTML list
representation, while RadioSelect uses radio buttons.

6.12. Forms 1059

Django Documentation, Release 1.10.9.dev20171123183751

Select widgets are used by default on ChoiceField fields. The choices displayed on the widget are inherited
from the ChoiceField and changing ChoiceField.choices will update Select.choices. For example:

>>> from django import forms
>>> CHOICES = (('1', 'First',), ('2', 'Second',))
>>> choice_field = forms.ChoiceField(widget=forms.RadioSelect, choices=CHOICES)
>>> choice_field.choices
[('1', 'First'), ('2', 'Second')]
>>> choice_field.widget.choices
[('1', 'First'), ('2', 'Second')]
>>> choice_field.widget.choices = ()
>>> choice_field.choices = (('1', 'First and only',),)
>>> choice_field.widget.choices
[('1', 'First and only')]

Widgets which offer a choices attribute can however be used with fields which are not based on choice – such as a
CharField – but it is recommended to use a ChoiceField-based field when the choices are inherent to the model
and not just the representational widget.

Customizing widget instances

When Django renders a widget as HTML, it only renders very minimal markup - Django doesn’t add class names, or
any other widget-specific attributes. This means, for example, that all TextInput widgets will appear the same on
your Web pages.

There are two ways to customize widgets: per widget instance and per widget class.

Styling widget instances

If you want to make one widget instance look different from another, you will need to specify additional attributes at
the time when the widget object is instantiated and assigned to a form field (and perhaps add some rules to your CSS
files).

For example, take the following simple form:

from django import forms

class CommentForm(forms.Form):
name = forms.CharField()
url = forms.URLField()
comment = forms.CharField()

This form will include three default TextInput widgets, with default rendering – no CSS class, no extra attributes.
This means that the input boxes provided for each widget will be rendered exactly the same:

>>> f = CommentForm(auto_id=False)
>>> f.as_table()
<tr><th>Name:</th><td><input type="text" name="name" required /></td></tr>
<tr><th>Url:</th><td><input type="url" name="url" required /></td></tr>
<tr><th>Comment:</th><td><input type="text" name="comment" required /></td></tr>

On a real Web page, you probably don’t want every widget to look the same. You might want a larger input element for
the comment, and you might want the ‘name’ widget to have some special CSS class. It is also possible to specify the
‘type’ attribute to take advantage of the new HTML5 input types. To do this, you use the Widget.attrs argument
when creating the widget:

1060 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

class CommentForm(forms.Form):
name = forms.CharField(widget=forms.TextInput(attrs={'class': 'special'}))
url = forms.URLField()
comment = forms.CharField(widget=forms.TextInput(attrs={'size': '40'}))

Django will then include the extra attributes in the rendered output:

>>> f = CommentForm(auto_id=False)
>>> f.as_table()
<tr><th>Name:</th><td><input type="text" name="name" class="special" required /></td>
→˓</tr>
<tr><th>Url:</th><td><input type="url" name="url" required /></td></tr>
<tr><th>Comment:</th><td><input type="text" name="comment" size="40" required /></td>
→˓</tr>

You can also set the HTML id using attrs. See BoundField.id_for_label for an example.

Styling widget classes

With widgets, it is possible to add assets (css and javascript) and more deeply customize their appearance and
behavior.

In a nutshell, you will need to subclass the widget and either define a “Media” inner class or create a “media”
property.

These methods involve somewhat advanced Python programming and are described in detail in the Form Assets topic
guide.

Base widget classes

Base widget classes Widget and MultiWidget are subclassed by all the built-in widgets and may serve as a
foundation for custom widgets.

Widget

class Widget(attrs=None)
This abstract class cannot be rendered, but provides the basic attribute attrs. You may also implement or
override the render() method on custom widgets.

attrs
A dictionary containing HTML attributes to be set on the rendered widget.

>>> from django import forms
>>> name = forms.TextInput(attrs={'size': 10, 'title': 'Your name',})
>>> name.render('name', 'A name')
'<input title="Your name" type="text" name="name" value="A name" size="10"
→˓required />'

If you assign a value of True or False to an attribute, it will be rendered as an HTML5 boolean attribute:

>>> name = forms.TextInput(attrs={'required': True})
>>> name.render('name', 'A name')
'<input name="name" type="text" value="A name" required />'
>>>

6.12. Forms 1061

Django Documentation, Release 1.10.9.dev20171123183751

>>> name = forms.TextInput(attrs={'required': False})
>>> name.render('name', 'A name')
'<input name="name" type="text" value="A name" />'

supports_microseconds
An attribute that defaults to True. If set to False, the microseconds part of datetime and time
values will be set to 0.

In older versions, this attribute was only defined on the date and time widgets (as False).

format_value(value)
Cleans and returns a value for use in the widget template. value isn’t guaranteed to be valid input,
therefore subclass implementations should program defensively.

In older versions, this method is a private API named _format_value(). The old name will work until
Django 2.0.

id_for_label(self, id_)
Returns the HTML ID attribute of this widget for use by a <label>, given the ID of the field. Returns
None if an ID isn’t available.

This hook is necessary because some widgets have multiple HTML elements and, thus, multiple IDs. In
that case, this method should return an ID value that corresponds to the first ID in the widget’s tags.

render(name, value, attrs=None)
Returns HTML for the widget, as a Unicode string. This method must be implemented by the subclass,
otherwise NotImplementedError will be raised.

The ‘value’ given is not guaranteed to be valid input, therefore subclass implementations should program
defensively.

value_from_datadict(data, files, name)
Given a dictionary of data and this widget’s name, returns the value of this widget. files may con-
tain data coming from request.FILES. Returns None if a value wasn’t provided. Note also that
value_from_datadict may be called more than once during handling of form data, so if you cus-
tomize it and add expensive processing, you should implement some caching mechanism yourself.

value_omitted_from_data(data, files, name)
Given data and files dictionaries and this widget’s name, returns whether or not there’s data or files
for the widget.

The method’s result affects whether or not a field in a model form falls back to its default.

Special cases are CheckboxInput, CheckboxSelectMultiple, and SelectMultiple, which
always return False because an unchecked checkbox and unselected <select multiple> don’t
appear in the data of an HTML form submission, so it’s unknown whether or not the user submitted a
value.

use_required_attribute(initial)
Given a form field’s initial value, returns whether or not the widget can be rendered with the
required HTML attribute. Forms use this method along with Field.required and Form.
use_required_attribute to determine whether or not to display the required attribute for each
field.

By default, returns False for hidden widgets and True otherwise. Special cases
are ClearableFileInput, which returns False when initial is not set, and
CheckboxSelectMultiple, which always returns False because browser validation would
require all checkboxes to be checked instead of at least one.

1062 Chapter 6. API Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.time

Django Documentation, Release 1.10.9.dev20171123183751

Override this method in custom widgets that aren’t compatible with browser validation. For example, a
WSYSIWG text editor widget backed by a hidden textarea element may want to always return False
to avoid browser validation on the hidden field.

MultiWidget

class MultiWidget(widgets, attrs=None)
A widget that is composed of multiple widgets. MultiWidget works hand in hand with the
MultiValueField.

MultiWidget has one required argument:

widgets
An iterable containing the widgets needed.

And one required method:

decompress(value)
This method takes a single “compressed” value from the field and returns a list of “decompressed” values.
The input value can be assumed valid, but not necessarily non-empty.

This method must be implemented by the subclass, and since the value may be empty, the implementation
must be defensive.

The rationale behind “decompression” is that it is necessary to “split” the combined value of the form field
into the values for each widget.

An example of this is how SplitDateTimeWidget turns a datetime value into a list with date and
time split into two separate values:

from django.forms import MultiWidget

class SplitDateTimeWidget(MultiWidget):

...

def decompress(self, value):
if value:

return [value.date(), value.time().replace(microsecond=0)]
return [None, None]

Tip: Note that MultiValueField has a complementary method compress() with the opposite
responsibility - to combine cleaned values of all member fields into one.

Other methods that may be useful to override include:

render(name, value, attrs=None)
Argument value is handled differently in this method from the subclasses of Widget because it has to
figure out how to split a single value for display in multiple widgets.

The value argument used when rendering can be one of two things:

• A list.

• A single value (e.g., a string) that is the “compressed” representation of a list of values.

If value is a list, the output of render() will be a concatenation of rendered child widgets. If value
is not a list, it will first be processed by the method decompress() to create the list and then rendered.

6.12. Forms 1063

https://docs.python.org/3/library/datetime.html#datetime.datetime

Django Documentation, Release 1.10.9.dev20171123183751

When render() executes its HTML rendering, each value in the list is rendered with the corresponding
widget – the first value is rendered in the first widget, the second value is rendered in the second widget,
etc.

Unlike in the single value widgets, method render() need not be implemented in the subclasses.

format_output(rendered_widgets)
Given a list of rendered widgets (as strings), returns a Unicode string representing the HTML for the whole
lot.

This hook allows you to format the HTML design of the widgets any way you’d like.

Here’s an example widget which subclasses MultiWidget to display a date with the day, month, and
year in different select boxes. This widget is intended to be used with a DateField rather than a
MultiValueField, thus we have implemented value_from_datadict():

from datetime import date
from django.forms import widgets

class DateSelectorWidget(widgets.MultiWidget):
def __init__(self, attrs=None):

create choices for days, months, years
example below, the rest snipped for brevity.
years = [(year, year) for year in (2011, 2012, 2013)]
_widgets = (

widgets.Select(attrs=attrs, choices=days),
widgets.Select(attrs=attrs, choices=months),
widgets.Select(attrs=attrs, choices=years),

)
super(DateSelectorWidget, self).__init__(_widgets, attrs)

def decompress(self, value):
if value:

return [value.day, value.month, value.year]
return [None, None, None]

def format_output(self, rendered_widgets):
return ''.join(rendered_widgets)

def value_from_datadict(self, data, files, name):
datelist = [

widget.value_from_datadict(data, files, name + '_%s' % i)
for i, widget in enumerate(self.widgets)]

try:
D = date(

day=int(datelist[0]),
month=int(datelist[1]),
year=int(datelist[2]),

)
except ValueError:

return ''
else:

return str(D)

The constructor creates several Select widgets in a tuple. The super class uses this tuple to setup the widget.

The format_output() method is fairly vanilla here (in fact, it’s the same as what’s been implemented as
the default for MultiWidget), but the idea is that you could add custom HTML between the widgets should
you wish.

1064 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

The required method decompress() breaks up a datetime.date value into the day, month, and year
values corresponding to each widget. Note how the method handles the case where value is None.

The default implementation of value_from_datadict() returns a list of values corresponding to each
Widget. This is appropriate when using a MultiWidget with a MultiValueField, but since we want to
use this widget with a DateField which takes a single value, we have overridden this method to combine the
data of all the subwidgets into a datetime.date. The method extracts data from the POST dictionary and
constructs and validates the date. If it is valid, we return the string, otherwise, we return an empty string which
will cause form.is_valid to return False.

Built-in widgets

Django provides a representation of all the basic HTML widgets, plus some commonly used groups of widgets in the
django.forms.widgets module, including the input of text, various checkboxes and selectors, uploading files,
and handling of multi-valued input.

Widgets handling input of text

These widgets make use of the HTML elements input and textarea.

TextInput

class TextInput
Text input: <input type="text" ...>

NumberInput

class NumberInput
Text input: <input type="number" ...>

Beware that not all browsers support entering localized numbers in number input types. Django itself avoids
using them for fields having their localize property set to True.

EmailInput

class EmailInput
Text input: <input type="email" ...>

URLInput

class URLInput
Text input: <input type="url" ...>

PasswordInput

class PasswordInput
Password input: <input type='password' ...>

Takes one optional argument:

6.12. Forms 1065

Django Documentation, Release 1.10.9.dev20171123183751

render_value
Determines whether the widget will have a value filled in when the form is re-displayed after a validation
error (default is False).

HiddenInput

class HiddenInput
Hidden input: <input type='hidden' ...>

Note that there also is a MultipleHiddenInput widget that encapsulates a set of hidden input elements.

DateInput

class DateInput
Date input as a simple text box: <input type='text' ...>

Takes same arguments as TextInput, with one more optional argument:

format
The format in which this field’s initial value will be displayed.

If no format argument is provided, the default format is the first format found in DATE_INPUT_FORMATS
and respects Format localization.

DateTimeInput

class DateTimeInput
Date/time input as a simple text box: <input type='text' ...>

Takes same arguments as TextInput, with one more optional argument:

format
The format in which this field’s initial value will be displayed.

If no format argument is provided, the default format is the first format found in
DATETIME_INPUT_FORMATS and respects Format localization.

By default, the microseconds part of the time value is always set to 0. If microseconds are required, use a
subclass with the supports_microseconds attribute set to True.

TimeInput

class TimeInput
Time input as a simple text box: <input type='text' ...>

Takes same arguments as TextInput, with one more optional argument:

format
The format in which this field’s initial value will be displayed.

If no format argument is provided, the default format is the first format found in TIME_INPUT_FORMATS
and respects Format localization.

For the treatment of microseconds, see DateTimeInput.

1066 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Textarea

class Textarea
Text area: <textarea>...</textarea>

Selector and checkbox widgets

CheckboxInput

class CheckboxInput
Checkbox: <input type='checkbox' ...>

Takes one optional argument:

check_test
A callable that takes the value of the CheckboxInput and returns True if the checkbox should be
checked for that value.

Select

class Select
Select widget: <select><option ...>...</select>

choices
This attribute is optional when the form field does not have a choices attribute. If it does, it will override
anything you set here when the attribute is updated on the Field.

NullBooleanSelect

class NullBooleanSelect
Select widget with options ‘Unknown’, ‘Yes’ and ‘No’

SelectMultiple

class SelectMultiple
Similar to Select, but allows multiple selection: <select multiple='multiple'>...</select>

RadioSelect

class RadioSelect
Similar to Select, but rendered as a list of radio buttons within tags:

<input type='radio' name='...'>
...

For more granular control over the generated markup, you can loop over the radio buttons in the template.
Assuming a form myform with a field beatles that uses a RadioSelect as its widget:

6.12. Forms 1067

Django Documentation, Release 1.10.9.dev20171123183751

{% for radio in myform.beatles %}
<div class="myradio">

{{ radio }}
</div>
{% endfor %}

This would generate the following HTML:

<div class="myradio">
<label for="id_beatles_0"><input id="id_beatles_0" name="beatles" type="radio

→˓" value="john" required /> John</label>
</div>
<div class="myradio">

<label for="id_beatles_1"><input id="id_beatles_1" name="beatles" type="radio
→˓" value="paul" required /> Paul</label>
</div>
<div class="myradio">

<label for="id_beatles_2"><input id="id_beatles_2" name="beatles" type="radio
→˓" value="george" required /> George</label>
</div>
<div class="myradio">

<label for="id_beatles_3"><input id="id_beatles_3" name="beatles" type="radio
→˓" value="ringo" required /> Ringo</label>
</div>

That included the <label> tags. To get more granular, you can use each radio button’s tag, choice_label
and id_for_label attributes. For example, this template...

{% for radio in myform.beatles %}
<label for="{{ radio.id_for_label }}">

{{ radio.choice_label }}
{{ radio.tag }}

</label>
{% endfor %}

...will result in the following HTML:

<label for="id_beatles_0">
John
<input id="id_beatles_0" name="beatles" type="radio"

→˓value="john" required />
</label>

<label for="id_beatles_1">
Paul
<input id="id_beatles_1" name="beatles" type="radio"

→˓value="paul" required />
</label>

<label for="id_beatles_2">
George
<input id="id_beatles_2" name="beatles" type="radio"

→˓value="george" required />
</label>

<label for="id_beatles_3">
Ringo
<input id="id_beatles_3" name="beatles" type="radio"

→˓value="ringo" required />

1068 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

</label>

If you decide not to loop over the radio buttons – e.g., if your template simply includes {{ myform.beatles
}} – they’ll be output in a with tags, as above.

The outer container receives the id attribute of the widget, if defined, or BoundField.auto_id
otherwise.

When looping over the radio buttons, the label and input tags include for and id attributes, respectively.
Each radio button has an id_for_label attribute to output the element’s ID.

CheckboxSelectMultiple

class CheckboxSelectMultiple
Similar to SelectMultiple, but rendered as a list of check buttons:

<input type='checkbox' name='...' >
...

The outer container receives the id attribute of the widget, if defined, or BoundField.auto_id
otherwise.

Like RadioSelect, you can loop over the individual checkboxes for the widget’s choices. Unlike RadioSelect,
the checkboxes won’t include the requiredHTML attribute if the field is required because browser validation would
require all checkboxes to be checked instead of at least one.

When looping over the checkboxes, the label and input tags include for and id attributes, respectively. Each
checkbox has an id_for_label attribute to output the element’s ID.

File upload widgets

FileInput

class FileInput
File upload input: <input type='file' ...>

ClearableFileInput

class ClearableFileInput
File upload input: <input type='file' ...>, with an additional checkbox input to clear the field’s
value, if the field is not required and has initial data.

Composite widgets

MultipleHiddenInput

class MultipleHiddenInput
Multiple <input type='hidden' ...> widgets.

A widget that handles multiple hidden widgets for fields that have a list of values.

6.12. Forms 1069

Django Documentation, Release 1.10.9.dev20171123183751

choices
This attribute is optional when the form field does not have a choices attribute. If it does, it will override
anything you set here when the attribute is updated on the Field.

SplitDateTimeWidget

class SplitDateTimeWidget
Wrapper (using MultiWidget) around two widgets: DateInput for the date, and TimeInput for the
time. Must be used with SplitDateTimeField rather than DateTimeField.

SplitDateTimeWidget has two optional attributes:

date_format
Similar to DateInput.format

time_format
Similar to TimeInput.format

SplitHiddenDateTimeWidget

class SplitHiddenDateTimeWidget
Similar to SplitDateTimeWidget, but uses HiddenInput for both date and time.

SelectDateWidget

class SelectDateWidget
Wrapper around three Select widgets: one each for month, day, and year.

Takes several optional arguments:

years
An optional list/tuple of years to use in the “year” select box. The default is a list containing the current
year and the next 9 years.

months
An optional dict of months to use in the “months” select box.

The keys of the dict correspond to the month number (1-indexed) and the values are the displayed months:

MONTHS = {
1:_('jan'), 2:_('feb'), 3:_('mar'), 4:_('apr'),
5:_('may'), 6:_('jun'), 7:_('jul'), 8:_('aug'),
9:_('sep'), 10:_('oct'), 11:_('nov'), 12:_('dec')

}

empty_label
If the DateField is not required, SelectDateWidget will have an empty choice at the top of the
list (which is --- by default). You can change the text of this label with the empty_label attribute.
empty_label can be a string, list, or tuple. When a string is used, all select boxes will each
have an empty choice with this label. If empty_label is a list or tuple of 3 string elements, the
select boxes will have their own custom label. The labels should be in this order ('year_label',
'month_label', 'day_label').

1070 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

A custom empty label with string
field1 = forms.DateField(widget=SelectDateWidget(empty_label="Nothing"))

A custom empty label with tuple
field1 = forms.DateField(

widget=SelectDateWidget(
empty_label=("Choose Year", "Choose Month", "Choose Day"),

),
)

This widget used to be located in the django.forms.extras.widgets package. It is now defined in
django.forms.widgets and like the other widgets it can be imported directly from django.forms.

6.12.6 Form and field validation

Form validation happens when the data is cleaned. If you want to customize this process, there are various places to
make changes, each one serving a different purpose. Three types of cleaning methods are run during form processing.
These are normally executed when you call the is_valid() method on a form. There are other things that can also
trigger cleaning and validation (accessing the errors attribute or calling full_clean() directly), but normally
they won’t be needed.

In general, any cleaning method can raise ValidationError if there is a problem with the data it is processing,
passing the relevant information to the ValidationError constructor. See below for the best practice in raising
ValidationError. If no ValidationError is raised, the method should return the cleaned (normalized) data
as a Python object.

Most validation can be done using validators - simple helpers that can be reused easily. Validators are simple functions
(or callables) that take a single argument and raise ValidationError on invalid input. Validators are run after the
field’s to_python and validate methods have been called.

Validation of a form is split into several steps, which can be customized or overridden:

• The to_python() method on a Field is the first step in every validation. It coerces the value to a correct
datatype and raises ValidationError if that is not possible. This method accepts the raw value from the
widget and returns the converted value. For example, a FloatField will turn the data into a Python float
or raise a ValidationError.

• The validate() method on a Field handles field-specific validation that is not suitable for a validator. It
takes a value that has been coerced to a correct datatype and raises ValidationError on any error. This
method does not return anything and shouldn’t alter the value. You should override it to handle validation logic
that you can’t or don’t want to put in a validator.

• The run_validators() method on a Field runs all of the field’s validators and aggregates all the errors
into a single ValidationError. You shouldn’t need to override this method.

• The clean() method on a Field subclass is responsible for running to_python(), validate(), and
run_validators() in the correct order and propagating their errors. If, at any time, any of the methods
raise ValidationError, the validation stops and that error is raised. This method returns the clean data,
which is then inserted into the cleaned_data dictionary of the form.

• The clean_<fieldname>() method is called on a form subclass – where <fieldname> is replaced with
the name of the form field attribute. This method does any cleaning that is specific to that particular attribute,
unrelated to the type of field that it is. This method is not passed any parameters. You will need to look up
the value of the field in self.cleaned_data and remember that it will be a Python object at this point, not
the original string submitted in the form (it will be in cleaned_data because the general field clean()
method, above, has already cleaned the data once).

6.12. Forms 1071

Django Documentation, Release 1.10.9.dev20171123183751

For example, if you wanted to validate that the contents of a CharField called serialnumber was unique,
clean_serialnumber() would be the right place to do this. You don’t need a specific field (it’s just a
CharField), but you want a formfield-specific piece of validation and, possibly, cleaning/normalizing the
data.

The return value of this method replaces the existing value in cleaned_data, so it must be the field’s value
from cleaned_data (even if this method didn’t change it) or a new cleaned value.

• The form subclass’s clean() method can perform validation that requires access to multiple form fields. This
is where you might put in checks such as “if field A is supplied, field B must contain a valid email address”. This
method can return a completely different dictionary if it wishes, which will be used as the cleaned_data.

Since the field validation methods have been run by the time clean() is called, you also have access to the
form’s errors attribute which contains all the errors raised by cleaning of individual fields.

Note that any errors raised by your Form.clean() override will not be associated with any field in particular.
They go into a special “field” (called __all__), which you can access via the non_field_errors()
method if you need to. If you want to attach errors to a specific field in the form, you need to call
add_error().

Also note that there are special considerations when overriding the clean() method of a ModelForm sub-
class. (see the ModelForm documentation for more information)

These methods are run in the order given above, one field at a time. That is, for each field in the form (in
the order they are declared in the form definition), the Field.clean() method (or its override) is run, then
clean_<fieldname>(). Finally, once those two methods are run for every field, the Form.clean() method,
or its override, is executed whether or not the previous methods have raised errors.

Examples of each of these methods are provided below.

As mentioned, any of these methods can raise a ValidationError. For any field, if the Field.clean()method
raises a ValidationError, any field-specific cleaning method is not called. However, the cleaning methods for
all remaining fields are still executed.

Raising ValidationError

In order to make error messages flexible and easy to override, consider the following guidelines:

• Provide a descriptive error code to the constructor:

Good
ValidationError(_('Invalid value'), code='invalid')

Bad
ValidationError(_('Invalid value'))

• Don’t coerce variables into the message; use placeholders and the params argument of the constructor:

Good
ValidationError(

_('Invalid value: %(value)s'),
params={'value': '42'},

)

Bad
ValidationError(_('Invalid value: %s') % value)

• Use mapping keys instead of positional formatting. This enables putting the variables in any order or omitting
them altogether when rewriting the message:

1072 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Good
ValidationError(

_('Invalid value: %(value)s'),
params={'value': '42'},

)

Bad
ValidationError(

_('Invalid value: %s'),
params=('42',),

)

• Wrap the message with gettext to enable translation:

Good
ValidationError(_('Invalid value'))

Bad
ValidationError('Invalid value')

Putting it all together:

raise ValidationError(
_('Invalid value: %(value)s'),
code='invalid',
params={'value': '42'},

)

Following these guidelines is particularly necessary if you write reusable forms, form fields, and model fields.

While not recommended, if you are at the end of the validation chain (i.e. your form clean() method) and you know
you will never need to override your error message you can still opt for the less verbose:

ValidationError(_('Invalid value: %s') % value)

The Form.errors.as_data() and Form.errors.as_json() methods greatly benefit from fully featured
ValidationErrors (with a code name and a params dictionary).

Raising multiple errors

If you detect multiple errors during a cleaning method and wish to signal all of them to the form submitter, it is possible
to pass a list of errors to the ValidationError constructor.

As above, it is recommended to pass a list of ValidationError instances with codes and params but a list of
strings will also work:

Good
raise ValidationError([

ValidationError(_('Error 1'), code='error1'),
ValidationError(_('Error 2'), code='error2'),

])

Bad
raise ValidationError([

_('Error 1'),
_('Error 2'),

])

6.12. Forms 1073

Django Documentation, Release 1.10.9.dev20171123183751

Using validation in practice

The previous sections explained how validation works in general for forms. Since it can sometimes be easier to put
things into place by seeing each feature in use, here are a series of small examples that use each of the previous
features.

Using validators

Django’s form (and model) fields support use of simple utility functions and classes known as validators. A validator
is merely a callable object or function that takes a value and simply returns nothing if the value is valid or raises a
ValidationError if not. These can be passed to a field’s constructor, via the field’s validators argument, or
defined on the Field class itself with the default_validators attribute.

Simple validators can be used to validate values inside the field, let’s have a look at Django’s SlugField:

from django.forms import CharField
from django.core import validators

class SlugField(CharField):
default_validators = [validators.validate_slug]

As you can see, SlugField is just a CharField with a customized validator that validates that submitted text
obeys to some character rules. This can also be done on field definition so:

slug = forms.SlugField()

is equivalent to:

slug = forms.CharField(validators=[validators.validate_slug])

Common cases such as validating against an email or a regular expression can be handled using existing validator
classes available in Django. For example, validators.validate_slug is an instance of a RegexValidator
constructed with the first argument being the pattern: ^[-a-zA-Z0-9_]+$. See the section on writing validators
to see a list of what is already available and for an example of how to write a validator.

Form field default cleaning

Let’s first create a custom form field that validates its input is a string containing comma-separated email addresses.
The full class looks like this:

from django import forms
from django.core.validators import validate_email

class MultiEmailField(forms.Field):
def to_python(self, value):

"""Normalize data to a list of strings."""
Return an empty list if no input was given.
if not value:

return []
return value.split(',')

def validate(self, value):
"""Check if value consists only of valid emails."""
Use the parent's handling of required fields, etc.
super(MultiEmailField, self).validate(value)

1074 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

for email in value:
validate_email(email)

Every form that uses this field will have these methods run before anything else can be done with the field’s data. This
is cleaning that is specific to this type of field, regardless of how it is subsequently used.

Let’s create a simple ContactForm to demonstrate how you’d use this field:

class ContactForm(forms.Form):
subject = forms.CharField(max_length=100)
message = forms.CharField()
sender = forms.EmailField()
recipients = MultiEmailField()
cc_myself = forms.BooleanField(required=False)

Simply use MultiEmailField like any other form field. When the is_valid() method is called on the form,
the MultiEmailField.clean() method will be run as part of the cleaning process and it will, in turn, call the
custom to_python() and validate() methods.

Cleaning a specific field attribute

Continuing on from the previous example, suppose that in our ContactForm, we want to make sure that the
recipients field always contains the address "fred@example.com". This is validation that is specific to
our form, so we don’t want to put it into the general MultiEmailField class. Instead, we write a cleaning method
that operates on the recipients field, like so:

from django import forms

class ContactForm(forms.Form):
Everything as before.
...

def clean_recipients(self):
data = self.cleaned_data['recipients']
if "fred@example.com" not in data:

raise forms.ValidationError("You have forgotten about Fred!")

Always return a value to use as the new cleaned data, even if
this method didn't change it.
return data

Cleaning and validating fields that depend on each other

Suppose we add another requirement to our contact form: if the cc_myself field is True, the subject must
contain the word "help". We are performing validation on more than one field at a time, so the form’s clean()
method is a good spot to do this. Notice that we are talking about the clean() method on the form here, whereas
earlier we were writing a clean() method on a field. It’s important to keep the field and form difference clear when
working out where to validate things. Fields are single data points, forms are a collection of fields.

By the time the form’s clean() method is called, all the individual field clean methods will have been run (the
previous two sections), so self.cleaned_data will be populated with any data that has survived so far. So you
also need to remember to allow for the fact that the fields you are wanting to validate might not have survived the
initial individual field checks.

6.12. Forms 1075

Django Documentation, Release 1.10.9.dev20171123183751

There are two ways to report any errors from this step. Probably the most common method is to display the error at
the top of the form. To create such an error, you can raise a ValidationError from the clean() method. For
example:

from django import forms

class ContactForm(forms.Form):
Everything as before.
...

def clean(self):
cleaned_data = super(ContactForm, self).clean()
cc_myself = cleaned_data.get("cc_myself")
subject = cleaned_data.get("subject")

if cc_myself and subject:
Only do something if both fields are valid so far.
if "help" not in subject:

raise forms.ValidationError(
"Did not send for 'help' in the subject despite "
"CC'ing yourself."

)

In this code, if the validation error is raised, the form will display an error message at the top of the form (normally)
describing the problem.

The call to super(ContactForm, self).clean() in the example code ensures that any validation logic in
parent classes is maintained. If your form inherits another that doesn’t return a cleaned_data dictionary in its
clean() method (doing so is optional), then don’t assign cleaned_data to the result of the super() call and
use self.cleaned_data instead:

def clean(self):
super(ContactForm, self).clean()
cc_myself = self.cleaned_data.get("cc_myself")
...

The second approach for reporting validation errors might involve assigning the error message to one of the fields. In
this case, let’s assign an error message to both the “subject” and “cc_myself” rows in the form display. Be careful
when doing this in practice, since it can lead to confusing form output. We’re showing what is possible here and
leaving it up to you and your designers to work out what works effectively in your particular situation. Our new code
(replacing the previous sample) looks like this:

from django import forms

class ContactForm(forms.Form):
Everything as before.
...

def clean(self):
cleaned_data = super(ContactForm, self).clean()
cc_myself = cleaned_data.get("cc_myself")
subject = cleaned_data.get("subject")

if cc_myself and subject and "help" not in subject:
msg = "Must put 'help' in subject when cc'ing yourself."
self.add_error('cc_myself', msg)
self.add_error('subject', msg)

1076 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

The second argument of add_error() can be a simple string, or preferably an instance of ValidationError.
See Raising ValidationError for more details. Note that add_error() automatically removes the field from
cleaned_data.

6.13 Middleware

This document explains all middleware components that come with Django. For information on how to use them and
how to write your own middleware, see the middleware usage guide.

6.13.1 Available middleware

Cache middleware

class UpdateCacheMiddleware

class FetchFromCacheMiddleware

Enable the site-wide cache. If these are enabled, each Django-powered page will be cached for as long as the
CACHE_MIDDLEWARE_SECONDS setting defines. See the cache documentation.

“Common” middleware

class CommonMiddleware

Adds a few conveniences for perfectionists:

• Forbids access to user agents in the DISALLOWED_USER_AGENTS setting, which should be a list of compiled
regular expression objects.

• Performs URL rewriting based on the APPEND_SLASH and PREPEND_WWW settings.

If APPEND_SLASH is True and the initial URL doesn’t end with a slash, and it is not found in the URLconf,
then a new URL is formed by appending a slash at the end. If this new URL is found in the URLconf, then
Django redirects the request to this new URL. Otherwise, the initial URL is processed as usual.

For example, foo.com/bar will be redirected to foo.com/bar/ if you don’t have a valid URL pattern for
foo.com/bar but do have a valid pattern for foo.com/bar/.

If PREPEND_WWW is True, URLs that lack a leading “www.” will be redirected to the same URL with a
leading “www.”

Both of these options are meant to normalize URLs. The philosophy is that each URL should exist in one,
and only one, place. Technically a URL foo.com/bar is distinct from foo.com/bar/ – a search-engine
indexer would treat them as separate URLs – so it’s best practice to normalize URLs.

• Handles ETags based on the USE_ETAGS setting. If USE_ETAGS is set to True, Django will calculate an ETag
for each request by MD5-hashing the page content, and it’ll take care of sending Not Modified responses,
if appropriate.

CommonMiddleware.response_redirect_class

Defaults to HttpResponsePermanentRedirect. Subclass CommonMiddleware and override the attribute
to customize the redirects issued by the middleware.

class BrokenLinkEmailsMiddleware

• Sends broken link notification emails to MANAGERS (see Error reporting).

6.13. Middleware 1077

Django Documentation, Release 1.10.9.dev20171123183751

Exception middleware

class ExceptionMiddleware

Catches exceptions raised during the request/response cycle and returns the appropriate response.

• Http404 is processed by handler404 (or a more friendly debug page if DEBUG=True).

• PermissionDenied is processed by handler403.

• MultiPartParserError is processed by handler400.

• SuspiciousOperation is processed by handler400 (or a more friendly debug page if DEBUG=True).

• Any other exception is processed by handler500 (or a more friendly debug page if DEBUG=True).

Django uses this middleware regardless of whether or not you include it in MIDDLEWARE, however, you may
want to subclass if your own middleware needs to transform any of these exceptions into the appropriate responses.
LocaleMiddleware does this, for example.

GZip middleware

class GZipMiddleware

Warning: Security researchers recently revealed that when compression techniques (including
GZipMiddleware) are used on a website, the site may become exposed to a number of possible attacks. Be-
fore using GZipMiddleware on your site, you should consider very carefully whether you are subject to these
attacks. If you’re in any doubt about whether you’re affected, you should avoid using GZipMiddleware. For
more details, see the the BREACH paper (PDF) and breachattack.com.

Compresses content for browsers that understand GZip compression (all modern browsers).

This middleware should be placed before any other middleware that need to read or write the response body so that
compression happens afterward.

It will NOT compress content if any of the following are true:

• The content body is less than 200 bytes long.

• The response has already set the Content-Encoding header.

• The request (the browser) hasn’t sent an Accept-Encoding header containing gzip.

You can apply GZip compression to individual views using the gzip_page() decorator.

In older versions, Django’s CSRF protection mechanism was vulnerable to BREACH attacks when compression was
used. This is no longer the case, but you should still take care not to compromise your own secrets this way.

Conditional GET middleware

class ConditionalGetMiddleware

Handles conditional GET operations. If the response has a ETag or Last-Modified header, and the request has
If-None-Match or If-Modified-Since, the response is replaced by an HttpResponseNotModified.

Also sets the Date and Content-Length response-headers.

1078 Chapter 6. API Reference

http://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf
http://breachattack.com

Django Documentation, Release 1.10.9.dev20171123183751

Locale middleware

class LocaleMiddleware

Enables language selection based on data from the request. It customizes content for each user. See the international-
ization documentation.

LocaleMiddleware.response_redirect_class

Defaults to HttpResponseRedirect. Subclass LocaleMiddleware and override the attribute to customize
the redirects issued by the middleware.

Message middleware

class MessageMiddleware

Enables cookie- and session-based message support. See the messages documentation.

Security middleware

Warning: If your deployment situation allows, it’s usually a good idea to have your front-end Web server perform
the functionality provided by the SecurityMiddleware. That way, if there are requests that aren’t served by
Django (such as static media or user-uploaded files), they will have the same protections as requests to your Django
application.

class SecurityMiddleware

The django.middleware.security.SecurityMiddleware provides several security enhancements to the
request/response cycle. Each one can be independently enabled or disabled with a setting.

• SECURE_BROWSER_XSS_FILTER

• SECURE_CONTENT_TYPE_NOSNIFF

• SECURE_HSTS_INCLUDE_SUBDOMAINS

• SECURE_HSTS_SECONDS

• SECURE_REDIRECT_EXEMPT

• SECURE_SSL_HOST

• SECURE_SSL_REDIRECT

HTTP Strict Transport Security

For sites that should only be accessed over HTTPS, you can instruct modern browsers to refuse to connect to your
domain name via an insecure connection (for a given period of time) by setting the “Strict-Transport-Security” header.
This reduces your exposure to some SSL-stripping man-in-the-middle (MITM) attacks.

SecurityMiddleware will set this header for you on all HTTPS responses if you set the
SECURE_HSTS_SECONDS setting to a non-zero integer value.

When enabling HSTS, it’s a good idea to first use a small value for testing, for example, SECURE_HSTS_SECONDS
= 3600 for one hour. Each time a Web browser sees the HSTS header from your site, it will refuse to communicate
non-securely (using HTTP) with your domain for the given period of time. Once you confirm that all assets are served

6.13. Middleware 1079

https://en.wikipedia.org/wiki/Strict_Transport_Security

Django Documentation, Release 1.10.9.dev20171123183751

securely on your site (i.e. HSTS didn’t break anything), it’s a good idea to increase this value so that infrequent visitors
will be protected (31536000 seconds, i.e. 1 year, is common).

Additionally, if you set the SECURE_HSTS_INCLUDE_SUBDOMAINS setting to True, SecurityMiddleware
will add the includeSubDomains directive to the Strict-Transport-Security header. This is recom-
mended (assuming all subdomains are served exclusively using HTTPS), otherwise your site may still be vulnerable
via an insecure connection to a subdomain.

Warning: The HSTS policy applies to your entire domain, not just the URL of the response that you set the
header on. Therefore, you should only use it if your entire domain is served via HTTPS only.

Browsers properly respecting the HSTS header will refuse to allow users to bypass warnings and connect to a site
with an expired, self-signed, or otherwise invalid SSL certificate. If you use HSTS, make sure your certificates are
in good shape and stay that way!

Note: If you are deployed behind a load-balancer or reverse-proxy server, and the
Strict-Transport-Security header is not being added to your responses, it may be because Django
doesn’t realize that it’s on a secure connection; you may need to set the SECURE_PROXY_SSL_HEADER setting.

X-Content-Type-Options: nosniff

Some browsers will try to guess the content types of the assets that they fetch, overriding the Content-Type header.
While this can help display sites with improperly configured servers, it can also pose a security risk.

If your site serves user-uploaded files, a malicious user could upload a specially-crafted file that would be interpreted
as HTML or JavaScript by the browser when you expected it to be something harmless.

To learn more about this header and how the browser treats it, you can read about it on the IE Security Blog.

To prevent the browser from guessing the content type and force it to always use the type provided
in the Content-Type header, you can pass the X-Content-Type-Options: nosniff header.
SecurityMiddleware will do this for all responses if the SECURE_CONTENT_TYPE_NOSNIFF setting is
True.

Note that in most deployment situations where Django isn’t involved in serving user-uploaded files, this setting won’t
help you. For example, if your MEDIA_URL is served directly by your front-end Web server (nginx, Apache, etc.)
then you’d want to set this header there. On the other hand, if you are using Django to do something like require
authorization in order to download files and you cannot set the header using your Web server, this setting will be
useful.

X-XSS-Protection: 1; mode=block

Some browsers have the ability to block content that appears to be an XSS attack. They work by looking for JavaScript
content in the GET or POST parameters of a page. If the JavaScript is replayed in the server’s response, the page is
blocked from rendering and an error page is shown instead.

The X-XSS-Protection header is used to control the operation of the XSS filter.

To enable the XSS filter in the browser, and force it to always block suspected XSS attacks, you can pass the
X-XSS-Protection: 1; mode=block header. SecurityMiddleware will do this for all responses if
the SECURE_BROWSER_XSS_FILTER setting is True.

1080 Chapter 6. API Reference

http://blogs.msdn.com/b/ie/archive/2008/09/02/ie8-security-part-vi-beta-2-update.aspx
https://en.wikipedia.org/wiki/Cross-site_scripting
http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx

Django Documentation, Release 1.10.9.dev20171123183751

Warning: The browser XSS filter is a useful defense measure, but must not be relied upon exclusively. It cannot
detect all XSS attacks and not all browsers support the header. Ensure you are still validating and sanitizing all
input to prevent XSS attacks.

SSL Redirect

If your site offers both HTTP and HTTPS connections, most users will end up with an unsecured connection by default.
For best security, you should redirect all HTTP connections to HTTPS.

If you set the SECURE_SSL_REDIRECT setting to True, SecurityMiddleware will permanently (HTTP 301)
redirect all HTTP connections to HTTPS.

Note: For performance reasons, it’s preferable to do these redirects outside of Django, in a front-end load balancer or
reverse-proxy server such as nginx. SECURE_SSL_REDIRECT is intended for the deployment situations where this
isn’t an option.

If the SECURE_SSL_HOST setting has a value, all redirects will be sent to that host instead of the originally-requested
host.

If there are a few pages on your site that should be available over HTTP, and not redirected to HTTPS, you can list
regular expressions to match those URLs in the SECURE_REDIRECT_EXEMPT setting.

Note: If you are deployed behind a load-balancer or reverse-proxy server and Django can’t seem to tell when a
request actually is already secure, you may need to set the SECURE_PROXY_SSL_HEADER setting.

Session middleware

class SessionMiddleware

Enables session support. See the session documentation.

Site middleware

class CurrentSiteMiddleware

Adds the site attribute representing the current site to every incoming HttpRequest object. See the sites docu-
mentation.

Authentication middleware

class AuthenticationMiddleware

Adds the user attribute, representing the currently-logged-in user, to every incoming HttpRequest object. See
Authentication in Web requests.

class RemoteUserMiddleware

Middleware for utilizing Web server provided authentication. See Authentication using REMOTE_USER for usage
details.

class PersistentRemoteUserMiddleware

6.13. Middleware 1081

http://nginx.org

Django Documentation, Release 1.10.9.dev20171123183751

Middleware for utilizing Web server provided authentication when enabled only on the login page. See Using RE-
MOTE_USER on login pages only for usage details.

CSRF protection middleware

class CsrfViewMiddleware

Adds protection against Cross Site Request Forgeries by adding hidden form fields to POST forms and checking
requests for the correct value. See the Cross Site Request Forgery protection documentation.

X-Frame-Options middleware

class XFrameOptionsMiddleware

Simple clickjacking protection via the X-Frame-Options header.

6.13.2 Middleware ordering

Here are some hints about the ordering of various Django middleware classes:

1. SecurityMiddleware

It should go near the top of the list if you’re going to turn on the SSL redirect as that avoids running through a
bunch of other unnecessary middleware.

2. UpdateCacheMiddleware

Before those that modify the Vary header (SessionMiddleware, GZipMiddleware,
LocaleMiddleware).

3. GZipMiddleware

Before any middleware that may change or use the response body.

After UpdateCacheMiddleware: Modifies Vary header.

4. ConditionalGetMiddleware

Before CommonMiddleware: uses its ETag header when USE_ETAGS = True.

5. SessionMiddleware

After UpdateCacheMiddleware: Modifies Vary header.

6. LocaleMiddleware

One of the topmost, after SessionMiddleware (uses session data) and UpdateCacheMiddleware
(modifies Vary header).

7. CommonMiddleware

Before any middleware that may change the response (it calculates ETags).

After GZipMiddleware so it won’t calculate an ETag header on gzipped contents.

Close to the top: it redirects when APPEND_SLASH or PREPEND_WWW are set to True.

8. CsrfViewMiddleware

Before any view middleware that assumes that CSRF attacks have been dealt with.

1082 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

9. AuthenticationMiddleware

After SessionMiddleware: uses session storage.

10. MessageMiddleware

After SessionMiddleware: can use session-based storage.

11. FetchFromCacheMiddleware

After any middleware that modifies the Vary header: that header is used to pick a value for the cache hash-key.

12. FlatpageFallbackMiddleware

Should be near the bottom as it’s a last-resort type of middleware.

13. RedirectFallbackMiddleware

Should be near the bottom as it’s a last-resort type of middleware.

6.14 Migration Operations

Migration files are composed of one or more Operations, objects that declaratively record what the migration
should do to your database.

Django also uses these Operation objects to work out what your models looked like historically, and to calculate
what changes you’ve made to your models since the last migration so it can automatically write your migrations;
that’s why they’re declarative, as it means Django can easily load them all into memory and run through them without
touching the database to work out what your project should look like.

There are also more specialized Operation objects which are for things like data migrations and for advanced
manual database manipulation. You can also write your own Operation classes if you want to encapsulate a custom
change you commonly make.

If you need an empty migration file to write your own Operation objects into, just use python manage.py
makemigrations --empty yourappname, but be aware that manually adding schema-altering operations can
confuse the migration autodetector and make resulting runs of makemigrations output incorrect code.

All of the core Django operations are available from the django.db.migrations.operations module.

For introductory material, see the migrations topic guide.

6.14.1 Schema Operations

CreateModel

class CreateModel(name, fields, options=None, bases=None, managers=None)

Creates a new model in the project history and a corresponding table in the database to match it.

name is the model name, as would be written in the models.py file.

fields is a list of 2-tuples of (field_name, field_instance). The field instance should be an unbound
field (so just models.CharField(...), rather than a field taken from another model).

options is an optional dictionary of values from the model’s Meta class.

bases is an optional list of other classes to have this model inherit from; it can contain both class objects as well
as strings in the format "appname.ModelName" if you want to depend on another model (so you inherit from the
historical version). If it’s not supplied, it defaults to just inheriting from the standard models.Model.

6.14. Migration Operations 1083

Django Documentation, Release 1.10.9.dev20171123183751

managers takes a list of 2-tuples of (manager_name, manager_instance). The first manager in the list
will be the default manager for this model during migrations.

DeleteModel

class DeleteModel(name)

Deletes the model from the project history and its table from the database.

RenameModel

class RenameModel(old_name, new_name)

Renames the model from an old name to a new one.

You may have to manually add this if you change the model’s name and quite a few of its fields at once; to the
autodetector, this will look like you deleted a model with the old name and added a new one with a different name,
and the migration it creates will lose any data in the old table.

AlterModelTable

class AlterModelTable(name, table)

Changes the model’s table name (the db_table option on the Meta subclass).

AlterUniqueTogether

class AlterUniqueTogether(name, unique_together)

Changes the model’s set of unique constraints (the unique_together option on the Meta subclass).

AlterIndexTogether

class AlterIndexTogether(name, index_together)

Changes the model’s set of custom indexes (the index_together option on the Meta subclass).

AlterOrderWithRespectTo

class AlterOrderWithRespectTo(name, order_with_respect_to)

Makes or deletes the _order column needed for the order_with_respect_to option on the Meta subclass.

AlterModelOptions

class AlterModelOptions(name, options)

Stores changes to miscellaneous model options (settings on a model’s Meta) like permissions and
verbose_name. Does not affect the database, but persists these changes for RunPython instances to use.
options should be a dictionary mapping option names to values.

1084 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

AlterModelManagers

class AlterModelManagers(name, managers)

Alters the managers that are available during migrations.

AddField

class AddField(model_name, name, field, preserve_default=True)

Adds a field to a model. model_name is the model’s name, name is the field’s name, and field is an un-
bound Field instance (the thing you would put in the field declaration in models.py - for example, models.
IntegerField(null=True).

The preserve_default argument indicates whether the field’s default value is permanent and should be baked
into the project state (True), or if it is temporary and just for this migration (False) - usually because the migration
is adding a non-nullable field to a table and needs a default value to put into existing rows. It does not affect the
behavior of setting defaults in the database directly - Django never sets database defaults and always applies them in
the Django ORM code.

RemoveField

class RemoveField(model_name, name)

Removes a field from a model.

Bear in mind that when reversed, this is actually adding a field to a model. The operation is reversible (apart from any
data loss, which of course is irreversible) if the field is nullable or if it has a default value that can be used to populate
the recreated column. If the field is not nullable and does not have a default value, the operation is irreversible.

AlterField

class AlterField(model_name, name, field, preserve_default=True)

Alters a field’s definition, including changes to its type, null, unique, db_column and other field attributes.

The preserve_default argument indicates whether the field’s default value is permanent and should be baked
into the project state (True), or if it is temporary and just for this migration (False) - usually because the migration
is altering a nullable field to a non-nullable one and needs a default value to put into existing rows. It does not affect
the behavior of setting defaults in the database directly - Django never sets database defaults and always applies them
in the Django ORM code.

Note that not all changes are possible on all databases - for example, you cannot change a text-type field like models.
TextField() into a number-type field like models.IntegerField() on most databases.

RenameField

class RenameField(model_name, old_name, new_name)

Changes a field’s name (and, unless db_column is set, its column name).

6.14. Migration Operations 1085

Django Documentation, Release 1.10.9.dev20171123183751

6.14.2 Special Operations

RunSQL

class RunSQL(sql, reverse_sql=None, state_operations=None, hints=None, elidable=False)

Allows running of arbitrary SQL on the database - useful for more advanced features of database backends that Django
doesn’t support directly, like partial indexes.

sql, and reverse_sql if provided, should be strings of SQL to run on the database. On most database backends
(all but PostgreSQL), Django will split the SQL into individual statements prior to executing them. This requires
installing the sqlparse Python library.

You can also pass a list of strings or 2-tuples. The latter is used for passing queries and parameters in the same way as
cursor.execute(). These three operations are equivalent:

migrations.RunSQL("INSERT INTO musician (name) VALUES ('Reinhardt');")
migrations.RunSQL([("INSERT INTO musician (name) VALUES ('Reinhardt');", None)])
migrations.RunSQL([("INSERT INTO musician (name) VALUES (%s);", ['Reinhardt'])])

If you want to include literal percent signs in the query, you have to double them if you are passing parameters.

The reverse_sql queries are executed when the migration is unapplied, so you can reverse the changes done in
the forwards queries:

migrations.RunSQL(
[("INSERT INTO musician (name) VALUES (%s);", ['Reinhardt'])],
[("DELETE FROM musician where name=%s;", ['Reinhardt'])],

)

The state_operations argument is so you can supply operations that are equivalent to the SQL in terms of
project state; for example, if you are manually creating a column, you should pass in a list containing an AddField
operation here so that the autodetector still has an up-to-date state of the model (otherwise, when you next run
makemigrations, it won’t see any operation that adds that field and so will try to run it again). For example:

migrations.RunSQL(
"ALTER TABLE musician ADD COLUMN name varchar(255) NOT NULL;",
state_operations=[

migrations.AddField(
'musician',
'name',
models.CharField(max_length=255),

),
],

)

The optional hints argument will be passed as **hints to the allow_migrate() method of database routers
to assist them in making routing decisions. See Hints for more details on database hints.

The optional elidable argument determines whether or not the operation will be removed (elided) when squashing
migrations.

RunSQL.noop
Pass the RunSQL.noop attribute to sql or reverse_sql when you want the operation not to do anything
in the given direction. This is especially useful in making the operation reversible.

The elidable argument was added.

1086 Chapter 6. API Reference

https://pypi.python.org/pypi/sqlparse

Django Documentation, Release 1.10.9.dev20171123183751

RunPython

class RunPython(code, reverse_code=None, atomic=None, hints=None, elidable=False)

Runs custom Python code in a historical context. code (and reverse_code if supplied) should be callable objects
that accept two arguments; the first is an instance of django.apps.registry.Apps containing historical models
that match the operation’s place in the project history, and the second is an instance of SchemaEditor.

The reverse_code argument is called when unapplying migrations. This callable should undo what is done in the
code callable so that the migration is reversible.

The optional hints argument will be passed as **hints to the allow_migrate() method of database routers
to assist them in making a routing decision. See Hints for more details on database hints.

The optional elidable argument determines whether or not the operation will be removed (elided) when squashing
migrations.

You are advised to write the code as a separate function above the Migration class in the migration file, and just
pass it to RunPython. Here’s an example of using RunPython to create some initial objects on a Country model:

-*- coding: utf-8 -*-
from __future__ import unicode_literals

from django.db import migrations, models

def forwards_func(apps, schema_editor):
We get the model from the versioned app registry;
if we directly import it, it'll be the wrong version
Country = apps.get_model("myapp", "Country")
db_alias = schema_editor.connection.alias
Country.objects.using(db_alias).bulk_create([

Country(name="USA", code="us"),
Country(name="France", code="fr"),

])

def reverse_func(apps, schema_editor):
forwards_func() creates two Country instances,
so reverse_func() should delete them.
Country = apps.get_model("myapp", "Country")
db_alias = schema_editor.connection.alias
Country.objects.using(db_alias).filter(name="USA", code="us").delete()
Country.objects.using(db_alias).filter(name="France", code="fr").delete()

class Migration(migrations.Migration):

dependencies = []

operations = [
migrations.RunPython(forwards_func, reverse_func),

]

This is generally the operation you would use to create data migrations, run custom data updates and alterations, and
anything else you need access to an ORM and/or Python code for.

If you’re upgrading from South, this is basically the South pattern as an operation - one or two methods for for-
wards and backwards, with an ORM and schema operations available. Most of the time, you should be able
to translate the orm.Model or orm["appname", "Model"] references from South directly into apps.
get_model("appname", "Model") references here and leave most of the rest of the code unchanged for data
migrations. However, apps will only have references to models in the current app unless migrations in other apps are
added to the migration’s dependencies.

6.14. Migration Operations 1087

Django Documentation, Release 1.10.9.dev20171123183751

Much like RunSQL, ensure that if you change schema inside here you’re either doing it outside the scope of the Django
model system (e.g. triggers) or that you use SeparateDatabaseAndState to add in operations that will reflect
your changes to the model state - otherwise, the versioned ORM and the autodetector will stop working correctly.

By default, RunPython will run its contents inside a transaction on databases that do not support DDL transac-
tions (for example, MySQL and Oracle). This should be safe, but may cause a crash if you attempt to use the
schema_editor provided on these backends; in this case, pass atomic=False to the RunPython operation.

On databases that do support DDL transactions (SQLite and PostgreSQL), RunPython operations do not have
any transactions automatically added besides the transactions created for each migration. Thus, on PostgreSQL,
for example, you should avoid combining schema changes and RunPython operations in the same migration or
you may hit errors like OperationalError: cannot ALTER TABLE "mytable" because it has
pending trigger events.

If you have a different database and aren’t sure if it supports DDL transactions, check the django.db.
connection.features.can_rollback_ddl attribute.

If the RunPython operation is part of a non-atomic migration, the operation will only be executed in a transaction if
atomic=True is passed to the RunPython operation.

Warning: RunPython does not magically alter the connection of the models for you; any model meth-
ods you call will go to the default database unless you give them the current database alias (available from
schema_editor.connection.alias, where schema_editor is the second argument to your function).

static RunPython.noop()
Pass the RunPython.noop method to code or reverse_code when you want the operation not to do
anything in the given direction. This is especially useful in making the operation reversible.

The elidable argument was added.

The atomic argument default was changed to None, indicating that the atomicity is controlled by the atomic
attribute of the migration.

SeparateDatabaseAndState

class SeparateDatabaseAndState(database_operations=None, state_operations=None)

A highly specialized operation that let you mix and match the database (schema-changing) and state (autodetector-
powering) aspects of operations.

It accepts two list of operations, and when asked to apply state will use the state list, and when asked to apply changes
to the database will use the database list. Do not use this operation unless you’re very sure you know what you’re
doing.

6.14.3 Writing your own

Operations have a relatively simple API, and they’re designed so that you can easily write your own to supplement the
built-in Django ones. The basic structure of an Operation looks like this:

from django.db.migrations.operations.base import Operation

class MyCustomOperation(Operation):

If this is False, it means that this operation will be ignored by
sqlmigrate; if true, it will be run and the SQL collected for its output.
reduces_to_sql = False

1088 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

If this is False, Django will refuse to reverse past this operation.
reversible = False

def __init__(self, arg1, arg2):
Operations are usually instantiated with arguments in migration
files. Store the values of them on self for later use.
pass

def state_forwards(self, app_label, state):
The Operation should take the 'state' parameter (an instance of
django.db.migrations.state.ProjectState) and mutate it to match
any schema changes that have occurred.
pass

def database_forwards(self, app_label, schema_editor, from_state, to_state):
The Operation should use schema_editor to apply any changes it
wants to make to the database.
pass

def database_backwards(self, app_label, schema_editor, from_state, to_state):
If reversible is True, this is called when the operation is reversed.
pass

def describe(self):
This is used to describe what the operation does in console output.
return "Custom Operation"

You can take this template and work from it, though we suggest looking at the built-in Django operations in django.
db.migrations.operations - they’re easy to read and cover a lot of the example usage of semi-internal as-
pects of the migration framework like ProjectState and the patterns used to get historical models, as well as
ModelState and the patterns used to mutate historical models in state_forwards().

Some things to note:

• You don’t need to learn too much about ProjectState to just write simple migrations; just know that it has
an apps property that gives access to an app registry (which you can then call get_model on).

• database_forwards and database_backwards both get two states passed to them; these just represent
the difference the state_forwards method would have applied, but are given to you for convenience and
speed reasons.

• to_state in the database_backwards method is the older state; that is, the one that will be the current state
once the migration has finished reversing.

• You might see implementations of references_model on the built-in operations; this is part of the autode-
tection code and does not matter for custom operations.

Warning: For performance reasons, the Field instances in ModelState.fields are reused across
migrations. You must never change the attributes on these instances. If you need to mutate a field in
state_forwards(), you must remove the old instance from ModelState.fields and add a new instance
in its place. The same is true for the Manager instances in ModelState.managers.

As a simple example, let’s make an operation that loads PostgreSQL extensions (which contain some of PostgreSQL’s
more exciting features). It’s simple enough; there’s no model state changes, and all it does is run one command:

6.14. Migration Operations 1089

Django Documentation, Release 1.10.9.dev20171123183751

from django.db.migrations.operations.base import Operation

class LoadExtension(Operation):

reversible = True

def __init__(self, name):
self.name = name

def state_forwards(self, app_label, state):
pass

def database_forwards(self, app_label, schema_editor, from_state, to_state):
schema_editor.execute("CREATE EXTENSION IF NOT EXISTS %s" % self.name)

def database_backwards(self, app_label, schema_editor, from_state, to_state):
schema_editor.execute("DROP EXTENSION %s" % self.name)

def describe(self):
return "Creates extension %s" % self.name

6.15 Models

Model API reference. For introductory material, see Models.

6.15.1 Model field reference

This document contains all the API references of Field including the field options and field types Django offers.

See also:

If the built-in fields don’t do the trick, you can try django-localflavor (documentation), which contains assorted pieces
of code that are useful for particular countries and cultures.

Also, you can easily write your own custom model fields.

Note: Technically, these models are defined in django.db.models.fields, but for convenience they’re im-
ported into django.db.models; the standard convention is to use from django.db import models and
refer to fields as models.<Foo>Field.

Field options

The following arguments are available to all field types. All are optional.

null

Field.null

If True, Django will store empty values as NULL in the database. Default is False.

1090 Chapter 6. API Reference

https://github.com/django/django-localflavor
https://django-localflavor.readthedocs.io/

Django Documentation, Release 1.10.9.dev20171123183751

Avoid using null on string-based fields such as CharField and TextField because empty string values will
always be stored as empty strings, not as NULL. If a string-based field has null=True, that means it has two possible
values for “no data”: NULL, and the empty string. In most cases, it’s redundant to have two possible values for “no
data;” the Django convention is to use the empty string, not NULL.

For both string-based and non-string-based fields, you will also need to set blank=True if you wish to permit empty
values in forms, as the null parameter only affects database storage (see blank).

Note: When using the Oracle database backend, the value NULL will be stored to denote the empty string regardless
of this attribute.

If you want to accept null values with BooleanField, use NullBooleanField instead.

blank

Field.blank

If True, the field is allowed to be blank. Default is False.

Note that this is different than null. null is purely database-related, whereas blank is validation-related. If a field
has blank=True, form validation will allow entry of an empty value. If a field has blank=False, the field will
be required.

choices

Field.choices

An iterable (e.g., a list or tuple) consisting itself of iterables of exactly two items (e.g. [(A, B), (A, B) ...])
to use as choices for this field. If this is given, the default form widget will be a select box with these choices instead
of the standard text field.

The first element in each tuple is the actual value to be set on the model, and the second element is the human-readable
name. For example:

YEAR_IN_SCHOOL_CHOICES = (
('FR', 'Freshman'),
('SO', 'Sophomore'),
('JR', 'Junior'),
('SR', 'Senior'),

)

Generally, it’s best to define choices inside a model class, and to define a suitably-named constant for each value:

from django.db import models

class Student(models.Model):
FRESHMAN = 'FR'
SOPHOMORE = 'SO'
JUNIOR = 'JR'
SENIOR = 'SR'
YEAR_IN_SCHOOL_CHOICES = (

(FRESHMAN, 'Freshman'),
(SOPHOMORE, 'Sophomore'),
(JUNIOR, 'Junior'),
(SENIOR, 'Senior'),

6.15. Models 1091

Django Documentation, Release 1.10.9.dev20171123183751

)
year_in_school = models.CharField(

max_length=2,
choices=YEAR_IN_SCHOOL_CHOICES,
default=FRESHMAN,

)

def is_upperclass(self):
return self.year_in_school in (self.JUNIOR, self.SENIOR)

Though you can define a choices list outside of a model class and then refer to it, defining the choices and names for
each choice inside the model class keeps all of that information with the class that uses it, and makes the choices easy
to reference (e.g, Student.SOPHOMORE will work anywhere that the Student model has been imported).

You can also collect your available choices into named groups that can be used for organizational purposes:

MEDIA_CHOICES = (
('Audio', (

('vinyl', 'Vinyl'),
('cd', 'CD'),

)
),
('Video', (

('vhs', 'VHS Tape'),
('dvd', 'DVD'),

)
),
('unknown', 'Unknown'),

)

The first element in each tuple is the name to apply to the group. The second element is an iterable of 2-tuples, with
each 2-tuple containing a value and a human-readable name for an option. Grouped options may be combined with
ungrouped options within a single list (such as the unknown option in this example).

For each model field that has choices set, Django will add a method to retrieve the human-readable name for the
field’s current value. See get_FOO_display() in the database API documentation.

Note that choices can be any iterable object – not necessarily a list or tuple. This lets you construct choices dynam-
ically. But if you find yourself hacking choices to be dynamic, you’re probably better off using a proper database
table with a ForeignKey . choices is meant for static data that doesn’t change much, if ever.

Unless blank=False is set on the field along with a default then a label containing "---------" will be
rendered with the select box. To override this behavior, add a tuple to choices containing None; e.g. (None,
'Your String For Display'). Alternatively, you can use an empty string instead of None where this makes
sense - such as on a CharField.

db_column

Field.db_column

The name of the database column to use for this field. If this isn’t given, Django will use the field’s name.

If your database column name is an SQL reserved word, or contains characters that aren’t allowed in Python variable
names – notably, the hyphen – that’s OK. Django quotes column and table names behind the scenes.

1092 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

db_index

Field.db_index

If True, a database index will be created for this field.

db_tablespace

Field.db_tablespace

The name of the database tablespace to use for this field’s index, if this field is indexed. The default is the project’s
DEFAULT_INDEX_TABLESPACE setting, if set, or the db_tablespace of the model, if any. If the backend
doesn’t support tablespaces for indexes, this option is ignored.

default

Field.default

The default value for the field. This can be a value or a callable object. If callable it will be called every time a new
object is created.

The default can’t be a mutable object (model instance, list, set, etc.), as a reference to the same instance of that
object would be used as the default value in all new model instances. Instead, wrap the desired default in a callable.
For example, if you want to specify a default dict for JSONField, use a function:

def contact_default():
return {"email": "to1@example.com"}

contact_info = JSONField("ContactInfo", default=contact_default)

lambdas can’t be used for field options like default because they can’t be serialized by migrations. See that
documentation for other caveats.

For fields like ForeignKey that map to model instances, defaults should be the value of the field they reference (pk
unless to_field is set) instead of model instances.

The default value is used when new model instances are created and a value isn’t provided for the field. When the field
is a primary key, the default is also used when the field is set to None.

editable

Field.editable

If False, the field will not be displayed in the admin or any other ModelForm. They are also skipped during model
validation. Default is True.

error_messages

Field.error_messages

The error_messages argument lets you override the default messages that the field will raise. Pass in a dictionary
with keys matching the error messages you want to override.

Error message keys include null, blank, invalid, invalid_choice, unique, and unique_for_date.
Additional error message keys are specified for each field in the Field types section below.

6.15. Models 1093

Django Documentation, Release 1.10.9.dev20171123183751

help_text

Field.help_text

Extra “help” text to be displayed with the form widget. It’s useful for documentation even if your field isn’t used on a
form.

Note that this value is not HTML-escaped in automatically-generated forms. This lets you include HTML in
help_text if you so desire. For example:

help_text="Please use the following format: YYYY-MM-DD."

Alternatively you can use plain text and django.utils.html.escape() to escape any HTML special charac-
ters. Ensure that you escape any help text that may come from untrusted users to avoid a cross-site scripting attack.

primary_key

Field.primary_key

If True, this field is the primary key for the model.

If you don’t specify primary_key=True for any field in your model, Django will automatically add an
AutoField to hold the primary key, so you don’t need to set primary_key=True on any of your fields un-
less you want to override the default primary-key behavior. For more, see Automatic primary key fields.

primary_key=True implies null=False and unique=True. Only one primary key is allowed on an object.

The primary key field is read-only. If you change the value of the primary key on an existing object and then save it, a
new object will be created alongside the old one.

unique

Field.unique

If True, this field must be unique throughout the table.

This is enforced at the database level and by model validation. If you try to save a model with a duplicate value in a
unique field, a django.db.IntegrityError will be raised by the model’s save() method.

This option is valid on all field types except ManyToManyField, OneToOneField, and FileField.

Note that when unique is True, you don’t need to specify db_index, because unique implies the creation of an
index.

unique_for_date

Field.unique_for_date

Set this to the name of a DateField or DateTimeField to require that this field be unique for the value of the
date field.

For example, if you have a field title that has unique_for_date="pub_date", then Django wouldn’t allow
the entry of two records with the same title and pub_date.

Note that if you set this to point to a DateTimeField, only the date portion of the field will be considered. Besides,
when USE_TZ is True, the check will be performed in the current time zone at the time the object gets saved.

1094 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

This is enforced by Model.validate_unique() during model validation but not at the database level. If any
unique_for_date constraint involves fields that are not part of a ModelForm (for example, if one of the fields
is listed in exclude or has editable=False), Model.validate_unique() will skip validation for that
particular constraint.

unique_for_month

Field.unique_for_month

Like unique_for_date, but requires the field to be unique with respect to the month.

unique_for_year

Field.unique_for_year

Like unique_for_date and unique_for_month.

verbose_name

Field.verbose_name

A human-readable name for the field. If the verbose name isn’t given, Django will automatically create it using the
field’s attribute name, converting underscores to spaces. See Verbose field names.

validators

Field.validators

A list of validators to run for this field. See the validators documentation for more information.

Registering and fetching lookups

Field implements the lookup registration API. The API can be used to customize which lookups are available for a
field class, and how lookups are fetched from a field.

Field types

AutoField

class AutoField(**options)

An IntegerField that automatically increments according to available IDs. You usually won’t need to use this
directly; a primary key field will automatically be added to your model if you don’t specify otherwise. See Automatic
primary key fields.

6.15. Models 1095

Django Documentation, Release 1.10.9.dev20171123183751

BigAutoField

class BigAutoField(**options)

A 64-bit integer, much like an AutoField except that it is guaranteed to fit numbers from 1 to
9223372036854775807.

BigIntegerField

class BigIntegerField(**options)

A 64-bit integer, much like an IntegerField except that it is guaranteed to fit numbers from
-9223372036854775808 to 9223372036854775807. The default form widget for this field is a TextInput.

BinaryField

class BinaryField(**options)

A field to store raw binary data. It only supports bytes assignment. Be aware that this field has limited functionality.
For example, it is not possible to filter a queryset on a BinaryField value. It is also not possible to include a
BinaryField in a ModelForm.

Abusing BinaryField

Although you might think about storing files in the database, consider that it is bad design in 99% of the cases. This
field is not a replacement for proper static files handling.

BooleanField

class BooleanField(**options)

A true/false field.

The default form widget for this field is a CheckboxInput.

If you need to accept null values then use NullBooleanField instead.

The default value of BooleanField is None when Field.default isn’t defined.

CharField

class CharField(max_length=None, **options)

A string field, for small- to large-sized strings.

For large amounts of text, use TextField.

The default form widget for this field is a TextInput.

CharField has one extra required argument:

CharField.max_length
The maximum length (in characters) of the field. The max_length is enforced at the database level and in
Django’s validation.

1096 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Note: If you are writing an application that must be portable to multiple database backends, you should be aware that
there are restrictions on max_length for some backends. Refer to the database backend notes for details.

MySQL users

If you are using this field with MySQLdb 1.2.2 and the utf8_bin collation (which is not the default), there are some
issues to be aware of. Refer to the MySQL database notes for details.

CommaSeparatedIntegerField

class CommaSeparatedIntegerField(max_length=None, **options)

Deprecated since version 1.9: This field is deprecated in favor of CharField with
validators=[validate_comma_separated_integer_list].

A field of integers separated by commas. As in CharField, the max_length argument is required and the note
about database portability mentioned there should be heeded.

DateField

class DateField(auto_now=False, auto_now_add=False, **options)

A date, represented in Python by a datetime.date instance. Has a few extra, optional arguments:

DateField.auto_now
Automatically set the field to now every time the object is saved. Useful for “last-modified” timestamps. Note
that the current date is always used; it’s not just a default value that you can override.

The field is only automatically updated when calling Model.save(). The field isn’t updated when making
updates to other fields in other ways such as QuerySet.update(), though you can specify a custom value
for the field in an update like that.

DateField.auto_now_add
Automatically set the field to now when the object is first created. Useful for creation of timestamps. Note that
the current date is always used; it’s not just a default value that you can override. So even if you set a value
for this field when creating the object, it will be ignored. If you want to be able to modify this field, set the
following instead of auto_now_add=True:

• For DateField: default=date.today - from datetime.date.today()

• For DateTimeField: default=timezone.now - from django.utils.timezone.now()

The default form widget for this field is a TextInput. The admin adds a JavaScript calendar, and a shortcut for
“Today”. Includes an additional invalid_date error message key.

The options auto_now_add, auto_now, and default are mutually exclusive. Any combination of these options
will result in an error.

Note: As currently implemented, setting auto_now or auto_now_add to True will cause the field to have
editable=False and blank=True set.

6.15. Models 1097

https://docs.python.org/3/library/datetime.html#datetime.date.today

Django Documentation, Release 1.10.9.dev20171123183751

Note: The auto_now and auto_now_add options will always use the date in the default timezone at the moment
of creation or update. If you need something different, you may want to consider simply using your own callable de-
fault or overriding save() instead of using auto_now or auto_now_add; or using a DateTimeField instead
of a DateField and deciding how to handle the conversion from datetime to date at display time.

DateTimeField

class DateTimeField(auto_now=False, auto_now_add=False, **options)

A date and time, represented in Python by a datetime.datetime instance. Takes the same extra arguments as
DateField.

The default form widget for this field is a single TextInput. The admin uses two separate TextInput widgets
with JavaScript shortcuts.

DecimalField

class DecimalField(max_digits=None, decimal_places=None, **options)

A fixed-precision decimal number, represented in Python by a Decimal instance. Has two required arguments:

DecimalField.max_digits
The maximum number of digits allowed in the number. Note that this number must be greater than or equal to
decimal_places.

DecimalField.decimal_places
The number of decimal places to store with the number.

For example, to store numbers up to 999 with a resolution of 2 decimal places, you’d use:

models.DecimalField(..., max_digits=5, decimal_places=2)

And to store numbers up to approximately one billion with a resolution of 10 decimal places:

models.DecimalField(..., max_digits=19, decimal_places=10)

The default form widget for this field is a NumberInput when localize is False or TextInput otherwise.

Note: For more information about the differences between the FloatField and DecimalField classes, please
see FloatField vs. DecimalField.

DurationField

class DurationField(**options)

A field for storing periods of time - modeled in Python by timedelta. When used on PostgreSQL, the data type
used is an interval and on Oracle the data type is INTERVAL DAY(9) TO SECOND(6). Otherwise a bigint
of microseconds is used.

1098 Chapter 6. API Reference

https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/datetime.html#datetime.timedelta

Django Documentation, Release 1.10.9.dev20171123183751

Note: Arithmetic with DurationField works in most cases. However on all databases other than PostgreSQL,
comparing the value of a DurationField to arithmetic on DateTimeField instances will not work as expected.

EmailField

class EmailField(max_length=254, **options)

A CharField that checks that the value is a valid email address. It uses EmailValidator to validate the input.

FileField

class FileField(upload_to=None, max_length=100, **options)

A file-upload field.

Note: The primary_key and unique arguments are not supported, and will raise a TypeError if used.

Has two optional arguments:

FileField.upload_to
This attribute provides a way of setting the upload directory and file name, and can be set in two ways. In both
cases, the value is passed to the Storage.save() method.

If you specify a string value, it may contain strftime() formatting, which will be replaced by the date/time
of the file upload (so that uploaded files don’t fill up the given directory). For example:

class MyModel(models.Model):
file will be uploaded to MEDIA_ROOT/uploads
upload = models.FileField(upload_to='uploads/')
or...
file will be saved to MEDIA_ROOT/uploads/2015/01/30
upload = models.FileField(upload_to='uploads/%Y/%m/%d/')

If you are using the default FileSystemStorage, the string value will be appended to your MEDIA_ROOT
path to form the location on the local filesystem where uploaded files will be stored. If you are using a different
storage, check that storage’s documentation to see how it handles upload_to.

upload_to may also be a callable, such as a function. This will be called to obtain the upload path, including
the filename. This callable must accept two arguments and return a Unix-style path (with forward slashes) to be
passed along to the storage system. The two arguments are:

Argument Description
instance An instance of the model where the FileField is

defined. More specifically, this is the particular in-
stance where the current file is being attached.
In most cases, this object will not have been
saved to the database yet, so if it uses the default
AutoField, it might not yet have a value for its
primary key field.

filename The filename that was originally given to the file.
This may or may not be taken into account when de-
termining the final destination path.

6.15. Models 1099

https://docs.python.org/3/library/time.html#time.strftime

Django Documentation, Release 1.10.9.dev20171123183751

For example:

def user_directory_path(instance, filename):
file will be uploaded to MEDIA_ROOT/user_<id>/<filename>
return 'user_{0}/{1}'.format(instance.user.id, filename)

class MyModel(models.Model):
upload = models.FileField(upload_to=user_directory_path)

FileField.storage
A storage object, which handles the storage and retrieval of your files. See Managing files for details on how to
provide this object.

The default form widget for this field is a ClearableFileInput.

Using a FileField or an ImageField (see below) in a model takes a few steps:

1. In your settings file, you’ll need to define MEDIA_ROOT as the full path to a directory where you’d like Django
to store uploaded files. (For performance, these files are not stored in the database.) Define MEDIA_URL as the
base public URL of that directory. Make sure that this directory is writable by the Web server’s user account.

2. Add the FileField or ImageField to your model, defining the upload_to option to specify a subdirec-
tory of MEDIA_ROOT to use for uploaded files.

3. All that will be stored in your database is a path to the file (relative to MEDIA_ROOT). You’ll most likely
want to use the convenience url attribute provided by Django. For example, if your ImageField is called
mug_shot, you can get the absolute path to your image in a template with {{ object.mug_shot.url
}}.

For example, say your MEDIA_ROOT is set to '/home/media', and upload_to is set to 'photos/%Y/%m/
%d'. The '%Y/%m/%d' part of upload_to is strftime() formatting; '%Y' is the four-digit year, '%m' is the
two-digit month and '%d' is the two-digit day. If you upload a file on Jan. 15, 2007, it will be saved in the directory
/home/media/photos/2007/01/15.

If you wanted to retrieve the uploaded file’s on-disk filename, or the file’s size, you could use the name and size
attributes respectively; for more information on the available attributes and methods, see the File class reference and
the Managing files topic guide.

Note: The file is saved as part of saving the model in the database, so the actual file name used on disk cannot be
relied on until after the model has been saved.

The uploaded file’s relative URL can be obtained using the url attribute. Internally, this calls the url() method of
the underlying Storage class. Note that whenever you deal with uploaded files, you should pay close attention to
where you’re uploading them and what type of files they are, to avoid security holes. Validate all uploaded files so
that you’re sure the files are what you think they are. For example, if you blindly let somebody upload files, without
validation, to a directory that’s within your Web server’s document root, then somebody could upload a CGI or PHP
script and execute that script by visiting its URL on your site. Don’t allow that.

Also note that even an uploaded HTML file, since it can be executed by the browser (though not by the server), can
pose security threats that are equivalent to XSS or CSRF attacks.

FileField instances are created in your database as varchar columns with a default max length of 100 characters.
As with other fields, you can change the maximum length using the max_length argument.

FileField and FieldFile

class FieldFile

1100 Chapter 6. API Reference

https://docs.python.org/3/library/time.html#time.strftime

Django Documentation, Release 1.10.9.dev20171123183751

When you access a FileField on a model, you are given an instance of FieldFile as a proxy for accessing the
underlying file.

The API of FieldFile mirrors that of File, with one key difference: The object wrapped by the class is not
necessarily a wrapper around Python’s built-in file object. Instead, it is a wrapper around the result of the Storage.
open() method, which may be a File object, or it may be a custom storage’s implementation of the File API.

In addition to the API inherited from File such as read() and write(), FieldFile includes several methods
that can be used to interact with the underlying file:

Warning: Two methods of this class, save() and delete(), default to saving the model object of the associ-
ated FieldFile in the database.

FieldFile.name

The name of the file including the relative path from the root of the Storage of the associated FileField.

FieldFile.size

The result of the underlying Storage.size() method.

FieldFile.url

A read-only property to access the file’s relative URL by calling the url() method of the underlying Storage class.

FieldFile.open(mode=’rb’)

Opens or reopens the file associated with this instance in the specified mode. Unlike the standard Python open()
method, it doesn’t return a file descriptor.

Since the underlying file is opened implicitly when accessing it, it may be unnecessary to call this method except to
reset the pointer to the underlying file or to change the mode.

FieldFile.close()

Behaves like the standard Python file.close() method and closes the file associated with this instance.

FieldFile.save(name, content, save=True)

This method takes a filename and file contents and passes them to the storage class for the field, then associates the
stored file with the model field. If you want to manually associate file data with FileField instances on your model,
the save() method is used to persist that file data.

Takes two required arguments: name which is the name of the file, and content which is an object containing
the file’s contents. The optional save argument controls whether or not the model instance is saved after the file
associated with this field has been altered. Defaults to True.

Note that the content argument should be an instance of django.core.files.File, not Python’s built-in file
object. You can construct a File from an existing Python file object like this:

from django.core.files import File
Open an existing file using Python's built-in open()
f = open('/path/to/hello.world')
myfile = File(f)

Or you can construct one from a Python string like this:

from django.core.files.base import ContentFile
myfile = ContentFile("hello world")

For more information, see Managing files.

6.15. Models 1101

Django Documentation, Release 1.10.9.dev20171123183751

FieldFile.delete(save=True)

Deletes the file associated with this instance and clears all attributes on the field. Note: This method will close the file
if it happens to be open when delete() is called.

The optional save argument controls whether or not the model instance is saved after the file associated with this
field has been deleted. Defaults to True.

Note that when a model is deleted, related files are not deleted. If you need to cleanup orphaned files, you’ll need to
handle it yourself (for instance, with a custom management command that can be run manually or scheduled to run
periodically via e.g. cron).

FilePathField

class FilePathField(path=None, match=None, recursive=False, max_length=100, **options)

A CharField whose choices are limited to the filenames in a certain directory on the filesystem. Has three special
arguments, of which the first is required:

FilePathField.path
Required. The absolute filesystem path to a directory from which this FilePathField should get its choices.
Example: "/home/images".

FilePathField.match
Optional. A regular expression, as a string, that FilePathField will use to filter filenames. Note that the
regex will be applied to the base filename, not the full path. Example: "foo.*\.txt$", which will match a
file called foo23.txt but not bar.txt or foo23.png.

FilePathField.recursive
Optional. Either True or False. Default is False. Specifies whether all subdirectories of path should be
included

FilePathField.allow_files
Optional. Either True or False. Default is True. Specifies whether files in the specified location should be
included. Either this or allow_folders must be True.

FilePathField.allow_folders
Optional. Either True or False. Default is False. Specifies whether folders in the specified location should
be included. Either this or allow_files must be True.

Of course, these arguments can be used together.

The one potential gotcha is that match applies to the base filename, not the full path. So, this example:

FilePathField(path="/home/images", match="foo.*", recursive=True)

...will match /home/images/foo.png but not /home/images/foo/bar.png because the match applies to
the base filename (foo.png and bar.png).

FilePathField instances are created in your database as varchar columns with a default max length of 100
characters. As with other fields, you can change the maximum length using the max_length argument.

FloatField

class FloatField(**options)

A floating-point number represented in Python by a float instance.

The default form widget for this field is a NumberInput when localize is False or TextInput otherwise.

1102 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

FloatField vs. DecimalField

The FloatField class is sometimes mixed up with the DecimalField class. Although they both represent
real numbers, they represent those numbers differently. FloatField uses Python’s float type internally, while
DecimalField uses Python’s Decimal type. For information on the difference between the two, see Python’s
documentation for the decimal module.

ImageField

class ImageField(upload_to=None, height_field=None, width_field=None, max_length=100, **options)

Inherits all attributes and methods from FileField, but also validates that the uploaded object is a valid image.

In addition to the special attributes that are available for FileField, an ImageField also has height and
width attributes.

To facilitate querying on those attributes, ImageField has two extra optional arguments:

ImageField.height_field
Name of a model field which will be auto-populated with the height of the image each time the model instance
is saved.

ImageField.width_field
Name of a model field which will be auto-populated with the width of the image each time the model instance
is saved.

Requires the Pillow library.

ImageField instances are created in your database as varchar columns with a default max length of 100 charac-
ters. As with other fields, you can change the maximum length using the max_length argument.

The default form widget for this field is a ClearableFileInput.

IntegerField

class IntegerField(**options)

An integer. Values from -2147483648 to 2147483647 are safe in all databases supported by Django. The default
form widget for this field is a NumberInput when localize is False or TextInput otherwise.

GenericIPAddressField

class GenericIPAddressField(protocol=’both’, unpack_ipv4=False, **options)

An IPv4 or IPv6 address, in string format (e.g. 192.0.2.30 or 2a02:42fe::4). The default form widget for this
field is a TextInput.

The IPv6 address normalization follows RFC 4291#section-2.2 section 2.2, including using the IPv4 format suggested
in paragraph 3 of that section, like ::ffff:192.0.2.0. For example, 2001:0::0:01 would be normalized to
2001::1, and ::ffff:0a0a:0a0a to ::ffff:10.10.10.10. All characters are converted to lowercase.

GenericIPAddressField.protocol
Limits valid inputs to the specified protocol. Accepted values are 'both' (default), 'IPv4' or 'IPv6'.
Matching is case insensitive.

6.15. Models 1103

https://docs.python.org/3/library/decimal.html#module-decimal
https://pillow.readthedocs.io/en/latest/
https://tools.ietf.org/html/rfc4291.html#section-2.2

Django Documentation, Release 1.10.9.dev20171123183751

GenericIPAddressField.unpack_ipv4
Unpacks IPv4 mapped addresses like ::ffff:192.0.2.1. If this option is enabled that address would be
unpacked to 192.0.2.1. Default is disabled. Can only be used when protocol is set to 'both'.

If you allow for blank values, you have to allow for null values since blank values are stored as null.

NullBooleanField

class NullBooleanField(**options)

Like a BooleanField, but allows NULL as one of the options. Use this instead of a BooleanField with
null=True. The default form widget for this field is a NullBooleanSelect.

PositiveIntegerField

class PositiveIntegerField(**options)

Like an IntegerField, but must be either positive or zero (0). Values from 0 to 2147483647 are safe in all
databases supported by Django. The value 0 is accepted for backward compatibility reasons.

PositiveSmallIntegerField

class PositiveSmallIntegerField(**options)

Like a PositiveIntegerField, but only allows values under a certain (database-dependent) point. Values from
0 to 32767 are safe in all databases supported by Django.

SlugField

class SlugField(max_length=50, **options)

Slug is a newspaper term. A slug is a short label for something, containing only letters, numbers, underscores or
hyphens. They’re generally used in URLs.

Like a CharField, you can specify max_length (read the note about database portability and max_length in that
section, too). If max_length is not specified, Django will use a default length of 50.

Implies setting Field.db_index to True.

It is often useful to automatically prepopulate a SlugField based on the value of some other value. You can do this
automatically in the admin using prepopulated_fields.

SlugField.allow_unicode
If True, the field accepts Unicode letters in addition to ASCII letters. Defaults to False.

SmallIntegerField

class SmallIntegerField(**options)

Like an IntegerField, but only allows values under a certain (database-dependent) point. Values from -32768
to 32767 are safe in all databases supported by Django.

1104 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

TextField

class TextField(**options)

A large text field. The default form widget for this field is a Textarea.

If you specify a max_length attribute, it will be reflected in the Textarea widget of the auto-generated form field.
However it is not enforced at the model or database level. Use a CharField for that.

MySQL users

If you are using this field with MySQLdb 1.2.1p2 and the utf8_bin collation (which is not the default), there are
some issues to be aware of. Refer to the MySQL database notes for details.

TimeField

class TimeField(auto_now=False, auto_now_add=False, **options)

A time, represented in Python by a datetime.time instance. Accepts the same auto-population options as
DateField.

The default form widget for this field is a TextInput. The admin adds some JavaScript shortcuts.

URLField

class URLField(max_length=200, **options)

A CharField for a URL.

The default form widget for this field is a TextInput.

Like all CharField subclasses, URLField takes the optional max_length argument. If you don’t specify
max_length, a default of 200 is used.

UUIDField

class UUIDField(**options)

A field for storing universally unique identifiers. Uses Python’s UUID class. When used on PostgreSQL, this stores in
a uuid datatype, otherwise in a char(32).

Universally unique identifiers are a good alternative to AutoField for primary_key . The database will not
generate the UUID for you, so it is recommended to use default:

import uuid
from django.db import models

class MyUUIDModel(models.Model):
id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False)
other fields

Note that a callable (with the parentheses omitted) is passed to default, not an instance of UUID.

6.15. Models 1105

https://docs.python.org/3/library/uuid.html#uuid.UUID

Django Documentation, Release 1.10.9.dev20171123183751

Relationship fields

Django also defines a set of fields that represent relations.

ForeignKey

class ForeignKey(othermodel, on_delete, **options)

A many-to-one relationship. Requires a positional argument: the class to which the model is related.

on_delete can now be used as the second positional argument (previously it was typically only passed as a keyword
argument). It will be a required argument in Django 2.0. To create a recursive relationship – an object that has a many-
to-one relationship with itself – use models.ForeignKey('self', on_delete=models.CASCADE). If
you need to create a relationship on a model that has not yet been defined, you can use the name of the model, rather
than the model object itself:

from django.db import models

class Car(models.Model):
manufacturer = models.ForeignKey(

'Manufacturer',
on_delete=models.CASCADE,

)
...

class Manufacturer(models.Model):
...
pass

Relationships defined this way on abstract models are resolved when the model is subclassed as a concrete model and
are not relative to the abstract model’s app_label:

products/models.py

from django.db import models

class AbstractCar(models.Model):
manufacturer = models.ForeignKey('Manufacturer', on_delete=models.CASCADE)

class Meta:
abstract = True

production/models.py

from django.db import models
from products.models import AbstractCar

class Manufacturer(models.Model):
pass

class Car(AbstractCar):
pass

Car.manufacturer will point to `production.Manufacturer` here.

To refer to models defined in another application, you can explicitly specify a model with the full application label.
For example, if the Manufacturer model above is defined in another application called production, you’d need
to use:

1106 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

class Car(models.Model):
manufacturer = models.ForeignKey(

'production.Manufacturer',
on_delete=models.CASCADE,

)

This sort of reference can be useful when resolving circular import dependencies between two applications.

A database index is automatically created on the ForeignKey. You can disable this by setting db_index to
False. You may want to avoid the overhead of an index if you are creating a foreign key for consistency rather than
joins, or if you will be creating an alternative index like a partial or multiple column index.

Database Representation

Behind the scenes, Django appends "_id" to the field name to create its database column name. In the above example,
the database table for the Car model will have a manufacturer_id column. (You can change this explicitly by
specifying db_column) However, your code should never have to deal with the database column name, unless you
write custom SQL. You’ll always deal with the field names of your model object.

Arguments

ForeignKey accepts other arguments that define the details of how the relation works.

ForeignKey.on_delete
When an object referenced by a ForeignKey is deleted, Django will emulate the behavior of the SQL con-
straint specified by the on_delete argument. For example, if you have a nullable ForeignKey and you
want it to be set null when the referenced object is deleted:

user = models.ForeignKey(
User,
models.SET_NULL,
blank=True,
null=True,

)

Deprecated since version 1.9: on_delete will become a required argument in Django 2.0. In older versions
it defaults to CASCADE.

The possible values for on_delete are found in django.db.models:

• CASCADE
Cascade deletes. Django emulates the behavior of the SQL constraint ON DELETE CASCADE and also
deletes the object containing the ForeignKey.

• PROTECT
Prevent deletion of the referenced object by raising ProtectedError, a subclass of django.db.
IntegrityError.

• SET_NULL
Set the ForeignKey null; this is only possible if null is True.

• SET_DEFAULT
Set the ForeignKey to its default value; a default for the ForeignKey must be set.

• SET()
Set the ForeignKey to the value passed to SET(), or if a callable is passed in, the result of calling it.

6.15. Models 1107

Django Documentation, Release 1.10.9.dev20171123183751

In most cases, passing a callable will be necessary to avoid executing queries at the time your models.py
is imported:

from django.conf import settings
from django.contrib.auth import get_user_model
from django.db import models

def get_sentinel_user():
return get_user_model().objects.get_or_create(username='deleted')[0]

class MyModel(models.Model):
user = models.ForeignKey(

settings.AUTH_USER_MODEL,
on_delete=models.SET(get_sentinel_user),

)

• DO_NOTHING
Take no action. If your database backend enforces referential integrity, this will cause an
IntegrityError unless you manually add an SQL ON DELETE constraint to the database field.

ForeignKey.limit_choices_to
Sets a limit to the available choices for this field when this field is rendered using a ModelForm or the admin
(by default, all objects in the queryset are available to choose). Either a dictionary, a Q object, or a callable
returning a dictionary or Q object can be used.

For example:

staff_member = models.ForeignKey(
User,
on_delete=models.CASCADE,
limit_choices_to={'is_staff': True},

)

causes the corresponding field on the ModelForm to list only Users that have is_staff=True. This may
be helpful in the Django admin.

The callable form can be helpful, for instance, when used in conjunction with the Python datetime module
to limit selections by date range. For example:

def limit_pub_date_choices():
return {'pub_date__lte': datetime.date.utcnow()}

limit_choices_to = limit_pub_date_choices

If limit_choices_to is or returns a Q object, which is useful for complex queries, then it will only
have an effect on the choices available in the admin when the field is not listed in raw_id_fields in the
ModelAdmin for the model.

Note: If a callable is used for limit_choices_to, it will be invoked every time a new form is instanti-
ated. It may also be invoked when a model is validated, for example by management commands or the admin.
The admin constructs querysets to validate its form inputs in various edge cases multiple times, so there is a
possibility your callable may be invoked several times.

ForeignKey.related_name
The name to use for the relation from the related object back to this one. It’s also the default value for
related_query_name (the name to use for the reverse filter name from the target model). See the re-

1108 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

lated objects documentation for a full explanation and example. Note that you must set this value when defining
relations on abstract models; and when you do so some special syntax is available.

If you’d prefer Django not to create a backwards relation, set related_name to '+' or end it with '+'. For
example, this will ensure that the User model won’t have a backwards relation to this model:

user = models.ForeignKey(
User,
on_delete=models.CASCADE,
related_name='+',

)

ForeignKey.related_query_name
The name to use for the reverse filter name from the target model. It defaults to the value of related_name
or default_related_name if set, otherwise it defaults to the name of the model:

Declare the ForeignKey with related_query_name
class Tag(models.Model):

article = models.ForeignKey(
Article,
on_delete=models.CASCADE,
related_name="tags",
related_query_name="tag",

)
name = models.CharField(max_length=255)

That's now the name of the reverse filter
Article.objects.filter(tag__name="important")

Like related_name, related_query_name supports app label and class interpolation via some special
syntax.

ForeignKey.to_field
The field on the related object that the relation is to. By default, Django uses the primary key of the related
object. If you reference a different field, that field must have unique=True.

ForeignKey.db_constraint
Controls whether or not a constraint should be created in the database for this foreign key. The default is True,
and that’s almost certainly what you want; setting this to False can be very bad for data integrity. That said,
here are some scenarios where you might want to do this:

• You have legacy data that is not valid.

• You’re sharding your database.

If this is set to False, accessing a related object that doesn’t exist will raise its DoesNotExist exception.

ForeignKey.swappable
Controls the migration framework’s reaction if this ForeignKey is pointing at a swappable model. If it is
True - the default - then if the ForeignKey is pointing at a model which matches the current value of
settings.AUTH_USER_MODEL (or another swappable model setting) the relationship will be stored in the
migration using a reference to the setting, not to the model directly.

You only want to override this to be False if you are sure your model should always point towards the swapped-
in model - for example, if it is a profile model designed specifically for your custom user model.

Setting it to False does not mean you can reference a swappable model even if it is swapped out - False just
means that the migrations made with this ForeignKey will always reference the exact model you specify (so it
will fail hard if the user tries to run with a User model you don’t support, for example).

If in doubt, leave it to its default of True.

6.15. Models 1109

Django Documentation, Release 1.10.9.dev20171123183751

ManyToManyField

class ManyToManyField(othermodel, **options)

A many-to-many relationship. Requires a positional argument: the class to which the model is related, which works
exactly the same as it does for ForeignKey , including recursive and lazy relationships.

Related objects can be added, removed, or created with the field’s RelatedManager.

Database Representation

Behind the scenes, Django creates an intermediary join table to represent the many-to-many relationship. By default,
this table name is generated using the name of the many-to-many field and the name of the table for the model
that contains it. Since some databases don’t support table names above a certain length, these table names will be
automatically truncated to 64 characters and a uniqueness hash will be used. This means you might see table names
like author_books_9cdf4; this is perfectly normal. You can manually provide the name of the join table using
the db_table option.

Arguments

ManyToManyField accepts an extra set of arguments – all optional – that control how the relationship functions.

ManyToManyField.related_name
Same as ForeignKey.related_name.

ManyToManyField.related_query_name
Same as ForeignKey.related_query_name.

ManyToManyField.limit_choices_to
Same as ForeignKey.limit_choices_to.

limit_choices_to has no effect when used on a ManyToManyField with a custom intermediate table
specified using the through parameter.

ManyToManyField.symmetrical
Only used in the definition of ManyToManyFields on self. Consider the following model:

from django.db import models

class Person(models.Model):
friends = models.ManyToManyField("self")

When Django processes this model, it identifies that it has a ManyToManyField on itself, and as a result, it
doesn’t add a person_set attribute to the Person class. Instead, the ManyToManyField is assumed to
be symmetrical – that is, if I am your friend, then you are my friend.

If you do not want symmetry in many-to-many relationships with self, set symmetrical to False. This
will force Django to add the descriptor for the reverse relationship, allowing ManyToManyField relationships
to be non-symmetrical.

ManyToManyField.through
Django will automatically generate a table to manage many-to-many relationships. However, if you want to
manually specify the intermediary table, you can use the through option to specify the Django model that
represents the intermediate table that you want to use.

The most common use for this option is when you want to associate extra data with a many-to-many relationship.

1110 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

If you don’t specify an explicit through model, there is still an implicit through model class you can use to
directly access the table created to hold the association. It has three fields to link the models.

If the source and target models differ, the following fields are generated:

• id: the primary key of the relation.

• <containing_model>_id: the id of the model that declares the ManyToManyField.

• <other_model>_id: the id of the model that the ManyToManyField points to.

If the ManyToManyField points from and to the same model, the following fields are generated:

• id: the primary key of the relation.

• from_<model>_id: the id of the instance which points at the model (i.e. the source instance).

• to_<model>_id: the id of the instance to which the relationship points (i.e. the target model instance).

This class can be used to query associated records for a given model instance like a normal model.

ManyToManyField.through_fields
Only used when a custom intermediary model is specified. Django will normally determine which fields of the
intermediary model to use in order to establish a many-to-many relationship automatically. However, consider
the following models:

from django.db import models

class Person(models.Model):
name = models.CharField(max_length=50)

class Group(models.Model):
name = models.CharField(max_length=128)
members = models.ManyToManyField(

Person,
through='Membership',
through_fields=('group', 'person'),

)

class Membership(models.Model):
group = models.ForeignKey(Group, on_delete=models.CASCADE)
person = models.ForeignKey(Person, on_delete=models.CASCADE)
inviter = models.ForeignKey(

Person,
on_delete=models.CASCADE,
related_name="membership_invites",

)
invite_reason = models.CharField(max_length=64)

Membership has two foreign keys to Person (person and inviter), which makes the relationship am-
biguous and Django can’t know which one to use. In this case, you must explicitly specify which foreign keys
Django should use using through_fields, as in the example above.

through_fields accepts a 2-tuple ('field1', 'field2'), where field1 is the name of the foreign
key to the model the ManyToManyField is defined on (group in this case), and field2 the name of the
foreign key to the target model (person in this case).

When you have more than one foreign key on an intermediary model to any (or even both) of the models partic-
ipating in a many-to-many relationship, you must specify through_fields. This also applies to recursive
relationships when an intermediary model is used and there are more than two foreign keys to the model, or you
want to explicitly specify which two Django should use.

6.15. Models 1111

Django Documentation, Release 1.10.9.dev20171123183751

Recursive relationships using an intermediary model are always defined as non-symmetrical – that is, with
symmetrical=False – therefore, there is the concept of a “source” and a “target”. In that case 'field1'
will be treated as the “source” of the relationship and 'field2' as the “target”.

ManyToManyField.db_table
The name of the table to create for storing the many-to-many data. If this is not provided, Django will assume
a default name based upon the names of: the table for the model defining the relationship and the name of the
field itself.

ManyToManyField.db_constraint
Controls whether or not constraints should be created in the database for the foreign keys in the intermediary
table. The default is True, and that’s almost certainly what you want; setting this to False can be very bad
for data integrity. That said, here are some scenarios where you might want to do this:

• You have legacy data that is not valid.

• You’re sharding your database.

It is an error to pass both db_constraint and through.

ManyToManyField.swappable
Controls the migration framework’s reaction if this ManyToManyField is pointing at a swappable model. If it
is True - the default - then if the ManyToManyField is pointing at a model which matches the current value
of settings.AUTH_USER_MODEL (or another swappable model setting) the relationship will be stored in
the migration using a reference to the setting, not to the model directly.

You only want to override this to be False if you are sure your model should always point towards the swapped-
in model - for example, if it is a profile model designed specifically for your custom user model.

If in doubt, leave it to its default of True.

ManyToManyField does not support validators.

null has no effect since there is no way to require a relationship at the database level.

OneToOneField

class OneToOneField(othermodel, on_delete, parent_link=False, **options)

A one-to-one relationship. Conceptually, this is similar to a ForeignKey with unique=True, but the “reverse”
side of the relation will directly return a single object.

on_delete can now be used as the second positional argument (previously it was typically only passed as a keyword
argument). It will be a required argument in Django 2.0.

This is most useful as the primary key of a model which “extends” another model in some way; Multi-table inheritance
is implemented by adding an implicit one-to-one relation from the child model to the parent model, for example.

One positional argument is required: the class to which the model will be related. This works exactly the same as it
does for ForeignKey , including all the options regarding recursive and lazy relationships.

If you do not specify the related_name argument for the OneToOneField, Django will use the lower-case name
of the current model as default value.

With the following example:

from django.conf import settings
from django.db import models

class MySpecialUser(models.Model):
user = models.OneToOneField(

1112 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

settings.AUTH_USER_MODEL,
on_delete=models.CASCADE,

)
supervisor = models.OneToOneField(

settings.AUTH_USER_MODEL,
on_delete=models.CASCADE,
related_name='supervisor_of',

)

your resulting User model will have the following attributes:

>>> user = User.objects.get(pk=1)
>>> hasattr(user, 'myspecialuser')
True
>>> hasattr(user, 'supervisor_of')
True

A DoesNotExist exception is raised when accessing the reverse relationship if an entry in the related table doesn’t
exist. For example, if a user doesn’t have a supervisor designated by MySpecialUser:

>>> user.supervisor_of
Traceback (most recent call last):

...
DoesNotExist: User matching query does not exist.

Additionally, OneToOneField accepts all of the extra arguments accepted by ForeignKey , plus one extra argu-
ment:

OneToOneField.parent_link
When True and used in a model which inherits from another concrete model, indicates that this field should
be used as the link back to the parent class, rather than the extra OneToOneField which would normally be
implicitly created by subclassing.

See One-to-one relationships for usage examples of OneToOneField.

Field API reference

class Field
Field is an abstract class that represents a database table column. Django uses fields to create the
database table (db_type()), to map Python types to database (get_prep_value()) and vice-versa
(from_db_value()).

A field is thus a fundamental piece in different Django APIs, notably, models and querysets.

In models, a field is instantiated as a class attribute and represents a particular table column, see Models. It has
attributes such as null and unique, and methods that Django uses to map the field value to database-specific
values.

A Field is a subclass of RegisterLookupMixin and thus both Transform and Lookup can be regis-
tered on it to be used in QuerySets (e.g. field_name__exact="foo"). All built-in lookups are regis-
tered by default.

All of Django’s built-in fields, such as CharField, are particular implementations of Field. If you need a
custom field, you can either subclass any of the built-in fields or write a Field from scratch. In either case, see
Writing custom model fields.

description
A verbose description of the field, e.g. for the django.contrib.admindocs application.

6.15. Models 1113

Django Documentation, Release 1.10.9.dev20171123183751

The description can be of the form:

description = _("String (up to %(max_length)s)")

where the arguments are interpolated from the field’s __dict__.

To map a Field to a database-specific type, Django exposes several methods:

get_internal_type()
Returns a string naming this field for backend specific purposes. By default, it returns the class name.

See Emulating built-in field types for usage in custom fields.

db_type(connection)
Returns the database column data type for the Field, taking into account the connection.

See Custom database types for usage in custom fields.

rel_db_type(connection)
Returns the database column data type for fields such as ForeignKey and OneToOneField that point
to the Field, taking into account the connection.

See Custom database types for usage in custom fields.

There are three main situations where Django needs to interact with the database backend and fields:

• when it queries the database (Python value -> database backend value)

• when it loads data from the database (database backend value -> Python value)

• when it saves to the database (Python value -> database backend value)

When querying, get_db_prep_value() and get_prep_value() are used:

get_prep_value(value)
value is the current value of the model’s attribute, and the method should return data in a format that has
been prepared for use as a parameter in a query.

See Converting Python objects to query values for usage.

get_db_prep_value(value, connection, prepared=False)
Converts value to a backend-specific value. By default it returns value if prepared=True and
get_prep_value() if is False.

See Converting query values to database values for usage.

When loading data, from_db_value() is used:

from_db_value(value, expression, connection, context)
Converts a value as returned by the database to a Python object. It is the reverse of get_prep_value().

This method is not used for most built-in fields as the database backend already returns the correct Python
type, or the backend itself does the conversion.

See Converting values to Python objects for usage.

Note: For performance reasons, from_db_value is not implemented as a no-op on fields which do not
require it (all Django fields). Consequently you may not call super in your definition.

When saving, pre_save() and get_db_prep_save() are used:

get_db_prep_save(value, connection)
Same as the get_db_prep_value(), but called when the field value must be saved to the database.
By default returns get_db_prep_value().

1114 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

pre_save(model_instance, add)
Method called prior to get_db_prep_save() to prepare the value before being saved (e.g. for
DateField.auto_now).

model_instance is the instance this field belongs to and add is whether the instance is being saved to
the database for the first time.

It should return the value of the appropriate attribute from model_instance for this field. The attribute
name is in self.attname (this is set up by Field).

See Preprocessing values before saving for usage.

Fields often receive their values as a different type, either from serialization or from forms.

to_python(value)
Converts the value into the correct Python object. It acts as the reverse of value_to_string(), and is
also called in clean().

See Converting values to Python objects for usage.

Besides saving to the database, the field also needs to know how to serialize its value:

value_to_string(obj)
Converts obj to a string. Used to serialize the value of the field.

See Converting field data for serialization for usage.

When using model forms, the Field needs to know which form field it should be represented by:

formfield(form_class=None, choices_form_class=None, **kwargs)
Returns the default django.forms.Field of this field for ModelForm.

By default, if both form_class and choices_form_class are None, it uses CharField. If the
field has choices and choices_form_class isn’t specified, it uses TypedChoiceField.

See Specifying the form field for a model field for usage.

deconstruct()
Returns a 4-tuple with enough information to recreate the field:

1. The name of the field on the model.

2. The import path of the field (e.g. "django.db.models.IntegerField"). This should be the
most portable version, so less specific may be better.

3. A list of positional arguments.

4. A dict of keyword arguments.

This method must be added to fields prior to 1.7 to migrate its data using Migrations.

6.15.2 Field attribute reference

Every Field instance contains several attributes that allow introspecting its behavior. Use these attributes instead of
isinstance checks when you need to write code that depends on a field’s functionality. These attributes can be
used together with the Model._meta API to narrow down a search for specific field types. Custom model fields should
implement these flags.

6.15. Models 1115

Django Documentation, Release 1.10.9.dev20171123183751

Attributes for fields

Field.auto_created
Boolean flag that indicates if the field was automatically created, such as the OneToOneField used by model
inheritance.

Field.concrete
Boolean flag that indicates if the field has a database column associated with it.

Field.hidden
Boolean flag that indicates if a field is used to back another non-hidden field’s functionality (e.g. the
content_type and object_id fields that make up a GenericForeignKey). The hidden flag is
used to distinguish what constitutes the public subset of fields on the model from all the fields on the model.

Note: Options.get_fields() excludes hidden fields by default. Pass in include_hidden=True to
return hidden fields in the results.

Field.is_relation
Boolean flag that indicates if a field contains references to one or more other models for its functionality (e.g.
ForeignKey, ManyToManyField, OneToOneField, etc.).

Field.model
Returns the model on which the field is defined. If a field is defined on a superclass of a model, model will
refer to the superclass, not the class of the instance.

Attributes for fields with relations

These attributes are used to query for the cardinality and other details of a relation. These attribute are present on
all fields; however, they will only have boolean values (rather than None) if the field is a relation type (Field.
is_relation=True).

Field.many_to_many
Boolean flag that is True if the field has a many-to-many relation; False otherwise. The only field included
with Django where this is True is ManyToManyField.

Field.many_to_one
Boolean flag that is True if the field has a many-to-one relation, such as a ForeignKey; False otherwise.

Field.one_to_many
Boolean flag that is True if the field has a one-to-many relation, such as a GenericRelation or the reverse
of a ForeignKey; False otherwise.

Field.one_to_one
Boolean flag that is True if the field has a one-to-one relation, such as a OneToOneField; False otherwise.

Field.related_model
Points to the model the field relates to. For example, Author in ForeignKey(Author,
on_delete=models.CASCADE). The related_model for a GenericForeignKey is always None.

6.15.3 Model _meta API

class Options

The model _meta API is at the core of the Django ORM. It enables other parts of the system such as lookups, queries,
forms, and the admin to understand the capabilities of each model. The API is accessible through the _meta attribute
of each model class, which is an instance of an django.db.models.options.Options object.

1116 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Methods that it provides can be used to:

• Retrieve all field instances of a model

• Retrieve a single field instance of a model by name

Field access API

Retrieving a single field instance of a model by name

Options.get_field(field_name)
Returns the field instance given a name of a field.

field_name can be the name of a field on the model, a field on an abstract or inherited model, or a field defined
on another model that points to the model. In the latter case, the field_name will be the related_name
defined by the user or the name automatically generated by Django itself.

Hidden fields cannot be retrieved by name.

If a field with the given name is not found a FieldDoesNotExist exception will be raised.

>>> from django.contrib.auth.models import User

A field on the model
>>> User._meta.get_field('username')
<django.db.models.fields.CharField: username>

A field from another model that has a relation with the current model
>>> User._meta.get_field('logentry')
<ManyToOneRel: admin.logentry>

A non existent field
>>> User._meta.get_field('does_not_exist')
Traceback (most recent call last):

...
FieldDoesNotExist: User has no field named 'does_not_exist'

Retrieving all field instances of a model

Options.get_fields(include_parents=True, include_hidden=False)
Returns a tuple of fields associated with a model. get_fields() accepts two parameters that can be used to
control which fields are returned:

include_parents True by default. Recursively includes fields defined on parent classes. If set to False,
get_fields() will only search for fields declared directly on the current model. Fields from models
that directly inherit from abstract models or proxy classes are considered to be local, not on the parent.

include_hidden False by default. If set to True, get_fields() will include fields that are used to
back other field’s functionality. This will also include any fields that have a related_name (such as
ManyToManyField, or ForeignKey) that start with a “+”.

>>> from django.contrib.auth.models import User
>>> User._meta.get_fields()
(<ManyToOneRel: admin.logentry>,
<django.db.models.fields.AutoField: id>,
<django.db.models.fields.CharField: password>,
<django.db.models.fields.DateTimeField: last_login>,

6.15. Models 1117

Django Documentation, Release 1.10.9.dev20171123183751

<django.db.models.fields.BooleanField: is_superuser>,
<django.db.models.fields.CharField: username>,
<django.db.models.fields.CharField: first_name>,
<django.db.models.fields.CharField: last_name>,
<django.db.models.fields.EmailField: email>,
<django.db.models.fields.BooleanField: is_staff>,
<django.db.models.fields.BooleanField: is_active>,
<django.db.models.fields.DateTimeField: date_joined>,
<django.db.models.fields.related.ManyToManyField: groups>,
<django.db.models.fields.related.ManyToManyField: user_permissions>)

Also include hidden fields.
>>> User._meta.get_fields(include_hidden=True)
(<ManyToOneRel: auth.user_groups>,
<ManyToOneRel: auth.user_user_permissions>,
<ManyToOneRel: admin.logentry>,
<django.db.models.fields.AutoField: id>,
<django.db.models.fields.CharField: password>,
<django.db.models.fields.DateTimeField: last_login>,
<django.db.models.fields.BooleanField: is_superuser>,
<django.db.models.fields.CharField: username>,
<django.db.models.fields.CharField: first_name>,
<django.db.models.fields.CharField: last_name>,
<django.db.models.fields.EmailField: email>,
<django.db.models.fields.BooleanField: is_staff>,
<django.db.models.fields.BooleanField: is_active>,
<django.db.models.fields.DateTimeField: date_joined>,
<django.db.models.fields.related.ManyToManyField: groups>,
<django.db.models.fields.related.ManyToManyField: user_permissions>)

Migrating from the old API

As part of the formalization of the Model._meta API (from the django.db.models.options.Options
class), a number of methods and properties have been deprecated and will be removed in Django 1.10.

These old APIs can be replicated by either:

• invoking Options.get_field(), or;

• invoking Options.get_fields() to retrieve a list of all fields, and then filtering this list using the field
attributes that describe (or retrieve, in the case of _with_model variants) the properties of the desired fields.

Although it’s possible to make strictly equivalent replacements of the old methods, that might not be the best approach.
Taking the time to refactor any field loops to make better use of the new API - and possibly include fields that were
previously excluded - will almost certainly result in better code.

Assuming you have a model named MyModel, the following substitutions can be made to convert your code to the
new API:

• MyModel._meta.get_field(name) becomes:

f = MyModel._meta.get_field(name)

then check if:

– f.auto_created == False, because the new get_field() API will find “reverse” relations,
and:

1118 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

– f.is_relation and f.related_model is None, because the new get_field() API will
find GenericForeignKey relations.

• MyModel._meta.get_field_by_name(name) returns a tuple of these four values with the following
replacements:

– field can be found by MyModel._meta.get_field(name)

– model can be found through the model attribute on the field.

– direct can be found by: not field.auto_created or field.concrete

The auto_created check excludes all “forward” and “reverse” relations that are created by Django,
but this also includes AutoField and OneToOneField on proxy models. We avoid filtering out these
attributes using the concrete attribute.

– m2m can be found through the many_to_many attribute on the field.

• MyModel._meta.get_fields_with_model() becomes:

[
(f, f.model if f.model != MyModel else None)
for f in MyModel._meta.get_fields()
if not f.is_relation

or f.one_to_one
or (f.many_to_one and f.related_model)

]

• MyModel._meta.get_concrete_fields_with_model() becomes:

[
(f, f.model if f.model != MyModel else None)
for f in MyModel._meta.get_fields()
if f.concrete and (

not f.is_relation
or f.one_to_one
or (f.many_to_one and f.related_model)

)
]

• MyModel._meta.get_m2m_with_model() becomes:

[
(f, f.model if f.model != MyModel else None)
for f in MyModel._meta.get_fields()
if f.many_to_many and not f.auto_created

]

• MyModel._meta.get_all_related_objects() becomes:

[
f for f in MyModel._meta.get_fields()
if (f.one_to_many or f.one_to_one)
and f.auto_created and not f.concrete

]

• MyModel._meta.get_all_related_objects_with_model() becomes:

[
(f, f.model if f.model != MyModel else None)
for f in MyModel._meta.get_fields()

6.15. Models 1119

Django Documentation, Release 1.10.9.dev20171123183751

if (f.one_to_many or f.one_to_one)
and f.auto_created and not f.concrete

]

• MyModel._meta.get_all_related_many_to_many_objects() becomes:

[
f for f in MyModel._meta.get_fields(include_hidden=True)
if f.many_to_many and f.auto_created

]

• MyModel._meta.get_all_related_m2m_objects_with_model() becomes:

[
(f, f.model if f.model != MyModel else None)
for f in MyModel._meta.get_fields(include_hidden=True)
if f.many_to_many and f.auto_created

]

• MyModel._meta.get_all_field_names() becomes:

from itertools import chain
list(set(chain.from_iterable(

(field.name, field.attname) if hasattr(field, 'attname') else (field.name,)
for field in MyModel._meta.get_fields()
For complete backwards compatibility, you may want to exclude
GenericForeignKey from the results.
if not (field.many_to_one and field.related_model is None)

)))

This provides a 100% backwards compatible replacement, ensuring that both field names and attribute names
ForeignKeys are included, but fields associated with GenericForeignKeys are not. A simpler version
would be:

[f.name for f in MyModel._meta.get_fields()]

While this isn’t 100% backwards compatible, it may be sufficient in many situations.

6.15.4 Related objects reference

class RelatedManager
A “related manager” is a manager used in a one-to-many or many-to-many related context. This happens in two
cases:

• The “other side” of a ForeignKey relation. That is:

from django.db import models

class Reporter(models.Model):
...
pass

class Article(models.Model):
reporter = models.ForeignKey(Reporter, on_delete=models.CASCADE)

In the above example, the methods below will be available on the manager reporter.article_set.

1120 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• Both sides of a ManyToManyField relation:

class Topping(models.Model):
...
pass

class Pizza(models.Model):
toppings = models.ManyToManyField(Topping)

In this example, the methods below will be available both on topping.pizza_set and on pizza.
toppings.

add(*objs, bulk=True)
Adds the specified model objects to the related object set.

Example:

>>> b = Blog.objects.get(id=1)
>>> e = Entry.objects.get(id=234)
>>> b.entry_set.add(e) # Associates Entry e with Blog b.

In the example above, in the case of a ForeignKey relationship, QuerySet.update() is used to
perform the update. This requires the objects to already be saved.

You can use the bulk=False argument to instead have the related manager perform the update by calling
e.save().

Using add() with a many-to-many relationship, however, will not call any save() methods, but rather
create the relationships using QuerySet.bulk_create(). If you need to execute some custom logic
when a relationship is created, listen to the m2m_changed signal.

The bulk parameter was added. In older versions, foreign key updates were always done using save().
Use bulk=False if you require the old behavior.

create(**kwargs)
Creates a new object, saves it and puts it in the related object set. Returns the newly created object:

>>> b = Blog.objects.get(id=1)
>>> e = b.entry_set.create(
... headline='Hello',
... body_text='Hi',
... pub_date=datetime.date(2005, 1, 1)
...)

No need to call e.save() at this point -- it's already been saved.

This is equivalent to (but much simpler than):

>>> b = Blog.objects.get(id=1)
>>> e = Entry(
... blog=b,
... headline='Hello',
... body_text='Hi',
... pub_date=datetime.date(2005, 1, 1)
...)
>>> e.save(force_insert=True)

Note that there’s no need to specify the keyword argument of the model that defines the relationship. In
the above example, we don’t pass the parameter blog to create(). Django figures out that the new
Entry object’s blog field should be set to b.

6.15. Models 1121

Django Documentation, Release 1.10.9.dev20171123183751

remove(*objs)
Removes the specified model objects from the related object set:

>>> b = Blog.objects.get(id=1)
>>> e = Entry.objects.get(id=234)
>>> b.entry_set.remove(e) # Disassociates Entry e from Blog b.

Similar to add(), e.save() is called in the example above to perform the update. Using remove()
with a many-to-many relationship, however, will delete the relationships using QuerySet.delete()
which means no model save() methods are called; listen to the m2m_changed signal if you wish to
execute custom code when a relationship is deleted.

For ForeignKey objects, this method only exists if null=True. If the related field can’t be set to None
(NULL), then an object can’t be removed from a relation without being added to another. In the above
example, removing e from b.entry_set() is equivalent to doing e.blog = None, and because the
blog ForeignKey doesn’t have null=True, this is invalid.

For ForeignKey objects, this method accepts a bulk argument to control how to perform the operation.
If True (the default), QuerySet.update() is used. If bulk=False, the save() method of each
individual model instance is called instead. This triggers the pre_save and post_save signals and
comes at the expense of performance.

clear()
Removes all objects from the related object set:

>>> b = Blog.objects.get(id=1)
>>> b.entry_set.clear()

Note this doesn’t delete the related objects – it just disassociates them.

Just like remove(), clear() is only available on ForeignKeys where null=True and it also
accepts the bulk keyword argument.

set(objs, bulk=True, clear=False)
Replace the set of related objects:

>>> new_list = [obj1, obj2, obj3]
>>> e.related_set.set(new_list)

This method accepts a clear argument to control how to perform the operation. If False (the default),
the elements missing from the new set are removed using remove() and only the new ones are added. If
clear=True, the clear() method is called instead and the whole set is added at once.

The bulk argument is passed on to add().

Note that since set() is a compound operation, it is subject to race conditions. For instance, new objects
may be added to the database in between the call to clear() and the call to add().

Note: Note that add(), create(), remove(), clear(), and set() all apply database changes im-
mediately for all types of related fields. In other words, there is no need to call save() on either end of the
relationship.

Also, if you are using an intermediate model for a many-to-many relationship, then the add(), create(),
remove(), and set() methods are disabled.

1122 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Direct Assignment

A related object set can be replaced in bulk with one operation by assigning a new iterable of objects to it:

>>> new_list = [obj1, obj2, obj3]
>>> e.related_set = new_list

If the foreign key relationship has null=True, then the related manager will first disassociate any existing objects
in the related set before adding the contents of new_list. Otherwise the objects in new_list will be added to the
existing related object set.

In earlier versions, direct assignment used to perform clear() followed by add(). It now performs a set() with
the keyword argument clear=False.

Deprecated since version 1.10: Direct assignment is deprecated in favor of the set() method:

>>> e.related_set.set([obj1, obj2, obj3])

This prevents confusion about an assignment resulting in an implicit save.

6.15.5 Model class reference

This document covers features of the Model class. For more information about models, see the complete list of Model
reference guides.

Attributes

objects

Model.objects
Each non-abstract Model class must have a Manager instance added to it. Django ensures that in your model
class you have at least a default Manager specified. If you don’t add your own Manager, Django will add an
attribute objects containing default Manager instance. If you add your own Manager instance attribute,
the default one does not appear. Consider the following example:

from django.db import models

class Person(models.Model):
Add manager with another name
people = models.Manager()

For more details on model managers see Managers and Retrieving objects.

6.15.6 Model Meta options

This document explains all the possible metadata options that you can give your model in its internal class Meta.

Available Meta options

abstract

Options.abstract
If abstract = True, this model will be an abstract base class.

6.15. Models 1123

Django Documentation, Release 1.10.9.dev20171123183751

app_label

Options.app_label
If a model is defined outside of an application in INSTALLED_APPS, it must declare which app it belongs to:

app_label = 'myapp'

If you want to represent a model with the format app_label.object_name or app_label.
model_name you can use model._meta.label or model._meta.label_lower respectively.

base_manager_name

Options.base_manager_name
The name of the manager to use for the model’s _base_manager.

db_table

Options.db_table
The name of the database table to use for the model:

db_table = 'music_album'

Table names

To save you time, Django automatically derives the name of the database table from the name of your model class and
the app that contains it. A model’s database table name is constructed by joining the model’s “app label” – the name
you used in manage.py startapp – to the model’s class name, with an underscore between them.

For example, if you have an app bookstore (as created by manage.py startapp bookstore), a model
defined as class Book will have a database table named bookstore_book.

To override the database table name, use the db_table parameter in class Meta.

If your database table name is an SQL reserved word, or contains characters that aren’t allowed in Python variable
names – notably, the hyphen – that’s OK. Django quotes column and table names behind the scenes.

Use lowercase table names for MySQL

It is strongly advised that you use lowercase table names when you override the table name via db_table, particu-
larly if you are using the MySQL backend. See the MySQL notes for more details.

Table name quoting for Oracle

In order to meet the 30-char limitation Oracle has on table names, and match the usual conventions for Oracle
databases, Django may shorten table names and turn them all-uppercase. To prevent such transformations, use a
quoted name as the value for db_table:

db_table = '"name_left_in_lowercase"'

Such quoted names can also be used with Django’s other supported database backends; except for Oracle, however,
the quotes have no effect. See the Oracle notes for more details.

1124 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

db_tablespace

Options.db_tablespace
The name of the database tablespace to use for this model. The default is the project’s
DEFAULT_TABLESPACE setting, if set. If the backend doesn’t support tablespaces, this option is ignored.

default_manager_name

Options.default_manager_name
The name of the manager to use for the model’s _default_manager.

default_related_name

Options.default_related_name
The name that will be used by default for the relation from a related object back to this one. The default is
<model_name>_set.

This option also sets related_query_name.

As the reverse name for a field should be unique, be careful if you intend to subclass your model. To work
around name collisions, part of the name should contain '%(app_label)s' and '%(model_name)s',
which are replaced respectively by the name of the application the model is in, and the name of the model, both
lowercased. See the paragraph on related names for abstract models.

Deprecated since version 1.10: This attribute now affects related_query_name. The old query lookup
name is deprecated:

from django.db import models

class Foo(models.Model):
pass

class Bar(models.Model):
foo = models.ForeignKey(Foo)

class Meta:
default_related_name = 'bars'

>>> bar = Bar.objects.get(pk=1)
>>> # Using model name "bar" as lookup string is deprecated.
>>> Foo.objects.get(bar=bar)
>>> # You should use default_related_name "bars".
>>> Foo.objects.get(bars=bar)

get_latest_by

Options.get_latest_by
The name of an orderable field in the model, typically a DateField, DateTimeField, or
IntegerField. This specifies the default field to use in your model Manager’s latest() and
earliest() methods.

Example:

6.15. Models 1125

Django Documentation, Release 1.10.9.dev20171123183751

get_latest_by = "order_date"

See the latest() docs for more.

managed

Options.managed
Defaults to True, meaning Django will create the appropriate database tables in migrate or as part of mi-
grations and remove them as part of a flush management command. That is, Django manages the database
tables’ lifecycles.

If False, no database table creation or deletion operations will be performed for this model. This is useful if
the model represents an existing table or a database view that has been created by some other means. This is the
only difference when managed=False. All other aspects of model handling are exactly the same as normal.
This includes

1. Adding an automatic primary key field to the model if you don’t declare it. To avoid confusion for later
code readers, it’s recommended to specify all the columns from the database table you are modeling when
using unmanaged models.

2. If a model with managed=False contains a ManyToManyField that points to another unmanaged
model, then the intermediate table for the many-to-many join will also not be created. However, the
intermediary table between one managed and one unmanaged model will be created.

If you need to change this default behavior, create the intermediary table as an explicit model (with
managed set as needed) and use the ManyToManyField.through attribute to make the relation
use your custom model.

For tests involving models with managed=False, it’s up to you to ensure the correct tables are created as part
of the test setup.

If you’re interested in changing the Python-level behavior of a model class, you could use managed=False
and create a copy of an existing model. However, there’s a better approach for that situation: Proxy models.

order_with_respect_to

Options.order_with_respect_to
Makes this object orderable with respect to the given field, usually a ForeignKey. This can be used to make
related objects orderable with respect to a parent object. For example, if an Answer relates to a Question
object, and a question has more than one answer, and the order of answers matters, you’d do this:

from django.db import models

class Question(models.Model):
text = models.TextField()
...

class Answer(models.Model):
question = models.ForeignKey(Question, on_delete=models.CASCADE)
...

class Meta:
order_with_respect_to = 'question'

When order_with_respect_to is set, two additional methods are provided to retrieve and to set the
order of the related objects: get_RELATED_order() and set_RELATED_order(), where RELATED is

1126 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

the lowercased model name. For example, assuming that a Question object has multiple related Answer
objects, the list returned contains the primary keys of the related Answer objects:

>>> question = Question.objects.get(id=1)
>>> question.get_answer_order()
[1, 2, 3]

The order of a Question object’s related Answer objects can be set by passing in a list of Answer primary
keys:

>>> question.set_answer_order([3, 1, 2])

The related objects also get two methods, get_next_in_order() and get_previous_in_order(),
which can be used to access those objects in their proper order. Assuming the Answer objects are ordered by
id:

>>> answer = Answer.objects.get(id=2)
>>> answer.get_next_in_order()
<Answer: 3>
>>> answer.get_previous_in_order()
<Answer: 1>

order_with_respect_to implicitly sets the ordering option

Internally, order_with_respect_to adds an additional field/database column named _order and sets the
model’s ordering option to this field. Consequently, order_with_respect_to and ordering cannot be
used together, and the ordering added by order_with_respect_to will apply whenever you obtain a list of
objects of this model.

Changing order_with_respect_to

Because order_with_respect_to adds a new database column, be sure to make and apply the appropriate
migrations if you add or change order_with_respect_to after your initial migrate.

ordering

Options.ordering
The default ordering for the object, for use when obtaining lists of objects:

ordering = ['-order_date']

This is a tuple or list of strings. Each string is a field name with an optional “-” prefix, which indicates descending
order. Fields without a leading “-” will be ordered ascending. Use the string ”?” to order randomly.

For example, to order by a pub_date field ascending, use this:

ordering = ['pub_date']

To order by pub_date descending, use this:

ordering = ['-pub_date']

To order by pub_date descending, then by author ascending, use this:

6.15. Models 1127

Django Documentation, Release 1.10.9.dev20171123183751

ordering = ['-pub_date', 'author']

Default ordering also affects aggregation queries.

Warning: Ordering is not a free operation. Each field you add to the ordering incurs a cost to your database. Each
foreign key you add will implicitly include all of its default orderings as well.

If a query doesn’t have an ordering specified, results are returned from the database in an unspecified order. A
particular ordering is guaranteed only when ordering by a set of fields that uniquely identify each object in the
results. For example, if a name field isn’t unique, ordering by it won’t guarantee objects with the same name
always appear in the same order.

permissions

Options.permissions
Extra permissions to enter into the permissions table when creating this object. Add, delete and change
permissions are automatically created for each model. This example specifies an extra permission,
can_deliver_pizzas:

permissions = (("can_deliver_pizzas", "Can deliver pizzas"),)

This is a list or tuple of 2-tuples in the format (permission_code,
human_readable_permission_name).

default_permissions

Options.default_permissions
Defaults to ('add', 'change', 'delete'). You may customize this list, for example, by setting this
to an empty list if your app doesn’t require any of the default permissions. It must be specified on the model
before the model is created by migrate in order to prevent any omitted permissions from being created.

proxy

Options.proxy
If proxy = True, a model which subclasses another model will be treated as a proxy model.

required_db_features

Options.required_db_features
List of database features that the current connection should have so that the model is considered during the
migration phase. For example, if you set this list to ['gis_enabled'], the model will only be synchronized
on GIS-enabled databases. It’s also useful to skip some models when testing with several database backends.
Avoid relations between models that may or may not be created as the ORM doesn’t handle this.

required_db_vendor

Options.required_db_vendor
Name of a supported database vendor that this model is specific to. Current built-in vendor names are: sqlite,

1128 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

postgresql, mysql, oracle. If this attribute is not empty and the current connection vendor doesn’t match
it, the model will not be synchronized.

select_on_save

Options.select_on_save
Determines if Django will use the pre-1.6 django.db.models.Model.save() algorithm. The old al-
gorithm uses SELECT to determine if there is an existing row to be updated. The new algorithm tries an
UPDATE directly. In some rare cases the UPDATE of an existing row isn’t visible to Django. An example is the
PostgreSQL ON UPDATE trigger which returns NULL. In such cases the new algorithm will end up doing an
INSERT even when a row exists in the database.

Usually there is no need to set this attribute. The default is False.

See django.db.models.Model.save() for more about the old and new saving algorithm.

unique_together

Options.unique_together
Sets of field names that, taken together, must be unique:

unique_together = (("driver", "restaurant"),)

This is a tuple of tuples that must be unique when considered together. It’s used in the Django admin and is
enforced at the database level (i.e., the appropriate UNIQUE statements are included in the CREATE TABLE
statement).

For convenience, unique_together can be a single tuple when dealing with a single set of fields:

unique_together = ("driver", "restaurant")

A ManyToManyField cannot be included in unique_together. (It’s not clear what that would even mean!) If
you need to validate uniqueness related to a ManyToManyField, try using a signal or an explicit through
model.

The ValidationError raised during model validation when the constraint is violated has the
unique_together error code.

index_together

Options.index_together
Sets of field names that, taken together, are indexed:

index_together = [
["pub_date", "deadline"],

]

This list of fields will be indexed together (i.e. the appropriate CREATE INDEX statement will be issued.)

For convenience, index_together can be a single list when dealing with a single set of fields:

index_together = ["pub_date", "deadline"]

6.15. Models 1129

Django Documentation, Release 1.10.9.dev20171123183751

verbose_name

Options.verbose_name
A human-readable name for the object, singular:

verbose_name = "pizza"

If this isn’t given, Django will use a munged version of the class name: CamelCase becomes camel case.

verbose_name_plural

Options.verbose_name_plural
The plural name for the object:

verbose_name_plural = "stories"

If this isn’t given, Django will use verbose_name + "s".

Read-only Meta attributes

label

Options.label
Representation of the object, returns app_label.object_name, e.g. 'polls.Question'.

label_lower

Options.label_lower
Representation of the model, returns app_label.model_name, e.g. 'polls.question'.

6.15.7 Model instance reference

This document describes the details of the Model API. It builds on the material presented in the model and database
query guides, so you’ll probably want to read and understand those documents before reading this one.

Throughout this reference we’ll use the example Weblog models presented in the database query guide.

Creating objects

To create a new instance of a model, just instantiate it like any other Python class:

class Model(**kwargs)

The keyword arguments are simply the names of the fields you’ve defined on your model. Note that instantiating a
model in no way touches your database; for that, you need to save().

Note: You may be tempted to customize the model by overriding the __init__ method. If you do so, however,
take care not to change the calling signature as any change may prevent the model instance from being saved. Rather
than overriding __init__, try using one of these approaches:

1. Add a classmethod on the model class:

1130 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

from django.db import models

class Book(models.Model):
title = models.CharField(max_length=100)

@classmethod
def create(cls, title):

book = cls(title=title)
do something with the book
return book

book = Book.create("Pride and Prejudice")

2. Add a method on a custom manager (usually preferred):

class BookManager(models.Manager):
def create_book(self, title):

book = self.create(title=title)
do something with the book
return book

class Book(models.Model):
title = models.CharField(max_length=100)

objects = BookManager()

book = Book.objects.create_book("Pride and Prejudice")

Customizing model loading

classmethod Model.from_db(db, field_names, values)

The from_db() method can be used to customize model instance creation when loading from the database.

The db argument contains the database alias for the database the model is loaded from, field_names contains
the names of all loaded fields, and values contains the loaded values for each field in field_names. The
field_names are in the same order as the values. If all of the model’s fields are present, then values are guar-
anteed to be in the order __init__() expects them. That is, the instance can be created by cls(*values). If
any fields are deferred, they won’t appear in field_names. In that case, assign a value of django.db.models.
DEFERRED to each of the missing fields.

In addition to creating the new model, the from_db() method must set the adding and db flags in the new
instance’s _state attribute.

Below is an example showing how to record the initial values of fields that are loaded from the database:

from django.db.models import DEFERRED

@classmethod
def from_db(cls, db, field_names, values):

Default implementation of from_db() (subject to change and could
be replaced with super()).
if len(values) != len(cls._meta.concrete_fields):

values = list(values)
values.reverse()
values = [

6.15. Models 1131

Django Documentation, Release 1.10.9.dev20171123183751

values.pop() if f.attname in field_names else DEFERRED
for f in cls._meta.concrete_fields

]
instance = cls(*values)
instance._state.adding = False
instance._state.db = db
customization to store the original field values on the instance
instance._loaded_values = dict(zip(field_names, values))
return instance

def save(self, *args, **kwargs):
Check how the current values differ from ._loaded_values. For example,
prevent changing the creator_id of the model. (This example doesn't
support cases where 'creator_id' is deferred).
if not self._state.adding and (

self.creator_id != self._loaded_values['creator_id']):
raise ValueError("Updating the value of creator isn't allowed")

super(...).save(*args, **kwargs)

The example above shows a full from_db() implementation to clarify how that is done. In this case it would of
course be possible to just use super() call in the from_db() method.

In older versions, you could check if all fields were loaded by consulting cls._deferred. This attribute is removed
and django.db.models.DEFERRED is new.

Refreshing objects from database

If you delete a field from a model instance, accessing it again reloads the value from the database:

>>> obj = MyModel.objects.first()
>>> del obj.field
>>> obj.field # Loads the field from the database

In older versions, accessing a deleted field raised AttributeError instead of reloading it.

Model.refresh_from_db(using=None, fields=None)

If you need to reload a model’s values from the database, you can use the refresh_from_db() method. When
this method is called without arguments the following is done:

1. All non-deferred fields of the model are updated to the values currently present in the database.

2. The previously loaded related instances for which the relation’s value is no longer valid are removed from the
reloaded instance. For example, if you have a foreign key from the reloaded instance to another model with
name Author, then if obj.author_id != obj.author.id, obj.author will be thrown away, and
when next accessed it will be reloaded with the value of obj.author_id.

Only fields of the model are reloaded from the database. Other database-dependent values such as annotations aren’t
reloaded. Any @cached_property attributes aren’t cleared either.

The reloading happens from the database the instance was loaded from, or from the default database if the instance
wasn’t loaded from the database. The using argument can be used to force the database used for reloading.

It is possible to force the set of fields to be loaded by using the fields argument.

For example, to test that an update() call resulted in the expected update, you could write a test similar to this:

def test_update_result(self):
obj = MyModel.objects.create(val=1)

1132 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

MyModel.objects.filter(pk=obj.pk).update(val=F('val') + 1)
At this point obj.val is still 1, but the value in the database
was updated to 2. The object's updated value needs to be reloaded
from the database.
obj.refresh_from_db()
self.assertEqual(obj.val, 2)

Note that when deferred fields are accessed, the loading of the deferred field’s value happens through this method.
Thus it is possible to customize the way deferred loading happens. The example below shows how one can reload all
of the instance’s fields when a deferred field is reloaded:

class ExampleModel(models.Model):
def refresh_from_db(self, using=None, fields=None, **kwargs):

fields contains the name of the deferred field to be
loaded.
if fields is not None:

fields = set(fields)
deferred_fields = self.get_deferred_fields()
If any deferred field is going to be loaded
if fields.intersection(deferred_fields):

then load all of them
fields = fields.union(deferred_fields)

super(ExampleModel, self).refresh_from_db(using, fields, **kwargs)

Model.get_deferred_fields()

A helper method that returns a set containing the attribute names of all those fields that are currently deferred for this
model.

Validating objects

There are three steps involved in validating a model:

1. Validate the model fields - Model.clean_fields()

2. Validate the model as a whole - Model.clean()

3. Validate the field uniqueness - Model.validate_unique()

All three steps are performed when you call a model’s full_clean() method.

When you use a ModelForm, the call to is_valid() will perform these validation steps for all the fields that
are included on the form. See the ModelForm documentation for more information. You should only need to call a
model’s full_clean() method if you plan to handle validation errors yourself, or if you have excluded fields from
the ModelForm that require validation.

Model.full_clean(exclude=None, validate_unique=True)

This method calls Model.clean_fields(), Model.clean(), and Model.validate_unique() (if
validate_unique is True), in that order and raises a ValidationError that has a message_dict at-
tribute containing errors from all three stages.

The optional exclude argument can be used to provide a list of field names that can be excluded from validation
and cleaning. ModelForm uses this argument to exclude fields that aren’t present on your form from being validated
since any errors raised could not be corrected by the user.

Note that full_clean() will not be called automatically when you call your model’s save() method. You’ll
need to call it manually when you want to run one-step model validation for your own manually created models. For
example:

6.15. Models 1133

Django Documentation, Release 1.10.9.dev20171123183751

from django.core.exceptions import ValidationError
try:

article.full_clean()
except ValidationError as e:

Do something based on the errors contained in e.message_dict.
Display them to a user, or handle them programmatically.
pass

The first step full_clean() performs is to clean each individual field.

Model.clean_fields(exclude=None)

This method will validate all fields on your model. The optional exclude argument lets you provide a list of field
names to exclude from validation. It will raise a ValidationError if any fields fail validation.

The second step full_clean() performs is to call Model.clean(). This method should be overridden to
perform custom validation on your model.

Model.clean()

This method should be used to provide custom model validation, and to modify attributes on your model if desired.
For instance, you could use it to automatically provide a value for a field, or to do validation that requires access to
more than a single field:

import datetime
from django.core.exceptions import ValidationError
from django.db import models
from django.utils.translation import ugettext_lazy as _

class Article(models.Model):
...
def clean(self):

Don't allow draft entries to have a pub_date.
if self.status == 'draft' and self.pub_date is not None:

raise ValidationError(_('Draft entries may not have a publication date.'))
Set the pub_date for published items if it hasn't been set already.
if self.status == 'published' and self.pub_date is None:

self.pub_date = datetime.date.today()

Note, however, that like Model.full_clean(), a model’s clean() method is not invoked when you call your
model’s save() method.

In the above example, the ValidationError exception raised by Model.clean()was instantiated with a string,
so it will be stored in a special error dictionary key, NON_FIELD_ERRORS. This key is used for errors that are tied
to the entire model instead of to a specific field:

from django.core.exceptions import ValidationError, NON_FIELD_ERRORS
try:

article.full_clean()
except ValidationError as e:

non_field_errors = e.message_dict[NON_FIELD_ERRORS]

To assign exceptions to a specific field, instantiate the ValidationError with a dictionary, where the keys are the
field names. We could update the previous example to assign the error to the pub_date field:

class Article(models.Model):
...
def clean(self):

Don't allow draft entries to have a pub_date.

1134 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

if self.status == 'draft' and self.pub_date is not None:
raise ValidationError({'pub_date': _('Draft entries may not have a

→˓publication date.')})
...

If you detect errors in multiple fields during Model.clean(), you can also pass a dictionary mapping field names
to errors:

raise ValidationError({
'title': ValidationError(_('Missing title.'), code='required'),
'pub_date': ValidationError(_('Invalid date.'), code='invalid'),

})

Finally, full_clean() will check any unique constraints on your model.

Model.validate_unique(exclude=None)

This method is similar to clean_fields(), but validates all uniqueness constraints on your model instead of
individual field values. The optional exclude argument allows you to provide a list of field names to exclude from
validation. It will raise a ValidationError if any fields fail validation.

Note that if you provide an exclude argument to validate_unique(), any unique_together constraint
involving one of the fields you provided will not be checked.

Saving objects

To save an object back to the database, call save():

Model.save(force_insert=False, force_update=False, using=DEFAULT_DB_ALIAS, update_fields=None)

If you want customized saving behavior, you can override this save() method. See Overriding predefined model
methods for more details.

The model save process also has some subtleties; see the sections below.

Auto-incrementing primary keys

If a model has an AutoField — an auto-incrementing primary key — then that auto-incremented value will be
calculated and saved as an attribute on your object the first time you call save():

>>> b2 = Blog(name='Cheddar Talk', tagline='Thoughts on cheese.')
>>> b2.id # Returns None, because b doesn't have an ID yet.
>>> b2.save()
>>> b2.id # Returns the ID of your new object.

There’s no way to tell what the value of an ID will be before you call save(), because that value is calculated by
your database, not by Django.

For convenience, each model has an AutoField named id by default unless you explicitly specify
primary_key=True on a field in your model. See the documentation for AutoField for more details.

The pk property

Model.pk

6.15. Models 1135

Django Documentation, Release 1.10.9.dev20171123183751

Regardless of whether you define a primary key field yourself, or let Django supply one for you, each model will have
a property called pk. It behaves like a normal attribute on the model, but is actually an alias for whichever attribute is
the primary key field for the model. You can read and set this value, just as you would for any other attribute, and it
will update the correct field in the model.

Explicitly specifying auto-primary-key values

If a model has an AutoField but you want to define a new object’s ID explicitly when saving, just define it explicitly
before saving, rather than relying on the auto-assignment of the ID:

>>> b3 = Blog(id=3, name='Cheddar Talk', tagline='Thoughts on cheese.')
>>> b3.id # Returns 3.
>>> b3.save()
>>> b3.id # Returns 3.

If you assign auto-primary-key values manually, make sure not to use an already-existing primary-key value! If you
create a new object with an explicit primary-key value that already exists in the database, Django will assume you’re
changing the existing record rather than creating a new one.

Given the above 'Cheddar Talk' blog example, this example would override the previous record in the database:

b4 = Blog(id=3, name='Not Cheddar', tagline='Anything but cheese.')
b4.save() # Overrides the previous blog with ID=3!

See How Django knows to UPDATE vs. INSERT , below, for the reason this happens.

Explicitly specifying auto-primary-key values is mostly useful for bulk-saving objects, when you’re confident you
won’t have primary-key collision.

What happens when you save?

When you save an object, Django performs the following steps:

1. Emit a pre-save signal. The pre_save signal is sent, allowing any functions listening for that signal to do
something.

2. Preprocess the data. Each field’s pre_save() method is called to perform any automated data modification
that’s needed. For example, the date/time fields override pre_save() to implement auto_now_add and
auto_now .

3. Prepare the data for the database. Each field’s get_db_prep_save() method is asked to provide its
current value in a data type that can be written to the database.

Most fields don’t require data preparation. Simple data types, such as integers and strings, are ‘ready to write’
as a Python object. However, more complex data types often require some modification.

For example, DateField fields use a Python datetime object to store data. Databases don’t store
datetime objects, so the field value must be converted into an ISO-compliant date string for insertion into the
database.

4. Insert the data into the database. The preprocessed, prepared data is composed into an SQL statement for
insertion into the database.

5. Emit a post-save signal. The post_save signal is sent, allowing any functions listening for that signal to do
something.

1136 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

How Django knows to UPDATE vs. INSERT

You may have noticed Django database objects use the same save() method for creating and changing objects.
Django abstracts the need to use INSERT or UPDATE SQL statements. Specifically, when you call save(), Django
follows this algorithm:

• If the object’s primary key attribute is set to a value that evaluates to True (i.e., a value other than None or the
empty string), Django executes an UPDATE.

• If the object’s primary key attribute is not set or if the UPDATE didn’t update anything, Django executes an
INSERT.

The one gotcha here is that you should be careful not to specify a primary-key value explicitly when saving new
objects, if you cannot guarantee the primary-key value is unused. For more on this nuance, see Explicitly specifying
auto-primary-key values above and Forcing an INSERT or UPDATE below.

In Django 1.5 and earlier, Django did a SELECT when the primary key attribute was set. If the SELECT found a row,
then Django did an UPDATE, otherwise it did an INSERT. The old algorithm results in one more query in the UPDATE
case. There are some rare cases where the database doesn’t report that a row was updated even if the database contains
a row for the object’s primary key value. An example is the PostgreSQL ON UPDATE trigger which returns NULL. In
such cases it is possible to revert to the old algorithm by setting the select_on_save option to True.

Forcing an INSERT or UPDATE

In some rare circumstances, it’s necessary to be able to force the save() method to perform an SQL INSERT and
not fall back to doing an UPDATE. Or vice-versa: update, if possible, but not insert a new row. In these cases you
can pass the force_insert=True or force_update=True parameters to the save() method. Obviously,
passing both parameters is an error: you cannot both insert and update at the same time!

It should be very rare that you’ll need to use these parameters. Django will almost always do the right thing and trying
to override that will lead to errors that are difficult to track down. This feature is for advanced use only.

Using update_fields will force an update similarly to force_update.

Updating attributes based on existing fields

Sometimes you’ll need to perform a simple arithmetic task on a field, such as incrementing or decrementing the current
value. The obvious way to achieve this is to do something like:

>>> product = Product.objects.get(name='Venezuelan Beaver Cheese')
>>> product.number_sold += 1
>>> product.save()

If the old number_sold value retrieved from the database was 10, then the value of 11 will be written back to the
database.

The process can be made robust, avoiding a race condition, as well as slightly faster by expressing the update relative
to the original field value, rather than as an explicit assignment of a new value. Django provides F expressions
for performing this kind of relative update. Using F expressions, the previous example is expressed as:

>>> from django.db.models import F
>>> product = Product.objects.get(name='Venezuelan Beaver Cheese')
>>> product.number_sold = F('number_sold') + 1
>>> product.save()

For more details, see the documentation on F expressions and their use in update queries.

6.15. Models 1137

Django Documentation, Release 1.10.9.dev20171123183751

Specifying which fields to save

If save() is passed a list of field names in keyword argument update_fields, only the fields named in that list
will be updated. This may be desirable if you want to update just one or a few fields on an object. There will be a
slight performance benefit from preventing all of the model fields from being updated in the database. For example:

product.name = 'Name changed again'
product.save(update_fields=['name'])

The update_fields argument can be any iterable containing strings. An empty update_fields iterable will
skip the save. A value of None will perform an update on all fields.

Specifying update_fields will force an update.

When saving a model fetched through deferred model loading (only() or defer()) only the fields loaded from
the DB will get updated. In effect there is an automatic update_fields in this case. If you assign or change any
deferred field value, the field will be added to the updated fields.

Deleting objects

Model.delete(using=DEFAULT_DB_ALIAS, keep_parents=False)

Issues an SQL DELETE for the object. This only deletes the object in the database; the Python instance will still
exist and will still have data in its fields. This method returns the number of objects deleted and a dictionary with the
number of deletions per object type.

For more details, including how to delete objects in bulk, see Deleting objects.

If you want customized deletion behavior, you can override the delete() method. See Overriding predefined model
methods for more details.

Sometimes with multi-table inheritance you may want to delete only a child model’s data. Specifying
keep_parents=True will keep the parent model’s data.

The keep_parents parameter was added.

The return value describing the number of objects deleted was added.

Pickling objects

When you pickle a model, its current state is pickled. When you unpickle it, it’ll contain the model instance at the
moment it was pickled, rather than the data that’s currently in the database.

You can’t share pickles between versions

Pickles of models are only valid for the version of Django that was used to generate them. If you generate a pickle
using Django version N, there is no guarantee that pickle will be readable with Django version N+1. Pickles should
not be used as part of a long-term archival strategy.

Since pickle compatibility errors can be difficult to diagnose, such as silently corrupted objects, a RuntimeWarning
is raised when you try to unpickle a model in a Django version that is different than the one in which it was pickled.

Other model instance methods

A few object methods have special purposes.

1138 Chapter 6. API Reference

https://docs.python.org/3/library/pickle.html#module-pickle

Django Documentation, Release 1.10.9.dev20171123183751

__str__()

Model.__str__()

The __str__() method is called whenever you call str() on an object. Django uses str(obj) in a number of
places. Most notably, to display an object in the Django admin site and as the value inserted into a template when
it displays an object. Thus, you should always return a nice, human-readable representation of the model from the
__str__() method.

For example:

from django.db import models
from django.utils.encoding import python_2_unicode_compatible

@python_2_unicode_compatible # only if you need to support Python 2
class Person(models.Model):

first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)

def __str__(self):
return '%s %s' % (self.first_name, self.last_name)

If you’d like compatibility with Python 2, you can decorate your model class with
python_2_unicode_compatible() as shown above.

__eq__()

Model.__eq__()

The equality method is defined such that instances with the same primary key value and the same concrete class are
considered equal, except that instances with a primary key value of None aren’t equal to anything except themselves.
For proxy models, concrete class is defined as the model’s first non-proxy parent; for all other models it’s simply the
model’s class.

For example:

from django.db import models

class MyModel(models.Model):
id = models.AutoField(primary_key=True)

class MyProxyModel(MyModel):
class Meta:

proxy = True

class MultitableInherited(MyModel):
pass

Primary keys compared
MyModel(id=1) == MyModel(id=1)
MyModel(id=1) != MyModel(id=2)
Primay keys are None
MyModel(id=None) != MyModel(id=None)
Same instance
instance = MyModel(id=None)
instance == instance
Proxy model

6.15. Models 1139

Django Documentation, Release 1.10.9.dev20171123183751

MyModel(id=1) == MyProxyModel(id=1)
Multi-table inheritance
MyModel(id=1) != MultitableInherited(id=1)

__hash__()

Model.__hash__()

The __hash__() method is based on the instance’s primary key value. It is effectively hash(obj.pk). If the
instance doesn’t have a primary key value then a TypeError will be raised (otherwise the __hash__() method
would return different values before and after the instance is saved, but changing the __hash__() value of an
instance is forbidden in Python.

get_absolute_url()

Model.get_absolute_url()

Define a get_absolute_url() method to tell Django how to calculate the canonical URL for an object. To
callers, this method should appear to return a string that can be used to refer to the object over HTTP.

For example:

def get_absolute_url(self):
return "/people/%i/" % self.id

While this code is correct and simple, it may not be the most portable way to to write this kind of method. The
reverse() function is usually the best approach.

For example:

def get_absolute_url(self):
from django.urls import reverse
return reverse('people.views.details', args=[str(self.id)])

One place Django uses get_absolute_url() is in the admin app. If an object defines this method, the object-
editing page will have a “View on site” link that will jump you directly to the object’s public view, as given by
get_absolute_url().

Similarly, a couple of other bits of Django, such as the syndication feed framework, use get_absolute_url()
when it is defined. If it makes sense for your model’s instances to each have a unique URL, you should define
get_absolute_url().

Warning: You should avoid building the URL from unvalidated user input, in order to reduce possibilities of link
or redirect poisoning:

def get_absolute_url(self):
return '/%s/' % self.name

If self.name is '/example.com' this returns '//example.com/' which, in turn, is a valid schema
relative URL but not the expected '/%2Fexample.com/'.

It’s good practice to use get_absolute_url() in templates, instead of hard-coding your objects’ URLs. For
example, this template code is bad:

1140 Chapter 6. API Reference

https://docs.python.org/3/reference/datamodel.html#object.__hash__

Django Documentation, Release 1.10.9.dev20171123183751

<!-- BAD template code. Avoid! -->
{{ object.name }}

This template code is much better:

{{ object.name }}

The logic here is that if you change the URL structure of your objects, even for something simple such as correcting
a spelling error, you don’t want to have to track down every place that the URL might be created. Specify it once, in
get_absolute_url() and have all your other code call that one place.

Note: The string you return from get_absolute_url() must contain only ASCII characters (required by the
URI specification, RFC 2396) and be URL-encoded, if necessary.

Code and templates calling get_absolute_url() should be able to use the result directly without any further
processing. You may wish to use the django.utils.encoding.iri_to_uri() function to help with this if
you are using unicode strings containing characters outside the ASCII range at all.

Extra instance methods

In addition to save(), delete(), a model object might have some of the following methods:

Model.get_FOO_display()

For every field that has choices set, the object will have a get_FOO_display() method, where FOO is the name
of the field. This method returns the “human-readable” value of the field.

For example:

from django.db import models

class Person(models.Model):
SHIRT_SIZES = (

('S', 'Small'),
('M', 'Medium'),
('L', 'Large'),

)
name = models.CharField(max_length=60)
shirt_size = models.CharField(max_length=2, choices=SHIRT_SIZES)

>>> p = Person(name="Fred Flintstone", shirt_size="L")
>>> p.save()
>>> p.shirt_size
'L'
>>> p.get_shirt_size_display()
'Large'

Model.get_next_by_FOO(**kwargs)

Model.get_previous_by_FOO(**kwargs)

For every DateField and DateTimeField that does not have null=True, the object will have
get_next_by_FOO() and get_previous_by_FOO() methods, where FOO is the name of the field. This
returns the next and previous object with respect to the date field, raising a DoesNotExist exception when appro-
priate.

6.15. Models 1141

https://tools.ietf.org/html/rfc2396.html

Django Documentation, Release 1.10.9.dev20171123183751

Both of these methods will perform their queries using the default manager for the model. If you need to emulate
filtering used by a custom manager, or want to perform one-off custom filtering, both methods also accept optional
keyword arguments, which should be in the format described in Field lookups.

Note that in the case of identical date values, these methods will use the primary key as a tie-breaker. This guarantees
that no records are skipped or duplicated. That also means you cannot use those methods on unsaved objects.

Other attributes

DoesNotExist

exception Model.DoesNotExist
This exception is raised by the ORM in a couple places, for example by QuerySet.get() when an object is
not found for the given query parameters.

Django provides a DoesNotExist exception as an attribute of each model class to identify the class of object
that could not be found and to allow you to catch a particular model class with try/except. The exception is
a subclass of django.core.exceptions.ObjectDoesNotExist.

6.15.8 QuerySet API reference

This document describes the details of the QuerySet API. It builds on the material presented in the model and
database query guides, so you’ll probably want to read and understand those documents before reading this one.

Throughout this reference we’ll use the example Weblog models presented in the database query guide.

When QuerySets are evaluated

Internally, a QuerySet can be constructed, filtered, sliced, and generally passed around without actually hitting the
database. No database activity actually occurs until you do something to evaluate the queryset.

You can evaluate a QuerySet in the following ways:

• Iteration. A QuerySet is iterable, and it executes its database query the first time you iterate over it. For
example, this will print the headline of all entries in the database:

for e in Entry.objects.all():
print(e.headline)

Note: Don’t use this if all you want to do is determine if at least one result exists. It’s more efficient to use
exists().

• Slicing. As explained in Limiting QuerySets, a QuerySet can be sliced, using Python’s array-slicing syntax.
Slicing an unevaluated QuerySet usually returns another unevaluated QuerySet, but Django will execute
the database query if you use the “step” parameter of slice syntax, and will return a list. Slicing a QuerySet
that has been evaluated also returns a list.

Also note that even though slicing an unevaluated QuerySet returns another unevaluated QuerySet, mod-
ifying it further (e.g., adding more filters, or modifying ordering) is not allowed, since that does not translate
well into SQL and it would not have a clear meaning either.

• Pickling/Caching. See the following section for details of what is involved when pickling QuerySets. The
important thing for the purposes of this section is that the results are read from the database.

• repr(). A QuerySet is evaluated when you call repr() on it. This is for convenience in the Python interactive
interpreter, so you can immediately see your results when using the API interactively.

1142 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• len(). A QuerySet is evaluated when you call len() on it. This, as you might expect, returns the length of
the result list.

Note: If you only need to determine the number of records in the set (and don’t need the actual objects), it’s
much more efficient to handle a count at the database level using SQL’s SELECT COUNT(*). Django provides
a count() method for precisely this reason.

• list(). Force evaluation of a QuerySet by calling list() on it. For example:

entry_list = list(Entry.objects.all())

• bool(). Testing a QuerySet in a boolean context, such as using bool(), or, and or an if statement, will
cause the query to be executed. If there is at least one result, the QuerySet is True, otherwise False. For
example:

if Entry.objects.filter(headline="Test"):
print("There is at least one Entry with the headline Test")

Note: If you only want to determine if at least one result exists (and don’t need the actual objects), it’s more
efficient to use exists().

Pickling QuerySets

If you pickle a QuerySet, this will force all the results to be loaded into memory prior to pickling. Pickling is
usually used as a precursor to caching and when the cached queryset is reloaded, you want the results to already be
present and ready for use (reading from the database can take some time, defeating the purpose of caching). This
means that when you unpickle a QuerySet, it contains the results at the moment it was pickled, rather than the
results that are currently in the database.

If you only want to pickle the necessary information to recreate the QuerySet from the database at a later time,
pickle the query attribute of the QuerySet. You can then recreate the original QuerySet (without any results
loaded) using some code like this:

>>> import pickle
>>> query = pickle.loads(s) # Assuming 's' is the pickled string.
>>> qs = MyModel.objects.all()
>>> qs.query = query # Restore the original 'query'.

The query attribute is an opaque object. It represents the internals of the query construction and is not part of the
public API. However, it is safe (and fully supported) to pickle and unpickle the attribute’s contents as described here.

You can’t share pickles between versions

Pickles of QuerySets are only valid for the version of Django that was used to generate them. If you generate a
pickle using Django version N, there is no guarantee that pickle will be readable with Django version N+1. Pickles
should not be used as part of a long-term archival strategy.

Since pickle compatibility errors can be difficult to diagnose, such as silently corrupted objects, a RuntimeWarning
is raised when you try to unpickle a queryset in a Django version that is different than the one in which it was pickled.

QuerySet API

Here’s the formal declaration of a QuerySet:

6.15. Models 1143

https://docs.python.org/3/library/pickle.html#module-pickle

Django Documentation, Release 1.10.9.dev20171123183751

class QuerySet(model=None, query=None, using=None)
Usually when you’ll interact with a QuerySet you’ll use it by chaining filters. To make this work, most
QuerySet methods return new querysets. These methods are covered in detail later in this section.

The QuerySet class has two public attributes you can use for introspection:

ordered
True if the QuerySet is ordered — i.e. has an order_by() clause or a default ordering on the model.
False otherwise.

db
The database that will be used if this query is executed now.

Note: The query parameter to QuerySet exists so that specialized query subclasses such as GeoQuerySet
can reconstruct internal query state. The value of the parameter is an opaque representation of that query state
and is not part of a public API. To put it simply: if you need to ask, you don’t need to use it.

Methods that return new QuerySets

Django provides a range of QuerySet refinement methods that modify either the types of results returned by the
QuerySet or the way its SQL query is executed.

filter()

filter(**kwargs)

Returns a new QuerySet containing objects that match the given lookup parameters.

The lookup parameters (**kwargs) should be in the format described in Field lookups below. Multiple parameters
are joined via AND in the underlying SQL statement.

If you need to execute more complex queries (for example, queries with OR statements), you can use Q objects.

exclude()

exclude(**kwargs)

Returns a new QuerySet containing objects that do not match the given lookup parameters.

The lookup parameters (**kwargs) should be in the format described in Field lookups below. Multiple parameters
are joined via AND in the underlying SQL statement, and the whole thing is enclosed in a NOT().

This example excludes all entries whose pub_date is later than 2005-1-3 AND whose headline is “Hello”:

Entry.objects.exclude(pub_date__gt=datetime.date(2005, 1, 3), headline='Hello')

In SQL terms, that evaluates to:

SELECT ...
WHERE NOT (pub_date > '2005-1-3' AND headline = 'Hello')

This example excludes all entries whose pub_date is later than 2005-1-3 OR whose headline is “Hello”:

Entry.objects.exclude(pub_date__gt=datetime.date(2005, 1, 3)).exclude(headline='Hello
→˓')

1144 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

In SQL terms, that evaluates to:

SELECT ...
WHERE NOT pub_date > '2005-1-3'
AND NOT headline = 'Hello'

Note the second example is more restrictive.

If you need to execute more complex queries (for example, queries with OR statements), you can use Q objects.

annotate()

annotate(*args, **kwargs)

Annotates each object in the QuerySet with the provided list of query expressions. An expression may be a simple
value, a reference to a field on the model (or any related models), or an aggregate expression (averages, sums, etc.)
that has been computed over the objects that are related to the objects in the QuerySet.

Each argument to annotate() is an annotation that will be added to each object in the QuerySet that is returned.

The aggregation functions that are provided by Django are described in Aggregation Functions below.

Annotations specified using keyword arguments will use the keyword as the alias for the annotation. Anonymous
arguments will have an alias generated for them based upon the name of the aggregate function and the model field
that is being aggregated. Only aggregate expressions that reference a single field can be anonymous arguments.
Everything else must be a keyword argument.

For example, if you were manipulating a list of blogs, you may want to determine how many entries have been made
in each blog:

>>> from django.db.models import Count
>>> q = Blog.objects.annotate(Count('entry'))
The name of the first blog
>>> q[0].name
'Blogasaurus'
The number of entries on the first blog
>>> q[0].entry__count
42

The Blog model doesn’t define an entry__count attribute by itself, but by using a keyword argument to specify
the aggregate function, you can control the name of the annotation:

>>> q = Blog.objects.annotate(number_of_entries=Count('entry'))
The number of entries on the first blog, using the name provided
>>> q[0].number_of_entries
42

For an in-depth discussion of aggregation, see the topic guide on Aggregation.

order_by()

order_by(*fields)

By default, results returned by a QuerySet are ordered by the ordering tuple given by the ordering option in the
model’s Meta. You can override this on a per-QuerySet basis by using the order_by method.

Example:

6.15. Models 1145

Django Documentation, Release 1.10.9.dev20171123183751

Entry.objects.filter(pub_date__year=2005).order_by('-pub_date', 'headline')

The result above will be ordered by pub_date descending, then by headline ascending. The negative sign in
front of "-pub_date" indicates descending order. Ascending order is implied. To order randomly, use "?", like
so:

Entry.objects.order_by('?')

Note: order_by('?') queries may be expensive and slow, depending on the database backend you’re using.

To order by a field in a different model, use the same syntax as when you are querying across model relations. That is,
the name of the field, followed by a double underscore (__), followed by the name of the field in the new model, and
so on for as many models as you want to join. For example:

Entry.objects.order_by('blog__name', 'headline')

If you try to order by a field that is a relation to another model, Django will use the default ordering on the related
model, or order by the related model’s primary key if there is no Meta.ordering specified. For example, since the
Blog model has no default ordering specified:

Entry.objects.order_by('blog')

...is identical to:

Entry.objects.order_by('blog__id')

If Blog had ordering = ['name'], then the first queryset would be identical to:

Entry.objects.order_by('blog__name')

You can also order by query expressions by calling asc() or desc() on the expression:

Entry.objects.order_by(Coalesce('summary', 'headline').desc())

Be cautious when ordering by fields in related models if you are also using distinct(). See the note in
distinct() for an explanation of how related model ordering can change the expected results.

Note: It is permissible to specify a multi-valued field to order the results by (for example, a ManyToManyField
field, or the reverse relation of a ForeignKey field).

Consider this case:

class Event(Model):
parent = models.ForeignKey(

'self',
on_delete=models.CASCADE,
related_name='children',

)
date = models.DateField()

Event.objects.order_by('children__date')

Here, there could potentially be multiple ordering data for each Event; each Event with multiple children will
be returned multiple times into the new QuerySet that order_by() creates. In other words, using order_by()
on the QuerySet could return more items than you were working on to begin with - which is probably neither
expected nor useful.

1146 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Thus, take care when using multi-valued field to order the results. If you can be sure that there will only be one
ordering piece of data for each of the items you’re ordering, this approach should not present problems. If not, make
sure the results are what you expect.

There’s no way to specify whether ordering should be case sensitive. With respect to case-sensitivity, Django will
order results however your database backend normally orders them.

You can order by a field converted to lowercase with Lower which will achieve case-consistent ordering:

Entry.objects.order_by(Lower('headline').desc())

If you don’t want any ordering to be applied to a query, not even the default ordering, call order_by() with no
parameters.

You can tell if a query is ordered or not by checking the QuerySet.ordered attribute, which will be True if the
QuerySet has been ordered in any way.

Each order_by() call will clear any previous ordering. For example, this query will be ordered by pub_date and
not headline:

Entry.objects.order_by('headline').order_by('pub_date')

Warning: Ordering is not a free operation. Each field you add to the ordering incurs a cost to your database. Each
foreign key you add will implicitly include all of its default orderings as well.

If a query doesn’t have an ordering specified, results are returned from the database in an unspecified order. A
particular ordering is guaranteed only when ordering by a set of fields that uniquely identify each object in the
results. For example, if a name field isn’t unique, ordering by it won’t guarantee objects with the same name
always appear in the same order.

reverse()

reverse()

Use the reverse() method to reverse the order in which a queryset’s elements are returned. Calling reverse()
a second time restores the ordering back to the normal direction.

To retrieve the “last” five items in a queryset, you could do this:

my_queryset.reverse()[:5]

Note that this is not quite the same as slicing from the end of a sequence in Python. The above example will return
the last item first, then the penultimate item and so on. If we had a Python sequence and looked at seq[-5:], we
would see the fifth-last item first. Django doesn’t support that mode of access (slicing from the end), because it’s not
possible to do it efficiently in SQL.

Also, note that reverse() should generally only be called on a QuerySet which has a defined ordering (e.g.,
when querying against a model which defines a default ordering, or when using order_by()). If no such ordering
is defined for a given QuerySet, calling reverse() on it has no real effect (the ordering was undefined prior to
calling reverse(), and will remain undefined afterward).

distinct()

distinct(*fields)

6.15. Models 1147

Django Documentation, Release 1.10.9.dev20171123183751

Returns a new QuerySet that uses SELECT DISTINCT in its SQL query. This eliminates duplicate rows from the
query results.

By default, a QuerySet will not eliminate duplicate rows. In practice, this is rarely a problem, because simple
queries such as Blog.objects.all() don’t introduce the possibility of duplicate result rows. However, if your
query spans multiple tables, it’s possible to get duplicate results when a QuerySet is evaluated. That’s when you’d
use distinct().

Note: Any fields used in an order_by() call are included in the SQL SELECT columns. This can sometimes lead
to unexpected results when used in conjunction with distinct(). If you order by fields from a related model, those
fields will be added to the selected columns and they may make otherwise duplicate rows appear to be distinct. Since
the extra columns don’t appear in the returned results (they are only there to support ordering), it sometimes looks like
non-distinct results are being returned.

Similarly, if you use a values() query to restrict the columns selected, the columns used in any order_by() (or
default model ordering) will still be involved and may affect uniqueness of the results.

The moral here is that if you are using distinct() be careful about ordering by related models. Similarly, when
using distinct() and values() together, be careful when ordering by fields not in the values() call.

On PostgreSQL only, you can pass positional arguments (*fields) in order to specify the names of fields to which
the DISTINCT should apply. This translates to a SELECT DISTINCT ON SQL query. Here’s the difference. For a
normal distinct() call, the database compares each field in each row when determining which rows are distinct.
For a distinct() call with specified field names, the database will only compare the specified field names.

Note: When you specify field names, you must provide an order_by() in the QuerySet, and the fields in
order_by() must start with the fields in distinct(), in the same order.

For example, SELECT DISTINCT ON (a) gives you the first row for each value in column a. If you don’t specify
an order, you’ll get some arbitrary row.

Examples (those after the first will only work on PostgreSQL):

>>> Author.objects.distinct()
[...]

>>> Entry.objects.order_by('pub_date').distinct('pub_date')
[...]

>>> Entry.objects.order_by('blog').distinct('blog')
[...]

>>> Entry.objects.order_by('author', 'pub_date').distinct('author', 'pub_date')
[...]

>>> Entry.objects.order_by('blog__name', 'mod_date').distinct('blog__name', 'mod_date
→˓')
[...]

>>> Entry.objects.order_by('author', 'pub_date').distinct('author')
[...]

Note: Keep in mind that order_by() uses any default related model ordering that has been defined. You might
have to explicitly order by the relation _id or referenced field to make sure the DISTINCT ON expressions match
those at the beginning of the ORDER BY clause. For example, if the Blog model defined an ordering by name:

1148 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Entry.objects.order_by('blog').distinct('blog')

...wouldn’t work because the query would be ordered by blog__name thus mismatching the DISTINCT ON expres-
sion. You’d have to explicitly order by the relation _id field (blog_id in this case) or the referenced one (blog__pk)
to make sure both expressions match.

values()

values(*fields)

Returns a QuerySet that returns dictionaries, rather than model instances, when used as an iterable.

Each of those dictionaries represents an object, with the keys corresponding to the attribute names of model objects.

This example compares the dictionaries of values() with the normal model objects:

This list contains a Blog object.
>>> Blog.objects.filter(name__startswith='Beatles')
<QuerySet [<Blog: Beatles Blog>]>

This list contains a dictionary.
>>> Blog.objects.filter(name__startswith='Beatles').values()
<QuerySet [{'id': 1, 'name': 'Beatles Blog', 'tagline': 'All the latest Beatles news.
→˓'}]>

The values() method takes optional positional arguments, *fields, which specify field names to which the
SELECT should be limited. If you specify the fields, each dictionary will contain only the field keys/values for the
fields you specify. If you don’t specify the fields, each dictionary will contain a key and value for every field in the
database table.

Example:

>>> Blog.objects.values()
<QuerySet [{'id': 1, 'name': 'Beatles Blog', 'tagline': 'All the latest Beatles news.
→˓'}]>
>>> Blog.objects.values('id', 'name')
<QuerySet [{'id': 1, 'name': 'Beatles Blog'}]>

A few subtleties that are worth mentioning:

• If you have a field called foo that is a ForeignKey , the default values() call will return a dictionary
key called foo_id, since this is the name of the hidden model attribute that stores the actual value (the foo
attribute refers to the related model). When you are calling values() and passing in field names, you can pass
in either foo or foo_id and you will get back the same thing (the dictionary key will match the field name
you passed in).

For example:

>>> Entry.objects.values()
<QuerySet [{'blog_id': 1, 'headline': 'First Entry', ...}, ...]>

>>> Entry.objects.values('blog')
<QuerySet [{'blog': 1}, ...]>

>>> Entry.objects.values('blog_id')
<QuerySet [{'blog_id': 1}, ...]>

6.15. Models 1149

Django Documentation, Release 1.10.9.dev20171123183751

• When using values() together with distinct(), be aware that ordering can affect the results. See the
note in distinct() for details.

• If you use a values() clause after an extra() call, any fields defined by a select argument in the
extra() must be explicitly included in the values() call. Any extra() call made after a values() call
will have its extra selected fields ignored.

• Calling only() and defer() after values() doesn’t make sense, so doing so will raise a
NotImplementedError.

It is useful when you know you’re only going to need values from a small number of the available fields and you won’t
need the functionality of a model instance object. It’s more efficient to select only the fields you need to use.

Finally, note that you can call filter(), order_by(), etc. after the values() call, that means that these two
calls are identical:

Blog.objects.values().order_by('id')
Blog.objects.order_by('id').values()

The people who made Django prefer to put all the SQL-affecting methods first, followed (optionally) by any output-
affecting methods (such as values()), but it doesn’t really matter. This is your chance to really flaunt your individ-
ualism.

You can also refer to fields on related models with reverse relations through OneToOneField, ForeignKey and
ManyToManyField attributes:

>>> Blog.objects.values('name', 'entry__headline')
<QuerySet [{'name': 'My blog', 'entry__headline': 'An entry'},

{'name': 'My blog', 'entry__headline': 'Another entry'}, ...]>

Warning: Because ManyToManyField attributes and reverse relations can have multiple related rows, includ-
ing these can have a multiplier effect on the size of your result set. This will be especially pronounced if you
include multiple such fields in your values() query, in which case all possible combinations will be returned.

values_list()

values_list(*fields, flat=False)

This is similar to values() except that instead of returning dictionaries, it returns tuples when iterated over. Each
tuple contains the value from the respective field passed into the values_list() call — so the first item is the first
field, etc. For example:

>>> Entry.objects.values_list('id', 'headline')
[(1, 'First entry'), ...]

If you only pass in a single field, you can also pass in the flat parameter. If True, this will mean the returned results
are single values, rather than one-tuples. An example should make the difference clearer:

>>> Entry.objects.values_list('id').order_by('id')
[(1,), (2,), (3,), ...]

>>> Entry.objects.values_list('id', flat=True).order_by('id')
[1, 2, 3, ...]

It is an error to pass in flat when there is more than one field.

1150 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

If you don’t pass any values to values_list(), it will return all the fields in the model, in the order they were
declared.

A common need is to get a specific field value of a certain model instance. To achieve that, use values_list()
followed by a get() call:

>>> Entry.objects.values_list('headline', flat=True).get(pk=1)
'First entry'

values() and values_list() are both intended as optimizations for a specific use case: retrieving a subset of
data without the overhead of creating a model instance. This metaphor falls apart when dealing with many-to-many
and other multivalued relations (such as the one-to-many relation of a reverse foreign key) because the “one row, one
object” assumption doesn’t hold.

For example, notice the behavior when querying across a ManyToManyField:

>>> Author.objects.values_list('name', 'entry__headline')
[('Noam Chomsky', 'Impressions of Gaza'),
('George Orwell', 'Why Socialists Do Not Believe in Fun'),
('George Orwell', 'In Defence of English Cooking'),
('Don Quixote', None)]

Authors with multiple entries appear multiple times and authors without any entries have None for the entry headline.

Similarly, when querying a reverse foreign key, None appears for entries not having any author:

>>> Entry.objects.values_list('authors')
[('Noam Chomsky',), ('George Orwell',), (None,)]

dates()

dates(field, kind, order=’ASC’)

Returns a QuerySet that evaluates to a list of datetime.date objects representing all available dates of a partic-
ular kind within the contents of the QuerySet.

field should be the name of a DateField of your model. kind should be either "year", "month" or "day".
Each datetime.date object in the result list is “truncated” to the given type.

• "year" returns a list of all distinct year values for the field.

• "month" returns a list of all distinct year/month values for the field.

• "day" returns a list of all distinct year/month/day values for the field.

order, which defaults to 'ASC', should be either 'ASC' or 'DESC'. This specifies how to order the results.

Examples:

>>> Entry.objects.dates('pub_date', 'year')
[datetime.date(2005, 1, 1)]
>>> Entry.objects.dates('pub_date', 'month')
[datetime.date(2005, 2, 1), datetime.date(2005, 3, 1)]
>>> Entry.objects.dates('pub_date', 'day')
[datetime.date(2005, 2, 20), datetime.date(2005, 3, 20)]
>>> Entry.objects.dates('pub_date', 'day', order='DESC')
[datetime.date(2005, 3, 20), datetime.date(2005, 2, 20)]
>>> Entry.objects.filter(headline__contains='Lennon').dates('pub_date', 'day')
[datetime.date(2005, 3, 20)]

6.15. Models 1151

https://docs.python.org/3/library/datetime.html#datetime.date

Django Documentation, Release 1.10.9.dev20171123183751

datetimes()

datetimes(field_name, kind, order=’ASC’, tzinfo=None)

Returns a QuerySet that evaluates to a list of datetime.datetime objects representing all available dates of a
particular kind within the contents of the QuerySet.

field_name should be the name of a DateTimeField of your model.

kind should be either "year", "month", "day", "hour", "minute" or "second". Each datetime.
datetime object in the result list is “truncated” to the given type.

order, which defaults to 'ASC', should be either 'ASC' or 'DESC'. This specifies how to order the results.

tzinfo defines the time zone to which datetimes are converted prior to truncation. Indeed, a given datetime has
different representations depending on the time zone in use. This parameter must be a datetime.tzinfo object.
If it’s None, Django uses the current time zone. It has no effect when USE_TZ is False.

Note: This function performs time zone conversions directly in the database. As a consequence, your database must
be able to interpret the value of tzinfo.tzname(None). This translates into the following requirements:

• SQLite: install pytz — conversions are actually performed in Python.

• PostgreSQL: no requirements (see Time Zones).

• Oracle: no requirements (see Choosing a Time Zone File).

• MySQL: install pytz and load the time zone tables with mysql_tzinfo_to_sql.

none()

none()

Calling none() will create a queryset that never returns any objects and no query will be executed when accessing the
results. A qs.none() queryset is an instance of EmptyQuerySet.

Examples:

>>> Entry.objects.none()
<QuerySet []>
>>> from django.db.models.query import EmptyQuerySet
>>> isinstance(Entry.objects.none(), EmptyQuerySet)
True

all()

all()

Returns a copy of the current QuerySet (or QuerySet subclass). This can be useful in situations where you might
want to pass in either a model manager or a QuerySet and do further filtering on the result. After calling all() on
either object, you’ll definitely have a QuerySet to work with.

When a QuerySet is evaluated, it typically caches its results. If the data in the database might have changed since a
QuerySet was evaluated, you can get updated results for the same query by calling all() on a previously evaluated
QuerySet.

1152 Chapter 6. API Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.tzinfo
http://pytz.sourceforge.net/
https://www.postgresql.org/docs/current/static/datatype-datetime.html#DATATYPE-TIMEZONES
https://docs.oracle.com/cd/E11882_01/server.112/e10729/ch4datetime.htm#NLSPG258
http://pytz.sourceforge.net/
https://dev.mysql.com/doc/refman/en/mysql-tzinfo-to-sql.html

Django Documentation, Release 1.10.9.dev20171123183751

select_related()

select_related(*fields)

Returns a QuerySet that will “follow” foreign-key relationships, selecting additional related-object data when it
executes its query. This is a performance booster which results in a single more complex query but means later use of
foreign-key relationships won’t require database queries.

The following examples illustrate the difference between plain lookups and select_related() lookups. Here’s
standard lookup:

Hits the database.
e = Entry.objects.get(id=5)

Hits the database again to get the related Blog object.
b = e.blog

And here’s select_related lookup:

Hits the database.
e = Entry.objects.select_related('blog').get(id=5)

Doesn't hit the database, because e.blog has been prepopulated
in the previous query.
b = e.blog

You can use select_related() with any queryset of objects:

from django.utils import timezone

Find all the blogs with entries scheduled to be published in the future.
blogs = set()

for e in Entry.objects.filter(pub_date__gt=timezone.now()).select_related('blog'):
Without select_related(), this would make a database query for each
loop iteration in order to fetch the related blog for each entry.
blogs.add(e.blog)

The order of filter() and select_related() chaining isn’t important. These querysets are equivalent:

Entry.objects.filter(pub_date__gt=timezone.now()).select_related('blog')
Entry.objects.select_related('blog').filter(pub_date__gt=timezone.now())

You can follow foreign keys in a similar way to querying them. If you have the following models:

from django.db import models

class City(models.Model):
...
pass

class Person(models.Model):
...
hometown = models.ForeignKey(

City,
on_delete=models.SET_NULL,
blank=True,
null=True,

6.15. Models 1153

Django Documentation, Release 1.10.9.dev20171123183751

)

class Book(models.Model):
...
author = models.ForeignKey(Person, on_delete=models.CASCADE)

... then a call to Book.objects.select_related('author__hometown').get(id=4) will cache the
related Person and the related City:

b = Book.objects.select_related('author__hometown').get(id=4)
p = b.author # Doesn't hit the database.
c = p.hometown # Doesn't hit the database.

b = Book.objects.get(id=4) # No select_related() in this example.
p = b.author # Hits the database.
c = p.hometown # Hits the database.

You can refer to any ForeignKey or OneToOneField relation in the list of fields passed to
select_related().

You can also refer to the reverse direction of a OneToOneField in the list of fields passed to select_related
— that is, you can traverse a OneToOneField back to the object on which the field is defined. Instead of specifying
the field name, use the related_name for the field on the related object.

There may be some situations where you wish to call select_related() with a lot of related objects, or where
you don’t know all of the relations. In these cases it is possible to call select_related()with no arguments. This
will follow all non-null foreign keys it can find - nullable foreign keys must be specified. This is not recommended in
most cases as it is likely to make the underlying query more complex, and return more data, than is actually needed.

If you need to clear the list of related fields added by past calls of select_related on a QuerySet, you can pass
None as a parameter:

>>> without_relations = queryset.select_related(None)

Chaining select_related calls works in a similar way to other methods - that is
that select_related('foo', 'bar') is equivalent to select_related('foo').
select_related('bar').

prefetch_related()

prefetch_related(*lookups)

Returns a QuerySet that will automatically retrieve, in a single batch, related objects for each of the specified
lookups.

This has a similar purpose to select_related, in that both are designed to stop the deluge of database queries
that is caused by accessing related objects, but the strategy is quite different.

select_related works by creating an SQL join and including the fields of the related object in the SELECT
statement. For this reason, select_related gets the related objects in the same database query. However, to avoid
the much larger result set that would result from joining across a ‘many’ relationship, select_related is limited
to single-valued relationships - foreign key and one-to-one.

prefetch_related, on the other hand, does a separate lookup for each relationship, and does the ‘join-
ing’ in Python. This allows it to prefetch many-to-many and many-to-one objects, which cannot be done
using select_related, in addition to the foreign key and one-to-one relationships that are supported by

1154 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

select_related. It also supports prefetching of GenericRelation and GenericForeignKey , how-
ever, it must be restricted to a homogeneous set of results. For example, prefetching objects referenced by a
GenericForeignKey is only supported if the query is restricted to one ContentType.

For example, suppose you have these models:

from django.db import models

class Topping(models.Model):
name = models.CharField(max_length=30)

class Pizza(models.Model):
name = models.CharField(max_length=50)
toppings = models.ManyToManyField(Topping)

def __str__(self): # __unicode__ on Python 2
return "%s (%s)" % (

self.name,
", ".join(topping.name for topping in self.toppings.all()),

)

and run:

>>> Pizza.objects.all()
["Hawaiian (ham, pineapple)", "Seafood (prawns, smoked salmon)"...

The problem with this is that every time Pizza.__str__() asks for self.toppings.all() it has to query
the database, so Pizza.objects.all() will run a query on the Toppings table for every item in the Pizza
QuerySet.

We can reduce to just two queries using prefetch_related:

>>> Pizza.objects.all().prefetch_related('toppings')

This implies a self.toppings.all() for each Pizza; now each time self.toppings.all() is called,
instead of having to go to the database for the items, it will find them in a prefetched QuerySet cache that was
populated in a single query.

That is, all the relevant toppings will have been fetched in a single query, and used to make QuerySets that have a
pre-filled cache of the relevant results; these QuerySets are then used in the self.toppings.all() calls.

The additional queries in prefetch_related() are executed after the QuerySet has begun to be evaluated and
the primary query has been executed.

If you have an iterable of model instances, you can prefetch related attributes on those instances using the
prefetch_related_objects() function.

Note that the result cache of the primary QuerySet and all specified related objects will then be fully loaded into
memory. This changes the typical behavior of QuerySets, which normally try to avoid loading all objects into
memory before they are needed, even after a query has been executed in the database.

Note: Remember that, as always with QuerySets, any subsequent chained methods which imply a different
database query will ignore previously cached results, and retrieve data using a fresh database query. So, if you write
the following:

>>> pizzas = Pizza.objects.prefetch_related('toppings')
>>> [list(pizza.toppings.filter(spicy=True)) for pizza in pizzas]

6.15. Models 1155

Django Documentation, Release 1.10.9.dev20171123183751

...then the fact that pizza.toppings.all() has been prefetched will not help you. The
prefetch_related('toppings') implied pizza.toppings.all(), but pizza.toppings.
filter() is a new and different query. The prefetched cache can’t help here; in fact it hurts performance, since you
have done a database query that you haven’t used. So use this feature with caution!

You can also use the normal join syntax to do related fields of related fields. Suppose we have an additional model to
the example above:

class Restaurant(models.Model):
pizzas = models.ManyToManyField(Pizza, related_name='restaurants')
best_pizza = models.ForeignKey(Pizza, related_name='championed_by')

The following are all legal:

>>> Restaurant.objects.prefetch_related('pizzas__toppings')

This will prefetch all pizzas belonging to restaurants, and all toppings belonging to those pizzas. This will result in a
total of 3 database queries - one for the restaurants, one for the pizzas, and one for the toppings.

>>> Restaurant.objects.prefetch_related('best_pizza__toppings')

This will fetch the best pizza and all the toppings for the best pizza for each restaurant. This will be done in 3 database
queries - one for the restaurants, one for the ‘best pizzas’, and one for one for the toppings.

Of course, the best_pizza relationship could also be fetched using select_related to reduce the query count
to 2:

>>> Restaurant.objects.select_related('best_pizza').prefetch_related('best_pizza__
→˓toppings')

Since the prefetch is executed after the main query (which includes the joins needed by select_related), it is
able to detect that the best_pizza objects have already been fetched, and it will skip fetching them again.

Chaining prefetch_related calls will accumulate the lookups that are prefetched. To clear any
prefetch_related behavior, pass None as a parameter:

>>> non_prefetched = qs.prefetch_related(None)

One difference to note when using prefetch_related is that objects created by a query can be shared between
the different objects that they are related to i.e. a single Python model instance can appear at more than one point in
the tree of objects that are returned. This will normally happen with foreign key relationships. Typically this behavior
will not be a problem, and will in fact save both memory and CPU time.

While prefetch_related supports prefetching GenericForeignKey relationships, the number of queries
will depend on the data. Since a GenericForeignKey can reference data in multiple tables, one query per table
referenced is needed, rather than one query for all the items. There could be additional queries on the ContentType
table if the relevant rows have not already been fetched.

prefetch_related in most cases will be implemented using an SQL query that uses the ‘IN’ operator. This
means that for a large QuerySet a large ‘IN’ clause could be generated, which, depending on the database, might
have performance problems of its own when it comes to parsing or executing the SQL query. Always profile for your
use case!

Note that if you use iterator() to run the query, prefetch_related() calls will be ignored since these two
optimizations do not make sense together.

You can use the Prefetch object to further control the prefetch operation.

In its simplest form Prefetch is equivalent to the traditional string based lookups:

1156 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

>>> from django.db.models import Prefetch
>>> Restaurant.objects.prefetch_related(Prefetch('pizzas__toppings'))

You can provide a custom queryset with the optional queryset argument. This can be used to change the default
ordering of the queryset:

>>> Restaurant.objects.prefetch_related(
... Prefetch('pizzas__toppings', queryset=Toppings.objects.order_by('name')))

Or to call select_related() when applicable to reduce the number of queries even further:

>>> Pizza.objects.prefetch_related(
... Prefetch('restaurants', queryset=Restaurant.objects.select_related('best_pizza
→˓')))

You can also assign the prefetched result to a custom attribute with the optional to_attr argument. The result will
be stored directly in a list.

This allows prefetching the same relation multiple times with a different QuerySet; for instance:

>>> vegetarian_pizzas = Pizza.objects.filter(vegetarian=True)
>>> Restaurant.objects.prefetch_related(
... Prefetch('pizzas', to_attr='menu'),
... Prefetch('pizzas', queryset=vegetarian_pizzas, to_attr='vegetarian_menu'))

Lookups created with custom to_attr can still be traversed as usual by other lookups:

>>> vegetarian_pizzas = Pizza.objects.filter(vegetarian=True)
>>> Restaurant.objects.prefetch_related(
... Prefetch('pizzas', queryset=vegetarian_pizzas, to_attr='vegetarian_menu'),
... 'vegetarian_menu__toppings')

Using to_attr is recommended when filtering down the prefetch result as it is less ambiguous than storing a filtered
result in the related manager’s cache:

>>> queryset = Pizza.objects.filter(vegetarian=True)
>>>
>>> # Recommended:
>>> restaurants = Restaurant.objects.prefetch_related(
... Prefetch('pizzas', queryset=queryset, to_attr='vegetarian_pizzas'))
>>> vegetarian_pizzas = restaurants[0].vegetarian_pizzas
>>>
>>> # Not recommended:
>>> restaurants = Restaurant.objects.prefetch_related(
... Prefetch('pizzas', queryset=queryset))
>>> vegetarian_pizzas = restaurants[0].pizzas.all()

Custom prefetching also works with single related relations like forward ForeignKey or OneToOneField. Gen-
erally you’ll want to use select_related() for these relations, but there are a number of cases where prefetching
with a custom QuerySet is useful:

• You want to use a QuerySet that performs further prefetching on related models.

• You want to prefetch only a subset of the related objects.

• You want to use performance optimization techniques like deferred fields:

>>> queryset = Pizza.objects.only('name')
>>>

6.15. Models 1157

Django Documentation, Release 1.10.9.dev20171123183751

>>> restaurants = Restaurant.objects.prefetch_related(
... Prefetch('best_pizza', queryset=queryset))

Note: The ordering of lookups matters.

Take the following examples:

>>> prefetch_related('pizzas__toppings', 'pizzas')

This works even though it’s unordered because 'pizzas__toppings' already contains all the needed information,
therefore the second argument 'pizzas' is actually redundant.

>>> prefetch_related('pizzas__toppings', Prefetch('pizzas', queryset=Pizza.objects.
→˓all()))

This will raise a ValueError because of the attempt to redefine the queryset of a previously seen lookup. Note that
an implicit queryset was created to traverse 'pizzas' as part of the 'pizzas__toppings' lookup.

>>> prefetch_related('pizza_list__toppings', Prefetch('pizzas', to_attr='pizza_list'))

This will trigger an AttributeError because 'pizza_list' doesn’t exist yet when
'pizza_list__toppings' is being processed.

This consideration is not limited to the use of Prefetch objects. Some advanced techniques may require that the
lookups be performed in a specific order to avoid creating extra queries; therefore it’s recommended to always carefully
order prefetch_related arguments.

extra()

extra(select=None, where=None, params=None, tables=None, order_by=None, select_params=None)

Sometimes, the Django query syntax by itself can’t easily express a complex WHERE clause. For these edge cases,
Django provides the extra() QuerySet modifier — a hook for injecting specific clauses into the SQL generated
by a QuerySet.

Use this method as a last resort

This is an old API that we aim to deprecate at some point in the future. Use it only if you cannot express your query
using other queryset methods. If you do need to use it, please file a ticket using the QuerySet.extra keyword with your
use case (please check the list of existing tickets first) so that we can enhance the QuerySet API to allow removing
extra(). We are no longer improving or fixing bugs for this method.

For example, this use of extra():

>>> qs.extra(
... select={'val': "select col from sometable where othercol = %s"},
... select_params=(someparam,),
...)

is equivalent to:

>>> qs.annotate(val=RawSQL("select col from sometable where othercol = %s",
→˓(someparam,)))

1158 Chapter 6. API Reference

https://code.djangoproject.com/newticket
https://code.djangoproject.com/query?status=assigned&status=new&keywords=~QuerySet.extra

Django Documentation, Release 1.10.9.dev20171123183751

The main benefit of using RawSQL is that you can set output_field if needed. The main downside is that if you
refer to some table alias of the queryset in the raw SQL, then it is possible that Django might change that alias (for
example, when the queryset is used as a subquery in yet another query).

Warning: You should be very careful whenever you use extra(). Every time you use it, you should escape any
parameters that the user can control by using params in order to protect against SQL injection attacks . Please
read more about SQL injection protection.

By definition, these extra lookups may not be portable to different database engines (because you’re explicitly writing
SQL code) and violate the DRY principle, so you should avoid them if possible.

Specify one or more of params, select, where or tables. None of the arguments is required, but you should
use at least one of them.

• select

The select argument lets you put extra fields in the SELECT clause. It should be a dictionary mapping
attribute names to SQL clauses to use to calculate that attribute.

Example:

Entry.objects.extra(select={'is_recent': "pub_date > '2006-01-01'"})

As a result, each Entry object will have an extra attribute, is_recent, a boolean representing whether the
entry’s pub_date is greater than Jan. 1, 2006.

Django inserts the given SQL snippet directly into the SELECT statement, so the resulting SQL of the above
example would be something like:

SELECT blog_entry.*, (pub_date > '2006-01-01') AS is_recent
FROM blog_entry;

The next example is more advanced; it does a subquery to give each resulting Blog object an entry_count
attribute, an integer count of associated Entry objects:

Blog.objects.extra(
select={

'entry_count': 'SELECT COUNT(*) FROM blog_entry WHERE blog_entry.blog_id
→˓= blog_blog.id'

},
)

In this particular case, we’re exploiting the fact that the query will already contain the blog_blog table in its
FROM clause.

The resulting SQL of the above example would be:

SELECT blog_blog.*, (SELECT COUNT(*) FROM blog_entry WHERE blog_entry.blog_id =
→˓blog_blog.id) AS entry_count
FROM blog_blog;

Note that the parentheses required by most database engines around subqueries are not required in Django’s
select clauses. Also note that some database backends, such as some MySQL versions, don’t support sub-
queries.

In some rare cases, you might wish to pass parameters to the SQL fragments in extra(select=...). For
this purpose, use the select_params parameter. Since select_params is a sequence and the select

6.15. Models 1159

Django Documentation, Release 1.10.9.dev20171123183751

attribute is a dictionary, some care is required so that the parameters are matched up correctly with the extra
select pieces. In this situation, you should use a collections.OrderedDict for the select value, not
just a normal Python dictionary.

This will work, for example:

Blog.objects.extra(
select=OrderedDict([('a', '%s'), ('b', '%s')]),
select_params=('one', 'two'))

If you need to use a literal %s inside your select string, use the sequence %%s.

• where / tables

You can define explicit SQL WHERE clauses — perhaps to perform non-explicit joins — by using where. You
can manually add tables to the SQL FROM clause by using tables.

where and tables both take a list of strings. All where parameters are “AND”ed to any other search criteria.

Example:

Entry.objects.extra(where=["foo='a' OR bar = 'a'", "baz = 'a'"])

...translates (roughly) into the following SQL:

SELECT * FROM blog_entry WHERE (foo='a' OR bar='a') AND (baz='a')

Be careful when using the tables parameter if you’re specifying tables that are already used in the query.
When you add extra tables via the tables parameter, Django assumes you want that table included an extra
time, if it is already included. That creates a problem, since the table name will then be given an alias. If a
table appears multiple times in an SQL statement, the second and subsequent occurrences must use aliases so
the database can tell them apart. If you’re referring to the extra table you added in the extra where parameter
this is going to cause errors.

Normally you’ll only be adding extra tables that don’t already appear in the query. However, if the case outlined
above does occur, there are a few solutions. First, see if you can get by without including the extra table and
use the one already in the query. If that isn’t possible, put your extra() call at the front of the queryset
construction so that your table is the first use of that table. Finally, if all else fails, look at the query produced
and rewrite your where addition to use the alias given to your extra table. The alias will be the same each time
you construct the queryset in the same way, so you can rely upon the alias name to not change.

• order_by

If you need to order the resulting queryset using some of the new fields or tables you have included via
extra() use the order_by parameter to extra() and pass in a sequence of strings. These strings should
either be model fields (as in the normal order_by() method on querysets), of the form table_name.
column_name or an alias for a column that you specified in the select parameter to extra().

For example:

q = Entry.objects.extra(select={'is_recent': "pub_date > '2006-01-01'"})
q = q.extra(order_by = ['-is_recent'])

This would sort all the items for which is_recent is true to the front of the result set (True sorts before
False in a descending ordering).

This shows, by the way, that you can make multiple calls to extra() and it will behave as you expect (adding
new constraints each time).

• params

1160 Chapter 6. API Reference

https://docs.python.org/3/library/collections.html#collections.OrderedDict

Django Documentation, Release 1.10.9.dev20171123183751

The where parameter described above may use standard Python database string placeholders — '%s' to
indicate parameters the database engine should automatically quote. The params argument is a list of any
extra parameters to be substituted.

Example:

Entry.objects.extra(where=['headline=%s'], params=['Lennon'])

Always use params instead of embedding values directly into where because params will ensure values are
quoted correctly according to your particular backend. For example, quotes will be escaped correctly.

Bad:

Entry.objects.extra(where=["headline='Lennon'"])

Good:

Entry.objects.extra(where=['headline=%s'], params=['Lennon'])

Warning: If you are performing queries on MySQL, note that MySQL’s silent type coercion may cause unex-
pected results when mixing types. If you query on a string type column, but with an integer value, MySQL will
coerce the types of all values in the table to an integer before performing the comparison. For example, if your
table contains the values 'abc', 'def' and you query for WHERE mycolumn=0, both rows will match. To
prevent this, perform the correct typecasting before using the value in a query.

defer()

defer(*fields)

In some complex data-modeling situations, your models might contain a lot of fields, some of which could contain
a lot of data (for example, text fields), or require expensive processing to convert them to Python objects. If you are
using the results of a queryset in some situation where you don’t know if you need those particular fields when you
initially fetch the data, you can tell Django not to retrieve them from the database.

This is done by passing the names of the fields to not load to defer():

Entry.objects.defer("headline", "body")

A queryset that has deferred fields will still return model instances. Each deferred field will be retrieved from the
database if you access that field (one at a time, not all the deferred fields at once).

You can make multiple calls to defer(). Each call adds new fields to the deferred set:

Defers both the body and headline fields.
Entry.objects.defer("body").filter(rating=5).defer("headline")

The order in which fields are added to the deferred set does not matter. Calling defer() with a field name that has
already been deferred is harmless (the field will still be deferred).

You can defer loading of fields in related models (if the related models are loading via select_related()) by
using the standard double-underscore notation to separate related fields:

Blog.objects.select_related().defer("entry__headline", "entry__body")

If you want to clear the set of deferred fields, pass None as a parameter to defer():

6.15. Models 1161

Django Documentation, Release 1.10.9.dev20171123183751

Load all fields immediately.
my_queryset.defer(None)

Some fields in a model won’t be deferred, even if you ask for them. You can never defer the loading of the primary
key. If you are using select_related() to retrieve related models, you shouldn’t defer the loading of the field
that connects from the primary model to the related one, doing so will result in an error.

Note: The defer() method (and its cousin, only(), below) are only for advanced use-cases. They provide an
optimization for when you have analyzed your queries closely and understand exactly what information you need and
have measured that the difference between returning the fields you need and the full set of fields for the model will be
significant.

Even if you think you are in the advanced use-case situation, only use defer() when you cannot, at queryset load
time, determine if you will need the extra fields or not. If you are frequently loading and using a particular subset of
your data, the best choice you can make is to normalize your models and put the non-loaded data into a separate model
(and database table). If the columns must stay in the one table for some reason, create a model with Meta.managed
= False (see the managed attribute documentation) containing just the fields you normally need to load and
use that where you might otherwise call defer(). This makes your code more explicit to the reader, is slightly faster
and consumes a little less memory in the Python process.

For example, both of these models use the same underlying database table:

class CommonlyUsedModel(models.Model):
f1 = models.CharField(max_length=10)

class Meta:
managed = False
db_table = 'app_largetable'

class ManagedModel(models.Model):
f1 = models.CharField(max_length=10)
f2 = models.CharField(max_length=10)

class Meta:
db_table = 'app_largetable'

Two equivalent QuerySets:
CommonlyUsedModel.objects.all()
ManagedModel.objects.all().defer('f2')

If many fields need to be duplicated in the unmanaged model, it may be best to create an abstract model with the
shared fields and then have the unmanaged and managed models inherit from the abstract model.

Note: When calling save() for instances with deferred fields, only the loaded fields will be saved. See save()
for more details.

only()

only(*fields)

The only() method is more or less the opposite of defer(). You call it with the fields that should not be deferred
when retrieving a model. If you have a model where almost all the fields need to be deferred, using only() to specify
the complementary set of fields can result in simpler code.

1162 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Suppose you have a model with fields name, age and biography. The following two querysets are the same, in
terms of deferred fields:

Person.objects.defer("age", "biography")
Person.objects.only("name")

Whenever you call only() it replaces the set of fields to load immediately. The method’s name is mnemonic: only
those fields are loaded immediately; the remainder are deferred. Thus, successive calls to only() result in only the
final fields being considered:

This will defer all fields except the headline.
Entry.objects.only("body", "rating").only("headline")

Since defer() acts incrementally (adding fields to the deferred list), you can combine calls to only() and
defer() and things will behave logically:

Final result is that everything except "headline" is deferred.
Entry.objects.only("headline", "body").defer("body")

Final result loads headline and body immediately (only() replaces any
existing set of fields).
Entry.objects.defer("body").only("headline", "body")

All of the cautions in the note for the defer() documentation apply to only() as well. Use it cautiously and only
after exhausting your other options.

Using only() and omitting a field requested using select_related() is an error as well.

Note: When calling save() for instances with deferred fields, only the loaded fields will be saved. See save()
for more details.

using()

using(alias)

This method is for controlling which database the QuerySet will be evaluated against if you are using more than
one database. The only argument this method takes is the alias of a database, as defined in DATABASES.

For example:

queries the database with the 'default' alias.
>>> Entry.objects.all()

queries the database with the 'backup' alias
>>> Entry.objects.using('backup')

select_for_update()

select_for_update(nowait=False)

Returns a queryset that will lock rows until the end of the transaction, generating a SELECT ... FOR UPDATE
SQL statement on supported databases.

For example:

6.15. Models 1163

Django Documentation, Release 1.10.9.dev20171123183751

entries = Entry.objects.select_for_update().filter(author=request.user)

All matched entries will be locked until the end of the transaction block, meaning that other transactions will be
prevented from changing or acquiring locks on them.

Usually, if another transaction has already acquired a lock on one of the selected rows, the query will block until
the lock is released. If this is not the behavior you want, call select_for_update(nowait=True). This will
make the call non-blocking. If a conflicting lock is already acquired by another transaction, DatabaseError will
be raised when the queryset is evaluated.

Currently, the postgresql, oracle, and mysql database backends support select_for_update(). How-
ever, MySQL has no support for the nowait argument. Obviously, users of external third-party backends should
check with their backend’s documentation for specifics in those cases.

Passing nowait=True to select_for_update() using database backends that do not support nowait, such
as MySQL, will cause a DatabaseError to be raised. This is in order to prevent code unexpectedly blocking.

Evaluating a queryset with select_for_update() in autocommit mode on backends which support SELECT
... FOR UPDATE is a TransactionManagementError error because the rows are not locked in that case. If
allowed, this would facilitate data corruption and could easily be caused by calling code that expects to be run in a
transaction outside of one.

Using select_for_update() on backends which do not support SELECT ... FOR UPDATE (such as
SQLite) will have no effect. SELECT ... FOR UPDATE will not be added to the query, and an error isn’t raised if
select_for_update() is used in autocommit mode.

Warning: Although select_for_update() normally fails in autocommit mode, since TestCase auto-
matically wraps each test in a transaction, calling select_for_update() in a TestCase even outside an
atomic() block will (perhaps unexpectedly) pass without raising a TransactionManagementError. To
properly test select_for_update() you should use TransactionTestCase.

raw()

raw(raw_query, params=None, translations=None)

Takes a raw SQL query, executes it, and returns a django.db.models.query.RawQuerySet instance. This
RawQuerySet instance can be iterated over just like an normal QuerySet to provide object instances.

See the Performing raw SQL queries for more information.

Warning: raw() always triggers a new query and doesn’t account for previous filtering. As such, it should
generally be called from the Manager or from a fresh QuerySet instance.

Methods that do not return QuerySets

The following QuerySet methods evaluate the QuerySet and return something other than a QuerySet.

These methods do not use a cache (see Caching and QuerySets). Rather, they query the database each time they’re
called.

1164 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

get()

get(**kwargs)

Returns the object matching the given lookup parameters, which should be in the format described in Field lookups.

get() raises MultipleObjectsReturned if more than one object was found. The
MultipleObjectsReturned exception is an attribute of the model class.

get() raises a DoesNotExist exception if an object wasn’t found for the given parameters. This exception is an
attribute of the model class. Example:

Entry.objects.get(id='foo') # raises Entry.DoesNotExist

The DoesNotExist exception inherits from django.core.exceptions.ObjectDoesNotExist, so you
can target multiple DoesNotExist exceptions. Example:

from django.core.exceptions import ObjectDoesNotExist
try:

e = Entry.objects.get(id=3)
b = Blog.objects.get(id=1)

except ObjectDoesNotExist:
print("Either the entry or blog doesn't exist.")

If you expect a queryset to return one row, you can use get() without any arguments to return the object for that row:

entry = Entry.objects.filter(...).exclude(...).get()

create()

create(**kwargs)

A convenience method for creating an object and saving it all in one step. Thus:

p = Person.objects.create(first_name="Bruce", last_name="Springsteen")

and:

p = Person(first_name="Bruce", last_name="Springsteen")
p.save(force_insert=True)

are equivalent.

The force_insert parameter is documented elsewhere, but all it means is that a new object will always be created.
Normally you won’t need to worry about this. However, if your model contains a manual primary key value that you
set and if that value already exists in the database, a call to create() will fail with an IntegrityError since
primary keys must be unique. Be prepared to handle the exception if you are using manual primary keys.

get_or_create()

get_or_create(defaults=None, **kwargs)

A convenience method for looking up an object with the given kwargs (may be empty if your model has defaults for
all fields), creating one if necessary.

Returns a tuple of (object, created), where object is the retrieved or created object and created is a
boolean specifying whether a new object was created.

6.15. Models 1165

Django Documentation, Release 1.10.9.dev20171123183751

This is meant as a shortcut to boilerplatish code. For example:

try:
obj = Person.objects.get(first_name='John', last_name='Lennon')

except Person.DoesNotExist:
obj = Person(first_name='John', last_name='Lennon', birthday=date(1940, 10, 9))
obj.save()

This pattern gets quite unwieldy as the number of fields in a model goes up. The above example can be rewritten using
get_or_create() like so:

obj, created = Person.objects.get_or_create(
first_name='John',
last_name='Lennon',
defaults={'birthday': date(1940, 10, 9)},

)

Any keyword arguments passed to get_or_create() — except an optional one called defaults — will be
used in a get() call. If an object is found, get_or_create() returns a tuple of that object and False. If
multiple objects are found, get_or_create raises MultipleObjectsReturned. If an object is not found,
get_or_create() will instantiate and save a new object, returning a tuple of the new object and True. The new
object will be created roughly according to this algorithm:

params = {k: v for k, v in kwargs.items() if '__' not in k}
params.update(defaults)
obj = self.model(**params)
obj.save()

In English, that means start with any non-'defaults' keyword argument that doesn’t contain a double underscore
(which would indicate a non-exact lookup). Then add the contents of defaults, overriding any keys if necessary,
and use the result as the keyword arguments to the model class. As hinted at above, this is a simplification of the
algorithm that is used, but it contains all the pertinent details. The internal implementation has some more error-
checking than this and handles some extra edge-conditions; if you’re interested, read the code.

If you have a field named defaults and want to use it as an exact lookup in get_or_create(), just use
'defaults__exact', like so:

Foo.objects.get_or_create(defaults__exact='bar', defaults={'defaults': 'baz'})

The get_or_create() method has similar error behavior to create() when you’re using manually specified
primary keys. If an object needs to be created and the key already exists in the database, an IntegrityError will
be raised.

This method is atomic assuming correct usage, correct database configuration, and correct behavior of the underlying
database. However, if uniqueness is not enforced at the database level for the kwargs used in a get_or_create
call (see unique or unique_together), this method is prone to a race-condition which can result in multiple
rows with the same parameters being inserted simultaneously.

If you are using MySQL, be sure to use the READ COMMITTED isolation level rather than REPEATABLE READ
(the default), otherwise you may see cases where get_or_create will raise an IntegrityError but the object
won’t appear in a subsequent get() call.

Finally, a word on using get_or_create() in Django views. Please make sure to use it only in POST requests
unless you have a good reason not to. GET requests shouldn’t have any effect on data. Instead, use POST whenever a
request to a page has a side effect on your data. For more, see Safe methods in the HTTP spec.

1166 Chapter 6. API Reference

https://tools.ietf.org/html/rfc7231.html#section-4.2.1

Django Documentation, Release 1.10.9.dev20171123183751

Warning: You can use get_or_create() through ManyToManyField attributes and reverse relations. In
that case you will restrict the queries inside the context of that relation. That could lead you to some integrity
problems if you don’t use it consistently.

Being the following models:

class Chapter(models.Model):
title = models.CharField(max_length=255, unique=True)

class Book(models.Model):
title = models.CharField(max_length=256)
chapters = models.ManyToManyField(Chapter)

You can use get_or_create() through Book’s chapters field, but it only fetches inside the context of that
book:

>>> book = Book.objects.create(title="Ulysses")
>>> book.chapters.get_or_create(title="Telemachus")
(<Chapter: Telemachus>, True)
>>> book.chapters.get_or_create(title="Telemachus")
(<Chapter: Telemachus>, False)
>>> Chapter.objects.create(title="Chapter 1")
<Chapter: Chapter 1>
>>> book.chapters.get_or_create(title="Chapter 1")
Raises IntegrityError

This is happening because it’s trying to get or create “Chapter 1” through the book “Ulysses”, but it can’t do any of
them: the relation can’t fetch that chapter because it isn’t related to that book, but it can’t create it either because
title field should be unique.

update_or_create()

update_or_create(defaults=None, **kwargs)

A convenience method for updating an object with the given kwargs, creating a new one if necessary. The
defaults is a dictionary of (field, value) pairs used to update the object.

Returns a tuple of (object, created), where object is the created or updated object and created is a
boolean specifying whether a new object was created.

The update_or_create method tries to fetch an object from database based on the given kwargs. If a match is
found, it updates the fields passed in the defaults dictionary.

This is meant as a shortcut to boilerplatish code. For example:

defaults = {'first_name': 'Bob'}
try:

obj = Person.objects.get(first_name='John', last_name='Lennon')
for key, value in defaults.items():

setattr(obj, key, value)
obj.save()

except Person.DoesNotExist:
new_values = {'first_name': 'John', 'last_name': 'Lennon'}
new_values.update(defaults)
obj = Person(**new_values)
obj.save()

6.15. Models 1167

Django Documentation, Release 1.10.9.dev20171123183751

This pattern gets quite unwieldy as the number of fields in a model goes up. The above example can be rewritten using
update_or_create() like so:

obj, created = Person.objects.update_or_create(
first_name='John', last_name='Lennon',
defaults={'first_name': 'Bob'},

)

For detailed description how names passed in kwargs are resolved see get_or_create().

As described above in get_or_create(), this method is prone to a race-condition which can result in multiple
rows being inserted simultaneously if uniqueness is not enforced at the database level.

bulk_create()

bulk_create(objs, batch_size=None)

This method inserts the provided list of objects into the database in an efficient manner (generally only 1 query, no
matter how many objects there are):

>>> Entry.objects.bulk_create([
... Entry(headline='This is a test'),
... Entry(headline='This is only a test'),
...])

This has a number of caveats though:

• The model’s save() method will not be called, and the pre_save and post_save signals will not be sent.

• It does not work with child models in a multi-table inheritance scenario.

• If the model’s primary key is an AutoField it does not retrieve and set the primary key attribute, as save()
does, unless the database backend supports it (currently PostgreSQL).

• It does not work with many-to-many relationships.

Support for using bulk_create() with proxy models was added.

Support for setting primary keys on objects created using bulk_create() when using PostgreSQL was added.

The batch_size parameter controls how many objects are created in single query. The default is to create all objects
in one batch, except for SQLite where the default is such that at most 999 variables per query are used.

count()

count()

Returns an integer representing the number of objects in the database matching the QuerySet. The count()
method never raises exceptions.

Example:

Returns the total number of entries in the database.
Entry.objects.count()

Returns the number of entries whose headline contains 'Lennon'
Entry.objects.filter(headline__contains='Lennon').count()

1168 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

A count() call performs a SELECT COUNT(*) behind the scenes, so you should always use count() rather
than loading all of the record into Python objects and calling len() on the result (unless you need to load the objects
into memory anyway, in which case len() will be faster).

Depending on which database you’re using (e.g. PostgreSQL vs. MySQL), count() may return a long integer
instead of a normal Python integer. This is an underlying implementation quirk that shouldn’t pose any real-world
problems.

Note that if you want the number of items in a QuerySet and are also retrieving model instances from it (for example,
by iterating over it), it’s probably more efficient to use len(queryset) which won’t cause an extra database query
like count() would.

in_bulk()

in_bulk(id_list=None)

Takes a list of primary-key values and returns a dictionary mapping each primary-key value to an instance of the object
with the given ID. If a list isn’t provided, all objects in the queryset are returned.

Example:

>>> Blog.objects.in_bulk([1])
{1: <Blog: Beatles Blog>}
>>> Blog.objects.in_bulk([1, 2])
{1: <Blog: Beatles Blog>, 2: <Blog: Cheddar Talk>}
>>> Blog.objects.in_bulk([])
{}
>>> Blog.objects.in_bulk()
{1: <Blog: Beatles Blog>, 2: <Blog: Cheddar Talk>, 3: <Blog: Django Weblog>}

If you pass in_bulk() an empty list, you’ll get an empty dictionary.

In older versions, id_list was a required argument.

iterator()

iterator()

Evaluates the QuerySet (by performing the query) and returns an iterator (see PEP 234) over the results. A
QuerySet typically caches its results internally so that repeated evaluations do not result in additional queries. In
contrast, iterator() will read results directly, without doing any caching at the QuerySet level (internally, the
default iterator calls iterator() and caches the return value). For a QuerySet which returns a large number of
objects that you only need to access once, this can result in better performance and a significant reduction in memory.

Note that using iterator() on a QuerySet which has already been evaluated will force it to evaluate again,
repeating the query.

Also, use of iterator() causes previous prefetch_related() calls to be ignored since these two optimiza-
tions do not make sense together.

Warning: Some Python database drivers like psycopg2 perform caching if using client side cursors (instantiated
with connection.cursor() and what Django’s ORM uses). Using iterator() does not affect caching at
the database driver level. To disable this caching, look at server side cursors.

6.15. Models 1169

https://www.python.org/dev/peps/pep-0234
http://initd.org/psycopg/docs/usage.html#server-side-cursors

Django Documentation, Release 1.10.9.dev20171123183751

latest()

latest(field_name=None)

Returns the latest object in the table, by date, using the field_name provided as the date field.

This example returns the latest Entry in the table, according to the pub_date field:

Entry.objects.latest('pub_date')

If your model’s Meta specifies get_latest_by , you can leave off the field_name argument to earliest()
or latest(). Django will use the field specified in get_latest_by by default.

Like get(), earliest() and latest() raise DoesNotExist if there is no object with the given parameters.

Note that earliest() and latest() exist purely for convenience and readability.

earliest() and latest() may return instances with null dates.

Since ordering is delegated to the database, results on fields that allow null values may be ordered differently if you
use different databases. For example, PostgreSQL and MySQL sort null values as if they are higher than non-null
values, while SQLite does the opposite.

You may want to filter out null values:

Entry.objects.filter(pub_date__isnull=False).latest('pub_date')

earliest()

earliest(field_name=None)

Works otherwise like latest() except the direction is changed.

first()

first()

Returns the first object matched by the queryset, or None if there is no matching object. If the QuerySet has no
ordering defined, then the queryset is automatically ordered by the primary key.

Example:

p = Article.objects.order_by('title', 'pub_date').first()

Note that first() is a convenience method, the following code sample is equivalent to the above example:

try:
p = Article.objects.order_by('title', 'pub_date')[0]

except IndexError:
p = None

last()

last()

1170 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Works like first(), but returns the last object in the queryset.

aggregate()

aggregate(*args, **kwargs)

Returns a dictionary of aggregate values (averages, sums, etc.) calculated over the QuerySet. Each argument to
aggregate() specifies a value that will be included in the dictionary that is returned.

The aggregation functions that are provided by Django are described in Aggregation Functions below. Since aggregates
are also query expressions, you may combine aggregates with other aggregates or values to create complex aggregates.

Aggregates specified using keyword arguments will use the keyword as the name for the annotation. Anonymous
arguments will have a name generated for them based upon the name of the aggregate function and the model field
that is being aggregated. Complex aggregates cannot use anonymous arguments and must specify a keyword argument
as an alias.

For example, when you are working with blog entries, you may want to know the number of authors that have con-
tributed blog entries:

>>> from django.db.models import Count
>>> q = Blog.objects.aggregate(Count('entry'))
{'entry__count': 16}

By using a keyword argument to specify the aggregate function, you can control the name of the aggregation value
that is returned:

>>> q = Blog.objects.aggregate(number_of_entries=Count('entry'))
{'number_of_entries': 16}

For an in-depth discussion of aggregation, see the topic guide on Aggregation.

exists()

exists()

Returns True if the QuerySet contains any results, and False if not. This tries to perform the query in the simplest
and fastest way possible, but it does execute nearly the same query as a normal QuerySet query.

exists() is useful for searches relating to both object membership in a QuerySet and to the existence of any
objects in a QuerySet, particularly in the context of a large QuerySet.

The most efficient method of finding whether a model with a unique field (e.g. primary_key) is a member of a
QuerySet is:

entry = Entry.objects.get(pk=123)
if some_queryset.filter(pk=entry.pk).exists():

print("Entry contained in queryset")

Which will be faster than the following which requires evaluating and iterating through the entire queryset:

if entry in some_queryset:
print("Entry contained in QuerySet")

And to find whether a queryset contains any items:

6.15. Models 1171

Django Documentation, Release 1.10.9.dev20171123183751

if some_queryset.exists():
print("There is at least one object in some_queryset")

Which will be faster than:

if some_queryset:
print("There is at least one object in some_queryset")

... but not by a large degree (hence needing a large queryset for efficiency gains).

Additionally, if a some_queryset has not yet been evaluated, but you know that it will be at some point, then using
some_queryset.exists() will do more overall work (one query for the existence check plus an extra one to
later retrieve the results) than simply using bool(some_queryset), which retrieves the results and then checks if
any were returned.

update()

update(**kwargs)

Performs an SQL update query for the specified fields, and returns the number of rows matched (which may not be
equal to the number of rows updated if some rows already have the new value).

For example, to turn comments off for all blog entries published in 2010, you could do this:

>>> Entry.objects.filter(pub_date__year=2010).update(comments_on=False)

(This assumes your Entry model has fields pub_date and comments_on.)

You can update multiple fields — there’s no limit on how many. For example, here we update the comments_on
and headline fields:

>>> Entry.objects.filter(pub_date__year=2010).update(comments_on=False, headline=
→˓'This is old')

The update() method is applied instantly, and the only restriction on the QuerySet that is updated is that it can
only update columns in the model’s main table, not on related models. You can’t do this, for example:

>>> Entry.objects.update(blog__name='foo') # Won't work!

Filtering based on related fields is still possible, though:

>>> Entry.objects.filter(blog__id=1).update(comments_on=True)

You cannot call update() on a QuerySet that has had a slice taken or can otherwise no longer be filtered.

The update() method returns the number of affected rows:

>>> Entry.objects.filter(id=64).update(comments_on=True)
1

>>> Entry.objects.filter(slug='nonexistent-slug').update(comments_on=True)
0

>>> Entry.objects.filter(pub_date__year=2010).update(comments_on=False)
132

1172 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

If you’re just updating a record and don’t need to do anything with the model object, the most efficient approach is to
call update(), rather than loading the model object into memory. For example, instead of doing this:

e = Entry.objects.get(id=10)
e.comments_on = False
e.save()

...do this:

Entry.objects.filter(id=10).update(comments_on=False)

Using update() also prevents a race condition wherein something might change in your database in the short period
of time between loading the object and calling save().

Finally, realize that update() does an update at the SQL level and, thus, does not call any save() methods on
your models, nor does it emit the pre_save or post_save signals (which are a consequence of calling Model.
save()). If you want to update a bunch of records for a model that has a custom save() method, loop over them
and call save(), like this:

for e in Entry.objects.filter(pub_date__year=2010):
e.comments_on = False
e.save()

delete()

delete()

Performs an SQL delete query on all rows in the QuerySet and returns the number of objects deleted and a dictionary
with the number of deletions per object type.

The delete() is applied instantly. You cannot call delete() on a QuerySet that has had a slice taken or can
otherwise no longer be filtered.

For example, to delete all the entries in a particular blog:

>>> b = Blog.objects.get(pk=1)

Delete all the entries belonging to this Blog.
>>> Entry.objects.filter(blog=b).delete()
(4, {'weblog.Entry': 2, 'weblog.Entry_authors': 2})

The return value describing the number of objects deleted was added.

By default, Django’s ForeignKey emulates the SQL constraint ON DELETE CASCADE — in other words, any
objects with foreign keys pointing at the objects to be deleted will be deleted along with them. For example:

>>> blogs = Blog.objects.all()

This will delete all Blogs and all of their Entry objects.
>>> blogs.delete()
(5, {'weblog.Blog': 1, 'weblog.Entry': 2, 'weblog.Entry_authors': 2})

This cascade behavior is customizable via the on_delete argument to the ForeignKey .

The delete() method does a bulk delete and does not call any delete() methods on your models. It does,
however, emit the pre_delete and post_delete signals for all deleted objects (including cascaded deletions).

6.15. Models 1173

Django Documentation, Release 1.10.9.dev20171123183751

Django needs to fetch objects into memory to send signals and handle cascades. However, if there are no cascades and
no signals, then Django may take a fast-path and delete objects without fetching into memory. For large deletes this
can result in significantly reduced memory usage. The amount of executed queries can be reduced, too.

ForeignKeys which are set to on_delete DO_NOTHING do not prevent taking the fast-path in deletion.

Note that the queries generated in object deletion is an implementation detail subject to change.

as_manager()

classmethod as_manager()

Class method that returns an instance of Manager with a copy of the QuerySet’s methods. See Creating a manager
with QuerySet methods for more details.

Field lookups

Field lookups are how you specify the meat of an SQL WHERE clause. They’re specified as keyword arguments to the
QuerySet methods filter(), exclude() and get().

For an introduction, see models and database queries documentation.

Django’s built-in lookups are listed below. It is also possible to write custom lookups for model fields.

As a convenience when no lookup type is provided (like in Entry.objects.get(id=14)) the lookup type is
assumed to be exact.

exact

Exact match. If the value provided for comparison is None, it will be interpreted as an SQL NULL (see isnull for
more details).

Examples:

Entry.objects.get(id__exact=14)
Entry.objects.get(id__exact=None)

SQL equivalents:

SELECT ... WHERE id = 14;
SELECT ... WHERE id IS NULL;

MySQL comparisons

In MySQL, a database table’s “collation” setting determines whether exact comparisons are case-sensitive. This is
a database setting, not a Django setting. It’s possible to configure your MySQL tables to use case-sensitive compar-
isons, but some trade-offs are involved. For more information about this, see the collation section in the databases
documentation.

iexact

Case-insensitive exact match. If the value provided for comparison is None, it will be interpreted as an SQL NULL
(see isnull for more details).

1174 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Example:

Blog.objects.get(name__iexact='beatles blog')
Blog.objects.get(name__iexact=None)

SQL equivalents:

SELECT ... WHERE name ILIKE 'beatles blog';
SELECT ... WHERE name IS NULL;

Note the first query will match 'Beatles Blog', 'beatles blog', 'BeAtLes BLoG', etc.

SQLite users

When using the SQLite backend and Unicode (non-ASCII) strings, bear in mind the database note about string com-
parisons. SQLite does not do case-insensitive matching for Unicode strings.

contains

Case-sensitive containment test.

Example:

Entry.objects.get(headline__contains='Lennon')

SQL equivalent:

SELECT ... WHERE headline LIKE '%Lennon%';

Note this will match the headline 'Lennon honored today' but not 'lennon honored today'.

SQLite users

SQLite doesn’t support case-sensitive LIKE statements; contains acts like icontains for SQLite. See the
database note for more information.

icontains

Case-insensitive containment test.

Example:

Entry.objects.get(headline__icontains='Lennon')

SQL equivalent:

SELECT ... WHERE headline ILIKE '%Lennon%';

SQLite users

When using the SQLite backend and Unicode (non-ASCII) strings, bear in mind the database note about string com-
parisons.

6.15. Models 1175

Django Documentation, Release 1.10.9.dev20171123183751

in

In a given list.

Example:

Entry.objects.filter(id__in=[1, 3, 4])

SQL equivalent:

SELECT ... WHERE id IN (1, 3, 4);

You can also use a queryset to dynamically evaluate the list of values instead of providing a list of literal values:

inner_qs = Blog.objects.filter(name__contains='Cheddar')
entries = Entry.objects.filter(blog__in=inner_qs)

This queryset will be evaluated as subselect statement:

SELECT ... WHERE blog.id IN (SELECT id FROM ... WHERE NAME LIKE '%Cheddar%')

If you pass in a QuerySet resulting from values() or values_list() as the value to an __in lookup, you
need to ensure you are only extracting one field in the result. For example, this will work (filtering on the blog names):

inner_qs = Blog.objects.filter(name__contains='Ch').values('name')
entries = Entry.objects.filter(blog__name__in=inner_qs)

This example will raise an exception, since the inner query is trying to extract two field values, where only one is
expected:

Bad code! Will raise a TypeError.
inner_qs = Blog.objects.filter(name__contains='Ch').values('name', 'id')
entries = Entry.objects.filter(blog__name__in=inner_qs)

Performance considerations

Be cautious about using nested queries and understand your database server’s performance characteristics (if in doubt,
benchmark!). Some database backends, most notably MySQL, don’t optimize nested queries very well. It is more
efficient, in those cases, to extract a list of values and then pass that into the second query. That is, execute two queries
instead of one:

values = Blog.objects.filter(
name__contains='Cheddar').values_list('pk', flat=True)

entries = Entry.objects.filter(blog__in=list(values))

Note the list() call around the Blog QuerySet to force execution of the first query. Without it, a nested query
would be executed, because QuerySets are lazy.

gt

Greater than.

Example:

1176 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Entry.objects.filter(id__gt=4)

SQL equivalent:

SELECT ... WHERE id > 4;

gte

Greater than or equal to.

lt

Less than.

lte

Less than or equal to.

startswith

Case-sensitive starts-with.

Example:

Entry.objects.filter(headline__startswith='Will')

SQL equivalent:

SELECT ... WHERE headline LIKE 'Will%';

SQLite doesn’t support case-sensitive LIKE statements; startswith acts like istartswith for SQLite.

istartswith

Case-insensitive starts-with.

Example:

Entry.objects.filter(headline__istartswith='will')

SQL equivalent:

SELECT ... WHERE headline ILIKE 'Will%';

SQLite users

When using the SQLite backend and Unicode (non-ASCII) strings, bear in mind the database note about string com-
parisons.

6.15. Models 1177

Django Documentation, Release 1.10.9.dev20171123183751

endswith

Case-sensitive ends-with.

Example:

Entry.objects.filter(headline__endswith='cats')

SQL equivalent:

SELECT ... WHERE headline LIKE '%cats';

SQLite users

SQLite doesn’t support case-sensitive LIKE statements; endswith acts like iendswith for SQLite. Refer to the
database note documentation for more.

iendswith

Case-insensitive ends-with.

Example:

Entry.objects.filter(headline__iendswith='will')

SQL equivalent:

SELECT ... WHERE headline ILIKE '%will'

SQLite users

When using the SQLite backend and Unicode (non-ASCII) strings, bear in mind the database note about string com-
parisons.

range

Range test (inclusive).

Example:

import datetime
start_date = datetime.date(2005, 1, 1)
end_date = datetime.date(2005, 3, 31)
Entry.objects.filter(pub_date__range=(start_date, end_date))

SQL equivalent:

SELECT ... WHERE pub_date BETWEEN '2005-01-01' and '2005-03-31';

You can use range anywhere you can use BETWEEN in SQL — for dates, numbers and even characters.

1178 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Warning: Filtering a DateTimeField with dates won’t include items on the last day, because the bounds are
interpreted as “0am on the given date”. If pub_date was a DateTimeField, the above expression would be
turned into this SQL:

SELECT ... WHERE pub_date BETWEEN '2005-01-01 00:00:00' and '2005-03-31 00:00:00';

Generally speaking, you can’t mix dates and datetimes.

date

For datetime fields, casts the value as date. Allows chaining additional field lookups. Takes a date value.

Example:

Entry.objects.filter(pub_date__date=datetime.date(2005, 1, 1))
Entry.objects.filter(pub_date__date__gt=datetime.date(2005, 1, 1))

(No equivalent SQL code fragment is included for this lookup because implementation of the relevant query varies
among different database engines.)

When USE_TZ is True, fields are converted to the current time zone before filtering.

year

For date and datetime fields, an exact year match. Allows chaining additional field lookups. Takes an integer year.

Example:

Entry.objects.filter(pub_date__year=2005)
Entry.objects.filter(pub_date__year__gte=2005)

SQL equivalent:

SELECT ... WHERE pub_date BETWEEN '2005-01-01' AND '2005-12-31';
SELECT ... WHERE pub_date >= '2005-01-01';

(The exact SQL syntax varies for each database engine.)

When USE_TZ is True, datetime fields are converted to the current time zone before filtering.

Allowed chaining additional field lookups.

month

For date and datetime fields, an exact month match. Allows chaining additional field lookups. Takes an integer 1
(January) through 12 (December).

Example:

Entry.objects.filter(pub_date__month=12)
Entry.objects.filter(pub_date__month__gte=6)

SQL equivalent:

6.15. Models 1179

Django Documentation, Release 1.10.9.dev20171123183751

SELECT ... WHERE EXTRACT('month' FROM pub_date) = '12';
SELECT ... WHERE EXTRACT('month' FROM pub_date) >= '6';

(The exact SQL syntax varies for each database engine.)

When USE_TZ is True, datetime fields are converted to the current time zone before filtering. This requires time
zone definitions in the database.

Allowed chaining additional field lookups.

day

For date and datetime fields, an exact day match. Allows chaining additional field lookups. Takes an integer day.

Example:

Entry.objects.filter(pub_date__day=3)
Entry.objects.filter(pub_date__day__gte=3)

SQL equivalent:

SELECT ... WHERE EXTRACT('day' FROM pub_date) = '3';
SELECT ... WHERE EXTRACT('day' FROM pub_date) >= '3';

(The exact SQL syntax varies for each database engine.)

Note this will match any record with a pub_date on the third day of the month, such as January 3, July 3, etc.

When USE_TZ is True, datetime fields are converted to the current time zone before filtering. This requires time
zone definitions in the database.

Allowed chaining additional field lookups.

week_day

For date and datetime fields, a ‘day of the week’ match. Allows chaining additional field lookups.

Takes an integer value representing the day of week from 1 (Sunday) to 7 (Saturday).

Example:

Entry.objects.filter(pub_date__week_day=2)
Entry.objects.filter(pub_date__week_day__gte=2)

(No equivalent SQL code fragment is included for this lookup because implementation of the relevant query varies
among different database engines.)

Note this will match any record with a pub_date that falls on a Monday (day 2 of the week), regardless of the month
or year in which it occurs. Week days are indexed with day 1 being Sunday and day 7 being Saturday.

When USE_TZ is True, datetime fields are converted to the current time zone before filtering. This requires time
zone definitions in the database.

Allowed chaining additional field lookups.

1180 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

hour

For datetime and time fields, an exact hour match. Allows chaining additional field lookups. Takes an integer between
0 and 23.

Example:

Event.objects.filter(timestamp__hour=23)
Event.objects.filter(time__hour=5)
Event.objects.filter(timestamp__hour__gte=12)

SQL equivalent:

SELECT ... WHERE EXTRACT('hour' FROM timestamp) = '23';
SELECT ... WHERE EXTRACT('hour' FROM time) = '5';
SELECT ... WHERE EXTRACT('hour' FROM timestamp) >= '12';

(The exact SQL syntax varies for each database engine.)

For datetime fields, when USE_TZ is True, values are converted to the current time zone before filtering.

Added support for TimeField on SQLite (other databases supported it as of 1.7).

Allowed chaining additional field lookups.

minute

For datetime and time fields, an exact minute match. Allows chaining additional field lookups. Takes an integer
between 0 and 59.

Example:

Event.objects.filter(timestamp__minute=29)
Event.objects.filter(time__minute=46)
Event.objects.filter(timestamp__minute__gte=29)

SQL equivalent:

SELECT ... WHERE EXTRACT('minute' FROM timestamp) = '29';
SELECT ... WHERE EXTRACT('minute' FROM time) = '46';
SELECT ... WHERE EXTRACT('minute' FROM timestamp) >= '29';

(The exact SQL syntax varies for each database engine.)

For datetime fields, When USE_TZ is True, values are converted to the current time zone before filtering.

Added support for TimeField on SQLite (other databases supported it as of 1.7).

Allowed chaining additional field lookups.

second

For datetime and time fields, an exact second match. Allows chaining additional field lookups. Takes an integer
between 0 and 59.

Example:

6.15. Models 1181

Django Documentation, Release 1.10.9.dev20171123183751

Event.objects.filter(timestamp__second=31)
Event.objects.filter(time__second=2)
Event.objects.filter(timestamp__second__gte=31)

SQL equivalent:

SELECT ... WHERE EXTRACT('second' FROM timestamp) = '31';
SELECT ... WHERE EXTRACT('second' FROM time) = '2';
SELECT ... WHERE EXTRACT('second' FROM timestamp) >= '31';

(The exact SQL syntax varies for each database engine.)

For datetime fields, when USE_TZ is True, values are converted to the current time zone before filtering.

Added support for TimeField on SQLite (other databases supported it as of 1.7).

Allowed chaining additional field lookups.

isnull

Takes either True or False, which correspond to SQL queries of IS NULL and IS NOT NULL, respectively.

Example:

Entry.objects.filter(pub_date__isnull=True)

SQL equivalent:

SELECT ... WHERE pub_date IS NULL;

search

Deprecated since version 1.10: See the 1.10 release notes for how to replace it.

A boolean full-text search, taking advantage of full-text indexing. This is like contains but is significantly faster
due to full-text indexing.

Example:

Entry.objects.filter(headline__search="+Django -jazz Python")

SQL equivalent:

SELECT ... WHERE MATCH(tablename, headline) AGAINST (+Django -jazz Python IN BOOLEAN
→˓MODE);

Note this is only available in MySQL and requires direct manipulation of the database to add the full-text index. By
default Django uses BOOLEAN MODE for full text searches. See the MySQL documentation for additional details.

regex

Case-sensitive regular expression match.

The regular expression syntax is that of the database backend in use. In the case of SQLite, which has no built in
regular expression support, this feature is provided by a (Python) user-defined REGEXP function, and the regular
expression syntax is therefore that of Python’s re module.

1182 Chapter 6. API Reference

https://dev.mysql.com/doc/refman/en/fulltext-boolean.html

Django Documentation, Release 1.10.9.dev20171123183751

Example:

Entry.objects.get(title__regex=r'^(An?|The) +')

SQL equivalents:

SELECT ... WHERE title REGEXP BINARY '^(An?|The) +'; -- MySQL

SELECT ... WHERE REGEXP_LIKE(title, '^(An?|The) +', 'c'); -- Oracle

SELECT ... WHERE title ~ '^(An?|The) +'; -- PostgreSQL

SELECT ... WHERE title REGEXP '^(An?|The) +'; -- SQLite

Using raw strings (e.g., r'foo' instead of 'foo') for passing in the regular expression syntax is recommended.

iregex

Case-insensitive regular expression match.

Example:

Entry.objects.get(title__iregex=r'^(an?|the) +')

SQL equivalents:

SELECT ... WHERE title REGEXP '^(an?|the) +'; -- MySQL

SELECT ... WHERE REGEXP_LIKE(title, '^(an?|the) +', 'i'); -- Oracle

SELECT ... WHERE title ~* '^(an?|the) +'; -- PostgreSQL

SELECT ... WHERE title REGEXP '(?i)^(an?|the) +'; -- SQLite

Aggregation functions

Django provides the following aggregation functions in the django.db.models module. For details on how to use
these aggregate functions, see the topic guide on aggregation. See the Aggregate documentation to learn how to
create your aggregates.

Warning: SQLite can’t handle aggregation on date/time fields out of the box. This is because there are no
native date/time fields in SQLite and Django currently emulates these features using a text field. Attempts to use
aggregation on date/time fields in SQLite will raise NotImplementedError.

Note

Aggregation functions return Nonewhen used with an empty QuerySet. For example, the Sum aggregation function
returns None instead of 0 if the QuerySet contains no entries. An exception is Count, which does return 0 if the
QuerySet is empty.

All aggregates have the following parameters in common:

6.15. Models 1183

Django Documentation, Release 1.10.9.dev20171123183751

expression

A string that references a field on the model, or a query expression.

output_field

An optional argument that represents the model field of the return value

Note: When combining multiple field types, Django can only determine the output_field if all fields are of the
same type. Otherwise, you must provide the output_field yourself.

**extra

Keyword arguments that can provide extra context for the SQL generated by the aggregate.

Avg

class Avg(expression, output_field=FloatField(), **extra)
Returns the mean value of the given expression, which must be numeric unless you specify a different
output_field.

• Default alias: <field>__avg

• Return type: float (or the type of whatever output_field is specified)

The output_field parameter was added to allow aggregating over non-numeric columns, such as
DurationField.

Count

class Count(expression, distinct=False, **extra)
Returns the number of objects that are related through the provided expression.

• Default alias: <field>__count

• Return type: int

Has one optional argument:

distinct
If distinct=True, the count will only include unique instances. This is the SQL equivalent of
COUNT(DISTINCT <field>). The default value is False.

Max

class Max(expression, output_field=None, **extra)
Returns the maximum value of the given expression.

• Default alias: <field>__max

• Return type: same as input field, or output_field if supplied

1184 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Min

class Min(expression, output_field=None, **extra)
Returns the minimum value of the given expression.

• Default alias: <field>__min

• Return type: same as input field, or output_field if supplied

StdDev

class StdDev(expression, sample=False, **extra)
Returns the standard deviation of the data in the provided expression.

• Default alias: <field>__stddev

• Return type: float

Has one optional argument:

sample
By default, StdDev returns the population standard deviation. However, if sample=True, the return
value will be the sample standard deviation.

SQLite

SQLite doesn’t provide StdDev out of the box. An implementation is available as an extension module for
SQLite. Consult the SQlite documentation for instructions on obtaining and installing this extension.

Sum

class Sum(expression, output_field=None, **extra)
Computes the sum of all values of the given expression.

• Default alias: <field>__sum

• Return type: same as input field, or output_field if supplied

Variance

class Variance(expression, sample=False, **extra)
Returns the variance of the data in the provided expression.

• Default alias: <field>__variance

• Return type: float

Has one optional argument:

sample
By default, Variance returns the population variance. However, if sample=True, the return value
will be the sample variance.

SQLite

6.15. Models 1185

https://www.sqlite.org/contrib

Django Documentation, Release 1.10.9.dev20171123183751

SQLite doesn’t provide Variance out of the box. An implementation is available as an extension module for
SQLite. Consult the SQlite documentation for instructions on obtaining and installing this extension.

Query-related tools

This section provides reference material for query-related tools not documented elsewhere.

Q() objects

class Q

A Q() object, like an F object, encapsulates a SQL expression in a Python object that can be used in database-related
operations.

In general, Q() objects make it possible to define and reuse conditions. This permits the construction of com-
plex database queries using | (OR) and & (AND) operators; in particular, it is not otherwise possible to use OR in
QuerySets.

Prefetch() objects

class Prefetch(lookup, queryset=None, to_attr=None)

The Prefetch() object can be used to control the operation of prefetch_related().

The lookup argument describes the relations to follow and works the same as the string based lookups passed to
prefetch_related(). For example:

>>> from django.db.models import Prefetch
>>> Question.objects.prefetch_related(Prefetch('choice_set')).get().choice_set.all()
<QuerySet [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]>
This will only execute two queries regardless of the number of Question
and Choice objects.
>>> Question.objects.prefetch_related(Prefetch('choice_set')).all()
<QuerySet [<Question: Question object>]>

The queryset argument supplies a base QuerySet for the given lookup. This is useful to further filter down
the prefetch operation, or to call select_related() from the prefetched relation, hence reducing the number of
queries even further:

>>> voted_choices = Choice.objects.filter(votes__gt=0)
>>> voted_choices
<QuerySet [<Choice: The sky>]>
>>> prefetch = Prefetch('choice_set', queryset=voted_choices)
>>> Question.objects.prefetch_related(prefetch).get().choice_set.all()
<QuerySet [<Choice: The sky>]>

The to_attr argument sets the result of the prefetch operation to a custom attribute:

>>> prefetch = Prefetch('choice_set', queryset=voted_choices, to_attr='voted_choices')
>>> Question.objects.prefetch_related(prefetch).get().voted_choices
<QuerySet [<Choice: The sky>]>
>>> Question.objects.prefetch_related(prefetch).get().choice_set.all()
<QuerySet [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]>

1186 Chapter 6. API Reference

https://www.sqlite.org/contrib

Django Documentation, Release 1.10.9.dev20171123183751

Note: When using to_attr the prefetched result is stored in a list. This can provide a significant speed improvement
over traditional prefetch_related calls which store the cached result within a QuerySet instance.

prefetch_related_objects()

prefetch_related_objects(model_instances, *related_lookups)

Prefetches the given lookups on an iterable of model instances. This is useful in code that receives a list of model
instances as opposed to a QuerySet; for example, when fetching models from a cache or instantiating them manually.

Pass an iterable of model instances (must all be of the same class) and the lookups or Prefetch objects you want to
prefetch for. For example:

>>> from django.db.models import prefetch_related_objects
>>> restaurants = fetch_top_restaurants_from_cache() # A list of Restaurants
>>> prefetch_related_objects(restaurants, 'pizzas__toppings')

6.15.9 Lookup API reference

This document has the API references of lookups, the Django API for building the WHERE clause of a database query.
To learn how to use lookups, see Making queries; to learn how to create new lookups, see Custom Lookups.

The lookup API has two components: a RegisterLookupMixin class that registers lookups, and the Query
Expression API, a set of methods that a class has to implement to be registrable as a lookup.

Django has two base classes that follow the query expression API and from where all Django builtin lookups are
derived:

• Lookup: to lookup a field (e.g. the exact of field_name__exact)

• Transform: to transform a field

A lookup expression consists of three parts:

• Fields part (e.g. Book.objects.filter(author__best_friends__first_name...);

• Transforms part (may be omitted) (e.g. __lower__first3chars__reversed);

• A lookup (e.g. __icontains) that, if omitted, defaults to __exact.

Registration API

Django uses RegisterLookupMixin to give a class the interface to register lookups on itself. The two prominent
examples are Field, the base class of all model fields, and Aggregate, the base class of all Django aggregates.

class lookups.RegisterLookupMixin
A mixin that implements the lookup API on a class.

classmethod register_lookup(lookup, lookup_name=None)
Registers a new lookup in the class. For example DateField.register_lookup(YearExact)
will register YearExact lookup on DateField. It overrides a lookup that already exists with the same
name. lookup_name will be used for this lookup if provided, otherwise lookup.lookup_name will
be used.

The lookup_name parameter was added.

6.15. Models 1187

Django Documentation, Release 1.10.9.dev20171123183751

get_lookup(lookup_name)
Returns the Lookup named lookup_name registered in the class. The default implementation looks re-
cursively on all parent classes and checks if any has a registered lookup named lookup_name, returning
the first match.

get_transform(transform_name)
Returns a Transform named transform_name. The default implementation looks recursively on all
parent classes to check if any has the registered transform named transform_name, returning the first
match.

For a class to be a lookup, it must follow the Query Expression API. Lookup and Transform naturally follow this
API.

The Query Expression API

The query expression API is a common set of methods that classes define to be usable in query expressions to translate
themselves into SQL expressions. Direct field references, aggregates, and Transform are examples that follow this
API. A class is said to follow the query expression API when it implements the following methods:

as_sql(self, compiler, connection)
Responsible for producing the query string and parameters for the expression. The compiler is an
SQLCompiler object, which has a compile() method that can be used to compile other expressions. The
connection is the connection used to execute the query.

Calling expression.as_sql() is usually incorrect - instead compiler.compile(expression)
should be used. The compiler.compile() method will take care of calling vendor-specific methods of
the expression.

Custom keyword arguments may be defined on this method if it’s likely that as_vendorname() methods or
subclasses will need to supply data to override the generation of the SQL string. See Func.as_sql() for
example usage.

as_vendorname(self, compiler, connection)
Works like as_sql() method. When an expression is compiled by compiler.compile(), Django will
first try to call as_vendorname(), where vendorname is the vendor name of the backend used for execut-
ing the query. The vendorname is one of postgresql, oracle, sqlite, or mysql for Django’s built-in
backends.

get_lookup(lookup_name)
Must return the lookup named lookup_name. For instance, by returning self.output_field.
get_lookup(lookup_name).

get_transform(transform_name)
Must return the lookup named transform_name. For instance, by returning self.output_field.
get_transform(transform_name).

output_field
Defines the type of class returned by the get_lookup() method. It must be a Field instance.

Transform reference

class Transform
A Transform is a generic class to implement field transformations. A prominent example is __year that
transforms a DateField into a IntegerField.

The notation to use a Transform in an lookup expression is <expression>__<transformation> (e.g.
date__year).

1188 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

This class follows the Query Expression API, which implies that you can use
<expression>__<transform1>__<transform2>. It’s a specialized Func() expression that
only accepts one argument. It can also be used on the right hand side of a filter or directly as an annotation.

Transform is now a subclass of Func.

bilateral
A boolean indicating whether this transformation should apply to both lhs and rhs. Bilateral transfor-
mations will be applied to rhs in the same order as they appear in the lookup expression. By default it is
set to False. For example usage, see Custom Lookups.

lhs
The left-hand side - what is being transformed. It must follow the Query Expression API.

lookup_name
The name of the lookup, used for identifying it on parsing query expressions. It cannot contain the string
"__".

output_field
Defines the class this transformation outputs. It must be a Field instance. By default is the same as its
lhs.output_field.

Lookup reference

class Lookup
A Lookup is a generic class to implement lookups. A lookup is a query expression with a left-hand side, lhs;
a right-hand side, rhs; and a lookup_name that is used to produce a boolean comparison between lhs and
rhs such as lhs in rhs or lhs > rhs.

The notation to use a lookup in an expression is <lhs>__<lookup_name>=<rhs>.

This class doesn’t follow the Query Expression API since it has =<rhs> on its construction: lookups are always
the end of a lookup expression.

lhs
The left-hand side - what is being looked up. The object must follow the Query Expression API.

rhs
The right-hand side - what lhs is being compared against. It can be a plain value, or something that
compiles into SQL, typically an F() object or a QuerySet.

lookup_name
The name of this lookup, used to identify it on parsing query expressions. It cannot contain the string
"__".

process_lhs(compiler, connection, lhs=None)
Returns a tuple (lhs_string, lhs_params), as returned by compiler.compile(lhs). This
method can be overridden to tune how the lhs is processed.

compiler is an SQLCompiler object, to be used like compiler.compile(lhs) for compiling
lhs. The connection can be used for compiling vendor specific SQL. If lhs is not None, use it as
the processed lhs instead of self.lhs.

process_rhs(compiler, connection)
Behaves the same way as process_lhs(), for the right-hand side.

6.15. Models 1189

Django Documentation, Release 1.10.9.dev20171123183751

6.15.10 Query Expressions

Query expressions describe a value or a computation that can be used as part of an update, create, filter, order by,
annotation, or aggregate. There are a number of built-in expressions (documented below) that can be used to help you
write queries. Expressions can be combined, or in some cases nested, to form more complex computations.

Support for using expressions when creating new model instances was added.

Supported arithmetic

Django supports addition, subtraction, multiplication, division, modulo arithmetic, and the power operator on query
expressions, using Python constants, variables, and even other expressions.

Some examples

from django.db.models import F, Count, Value
from django.db.models.functions import Length, Upper

Find companies that have more employees than chairs.
Company.objects.filter(num_employees__gt=F('num_chairs'))

Find companies that have at least twice as many employees
as chairs. Both the querysets below are equivalent.
Company.objects.filter(num_employees__gt=F('num_chairs') * 2)
Company.objects.filter(

num_employees__gt=F('num_chairs') + F('num_chairs'))

How many chairs are needed for each company to seat all employees?
>>> company = Company.objects.filter(
... num_employees__gt=F('num_chairs')).annotate(
... chairs_needed=F('num_employees') - F('num_chairs')).first()
>>> company.num_employees
120
>>> company.num_chairs
50
>>> company.chairs_needed
70

Create a new company using expressions.
>>> company = Company.objects.create(name='Google', ticker=Upper(Value('goog')))
Be sure to refresh it if you need to access the field.
>>> company.refresh_from_db()
>>> company.ticker
'GOOG'

Annotate models with an aggregated value. Both forms
below are equivalent.
Company.objects.annotate(num_products=Count('products'))
Company.objects.annotate(num_products=Count(F('products')))

Aggregates can contain complex computations also
Company.objects.annotate(num_offerings=Count(F('products') + F('services')))

Expressions can also be used in order_by()
Company.objects.order_by(Length('name').asc())
Company.objects.order_by(Length('name').desc())

1190 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Built-in Expressions

Note: These expressions are defined in django.db.models.expressions and django.db.models.
aggregates, but for convenience they’re available and usually imported from django.db.models.

F() expressions

class F

An F() object represents the value of a model field or annotated column. It makes it possible to refer to model
field values and perform database operations using them without actually having to pull them out of the database into
Python memory.

Instead, Django uses the F() object to generate an SQL expression that describes the required operation at the database
level.

This is easiest to understand through an example. Normally, one might do something like this:

Tintin filed a news story!
reporter = Reporters.objects.get(name='Tintin')
reporter.stories_filed += 1
reporter.save()

Here, we have pulled the value of reporter.stories_filed from the database into memory and manipulated it
using familiar Python operators, and then saved the object back to the database. But instead we could also have done:

from django.db.models import F

reporter = Reporters.objects.get(name='Tintin')
reporter.stories_filed = F('stories_filed') + 1
reporter.save()

Although reporter.stories_filed = F('stories_filed') + 1 looks like a normal Python assign-
ment of value to an instance attribute, in fact it’s an SQL construct describing an operation on the database.

When Django encounters an instance of F(), it overrides the standard Python operators to create an encapsulated SQL
expression; in this case, one which instructs the database to increment the database field represented by reporter.
stories_filed.

Whatever value is or was on reporter.stories_filed, Python never gets to know about it - it is dealt with
entirely by the database. All Python does, through Django’s F() class, is create the SQL syntax to refer to the field
and describe the operation.

To access the new value saved this way, the object must be reloaded:

reporter = Reporters.objects.get(pk=reporter.pk)
Or, more succinctly:
reporter.refresh_from_db()

As well as being used in operations on single instances as above, F() can be used on QuerySets of object instances,
with update(). This reduces the two queries we were using above - the get() and the save() - to just one:

reporter = Reporters.objects.filter(name='Tintin')
reporter.update(stories_filed=F('stories_filed') + 1)

6.15. Models 1191

Django Documentation, Release 1.10.9.dev20171123183751

We can also use update() to increment the field value on multiple objects - which could be very much faster than
pulling them all into Python from the database, looping over them, incrementing the field value of each one, and saving
each one back to the database:

Reporter.objects.all().update(stories_filed=F('stories_filed') + 1)

F() therefore can offer performance advantages by:

• getting the database, rather than Python, to do work

• reducing the number of queries some operations require

Avoiding race conditions using F()

Another useful benefit of F() is that having the database - rather than Python - update a field’s value avoids a race
condition.

If two Python threads execute the code in the first example above, one thread could retrieve, increment, and save a
field’s value after the other has retrieved it from the database. The value that the second thread saves will be based on
the original value; the work of the first thread will simply be lost.

If the database is responsible for updating the field, the process is more robust: it will only ever update the field based
on the value of the field in the database when the save() or update() is executed, rather than based on its value
when the instance was retrieved.

F() assignments persist after Model.save()

F() objects assigned to model fields persist after saving the model instance and will be applied on each save(). For
example:

reporter = Reporters.objects.get(name='Tintin')
reporter.stories_filed = F('stories_filed') + 1
reporter.save()

reporter.name = 'Tintin Jr.'
reporter.save()

stories_filed will be updated twice in this case. If it’s initially 1, the final value will be 3.

Using F() in filters

F() is also very useful in QuerySet filters, where they make it possible to filter a set of objects against criteria based
on their field values, rather than on Python values.

This is documented in using F() expressions in queries.

Using F() with annotations

F() can be used to create dynamic fields on your models by combining different fields with arithmetic:

company = Company.objects.annotate(
chairs_needed=F('num_employees') - F('num_chairs'))

1192 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

If the fields that you’re combining are of different types you’ll need to tell Django what kind of field will be
returned. Since F() does not directly support output_field you will need to wrap the expression with
ExpressionWrapper:

from django.db.models import DateTimeField, ExpressionWrapper, F

Ticket.objects.annotate(
expires=ExpressionWrapper(

F('active_at') + F('duration'), output_field=DateTimeField()))

When referencing relational fields such as ForeignKey, F() returns the primary key value rather than a model
instance:

>> car = Company.objects.annotate(built_by=F('manufacturer'))[0]
>> car.manufacturer
<Manufacturer: Toyota>
>> car.built_by
3

Func() expressions

Func() expressions are the base type of all expressions that involve database functions like COALESCE and LOWER,
or aggregates like SUM. They can be used directly:

from django.db.models import Func, F

queryset.annotate(field_lower=Func(F('field'), function='LOWER'))

or they can be used to build a library of database functions:

class Lower(Func):
function = 'LOWER'

queryset.annotate(field_lower=Lower('field'))

But both cases will result in a queryset where each model is annotated with an extra attribute field_lower pro-
duced, roughly, from the following SQL:

SELECT
...
LOWER("db_table"."field") as "field_lower"

See Database Functions for a list of built-in database functions.

The Func API is as follows:

class Func(*expressions, **extra)

function
A class attribute describing the function that will be generated. Specifically, the function will be inter-
polated as the function placeholder within template. Defaults to None.

template
A class attribute, as a format string, that describes the SQL that is generated for this function. Defaults to
'%(function)s(%(expressions)s)'.

6.15. Models 1193

Django Documentation, Release 1.10.9.dev20171123183751

If you’re constructing SQL like strftime('%W', 'date') and need a literal % character in the query,
quadruple it (%%%%) in the template attribute because the string is interpolated twice: once during the
template interpolation in as_sql() and once in the SQL interpolation with the query parameters in the
database cursor.

arg_joiner
A class attribute that denotes the character used to join the list of expressions together. Defaults to ',
'.

arity
A class attribute that denotes the number of arguments the function accepts. If this attribute is set and the
function is called with a different number of expressions, TypeError will be raised. Defaults to None.

as_sql(compiler, connection, function=None, template=None, arg_joiner=None, **extra_context)
Generates the SQL for the database function.

The as_vendor() methods should use the function, template, arg_joiner, and any other
**extra_context parameters to customize the SQL as needed. For example:

django/db/models/functions.py

class ConcatPair(Func):
...
function = 'CONCAT'
...

def as_mysql(self, compiler, connection):
return super(ConcatPair, self).as_sql(

compiler, connection,
function='CONCAT_WS',
template="%(function)s('', %(expressions)s)",

)

Support for the arg_joiner and **extra_context parameters was added.

The *expressions argument is a list of positional expressions that the function will be applied to. The expressions
will be converted to strings, joined together with arg_joiner, and then interpolated into the template as the
expressions placeholder.

Positional arguments can be expressions or Python values. Strings are assumed to be column references and will be
wrapped in F() expressions while other values will be wrapped in Value() expressions.

The **extra kwargs are key=value pairs that can be interpolated into the template attribute. The function,
template, and arg_joiner keywords can be used to replace the attributes of the same name without having to
define your own class. output_field can be used to define the expected return type.

Aggregate() expressions

An aggregate expression is a special case of a Func() expression that informs the query that a GROUP BY clause is
required. All of the aggregate functions, like Sum() and Count(), inherit from Aggregate().

Since Aggregates are expressions and wrap expressions, you can represent some complex computations:

from django.db.models import Count

Company.objects.annotate(
managers_required=(Count('num_employees') / 4) + Count('num_managers'))

The Aggregate API is as follows:

1194 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

class Aggregate(expression, output_field=None, **extra)

template
A class attribute, as a format string, that describes the SQL that is generated for this aggregate. Defaults to
'%(function)s(%(expressions)s)'.

function
A class attribute describing the aggregate function that will be generated. Specifically, the function
will be interpolated as the function placeholder within template. Defaults to None.

The expression argument can be the name of a field on the model, or another expression. It will be converted to a
string and used as the expressions placeholder within the template.

The output_field argument requires a model field instance, like IntegerField() or BooleanField(),
into which Django will load the value after it’s retrieved from the database. Usually no arguments are needed when
instantiating the model field as any arguments relating to data validation (max_length, max_digits, etc.) will
not be enforced on the expression’s output value.

Note that output_field is only required when Django is unable to determine what field type the result should
be. Complex expressions that mix field types should define the desired output_field. For example, adding
an IntegerField() and a FloatField() together should probably have output_field=FloatField()
defined.

The **extra kwargs are key=value pairs that can be interpolated into the template attribute.

Creating your own Aggregate Functions

Creating your own aggregate is extremely easy. At a minimum, you need to define function, but you can also
completely customize the SQL that is generated. Here’s a brief example:

from django.db.models import Aggregate

class Count(Aggregate):
supports COUNT(distinct field)
function = 'COUNT'
template = '%(function)s(%(distinct)s%(expressions)s)'

def __init__(self, expression, distinct=False, **extra):
super(Count, self).__init__(

expression,
distinct='DISTINCT ' if distinct else '',
output_field=IntegerField(),
**extra

)

Value() expressions

class Value(value, output_field=None)

A Value() object represents the smallest possible component of an expression: a simple value. When you need to
represent the value of an integer, boolean, or string within an expression, you can wrap that value within a Value().

You will rarely need to use Value() directly. When you write the expression F('field') + 1, Django implicitly
wraps the 1 in a Value(), allowing simple values to be used in more complex expressions. You will need to use
Value() when you want to pass a string to an expression. Most expressions interpret a string argument as the name
of a field, like Lower('name').

6.15. Models 1195

Django Documentation, Release 1.10.9.dev20171123183751

The value argument describes the value to be included in the expression, such as 1, True, or None. Django knows
how to convert these Python values into their corresponding database type.

The output_field argument should be a model field instance, like IntegerField() or BooleanField(),
into which Django will load the value after it’s retrieved from the database. Usually no arguments are needed when
instantiating the model field as any arguments relating to data validation (max_length, max_digits, etc.) will
not be enforced on the expression’s output value.

ExpressionWrapper() expressions

class ExpressionWrapper(expression, output_field)

ExpressionWrapper simply surrounds another expression and provides access to properties, such as
output_field, that may not be available on other expressions. ExpressionWrapper is necessary when using
arithmetic on F() expressions with different types as described in Using F() with annotations.

Conditional expressions

Conditional expressions allow you to use if ... elif ... else logic in queries. Django natively supports SQL CASE
expressions. For more details see Conditional Expressions.

Raw SQL expressions

class RawSQL(sql, params, output_field=None)

Sometimes database expressions can’t easily express a complex WHERE clause. In these edge cases, use the RawSQL
expression. For example:

>>> from django.db.models.expressions import RawSQL
>>> queryset.annotate(val=RawSQL("select col from sometable where othercol = %s",
→˓(someparam,)))

These extra lookups may not be portable to different database engines (because you’re explicitly writing SQL code)
and violate the DRY principle, so you should avoid them if possible.

Warning: You should be very careful to escape any parameters that the user can control by using params in
order to protect against SQL injection attacks. params is a required argument to force you to acknowledge that
you’re not interpolating your SQL with user provided data.

Technical Information

Below you’ll find technical implementation details that may be useful to library authors. The technical API and
examples below will help with creating generic query expressions that can extend the built-in functionality that Django
provides.

Expression API

Query expressions implement the query expression API, but also expose a number of extra methods and attributes
listed below. All query expressions must inherit from Expression() or a relevant subclass.

1196 Chapter 6. API Reference

https://docs.python.org/3/reference/compound_stmts.html#if
https://docs.python.org/3/reference/compound_stmts.html#elif
https://docs.python.org/3/reference/compound_stmts.html#else

Django Documentation, Release 1.10.9.dev20171123183751

When a query expression wraps another expression, it is responsible for calling the appropriate methods on the
wrapped expression.

class Expression

contains_aggregate
Tells Django that this expression contains an aggregate and that a GROUP BY clause needs to be added to
the query.

resolve_expression(query=None, allow_joins=True, reuse=None, summarize=False,
for_save=False)

Provides the chance to do any pre-processing or validation of the expression before it’s added to the query.
resolve_expression() must also be called on any nested expressions. A copy() of self should
be returned with any necessary transformations.

query is the backend query implementation.

allow_joins is a boolean that allows or denies the use of joins in the query.

reuse is a set of reusable joins for multi-join scenarios.

summarize is a boolean that, when True, signals that the query being computed is a terminal aggregate
query.

get_source_expressions()
Returns an ordered list of inner expressions. For example:

>>> Sum(F('foo')).get_source_expressions()
[F('foo')]

set_source_expressions(expressions)
Takes a list of expressions and stores them such that get_source_expressions() can return them.

relabeled_clone(change_map)
Returns a clone (copy) of self, with any column aliases relabeled. Column aliases are renamed when
subqueries are created. relabeled_clone() should also be called on any nested expressions and
assigned to the clone.

change_map is a dictionary mapping old aliases to new aliases.

Example:

def relabeled_clone(self, change_map):
clone = copy.copy(self)
clone.expression = self.expression.relabeled_clone(change_map)
return clone

convert_value(self, value, expression, connection, context)
A hook allowing the expression to coerce value into a more appropriate type.

get_group_by_cols()
Responsible for returning the list of columns references by this expression. get_group_by_cols()
should be called on any nested expressions. F() objects, in particular, hold a reference to a column.

asc()
Returns the expression ready to be sorted in ascending order.

desc()
Returns the expression ready to be sorted in descending order.

6.15. Models 1197

Django Documentation, Release 1.10.9.dev20171123183751

reverse_ordering()
Returns self with any modifications required to reverse the sort order within an order_by call. As
an example, an expression implementing NULLS LAST would change its value to be NULLS FIRST.
Modifications are only required for expressions that implement sort order like OrderBy. This method is
called when reverse() is called on a queryset.

Writing your own Query Expressions

You can write your own query expression classes that use, and can integrate with, other query expressions. Let’s step
through an example by writing an implementation of the COALESCE SQL function, without using the built-in Func()
expressions.

The COALESCE SQL function is defined as taking a list of columns or values. It will return the first column or value
that isn’t NULL.

We’ll start by defining the template to be used for SQL generation and an __init__()method to set some attributes:

import copy
from django.db.models import Expression

class Coalesce(Expression):
template = 'COALESCE(%(expressions)s)'

def __init__(self, expressions, output_field):
super(Coalesce, self).__init__(output_field=output_field)
if len(expressions) < 2:

raise ValueError('expressions must have at least 2 elements')
for expression in expressions:

if not hasattr(expression, 'resolve_expression'):
raise TypeError('%r is not an Expression' % expression)

self.expressions = expressions

We do some basic validation on the parameters, including requiring at least 2 columns or values, and ensuring they
are expressions. We are requiring output_field here so that Django knows what kind of model field to assign the
eventual result to.

Now we implement the pre-processing and validation. Since we do not have any of our own validation at this point,
we just delegate to the nested expressions:

def resolve_expression(self, query=None, allow_joins=True, reuse=None,
→˓summarize=False, for_save=False):

c = self.copy()
c.is_summary = summarize
for pos, expression in enumerate(self.expressions):

c.expressions[pos] = expression.resolve_expression(query, allow_joins, reuse,
→˓summarize, for_save)

return c

Next, we write the method responsible for generating the SQL:

def as_sql(self, compiler, connection, template=None):
sql_expressions, sql_params = [], []
for expression in self.expressions:

sql, params = compiler.compile(expression)
sql_expressions.append(sql)
sql_params.extend(params)

template = template or self.template

1198 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

data = {'expressions': ','.join(sql_expressions)}
return template % data, params

def as_oracle(self, compiler, connection):
"""
Example of vendor specific handling (Oracle in this case).
Let's make the function name lowercase.
"""
return self.as_sql(compiler, connection, template='coalesce(%(expressions)s)')

as_sql() methods can support custom keyword arguments, allowing as_vendorname() methods to override
data used to generate the SQL string. Using as_sql() keyword arguments for customization is preferable to mu-
tating self within as_vendorname() methods as the latter can lead to errors when running on different database
backends. If your class relies on class attributes to define data, consider allowing overrides in your as_sql()method.

We generate the SQL for each of the expressions by using the compiler.compile() method, and join the
result together with commas. Then the template is filled out with our data and the SQL and parameters are returned.

We’ve also defined a custom implementation that is specific to the Oracle backend. The as_oracle() function will
be called instead of as_sql() if the Oracle backend is in use.

Finally, we implement the rest of the methods that allow our query expression to play nice with other query expressions:

def get_source_expressions(self):
return self.expressions

def set_source_expressions(self, expressions):
self.expressions = expressions

Let’s see how it works:

>>> from django.db.models import F, Value, CharField
>>> qs = Company.objects.annotate(
... tagline=Coalesce([
... F('motto'),
... F('ticker_name'),
... F('description'),
... Value('No Tagline')
...], output_field=CharField()))
>>> for c in qs:
... print("%s: %s" % (c.name, c.tagline))
...
Google: Do No Evil
Apple: AAPL
Yahoo: Internet Company
Django Software Foundation: No Tagline

Adding support in third-party database backends

If you’re using a database backend that uses a different SQL syntax for a certain function, you can add support for it
by monkey patching a new method onto the function’s class.

Let’s say we’re writing a backend for Microsoft’s SQL Server which uses the SQL LEN instead of LENGTH for the
Length function. We’ll monkey patch a new method called as_sqlserver() onto the Length class:

from django.db.models.functions import Length

6.15. Models 1199

Django Documentation, Release 1.10.9.dev20171123183751

def sqlserver_length(self, compiler, connection):
return self.as_sql(compiler, connection, function='LEN')

Length.as_sqlserver = sqlserver_length

You can also customize the SQL using the template parameter of as_sql().

We use as_sqlserver() because django.db.connection.vendor returns sqlserver for the backend.

Third-party backends can register their functions in the top level __init__.py file of the backend package or in a
top level expressions.py file (or package) that is imported from the top level __init__.py.

For user projects wishing to patch the backend that they’re using, this code should live in an AppConfig.ready()
method.

6.15.11 Conditional Expressions

Conditional expressions let you use if ... elif ... else logic within filters, annotations, aggregations, and updates.
A conditional expression evaluates a series of conditions for each row of a table and returns the matching result
expression. Conditional expressions can also be combined and nested like other expressions.

The conditional expression classes

We’ll be using the following model in the subsequent examples:

from django.db import models

class Client(models.Model):
REGULAR = 'R'
GOLD = 'G'
PLATINUM = 'P'
ACCOUNT_TYPE_CHOICES = (

(REGULAR, 'Regular'),
(GOLD, 'Gold'),
(PLATINUM, 'Platinum'),

)
name = models.CharField(max_length=50)
registered_on = models.DateField()
account_type = models.CharField(

max_length=1,
choices=ACCOUNT_TYPE_CHOICES,
default=REGULAR,

)

When

class When(condition=None, then=None, **lookups)

A When() object is used to encapsulate a condition and its result for use in the conditional expression. Using a
When() object is similar to using the filter() method. The condition can be specified using field lookups or Q
objects. The result is provided using the then keyword.

Some examples:

1200 Chapter 6. API Reference

https://docs.python.org/3/reference/compound_stmts.html#if
https://docs.python.org/3/reference/compound_stmts.html#elif
https://docs.python.org/3/reference/compound_stmts.html#else

Django Documentation, Release 1.10.9.dev20171123183751

>>> from django.db.models import When, F, Q
>>> # String arguments refer to fields; the following two examples are equivalent:
>>> When(account_type=Client.GOLD, then='name')
>>> When(account_type=Client.GOLD, then=F('name'))
>>> # You can use field lookups in the condition
>>> from datetime import date
>>> When(registered_on__gt=date(2014, 1, 1),
... registered_on__lt=date(2015, 1, 1),
... then='account_type')
>>> # Complex conditions can be created using Q objects
>>> When(Q(name__startswith="John") | Q(name__startswith="Paul"),
... then='name')

Keep in mind that each of these values can be an expression.

Note: Since the then keyword argument is reserved for the result of the When(), there is a potential conflict if a
Model has a field named then. This can be resolved in two ways:

>>> When(then__exact=0, then=1)
>>> When(Q(then=0), then=1)

Case

class Case(*cases, **extra)

A Case() expression is like the if ... elif ... else statement in Python. Each condition in the provided
When() objects is evaluated in order, until one evaluates to a truthful value. The result expression from the
matching When() object is returned.

A simple example:

>>>
>>> from datetime import date, timedelta
>>> from django.db.models import CharField, Case, Value, When
>>> Client.objects.create(
... name='Jane Doe',
... account_type=Client.REGULAR,
... registered_on=date.today() - timedelta(days=36))
>>> Client.objects.create(
... name='James Smith',
... account_type=Client.GOLD,
... registered_on=date.today() - timedelta(days=5))
>>> Client.objects.create(
... name='Jack Black',
... account_type=Client.PLATINUM,
... registered_on=date.today() - timedelta(days=10 * 365))
>>> # Get the discount for each Client based on the account type
>>> Client.objects.annotate(
... discount=Case(
... When(account_type=Client.GOLD, then=Value('5%')),
... When(account_type=Client.PLATINUM, then=Value('10%')),
... default=Value('0%'),
... output_field=CharField(),
...),

6.15. Models 1201

https://docs.python.org/3/reference/compound_stmts.html#if
https://docs.python.org/3/reference/compound_stmts.html#elif
https://docs.python.org/3/reference/compound_stmts.html#else

Django Documentation, Release 1.10.9.dev20171123183751

...).values_list('name', 'discount')
[('Jane Doe', '0%'), ('James Smith', '5%'), ('Jack Black', '10%')]

Case() accepts any number of When() objects as individual arguments. Other options are provided using key-
word arguments. If none of the conditions evaluate to TRUE, then the expression given with the default keyword
argument is returned. If a default argument isn’t provided, None is used.

If we wanted to change our previous query to get the discount based on how long the Client has been with us, we
could do so using lookups:

>>> a_month_ago = date.today() - timedelta(days=30)
>>> a_year_ago = date.today() - timedelta(days=365)
>>> # Get the discount for each Client based on the registration date
>>> Client.objects.annotate(
... discount=Case(
... When(registered_on__lte=a_year_ago, then=Value('10%')),
... When(registered_on__lte=a_month_ago, then=Value('5%')),
... default=Value('0%'),
... output_field=CharField(),
...)
...).values_list('name', 'discount')
[('Jane Doe', '5%'), ('James Smith', '0%'), ('Jack Black', '10%')]

Note: Remember that the conditions are evaluated in order, so in the above example we get the correct result even
though the second condition matches both Jane Doe and Jack Black. This works just like an if ... elif ... else
statement in Python.

Case() also works in a filter() clause. For example, to find gold clients that registered more than a month ago
and platinum clients that registered more than a year ago:

>>> a_month_ago = date.today() - timedelta(days=30)
>>> a_year_ago = date.today() - timedelta(days=365)
>>> Client.objects.filter(
... registered_on__lte=Case(
... When(account_type=Client.GOLD, then=a_month_ago),
... When(account_type=Client.PLATINUM, then=a_year_ago),
...),
...).values_list('name', 'account_type')
[('Jack Black', 'P')]

Advanced queries

Conditional expressions can be used in annotations, aggregations, lookups, and updates. They can also be combined
and nested with other expressions. This allows you to make powerful conditional queries.

Conditional update

Let’s say we want to change the account_type for our clients to match their registration dates. We can do this
using a conditional expression and the update() method:

>>> a_month_ago = date.today() - timedelta(days=30)
>>> a_year_ago = date.today() - timedelta(days=365)
>>> # Update the account_type for each Client from the registration date

1202 Chapter 6. API Reference

https://docs.python.org/3/reference/compound_stmts.html#if
https://docs.python.org/3/reference/compound_stmts.html#elif
https://docs.python.org/3/reference/compound_stmts.html#else

Django Documentation, Release 1.10.9.dev20171123183751

>>> Client.objects.update(
... account_type=Case(
... When(registered_on__lte=a_year_ago,
... then=Value(Client.PLATINUM)),
... When(registered_on__lte=a_month_ago,
... then=Value(Client.GOLD)),
... default=Value(Client.REGULAR)
...),
...)
>>> Client.objects.values_list('name', 'account_type')
[('Jane Doe', 'G'), ('James Smith', 'R'), ('Jack Black', 'P')]

Conditional aggregation

What if we want to find out how many clients there are for each account_type? We can nest conditional expression
within aggregate functions to achieve this:

>>> # Create some more Clients first so we can have something to count
>>> Client.objects.create(
... name='Jean Grey',
... account_type=Client.REGULAR,
... registered_on=date.today())
>>> Client.objects.create(
... name='James Bond',
... account_type=Client.PLATINUM,
... registered_on=date.today())
>>> Client.objects.create(
... name='Jane Porter',
... account_type=Client.PLATINUM,
... registered_on=date.today())
>>> # Get counts for each value of account_type
>>> from django.db.models import IntegerField, Sum
>>> Client.objects.aggregate(
... regular=Sum(
... Case(When(account_type=Client.REGULAR, then=1),
... output_field=IntegerField())
...),
... gold=Sum(
... Case(When(account_type=Client.GOLD, then=1),
... output_field=IntegerField())
...),
... platinum=Sum(
... Case(When(account_type=Client.PLATINUM, then=1),
... output_field=IntegerField())
...)
...)
{'regular': 2, 'gold': 1, 'platinum': 3}

6.15.12 Database Functions

The classes documented below provide a way for users to use functions provided by the underlying database as
annotations, aggregations, or filters in Django. Functions are also expressions, so they can be used and combined with
other expressions like aggregate functions.

We’ll be using the following model in examples of each function:

6.15. Models 1203

Django Documentation, Release 1.10.9.dev20171123183751

class Author(models.Model):
name = models.CharField(max_length=50)
age = models.PositiveIntegerField(null=True, blank=True)
alias = models.CharField(max_length=50, null=True, blank=True)
goes_by = models.CharField(max_length=50, null=True, blank=True)

We don’t usually recommend allowing null=True for CharField since this allows the field to have two “empty
values”, but it’s important for the Coalesce example below.

Cast

class Cast(expression, output_field)

Forces the result type of expression to be the one from output_field.

Usage example:

>>> from django.db.models import FloatField
>>> from django.db.models.functions import Cast
>>> Value.objects.create(integer=4)
>>> value = Value.objects.annotate(as_float=Cast('integer', FloatField())).get()
>>> print(value.as_float)
4.0

Coalesce

class Coalesce(*expressions, **extra)

Accepts a list of at least two field names or expressions and returns the first non-null value (note that an empty string
is not considered a null value). Each argument must be of a similar type, so mixing text and numbers will result in a
database error.

Usage examples:

>>> # Get a screen name from least to most public
>>> from django.db.models import Sum, Value as V
>>> from django.db.models.functions import Coalesce
>>> Author.objects.create(name='Margaret Smith', goes_by='Maggie')
>>> author = Author.objects.annotate(
... screen_name=Coalesce('alias', 'goes_by', 'name')).get()
>>> print(author.screen_name)
Maggie

>>> # Prevent an aggregate Sum() from returning None
>>> aggregated = Author.objects.aggregate(
... combined_age=Coalesce(Sum('age'), V(0)),
... combined_age_default=Sum('age'))
>>> print(aggregated['combined_age'])
0
>>> print(aggregated['combined_age_default'])
None

Warning: A Python value passed to Coalesce on MySQL may be converted to an incorrect type unless
explicitly cast to the correct database type:

1204 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

>>> from django.db.models import DateTimeField
>>> from django.db.models.functions import Cast, Coalesce
>>> from django.utils import timezone
>>> now = timezone.now()
>>> Coalesce('updated', Cast(now, DateTimeField()))

Concat

class Concat(*expressions, **extra)

Accepts a list of at least two text fields or expressions and returns the concatenated text. Each argument must be of a
text or char type. If you want to concatenate a TextField() with a CharField(), then be sure to tell Django
that the output_field should be a TextField(). This is also required when concatenating a Value as in the
example below.

This function will never have a null result. On backends where a null argument results in the entire expression being
null, Django will ensure that each null part is converted to an empty string first.

Usage example:

>>> # Get the display name as "name (goes_by)"
>>> from django.db.models import CharField, Value as V
>>> from django.db.models.functions import Concat
>>> Author.objects.create(name='Margaret Smith', goes_by='Maggie')
>>> author = Author.objects.annotate(
... screen_name=Concat('name', V(' ('), 'goes_by', V(')'),
... output_field=CharField())).get()
>>> print(author.screen_name)
Margaret Smith (Maggie)

Greatest

class Greatest(*expressions, **extra)

Accepts a list of at least two field names or expressions and returns the greatest value. Each argument must be of a
similar type, so mixing text and numbers will result in a database error.

Usage example:

class Blog(models.Model):
body = models.TextField()
modified = models.DateTimeField(auto_now=True)

class Comment(models.Model):
body = models.TextField()
modified = models.DateTimeField(auto_now=True)
blog = models.ForeignKey(Blog, on_delete=models.CASCADE)

>>> from django.db.models.functions import Greatest
>>> blog = Blog.objects.create(body='Greatest is the best.')
>>> comment = Comment.objects.create(body='No, Least is better.', blog=blog)
>>> comments = Comment.objects.annotate(last_updated=Greatest('modified', 'blog__
→˓modified'))
>>> annotated_comment = comments.get()

6.15. Models 1205

Django Documentation, Release 1.10.9.dev20171123183751

annotated_comment.last_updated will be the most recent of blog.modified and comment.
modified.

Warning: The behavior of Greatest when one or more expression may be null varies between databases:

• PostgreSQL: Greatest will return the largest non-null expression, or null if all expressions are null.

• SQLite, Oracle, and MySQL: If any expression is null, Greatest will return null.

The PostgreSQL behavior can be emulated using Coalesce if you know a sensible minimum value to provide as
a default.

Least

class Least(*expressions, **extra)

Accepts a list of at least two field names or expressions and returns the least value. Each argument must be of a similar
type, so mixing text and numbers will result in a database error.

Warning: The behavior of Least when one or more expression may be null varies between databases:

• PostgreSQL: Least will return the smallest non-null expression, or null if all expressions are null.

• SQLite, Oracle, and MySQL: If any expression is null, Least will return null.

The PostgreSQL behavior can be emulated using Coalesce if you know a sensible maximum value to provide
as a default.

Length

class Length(expression, **extra)

Accepts a single text field or expression and returns the number of characters the value has. If the expression is null,
then the length will also be null.

Usage example:

>>> # Get the length of the name and goes_by fields
>>> from django.db.models.functions import Length
>>> Author.objects.create(name='Margaret Smith')
>>> author = Author.objects.annotate(
... name_length=Length('name'),
... goes_by_length=Length('goes_by')).get()
>>> print(author.name_length, author.goes_by_length)
(14, None)

It can also be registered as a transform. For example:

>>> from django.db.models import CharField
>>> from django.db.models.functions import Length
>>> CharField.register_lookup(Length, 'length')
>>> # Get authors whose name is longer than 7 characters
>>> authors = Author.objects.filter(name__length__gt=7)

The ability to register the function as a transform was added.

1206 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Lower

class Lower(expression, **extra)

Accepts a single text field or expression and returns the lowercase representation.

It can also be registered as a transform as described in Length.

Usage example:

>>> from django.db.models.functions import Lower
>>> Author.objects.create(name='Margaret Smith')
>>> author = Author.objects.annotate(name_lower=Lower('name')).get()
>>> print(author.name_lower)
margaret smith

The ability to register the function as a transform was added.

Now

class Now

Returns the database server’s current date and time when the query is executed, typically using the SQL
CURRENT_TIMESTAMP.

Usage example:

>>> from django.db.models.functions import Now
>>> Article.objects.filter(published__lte=Now())
<QuerySet [<Article: How to Django>]>

PostgreSQL considerations

On PostgreSQL, the SQL CURRENT_TIMESTAMP returns the time that the current transaction started. Therefore for
cross-database compatibility, Now() uses STATEMENT_TIMESTAMP instead. If you need the transaction timestamp,
use django.contrib.postgres.functions.TransactionNow .

Substr

class Substr(expression, pos, length=None, **extra)

Returns a substring of length length from the field or expression starting at position pos. The position is 1-indexed,
so the position must be greater than 0. If length is None, then the rest of the string will be returned.

Usage example:

>>> # Set the alias to the first 5 characters of the name as lowercase
>>> from django.db.models.functions import Substr, Lower
>>> Author.objects.create(name='Margaret Smith')
>>> Author.objects.update(alias=Lower(Substr('name', 1, 5)))
1
>>> print(Author.objects.get(name='Margaret Smith').alias)
marga

6.15. Models 1207

Django Documentation, Release 1.10.9.dev20171123183751

Upper

class Upper(expression, **extra)

Accepts a single text field or expression and returns the uppercase representation.

It can also be registered as a transform as described in Length.

Usage example:

>>> from django.db.models.functions import Upper
>>> Author.objects.create(name='Margaret Smith')
>>> author = Author.objects.annotate(name_upper=Upper('name')).get()
>>> print(author.name_upper)
MARGARET SMITH

The ability to register the function as a transform was added.

Date Functions

We’ll be using the following model in examples of each function:

class Experiment(models.Model):
start_datetime = models.DateTimeField()
start_date = models.DateField(null=True, blank=True)
end_datetime = models.DateTimeField(null=True, blank=True)
end_date = models.DateField(null=True, blank=True)

Extract

class Extract(expression, lookup_name=None, tzinfo=None, **extra)

Extracts a component of a date as a number.

Takes an expression representing a DateField or DateTimeField and a lookup_name, and returns the
part of the date referenced by lookup_name as an IntegerField. Django usually uses the databases’ extract
function, so you may use any lookup_name that your database supports. A tzinfo subclass, usually provided by
pytz, can be passed to extract a value in a specific timezone.

Given the datetime 2015-06-15 23:30:01.000321+00:00, the built-in lookup_names return:

• “year”: 2015

• “month”: 6

• “day”: 15

• “week_day”: 2

• “hour”: 23

• “minute”: 30

• “second”: 1

If a different timezone like Australia/Melbourne is active in Django, then the datetime is converted to the
timezone before the value is extracted. The timezone offset for Melbourne in the example date above is +10:00. The
values returned when this timezone is active will be the same as above except for:

• “day”: 16

1208 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• “week_day”: 3

• “hour”: 9

week_day values

The week_day lookup_type is calculated differently from most databases and from Python’s standard functions.
This function will return 1 for Sunday, 2 for Monday, through 7 for Saturday.

The equivalent calculation in Python is:

>>> from datetime import datetime
>>> dt = datetime(2015, 6, 15)
>>> (dt.isoweekday() % 7) + 1
2

Each lookup_name above has a corresponding Extract subclass (listed below) that should typically be
used instead of the more verbose equivalent, e.g. use ExtractYear(...) rather than Extract(...,
lookup_name='year').

Usage example:

>>> from datetime import datetime
>>> from django.db.models.functions import Extract
>>> start = datetime(2015, 6, 15)
>>> end = datetime(2015, 7, 2)
>>> Experiment.objects.create(
... start_datetime=start, start_date=start.date(),
... end_datetime=end, end_date=end.date())
>>> # Add the experiment start year as a field in the QuerySet.
>>> experiment = Experiment.objects.annotate(
... start_year=Extract('start_datetime', 'year')).get()
>>> experiment.start_year
2015
>>> # How many experiments completed in the same year in which they started?
>>> Experiment.objects.filter(
... start_datetime__year=Extract('end_datetime', 'year')).count()
1

DateField extracts

class ExtractYear(expression, tzinfo=None, **extra)

lookup_name = 'year'

class ExtractMonth(expression, tzinfo=None, **extra)

lookup_name = 'month'

class ExtractDay(expression, tzinfo=None, **extra)

lookup_name = 'day'

class ExtractWeekDay(expression, tzinfo=None, **extra)

6.15. Models 1209

Django Documentation, Release 1.10.9.dev20171123183751

lookup_name = 'week_day'

These are logically equivalent to Extract('date_field', lookup_name). Each class is also a Transform
registered on DateField and DateTimeField as __(lookup_name), e.g. __year.

Since DateFields don’t have a time component, only Extract subclasses that deal with date-parts can be used
with DateField:

>>> from datetime import datetime
>>> from django.utils import timezone
>>> from django.db.models.functions import (
... ExtractYear, ExtractMonth, ExtractDay, ExtractWeekDay
...)
>>> start_2015 = datetime(2015, 6, 15, 23, 30, 1, tzinfo=timezone.utc)
>>> end_2015 = datetime(2015, 6, 16, 13, 11, 27, tzinfo=timezone.utc)
>>> Experiment.objects.create(
... start_datetime=start_2015, start_date=start_2015.date(),
... end_datetime=end_2015, end_date=end_2015.date())
>>> Experiment.objects.annotate(
... year=ExtractYear('start_date'),
... month=ExtractMonth('start_date'),
... day=ExtractDay('start_date'),
... weekday=ExtractWeekDay('start_date'),
...).values('year', 'month', 'day', 'weekday').get(
... end_date__year=ExtractYear('start_date'),
...)
{'year': 2015, 'month': 6, 'day': 15, 'weekday': 2}

DateTimeField extracts

In addition to the following, all extracts for DateField listed above may also be used on DateTimeFields .

class ExtractHour(expression, tzinfo=None, **extra)

lookup_name = 'hour'

class ExtractMinute(expression, tzinfo=None, **extra)

lookup_name = 'minute'

class ExtractSecond(expression, tzinfo=None, **extra)

lookup_name = 'second'

These are logically equivalent to Extract('datetime_field', lookup_name). Each class is also a
Transform registered on DateTimeField as __(lookup_name), e.g. __minute.

DateTimeField examples:

>>> from datetime import datetime
>>> from django.utils import timezone
>>> from django.db.models.functions import (
... ExtractYear, ExtractMonth, ExtractDay, ExtractWeekDay,
... ExtractHour, ExtractMinute, ExtractSecond,
...)
>>> start_2015 = datetime(2015, 6, 15, 23, 30, 1, tzinfo=timezone.utc)
>>> end_2015 = datetime(2015, 6, 16, 13, 11, 27, tzinfo=timezone.utc)

1210 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

>>> Experiment.objects.create(
... start_datetime=start_2015, start_date=start_2015.date(),
... end_datetime=end_2015, end_date=end_2015.date())
>>> Experiment.objects.annotate(
... year=ExtractYear('start_datetime'),
... month=ExtractMonth('start_datetime'),
... day=ExtractDay('start_datetime'),
... weekday=ExtractWeekDay('start_datetime'),
... hour=ExtractHour('start_datetime'),
... minute=ExtractMinute('start_datetime'),
... second=ExtractSecond('start_datetime'),
...).values(
... 'year', 'month', 'day', 'weekday', 'hour', 'minute', 'second',
...).get(end_datetime__year=ExtractYear('start_datetime'))
{'year': 2015, 'month': 6, 'day': 15, 'weekday': 2, 'hour': 23, 'minute': 30, 'second
→˓': 1}

When USE_TZ is True then datetimes are stored in the database in UTC. If a different timezone is active in Django,
the datetime is converted to that timezone before the value is extracted. The example below converts to the Melbourne
timezone (UTC +10:00), which changes the day, weekday, and hour values that are returned:

>>> import pytz
>>> melb = pytz.timezone('Australia/Melbourne') # UTC+10:00
>>> with timezone.override(melb):
... Experiment.objects.annotate(
... day=ExtractDay('start_datetime'),
... weekday=ExtractWeekDay('start_datetime'),
... hour=ExtractHour('start_datetime'),
...).values('day', 'weekday', 'hour').get(
... end_datetime__year=ExtractYear('start_datetime'),
...)
{'day': 16, 'weekday': 3, 'hour': 9}

Explicitly passing the timezone to the Extract function behaves in the same way, and takes priority over an active
timezone:

>>> import pytz
>>> melb = pytz.timezone('Australia/Melbourne')
>>> Experiment.objects.annotate(
... day=ExtractDay('start_datetime', tzinfo=melb),
... weekday=ExtractWeekDay('start_datetime', tzinfo=melb),
... hour=ExtractHour('start_datetime', tzinfo=melb),
...).values('day', 'weekday', 'hour').get(
... end_datetime__year=ExtractYear('start_datetime'),
...)
{'day': 16, 'weekday': 3, 'hour': 9}

Trunc

class Trunc(expression, kind, output_field=None, tzinfo=None, **extra)

Truncates a date up to a significant component.

When you only care if something happened in a particular year, hour, or day, but not the exact second, then Trunc
(and its subclasses) can be useful to filter or aggregate your data. For example, you can use Trunc to calculate the
number of sales per day.

6.15. Models 1211

Django Documentation, Release 1.10.9.dev20171123183751

Trunc takes a single expression, representing a DateField or DateTimeField, a kind representing a date
part, and an output_field that’s either DateTimeField() or DateField(). It returns a datetime or date,
depending on output_field, with fields up to kind set to their minimum value. If output_field is omitted,
it will default to the output_field of expression. A tzinfo subclass, usually provided by pytz, can be
passed to truncate a value in a specific timezone.

Given the datetime 2015-06-15 14:30:50.000321+00:00, the built-in kinds return:

• “year”: 2015-01-01 00:00:00+00:00

• “month”: 2015-06-01 00:00:00+00:00

• “day”: 2015-06-15 00:00:00+00:00

• “hour”: 2015-06-15 14:00:00+00:00

• “minute”: 2015-06-15 14:30:00+00:00

• “second”: 2015-06-15 14:30:50+00:00

If a different timezone like Australia/Melbourne is active in Django, then the datetime is converted to the new
timezone before the value is truncated. The timezone offset for Melbourne in the example date above is +10:00. The
values returned when this timezone is active will be:

• “year”: 2015-01-01 00:00:00+11:00

• “month”: 2015-06-01 00:00:00+10:00

• “day”: 2015-06-16 00:00:00+10:00

• “hour”: 2015-06-16 00:00:00+10:00

• “minute”: 2015-06-16 00:30:00+10:00

• “second”: 2015-06-16 00:30:50+10:00

The year has an offset of +11:00 because the result transitioned into daylight saving time.

Each kind above has a corresponding Trunc subclass (listed below) that should typically be used instead of the
more verbose equivalent, e.g. use TruncYear(...) rather than Trunc(..., kind='year').

The subclasses are all defined as transforms, but they aren’t registered with any fields, because the obvious lookup
names are already reserved by the Extract subclasses.

Usage example:

>>> from datetime import datetime
>>> from django.db.models import Count, DateTimeField
>>> from django.db.models.functions import Trunc
>>> Experiment.objects.create(start_datetime=datetime(2015, 6, 15, 14, 30, 50, 321))
>>> Experiment.objects.create(start_datetime=datetime(2015, 6, 15, 14, 40, 2, 123))
>>> Experiment.objects.create(start_datetime=datetime(2015, 12, 25, 10, 5, 27, 999))
>>> experiments_per_day = Experiment.objects.annotate(
... start_day=Trunc('start_datetime', 'day', output_field=DateTimeField())
...).values('start_day').annotate(experiments=Count('id'))
>>> for exp in experiments_per_day:
... print(exp['start_day'], exp['experiments'])
...
2015-06-15 00:00:00 2
2015-12-25 00:00:00 1
>>> experiments = Experiment.objects.annotate(
... start_day=Trunc('start_datetime', 'day', output_field=DateTimeField())
...).filter(start_day=datetime(2015, 6, 15))
>>> for exp in experiments:

1212 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

... print(exp.start_datetime)

...
2015-06-15 14:30:50.000321
2015-06-15 14:40:02.000123

DateField truncation

class TruncYear(expression, output_field=None, tzinfo=None, **extra)

kind = 'year'

class TruncMonth(expression, output_field=None, tzinfo=None, **extra)

kind = 'month'

These are logically equivalent to Trunc('date_field', kind). They truncate all parts of the date up to kind
which allows grouping or filtering dates with less precision. expression can have an output_field of either
DateField or DateTimeField.

Since DateFields don’t have a time component, only Trunc subclasses that deal with date-parts can be used with
DateField:

>>> from datetime import datetime
>>> from django.db.models import Count
>>> from django.db.models.functions import TruncMonth, TruncYear
>>> from django.utils import timezone
>>> start1 = datetime(2014, 6, 15, 14, 30, 50, 321, tzinfo=timezone.utc)
>>> start2 = datetime(2015, 6, 15, 14, 40, 2, 123, tzinfo=timezone.utc)
>>> start3 = datetime(2015, 12, 31, 17, 5, 27, 999, tzinfo=timezone.utc)
>>> Experiment.objects.create(start_datetime=start1, start_date=start1.date())
>>> Experiment.objects.create(start_datetime=start2, start_date=start2.date())
>>> Experiment.objects.create(start_datetime=start3, start_date=start3.date())
>>> experiments_per_year = Experiment.objects.annotate(
... year=TruncYear('start_date')).values('year').annotate(
... experiments=Count('id'))
>>> for exp in experiments_per_year:
... print(exp['year'], exp['experiments'])
...
2014-01-01 1
2015-01-01 2

>>> import pytz
>>> melb = pytz.timezone('Australia/Melbourne')
>>> experiments_per_month = Experiment.objects.annotate(
... month=TruncMonth('start_datetime', tzinfo=melb)).values('month').annotate(
... experiments=Count('id'))
>>> for exp in experiments_per_month:
... print(exp['month'], exp['experiments'])
...
2015-06-01 00:00:00+10:00 1
2016-01-01 00:00:00+11:00 1
2014-06-01 00:00:00+10:00 1

6.15. Models 1213

Django Documentation, Release 1.10.9.dev20171123183751

DateTimeField truncation

class TruncDate(expression, **extra)

lookup_name = 'date'

output_field = DateField()

TruncDate casts expression to a date rather than using the built-in SQL truncate function. It’s also registered as
a transform on DateTimeField as __date.

class TruncDay(expression, output_field=None, tzinfo=None, **extra)

kind = 'day'

class TruncHour(expression, output_field=None, tzinfo=None, **extra)

kind = 'hour'

class TruncMinute(expression, output_field=None, tzinfo=None, **extra)

kind = 'minute'

class TruncSecond(expression, output_field=None, tzinfo=None, **extra)

kind = 'second'

These are logically equivalent to Trunc('datetime_field', kind). They truncate all parts of the date up to
kind and allow grouping or filtering datetimes with less precision. expression must have an output_field of
DateTimeField.

Usage example:

>>> from datetime import date, datetime
>>> from django.db.models import Count
>>> from django.db.models.functions import (
... TruncDate, TruncDay, TruncHour, TruncMinute, TruncSecond,
...)
>>> from django.utils import timezone
>>> import pytz
>>> start1 = datetime(2014, 6, 15, 14, 30, 50, 321, tzinfo=timezone.utc)
>>> Experiment.objects.create(start_datetime=start1, start_date=start1.date())
>>> melb = pytz.timezone('Australia/Melbourne')
>>> Experiment.objects.annotate(
... date=TruncDate('start_datetime'),
... day=TruncDay('start_datetime', tzinfo=melb),
... hour=TruncHour('start_datetime', tzinfo=melb),
... minute=TruncMinute('start_datetime'),
... second=TruncSecond('start_datetime'),
...).values('date', 'day', 'hour', 'minute', 'second').get()
{'date': datetime.date(2014, 6, 15),
'day': datetime.datetime(2014, 6, 16, 0, 0, tzinfo=<DstTzInfo 'Australia/Melbourne'
→˓AEST+10:00:00 STD>),
'hour': datetime.datetime(2014, 6, 16, 0, 0, tzinfo=<DstTzInfo 'Australia/Melbourne'
→˓AEST+10:00:00 STD>),
'minute': 'minute': datetime.datetime(2014, 6, 15, 14, 30, tzinfo=<UTC>),

1214 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

'second': datetime.datetime(2014, 6, 15, 14, 30, 50, tzinfo=<UTC>)
}

6.16 Request and response objects

6.16.1 Quick overview

Django uses request and response objects to pass state through the system.

When a page is requested, Django creates an HttpRequest object that contains metadata about the request. Then
Django loads the appropriate view, passing the HttpRequest as the first argument to the view function. Each view
is responsible for returning an HttpResponse object.

This document explains the APIs for HttpRequest and HttpResponse objects, which are defined in the
django.http module.

6.16.2 HttpRequest objects

class HttpRequest

Attributes

All attributes should be considered read-only, unless stated otherwise.

HttpRequest.scheme
A string representing the scheme of the request (http or https usually).

HttpRequest.body
The raw HTTP request body as a byte string. This is useful for processing data in different ways than
conventional HTML forms: binary images, XML payload etc. For processing conventional form data, use
HttpRequest.POST.

You can also read from an HttpRequest using a file-like interface. See HttpRequest.read().

HttpRequest.path
A string representing the full path to the requested page, not including the scheme or domain.

Example: "/music/bands/the_beatles/"

HttpRequest.path_info
Under some Web server configurations, the portion of the URL after the host name is split up into a script prefix
portion and a path info portion. The path_info attribute always contains the path info portion of the path, no
matter what Web server is being used. Using this instead of path can make your code easier to move between
test and deployment servers.

For example, if the WSGIScriptAlias for your application is set to "/minfo", then path
might be "/minfo/music/bands/the_beatles/" and path_info would be "/music/bands/
the_beatles/".

HttpRequest.method
A string representing the HTTP method used in the request. This is guaranteed to be uppercase. Example:

6.16. Request and response objects 1215

Django Documentation, Release 1.10.9.dev20171123183751

if request.method == 'GET':
do_something()

elif request.method == 'POST':
do_something_else()

HttpRequest.encoding
A string representing the current encoding used to decode form submission data (or None, which means the
DEFAULT_CHARSET setting is used). You can write to this attribute to change the encoding used when ac-
cessing the form data. Any subsequent attribute accesses (such as reading from GET or POST) will use the new
encoding value. Useful if you know the form data is not in the DEFAULT_CHARSET encoding.

HttpRequest.content_type
A string representing the MIME type of the request, parsed from the CONTENT_TYPE header.

HttpRequest.content_params
A dictionary of key/value parameters included in the CONTENT_TYPE header.

HttpRequest.GET
A dictionary-like object containing all given HTTP GET parameters. See the QueryDict documentation
below.

HttpRequest.POST
A dictionary-like object containing all given HTTP POST parameters, providing that the request contains form
data. See the QueryDict documentation below. If you need to access raw or non-form data posted in the
request, access this through the HttpRequest.body attribute instead.

It’s possible that a request can come in via POST with an empty POST dictionary – if, say, a form is requested
via the POST HTTP method but does not include form data. Therefore, you shouldn’t use if request.POST
to check for use of the POST method; instead, use if request.method == "POST" (see above).

Note: POST does not include file-upload information. See FILES.

HttpRequest.COOKIES
A standard Python dictionary containing all cookies. Keys and values are strings.

HttpRequest.FILES
A dictionary-like object containing all uploaded files. Each key in FILES is the name from the <input
type="file" name="" />. Each value in FILES is an UploadedFile.

See Managing files for more information.

Note that FILES will only contain data if the request method was POST and the <form> that posted to the
request had enctype="multipart/form-data". Otherwise, FILES will be a blank dictionary-like ob-
ject.

HttpRequest.META
A standard Python dictionary containing all available HTTP headers. Available headers depend on the client
and server, but here are some examples:

• CONTENT_LENGTH – The length of the request body (as a string).

• CONTENT_TYPE – The MIME type of the request body.

• HTTP_ACCEPT – Acceptable content types for the response.

• HTTP_ACCEPT_ENCODING – Acceptable encodings for the response.

• HTTP_ACCEPT_LANGUAGE – Acceptable languages for the response.

• HTTP_HOST – The HTTP Host header sent by the client.

• HTTP_REFERER – The referring page, if any.

1216 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• HTTP_USER_AGENT – The client’s user-agent string.

• QUERY_STRING – The query string, as a single (unparsed) string.

• REMOTE_ADDR – The IP address of the client.

• REMOTE_HOST – The hostname of the client.

• REMOTE_USER – The user authenticated by the Web server, if any.

• REQUEST_METHOD – A string such as "GET" or "POST".

• SERVER_NAME – The hostname of the server.

• SERVER_PORT – The port of the server (as a string).

With the exception of CONTENT_LENGTH and CONTENT_TYPE, as given above, any HTTP headers in the
request are converted to META keys by converting all characters to uppercase, replacing any hyphens with
underscores and adding an HTTP_ prefix to the name. So, for example, a header called X-Bender would be
mapped to the META key HTTP_X_BENDER.

Note that runserver strips all headers with underscores in the name, so you won’t see them in META. This
prevents header-spoofing based on ambiguity between underscores and dashes both being normalizing to under-
scores in WSGI environment variables. It matches the behavior of Web servers like Nginx and Apache 2.4+.

HttpRequest.resolver_match
An instance of ResolverMatch representing the resolved URL. This attribute is only set after URL resolving
took place, which means it’s available in all views but not in middleware which are executed before URL
resolving takes place (you can use it in process_view() though).

Attributes set by application code

Django doesn’t set these attributes itself but makes use of them if set by your application.

HttpRequest.current_app
The url template tag will use its value as the current_app argument to reverse().

HttpRequest.urlconf
This will be used as the root URLconf for the current request, overriding the ROOT_URLCONF setting. See
How Django processes a request for details.

urlconf can be set to None to revert any changes made by previous middleware and return to using the
ROOT_URLCONF.

Setting urlconf=None raised ImproperlyConfigured in older versions.

Attributes set by middleware

Some of the middleware included in Django’s contrib apps set attributes on the request. If you don’t see the attribute
on a request, be sure the appropriate middleware class is listed in MIDDLEWARE.

HttpRequest.session
From the SessionMiddleware: A readable and writable, dictionary-like object that represents the current
session.

HttpRequest.site
From the CurrentSiteMiddleware: An instance of Site or RequestSite as returned by
get_current_site() representing the current site.

6.16. Request and response objects 1217

Django Documentation, Release 1.10.9.dev20171123183751

HttpRequest.user
From the AuthenticationMiddleware: An instance of AUTH_USER_MODEL representing the currently
logged-in user. If the user isn’t currently logged in, user will be set to an instance of AnonymousUser. You
can tell them apart with is_authenticated, like so:

if request.user.is_authenticated:
... # Do something for logged-in users.

else:
... # Do something for anonymous users.

Methods

HttpRequest.get_host()
Returns the originating host of the request using information from the HTTP_X_FORWARDED_HOST (if
USE_X_FORWARDED_HOST is enabled) and HTTP_HOST headers, in that order. If they don’t provide a value,
the method uses a combination of SERVER_NAME and SERVER_PORT as detailed in PEP 3333.

Example: "127.0.0.1:8000"

Note: The get_host() method fails when the host is behind multiple proxies. One solution is to use
middleware to rewrite the proxy headers, as in the following example:

from django.utils.deprecation import MiddlewareMixin

class MultipleProxyMiddleware(MiddlewareMixin):
FORWARDED_FOR_FIELDS = [

'HTTP_X_FORWARDED_FOR',
'HTTP_X_FORWARDED_HOST',
'HTTP_X_FORWARDED_SERVER',

]

def process_request(self, request):
"""
Rewrites the proxy headers so that only the most
recent proxy is used.
"""
for field in self.FORWARDED_FOR_FIELDS:

if field in request.META:
if ',' in request.META[field]:

parts = request.META[field].split(',')
request.META[field] = parts[-1].strip()

This middleware should be positioned before any other middleware that relies on the value of get_host() –
for instance, CommonMiddleware or CsrfViewMiddleware.

HttpRequest.get_port()
Returns the originating port of the request using information from the HTTP_X_FORWARDED_PORT (if
USE_X_FORWARDED_PORT is enabled) and SERVER_PORT META variables, in that order.

HttpRequest.get_full_path()
Returns the path, plus an appended query string, if applicable.

Example: "/music/bands/the_beatles/?print=true"

HttpRequest.build_absolute_uri(location)

1218 Chapter 6. API Reference

https://www.python.org/dev/peps/pep-3333

Django Documentation, Release 1.10.9.dev20171123183751

Returns the absolute URI form of location. If no location is provided, the location will be set to request.
get_full_path().

If the location is already an absolute URI, it will not be altered. Otherwise the absolute URI is built using the
server variables available in this request.

Example: "https://example.com/music/bands/the_beatles/?print=true"

Note: Mixing HTTP and HTTPS on the same site is discouraged, therefore build_absolute_uri() will
always generate an absolute URI with the same scheme the current request has. If you need to redirect users to
HTTPS, it’s best to let your Web server redirect all HTTP traffic to HTTPS.

HttpRequest.get_signed_cookie(key, default=RAISE_ERROR, salt=’‘, max_age=None)
Returns a cookie value for a signed cookie, or raises a django.core.signing.BadSignature exception
if the signature is no longer valid. If you provide the default argument the exception will be suppressed and
that default value will be returned instead.

The optional salt argument can be used to provide extra protection against brute force attacks on your secret
key. If supplied, the max_age argument will be checked against the signed timestamp attached to the cookie
value to ensure the cookie is not older than max_age seconds.

For example:

>>> request.get_signed_cookie('name')
'Tony'
>>> request.get_signed_cookie('name', salt='name-salt')
'Tony' # assuming cookie was set using the same salt
>>> request.get_signed_cookie('non-existing-cookie')
...
KeyError: 'non-existing-cookie'
>>> request.get_signed_cookie('non-existing-cookie', False)
False
>>> request.get_signed_cookie('cookie-that-was-tampered-with')
...
BadSignature: ...
>>> request.get_signed_cookie('name', max_age=60)
...
SignatureExpired: Signature age 1677.3839159 > 60 seconds
>>> request.get_signed_cookie('name', False, max_age=60)
False

See cryptographic signing for more information.

HttpRequest.is_secure()
Returns True if the request is secure; that is, if it was made with HTTPS.

HttpRequest.is_ajax()
Returns True if the request was made via an XMLHttpRequest, by checking the
HTTP_X_REQUESTED_WITH header for the string 'XMLHttpRequest'. Most modern JavaScript
libraries send this header. If you write your own XMLHttpRequest call (on the browser side), you’ll have to set
this header manually if you want is_ajax() to work.

If a response varies on whether or not it’s requested via AJAX and you are using some
form of caching like Django’s cache middleware, you should decorate the view with
vary_on_headers('X-Requested-With') so that the responses are properly cached.

HttpRequest.read(size=None)

HttpRequest.readline()

6.16. Request and response objects 1219

Django Documentation, Release 1.10.9.dev20171123183751

HttpRequest.readlines()

HttpRequest.xreadlines()

HttpRequest.__iter__()
Methods implementing a file-like interface for reading from an HttpRequest instance. This makes it possible
to consume an incoming request in a streaming fashion. A common use-case would be to process a big XML
payload with an iterative parser without constructing a whole XML tree in memory.

Given this standard interface, an HttpRequest instance can be passed directly to an XML parser such as Ele-
mentTree:

import xml.etree.ElementTree as ET
for element in ET.iterparse(request):

process(element)

6.16.3 QueryDict objects

class QueryDict

In an HttpRequest object, the GET and POST attributes are instances of django.http.QueryDict, a
dictionary-like class customized to deal with multiple values for the same key. This is necessary because some HTML
form elements, notably <select multiple>, pass multiple values for the same key.

The QueryDicts at request.POST and request.GET will be immutable when accessed in a normal re-
quest/response cycle. To get a mutable version you need to use .copy().

Methods

QueryDict implements all the standard dictionary methods because it’s a subclass of dictionary. Exceptions are
outlined here:

QueryDict.__init__(query_string=None, mutable=False, encoding=None)
Instantiates a QueryDict object based on query_string.

>>> QueryDict('a=1&a=2&c=3')
<QueryDict: {'a': ['1', '2'], 'c': ['3']}>

If query_string is not passed in, the resulting QueryDict will be empty (it will have no keys or values).

Most QueryDicts you encounter, and in particular those at request.POST and request.GET, will be
immutable. If you are instantiating one yourself, you can make it mutable by passing mutable=True to its
__init__().

Strings for setting both keys and values will be converted from encoding to unicode. If encoding is not set, it
defaults to DEFAULT_CHARSET.

QueryDict.__getitem__(key)
Returns the value for the given key. If the key has more than one value, __getitem__() returns the last
value. Raises django.utils.datastructures.MultiValueDictKeyError if the key does not
exist. (This is a subclass of Python’s standard KeyError, so you can stick to catching KeyError.)

QueryDict.__setitem__(key, value)
Sets the given key to [value] (a Python list whose single element is value). Note that this, as other dictionary
functions that have side effects, can only be called on a mutable QueryDict (such as one that was created via
copy()).

1220 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

QueryDict.__contains__(key)
Returns True if the given key is set. This lets you do, e.g., if "foo" in request.GET.

QueryDict.get(key, default=None)
Uses the same logic as __getitem__() above, with a hook for returning a default value if the key doesn’t
exist.

QueryDict.setdefault(key, default=None)
Just like the standard dictionary setdefault() method, except it uses __setitem__() internally.

QueryDict.update(other_dict)
Takes either a QueryDict or standard dictionary. Just like the standard dictionary update() method, except
it appends to the current dictionary items rather than replacing them. For example:

>>> q = QueryDict('a=1', mutable=True)
>>> q.update({'a': '2'})
>>> q.getlist('a')
['1', '2']
>>> q['a'] # returns the last
'2'

QueryDict.items()
Just like the standard dictionary items() method, except this uses the same last-value logic as
__getitem__(). For example:

>>> q = QueryDict('a=1&a=2&a=3')
>>> q.items()
[('a', '3')]

QueryDict.iteritems()
Just like the standard dictionary iteritems() method. Like QueryDict.items() this uses the same
last-value logic as QueryDict.__getitem__().

Available only on Python 2.

QueryDict.iterlists()
Like QueryDict.iteritems() except it includes all values, as a list, for each member of the dictionary.

Available only on Python 2.

QueryDict.values()
Just like the standard dictionary values() method, except this uses the same last-value logic as
__getitem__(). For example:

>>> q = QueryDict('a=1&a=2&a=3')
>>> q.values()
['3']

QueryDict.itervalues()
Just like QueryDict.values(), except an iterator.

Available only on Python 2.

In addition, QueryDict has the following methods:

QueryDict.copy()
Returns a copy of the object, using copy.deepcopy() from the Python standard library. This copy will be
mutable even if the original was not.

QueryDict.getlist(key, default=None)
Returns the data with the requested key, as a Python list. Returns an empty list if the key doesn’t exist and no

6.16. Request and response objects 1221

Django Documentation, Release 1.10.9.dev20171123183751

default value was provided. It’s guaranteed to return a list of some sort unless the default value provided is not
a list.

QueryDict.setlist(key, list_)
Sets the given key to list_ (unlike __setitem__()).

QueryDict.appendlist(key, item)
Appends an item to the internal list associated with key.

QueryDict.setlistdefault(key, default_list=None)
Just like setdefault, except it takes a list of values instead of a single value.

QueryDict.lists()
Like items(), except it includes all values, as a list, for each member of the dictionary. For example:

>>> q = QueryDict('a=1&a=2&a=3')
>>> q.lists()
[('a', ['1', '2', '3'])]

QueryDict.pop(key)
Returns a list of values for the given key and removes them from the dictionary. Raises KeyError if the key
does not exist. For example:

>>> q = QueryDict('a=1&a=2&a=3', mutable=True)
>>> q.pop('a')
['1', '2', '3']

QueryDict.popitem()
Removes an arbitrary member of the dictionary (since there’s no concept of ordering), and returns a two value
tuple containing the key and a list of all values for the key. Raises KeyError when called on an empty
dictionary. For example:

>>> q = QueryDict('a=1&a=2&a=3', mutable=True)
>>> q.popitem()
('a', ['1', '2', '3'])

QueryDict.dict()
Returns dict representation of QueryDict. For every (key, list) pair in QueryDict, dict will have (key,
item), where item is one element of the list, using same logic as QueryDict.__getitem__():

>>> q = QueryDict('a=1&a=3&a=5')
>>> q.dict()
{'a': '5'}

QueryDict.urlencode(safe=None)
Returns a string of the data in query-string format. Example:

>>> q = QueryDict('a=2&b=3&b=5')
>>> q.urlencode()
'a=2&b=3&b=5'

Optionally, urlencode can be passed characters which do not require encoding. For example:

>>> q = QueryDict(mutable=True)
>>> q['next'] = '/a&b/'
>>> q.urlencode(safe='/')
'next=/a%26b/'

1222 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

6.16.4 HttpResponse objects

class HttpResponse

In contrast to HttpRequest objects, which are created automatically by Django, HttpResponse objects are your
responsibility. Each view you write is responsible for instantiating, populating and returning an HttpResponse.

The HttpResponse class lives in the django.http module.

Usage

Passing strings

Typical usage is to pass the contents of the page, as a string, to the HttpResponse constructor:

>>> from django.http import HttpResponse
>>> response = HttpResponse("Here's the text of the Web page.")
>>> response = HttpResponse("Text only, please.", content_type="text/plain")

But if you want to add content incrementally, you can use response as a file-like object:

>>> response = HttpResponse()
>>> response.write("<p>Here's the text of the Web page.</p>")
>>> response.write("<p>Here's another paragraph.</p>")

Passing iterators

Finally, you can pass HttpResponse an iterator rather than strings. HttpResponse will consume the iterator
immediately, store its content as a string, and discard it. Objects with a close() method such as files and generators
are immediately closed.

If you need the response to be streamed from the iterator to the client, you must use the StreamingHttpResponse
class instead.

Objects with a close() method used to be closed when the WSGI server called close() on the response.

Setting header fields

To set or remove a header field in your response, treat it like a dictionary:

>>> response = HttpResponse()
>>> response['Age'] = 120
>>> del response['Age']

Note that unlike a dictionary, del doesn’t raise KeyError if the header field doesn’t exist.

For setting the Cache-Control and Vary header fields, it is recommended to use the
patch_cache_control() and patch_vary_headers() methods from django.utils.cache,
since these fields can have multiple, comma-separated values. The “patch” methods ensure that other values, e.g.
added by a middleware, are not removed.

HTTP header fields cannot contain newlines. An attempt to set a header field containing a newline character (CR or
LF) will raise BadHeaderError

6.16. Request and response objects 1223

Django Documentation, Release 1.10.9.dev20171123183751

Telling the browser to treat the response as a file attachment

To tell the browser to treat the response as a file attachment, use the content_type argument and set the
Content-Disposition header. For example, this is how you might return a Microsoft Excel spreadsheet:

>>> response = HttpResponse(my_data, content_type='application/vnd.ms-excel')
>>> response['Content-Disposition'] = 'attachment; filename="foo.xls"'

There’s nothing Django-specific about the Content-Disposition header, but it’s easy to forget the syntax, so
we’ve included it here.

Attributes

HttpResponse.content
A bytestring representing the content, encoded from a Unicode object if necessary.

HttpResponse.charset
A string denoting the charset in which the response will be encoded. If not given at HttpResponse instan-
tiation time, it will be extracted from content_type and if that is unsuccessful, the DEFAULT_CHARSET
setting will be used.

HttpResponse.status_code
The HTTP status code for the response.

Unless reason_phrase is explicitly set, modifying the value of status_code outside the constructor will
also modify the value of reason_phrase.

HttpResponse.reason_phrase
The HTTP reason phrase for the response.

reason_phrase no longer defaults to all capital letters. It now uses the HTTP standard’s default reason
phrases.

Unless explicitly set, reason_phrase is determined by the current value of status_code.

HttpResponse.streaming
This is always False.

This attribute exists so middleware can treat streaming responses differently from regular responses.

HttpResponse.closed
True if the response has been closed.

Methods

HttpResponse.__init__(content=’‘, content_type=None, status=200, reason=None, charset=None)
Instantiates an HttpResponse object with the given page content and content type.

content should be an iterator or a string. If it’s an iterator, it should return strings, and those strings will be
joined together to form the content of the response. If it is not an iterator or a string, it will be converted to a
string when accessed.

content_type is the MIME type optionally completed by a character set encoding and is used to fill
the HTTP Content-Type header. If not specified, it is formed by the DEFAULT_CONTENT_TYPE and
DEFAULT_CHARSET settings, by default: “text/html; charset=utf-8”.

status is the HTTP status code for the response.

reason is the HTTP response phrase. If not provided, a default phrase will be used.

1224 Chapter 6. API Reference

https://tools.ietf.org/html/rfc7231.html#section-6
https://tools.ietf.org/html/rfc7231.html#section-6.1
https://tools.ietf.org/html/rfc7231.html#section-6

Django Documentation, Release 1.10.9.dev20171123183751

charset is the charset in which the response will be encoded. If not given it will be extracted from
content_type, and if that is unsuccessful, the DEFAULT_CHARSET setting will be used.

HttpResponse.__setitem__(header, value)
Sets the given header name to the given value. Both header and value should be strings.

HttpResponse.__delitem__(header)
Deletes the header with the given name. Fails silently if the header doesn’t exist. Case-insensitive.

HttpResponse.__getitem__(header)
Returns the value for the given header name. Case-insensitive.

HttpResponse.has_header(header)
Returns True or False based on a case-insensitive check for a header with the given name.

HttpResponse.setdefault(header, value)
Sets a header unless it has already been set.

HttpResponse.set_cookie(key, value=’‘, max_age=None, expires=None, path=’/’, domain=None, se-
cure=None, httponly=False)

Sets a cookie. The parameters are the same as in the Morsel cookie object in the Python standard library.

• max_age should be a number of seconds, or None (default) if the cookie should last only as long as the
client’s browser session. If expires is not specified, it will be calculated.

• expires should either be a string in the format "Wdy, DD-Mon-YY HH:MM:SS GMT" or a
datetime.datetime object in UTC. If expires is a datetime object, the max_age will be
calculated.

• Use domain if you want to set a cross-domain cookie. For example, domain=".lawrence.com"
will set a cookie that is readable by the domains www.lawrence.com, blogs.lawrence.com and calen-
dars.lawrence.com. Otherwise, a cookie will only be readable by the domain that set it.

• Use httponly=True if you want to prevent client-side JavaScript from having access to the cookie.

HTTPOnly is a flag included in a Set-Cookie HTTP response header. It is not part of the RFC 2109
standard for cookies, and it isn’t honored consistently by all browsers. However, when it is honored, it can
be a useful way to mitigate the risk of a client-side script from accessing the protected cookie data.

Warning: Both RFC 2109 and RFC 6265 state that user agents should support cookies of at least 4096
bytes. For many browsers this is also the maximum size. Django will not raise an exception if there’s an
attempt to store a cookie of more than 4096 bytes, but many browsers will not set the cookie correctly.

HttpResponse.set_signed_cookie(key, value, salt=’‘, max_age=None, expires=None, path=’/’, do-
main=None, secure=None, httponly=True)

Like set_cookie(), but cryptographic signing the cookie before setting it. Use in conjunc-
tion with HttpRequest.get_signed_cookie(). You can use the optional salt argument for
added key strength, but you will need to remember to pass it to the corresponding HttpRequest.
get_signed_cookie() call.

HttpResponse.delete_cookie(key, path=’/’, domain=None)
Deletes the cookie with the given key. Fails silently if the key doesn’t exist.

Due to the way cookies work, path and domain should be the same values you used in set_cookie() –
otherwise the cookie may not be deleted.

HttpResponse.write(content)
This method makes an HttpResponse instance a file-like object.

6.16. Request and response objects 1225

https://docs.python.org/3/library/http.cookies.html#http.cookies.Morsel
https://www.owasp.org/index.php/HTTPOnly
https://tools.ietf.org/html/rfc2109.html
https://tools.ietf.org/html/rfc2109.html
https://tools.ietf.org/html/rfc6265.html

Django Documentation, Release 1.10.9.dev20171123183751

HttpResponse.flush()
This method makes an HttpResponse instance a file-like object.

HttpResponse.tell()
This method makes an HttpResponse instance a file-like object.

HttpResponse.getvalue()
Returns the value of HttpResponse.content. This method makes an HttpResponse instance a stream-
like object.

HttpResponse.readable()
Always False. This method makes an HttpResponse instance a stream-like object.

HttpResponse.seekable()
Always False. This method makes an HttpResponse instance a stream-like object.

HttpResponse.writable()
Always True. This method makes an HttpResponse instance a stream-like object.

HttpResponse.writelines(lines)
Writes a list of lines to the response. Line separators are not added. This method makes an HttpResponse
instance a stream-like object.

HttpResponse subclasses

Django includes a number of HttpResponse subclasses that handle different types of HTTP responses. Like
HttpResponse, these subclasses live in django.http.

class HttpResponseRedirect
The first argument to the constructor is required – the path to redirect to. This can be a fully qualified URL
(e.g. 'https://www.yahoo.com/search/'), an absolute path with no domain (e.g. '/search/'), or
even a relative path (e.g. 'search/'). In that last case, the client browser will reconstruct the full URL itself
according to the current path. See HttpResponse for other optional constructor arguments. Note that this
returns an HTTP status code 302.

url
This read-only attribute represents the URL the response will redirect to (equivalent to the Location
response header).

class HttpResponsePermanentRedirect
Like HttpResponseRedirect, but it returns a permanent redirect (HTTP status code 301) instead of a
“found” redirect (status code 302).

class HttpResponseNotModified
The constructor doesn’t take any arguments and no content should be added to this response. Use this to
designate that a page hasn’t been modified since the user’s last request (status code 304).

class HttpResponseBadRequest
Acts just like HttpResponse but uses a 400 status code.

class HttpResponseNotFound
Acts just like HttpResponse but uses a 404 status code.

class HttpResponseForbidden
Acts just like HttpResponse but uses a 403 status code.

class HttpResponseNotAllowed
Like HttpResponse, but uses a 405 status code. The first argument to the constructor is required: a list of
permitted methods (e.g. ['GET', 'POST']).

1226 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

class HttpResponseGone
Acts just like HttpResponse but uses a 410 status code.

class HttpResponseServerError
Acts just like HttpResponse but uses a 500 status code.

Note: If a custom subclass of HttpResponse implements a render method, Django will treat it as emulating a
SimpleTemplateResponse, and the render method must itself return a valid response object.

6.16.5 JsonResponse objects

class JsonResponse(data, encoder=DjangoJSONEncoder, safe=True, json_dumps_params=None,
**kwargs)

An HttpResponse subclass that helps to create a JSON-encoded response. It inherits most behavior from its
superclass with a couple differences:

Its default Content-Type header is set to application/json.

The first parameter, data, should be a dict instance. If the safe parameter is set to False (see below) it
can be any JSON-serializable object.

The encoder, which defaults to django.core.serializers.json.DjangoJSONEncoder, will be
used to serialize the data. See JSON serialization for more details about this serializer.

The safe boolean parameter defaults to True. If it’s set to False, any object can be passed for serialization
(otherwise only dict instances are allowed). If safe is True and a non-dict object is passed as the first
argument, a TypeError will be raised.

The json_dumps_params parameter is a dictionary of keyword arguments to pass to the json.dumps()
call used to generate the response.

The json_dumps_params argument was added.

Usage

Typical usage could look like:

>>> from django.http import JsonResponse
>>> response = JsonResponse({'foo': 'bar'})
>>> response.content
b'{"foo": "bar"}'

Serializing non-dictionary objects

In order to serialize objects other than dict you must set the safe parameter to False:

>>> response = JsonResponse([1, 2, 3], safe=False)

Without passing safe=False, a TypeError will be raised.

6.16. Request and response objects 1227

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError

Django Documentation, Release 1.10.9.dev20171123183751

Warning: Before the 5th edition of ECMAScript it was possible to poison the JavaScript Array constructor. For
this reason, Django does not allow passing non-dict objects to the JsonResponse constructor by default. How-
ever, most modern browsers implement EcmaScript 5 which removes this attack vector. Therefore it is possible to
disable this security precaution.

Changing the default JSON encoder

If you need to use a different JSON encoder class you can pass the encoder parameter to the constructor method:

>>> response = JsonResponse(data, encoder=MyJSONEncoder)

6.16.6 StreamingHttpResponse objects

class StreamingHttpResponse

The StreamingHttpResponse class is used to stream a response from Django to the browser. You might want
to do this if generating the response takes too long or uses too much memory. For instance, it’s useful for generating
large CSV files.

Performance considerations

Django is designed for short-lived requests. Streaming responses will tie a worker process for the entire duration of
the response. This may result in poor performance.

Generally speaking, you should perform expensive tasks outside of the request-response cycle, rather than resorting to
a streamed response.

The StreamingHttpResponse is not a subclass of HttpResponse, because it features a slightly different API.
However, it is almost identical, with the following notable differences:

• It should be given an iterator that yields strings as content.

• You cannot access its content, except by iterating the response object itself. This should only occur when the
response is returned to the client.

• It has no content attribute. Instead, it has a streaming_content attribute.

• You cannot use the file-like object tell() or write() methods. Doing so will raise an exception.

StreamingHttpResponse should only be used in situations where it is absolutely required that the whole content
isn’t iterated before transferring the data to the client. Because the content can’t be accessed, many middlewares
can’t function normally. For example the ETag and Content-Length headers can’t be generated for streaming
responses.

Attributes

StreamingHttpResponse.streaming_content
An iterator of strings representing the content.

StreamingHttpResponse.status_code
The HTTP status code for the response.

Unless reason_phrase is explicitly set, modifying the value of status_code outside the constructor will
also modify the value of reason_phrase.

1228 Chapter 6. API Reference

http://www.ecma-international.org/ecma-262/5.1/index.html#sec-11.1.4
https://tools.ietf.org/html/rfc7231.html#section-6

Django Documentation, Release 1.10.9.dev20171123183751

StreamingHttpResponse.reason_phrase
The HTTP reason phrase for the response.

reason_phrase no longer defaults to all capital letters. It now uses the HTTP standard’s default reason
phrases.

Unless explicitly set, reason_phrase is determined by the current value of status_code.

StreamingHttpResponse.streaming
This is always True.

6.16.7 FileResponse objects

class FileResponse

FileResponse is a subclass of StreamingHttpResponse optimized for binary files. It uses wsgi.file_wrapper
if provided by the wsgi server, otherwise it streams the file out in small chunks.

FileResponse expects a file open in binary mode like so:

>>> from django.http import FileResponse
>>> response = FileResponse(open('myfile.png', 'rb'))

6.17 SchemaEditor

class BaseDatabaseSchemaEditor

Django’s migration system is split into two parts; the logic for calculating and storing what operations should be run
(django.db.migrations), and the database abstraction layer that turns things like “create a model” or “delete a
field” into SQL - which is the job of the SchemaEditor.

It’s unlikely that you will want to interact directly with SchemaEditor as a normal developer using Django, but if
you want to write your own migration system, or have more advanced needs, it’s a lot nicer than writing SQL.

Each database backend in Django supplies its own version of SchemaEditor, and it’s always accessible via the
connection.schema_editor() context manager:

with connection.schema_editor() as schema_editor:
schema_editor.delete_model(MyModel)

It must be used via the context manager as this allows it to manage things like transactions and deferred SQL (like
creating ForeignKey constraints).

It exposes all possible operations as methods, that should be called in the order you wish changes to be applied. Some
possible operations or types of change are not possible on all databases - for example, MyISAM does not support
foreign key constraints.

If you are writing or maintaining a third-party database backend for Django, you will need to provide a
SchemaEditor implementation in order to work with 1.7’s migration functionality - however, as long as your
database is relatively standard in its use of SQL and relational design, you should be able to subclass one of the built-
in Django SchemaEditor classes and just tweak the syntax a little. Also note that there are a few new database
features that migrations will look for: can_rollback_ddl and supports_combined_alters are the most
important.

6.17. SchemaEditor 1229

https://tools.ietf.org/html/rfc7231.html#section-6.1
https://www.python.org/dev/peps/pep-3333/#optional-platform-specific-file-handling

Django Documentation, Release 1.10.9.dev20171123183751

6.17.1 Methods

execute()

BaseDatabaseSchemaEditor.execute(sql, params=[])

Executes the SQL statement passed in, with parameters if supplied. This is a simple wrapper around the normal
database cursors that allows capture of the SQL to a .sql file if the user wishes.

create_model()

BaseDatabaseSchemaEditor.create_model(model)

Creates a new table in the database for the provided model, along with any unique constraints or indexes it requires.

delete_model()

BaseDatabaseSchemaEditor.delete_model(model)

Drops the model’s table in the database along with any unique constraints or indexes it has.

alter_unique_together()

BaseDatabaseSchemaEditor.alter_unique_together(model, old_unique_together,
new_unique_together)

Changes a model’s unique_together value; this will add or remove unique constraints from the model’s table
until they match the new value.

alter_index_together()

BaseDatabaseSchemaEditor.alter_index_together(model, old_index_together,
new_index_together)

Changes a model’s index_together value; this will add or remove indexes from the model’s table until they match
the new value.

alter_db_table()

BaseDatabaseSchemaEditor.alter_db_table(model, old_db_table, new_db_table)

Renames the model’s table from old_db_table to new_db_table.

alter_db_tablespace()

BaseDatabaseSchemaEditor.alter_db_tablespace(model, old_db_tablespace,
new_db_tablespace)

Moves the model’s table from one tablespace to another.

1230 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

add_field()

BaseDatabaseSchemaEditor.add_field(model, field)

Adds a column (or sometimes multiple) to the model’s table to represent the field. This will also add indexes or a
unique constraint if the field has db_index=True or unique=True.

If the field is a ManyToManyField without a value for through, instead of creating a column, it will make a table
to represent the relationship. If through is provided, it is a no-op.

If the field is a ForeignKey, this will also add the foreign key constraint to the column.

remove_field()

BaseDatabaseSchemaEditor.remove_field(model, field)

Removes the column(s) representing the field from the model’s table, along with any unique constraints, foreign key
constraints, or indexes caused by that field.

If the field is a ManyToManyField without a value for through, it will remove the table created to track the relation-
ship. If through is provided, it is a no-op.

alter_field()

BaseDatabaseSchemaEditor.alter_field(model, old_field, new_field, strict=False)

This transforms the field on the model from the old field to the new one. This includes changing the name of the
column (the db_column attribute), changing the type of the field (if the field class changes), changing the NULL
status of the field, adding or removing field-only unique constraints and indexes, changing primary key, and changing
the destination of ForeignKey constraints.

The most common transformation this cannot do is transforming a ManyToManyField into a normal Field or vice-
versa; Django cannot do this without losing data, and so it will refuse to do it. Instead, remove_field() and
add_field() should be called separately.

If the database has the supports_combined_alters, Django will try and do as many of these in a single
database call as possible; otherwise, it will issue a separate ALTER statement for each change, but will not issue
ALTERs where no change is required (as South often did).

6.17.2 Attributes

All attributes should be considered read-only unless stated otherwise.

connection

SchemaEditor.connection

A connection object to the database. A useful attribute of the connection is alias which can be used to determine
the name of the database being accessed.

This is useful when doing data migrations for migrations with multiple databases.

6.17. SchemaEditor 1231

Django Documentation, Release 1.10.9.dev20171123183751

6.18 Settings

• Core Settings

• Auth

• Messages

• Sessions

• Sites

• Static Files

• Core Settings Topical Index

Warning: Be careful when you override settings, especially when the default value is a non-empty list or dictio-
nary, such as MIDDLEWARE_CLASSES and STATICFILES_FINDERS. Make sure you keep the components
required by the features of Django you wish to use.

6.18.1 Core Settings

Here’s a list of settings available in Django core and their default values. Settings provided by contrib apps are listed
below, followed by a topical index of the core settings. For introductory material, see the settings topic guide.

ABSOLUTE_URL_OVERRIDES

Default: {} (Empty dictionary)

A dictionary mapping "app_label.model_name" strings to functions that take a model object and return its
URL. This is a way of inserting or overriding get_absolute_url()methods on a per-installation basis. Example:

ABSOLUTE_URL_OVERRIDES = {
'blogs.weblog': lambda o: "/blogs/%s/" % o.slug,
'news.story': lambda o: "/stories/%s/%s/" % (o.pub_year, o.slug),

}

Note that the model name used in this setting should be all lower-case, regardless of the case of the actual model class
name.

ADMINS

Default: [] (Empty list)

A list of all the people who get code error notifications. When DEBUG=False and a view raises an exception, Django
will email these people with the full exception information. Each item in the list should be a tuple of (Full name, email
address). Example:

[('John', 'john@example.com'), ('Mary', 'mary@example.com')]

Note that Django will email all of these people whenever an error happens. See Error reporting for more information.

1232 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

ALLOWED_HOSTS

Default: [] (Empty list)

A list of strings representing the host/domain names that this Django site can serve. This is a security measure to
prevent HTTP Host header attacks, which are possible even under many seemingly-safe web server configurations.

Values in this list can be fully qualified names (e.g. 'www.example.com'), in which case they will be matched
against the request’s Host header exactly (case-insensitive, not including port). A value beginning with a period
can be used as a subdomain wildcard: '.example.com' will match example.com, www.example.com, and
any other subdomain of example.com. A value of '*' will match anything; in this case you are responsible to
provide your own validation of the Host header (perhaps in a middleware; if so this middleware must be listed first
in MIDDLEWARE).

Django also allows the fully qualified domain name (FQDN) of any entries. Some browsers include a trailing dot in
the Host header which Django strips when performing host validation.

If the Host header (or X-Forwarded-Host if USE_X_FORWARDED_HOST is enabled) does not match any value
in this list, the django.http.HttpRequest.get_host() method will raise SuspiciousOperation.

When DEBUG is True and ALLOWED_HOSTS is empty, the host is validated against ['localhost', '127.0.
0.1', '[::1]'].

This validation only applies via get_host(); if your code accesses the Host header directly from request.
META you are bypassing this security protection.

In older versions, ALLOWED_HOSTS wasn’t checked if DEBUG=True. This was also changed in Django 1.9.11 and
1.8.16 to prevent a DNS rebinding attack.

APPEND_SLASH

Default: True

When set to True, if the request URL does not match any of the patterns in the URLconf and it doesn’t end in a
slash, an HTTP redirect is issued to the same URL with a slash appended. Note that the redirect may cause any data
submitted in a POST request to be lost.

The APPEND_SLASH setting is only used if CommonMiddleware is installed (see Middleware). See also
PREPEND_WWW .

CACHES

Default:

{
'default': {

'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
}

}

A dictionary containing the settings for all caches to be used with Django. It is a nested dictionary whose contents
maps cache aliases to a dictionary containing the options for an individual cache.

The CACHES setting must configure a default cache; any number of additional caches may also be specified. If
you are using a cache backend other than the local memory cache, or you need to define multiple caches, other options
will be required. The following cache options are available.

6.18. Settings 1233

https://en.wikipedia.org/wiki/Fully_qualified_domain_name

Django Documentation, Release 1.10.9.dev20171123183751

BACKEND

Default: '' (Empty string)

The cache backend to use. The built-in cache backends are:

• 'django.core.cache.backends.db.DatabaseCache'

• 'django.core.cache.backends.dummy.DummyCache'

• 'django.core.cache.backends.filebased.FileBasedCache'

• 'django.core.cache.backends.locmem.LocMemCache'

• 'django.core.cache.backends.memcached.MemcachedCache'

• 'django.core.cache.backends.memcached.PyLibMCCache'

You can use a cache backend that doesn’t ship with Django by setting BACKEND to a fully-qualified path of a cache
backend class (i.e. mypackage.backends.whatever.WhateverCache).

KEY_FUNCTION

A string containing a dotted path to a function (or any callable) that defines how to compose a prefix, version and key
into a final cache key. The default implementation is equivalent to the function:

def make_key(key, key_prefix, version):
return ':'.join([key_prefix, str(version), key])

You may use any key function you want, as long as it has the same argument signature.

See the cache documentation for more information.

KEY_PREFIX

Default: '' (Empty string)

A string that will be automatically included (prepended by default) to all cache keys used by the Django server.

See the cache documentation for more information.

LOCATION

Default: '' (Empty string)

The location of the cache to use. This might be the directory for a file system cache, a host and port for a memcache
server, or simply an identifying name for a local memory cache. e.g.:

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.filebased.FileBasedCache',
'LOCATION': '/var/tmp/django_cache',

}
}

1234 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

OPTIONS

Default: None

Extra parameters to pass to the cache backend. Available parameters vary depending on your cache backend.

Some information on available parameters can be found in the cache arguments documentation. For more information,
consult your backend module’s own documentation.

TIMEOUT

Default: 300

The number of seconds before a cache entry is considered stale. If the value of this settings is None, cache entries
will not expire.

VERSION

Default: 1

The default version number for cache keys generated by the Django server.

See the cache documentation for more information.

CACHE_MIDDLEWARE_ALIAS

Default: default

The cache connection to use for the cache middleware.

CACHE_MIDDLEWARE_KEY_PREFIX

Default: '' (Empty string)

A string which will be prefixed to the cache keys generated by the cache middleware. This prefix is combined with
the KEY_PREFIX setting; it does not replace it.

See Django’s cache framework.

CACHE_MIDDLEWARE_SECONDS

Default: 600

The default number of seconds to cache a page for the cache middleware.

See Django’s cache framework.

CSRF_COOKIE_AGE

Default: 31449600 (approximately 1 year, in seconds)

The age of CSRF cookies, in seconds.

6.18. Settings 1235

Django Documentation, Release 1.10.9.dev20171123183751

The reason for setting a long-lived expiration time is to avoid problems in the case of a user closing a browser or
bookmarking a page and then loading that page from a browser cache. Without persistent cookies, the form submission
would fail in this case.

Some browsers (specifically Internet Explorer) can disallow the use of persistent cookies or can have the indexes to
the cookie jar corrupted on disk, thereby causing CSRF protection checks to (sometimes intermittently) fail. Change
this setting to None to use session-based CSRF cookies, which keep the cookies in-memory instead of on persistent
storage.

CSRF_COOKIE_DOMAIN

Default: None

The domain to be used when setting the CSRF cookie. This can be useful for easily allowing cross-subdomain
requests to be excluded from the normal cross site request forgery protection. It should be set to a string such as
".example.com" to allow a POST request from a form on one subdomain to be accepted by a view served from
another subdomain.

Please note that the presence of this setting does not imply that Django’s CSRF protection is safe from cross-subdomain
attacks by default - please see the CSRF limitations section.

CSRF_COOKIE_HTTPONLY

Default: False

Whether to use HttpOnly flag on the CSRF cookie. If this is set to True, client-side JavaScript will not to be able
to access the CSRF cookie.

This can help prevent malicious JavaScript from bypassing CSRF protection. If you enable this and need to send the
value of the CSRF token with Ajax requests, your JavaScript will need to pull the value from a hidden CSRF token
form input on the page instead of from the cookie.

See SESSION_COOKIE_HTTPONLY for details on HttpOnly.

CSRF_COOKIE_NAME

Default: 'csrftoken'

The name of the cookie to use for the CSRF authentication token. This can be whatever you want (as long as it’s
different from the other cookie names in your application). See Cross Site Request Forgery protection.

CSRF_COOKIE_PATH

Default: '/'

The path set on the CSRF cookie. This should either match the URL path of your Django installation or be a parent of
that path.

This is useful if you have multiple Django instances running under the same hostname. They can use different cookie
paths, and each instance will only see its own CSRF cookie.

1236 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

CSRF_COOKIE_SECURE

Default: False

Whether to use a secure cookie for the CSRF cookie. If this is set to True, the cookie will be marked as “secure,”
which means browsers may ensure that the cookie is only sent with an HTTPS connection.

CSRF_FAILURE_VIEW

Default: 'django.views.csrf.csrf_failure'

A dotted path to the view function to be used when an incoming request is rejected by the CSRF protection. The
function should have this signature:

def csrf_failure(request, reason=""):
...

where reason is a short message (intended for developers or logging, not for end users) indicating the reason the
request was rejected. It should return an HttpResponseForbidden.

django.views.csrf.csrf_failure() accepts an additional template_name parameter that defaults to
'403_csrf.html'. If a template with that name exists, it will be used to render the page.

The template_name parameter and the behavior of searching for a template called 403_csrf.html were added
to csrf_failure().

CSRF_HEADER_NAME

Default: 'HTTP_X_CSRFTOKEN'

The name of the request header used for CSRF authentication.

As with other HTTP headers in request.META, the header name received from the server is normalized by convert-
ing all characters to uppercase, replacing any hyphens with underscores, and adding an 'HTTP_' prefix to the name.
For example, if your client sends a 'X-XSRF-TOKEN' header, the setting should be 'HTTP_X_XSRF_TOKEN'.

CSRF_TRUSTED_ORIGINS

Default: [] (Empty list)

A list of hosts which are trusted origins for unsafe requests (e.g. POST). For a secure unsafe request, Django’s CSRF
protection requires that the request have a Referer header that matches the origin present in the Host header.
This prevents, for example, a POST request from subdomain.example.com from succeeding against api.
example.com. If you need cross-origin unsafe requests over HTTPS, continuing the example, add "subdomain.
example.com" to this list. The setting also supports subdomains, so you could add ".example.com", for
example, to allow access from all subdomains of example.com.

DATABASES

Default: {} (Empty dictionary)

A dictionary containing the settings for all databases to be used with Django. It is a nested dictionary whose contents
map a database alias to a dictionary containing the options for an individual database.

The DATABASES setting must configure a default database; any number of additional databases may also be
specified.

6.18. Settings 1237

Django Documentation, Release 1.10.9.dev20171123183751

The simplest possible settings file is for a single-database setup using SQLite. This can be configured using the
following:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.sqlite3',
'NAME': 'mydatabase',

}
}

When connecting to other database backends, such as MySQL, Oracle, or PostgreSQL, additional connection param-
eters will be required. See the ENGINE setting below on how to specify other database types. This example is for
PostgreSQL:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql',
'NAME': 'mydatabase',
'USER': 'mydatabaseuser',
'PASSWORD': 'mypassword',
'HOST': '127.0.0.1',
'PORT': '5432',

}
}

The following inner options that may be required for more complex configurations are available:

ATOMIC_REQUESTS

Default: False

Set this to True to wrap each view in a transaction on this database. See Tying transactions to HTTP requests.

AUTOCOMMIT

Default: True

Set this to False if you want to disable Django’s transaction management and implement your own.

ENGINE

Default: '' (Empty string)

The database backend to use. The built-in database backends are:

• 'django.db.backends.postgresql'

• 'django.db.backends.mysql'

• 'django.db.backends.sqlite3'

• 'django.db.backends.oracle'

You can use a database backend that doesn’t ship with Django by setting ENGINE to a fully-qualified path (i.e.
mypackage.backends.whatever).

1238 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

The django.db.backends.postgresql backend is named django.db.backends.
postgresql_psycopg2 in older releases. For backwards compatibility, the old name still works in newer
versions.

HOST

Default: '' (Empty string)

Which host to use when connecting to the database. An empty string means localhost. Not used with SQLite.

If this value starts with a forward slash ('/') and you’re using MySQL, MySQL will connect via a Unix socket to the
specified socket. For example:

"HOST": '/var/run/mysql'

If you’re using MySQL and this value doesn’t start with a forward slash, then this value is assumed to be the host.

If you’re using PostgreSQL, by default (empty HOST), the connection to the database is done through UNIX domain
sockets (‘local’ lines in pg_hba.conf). If your UNIX domain socket is not in the standard location, use the same
value of unix_socket_directory from postgresql.conf. If you want to connect through TCP sockets, set
HOST to ‘localhost’ or ‘127.0.0.1’ (‘host’ lines in pg_hba.conf). On Windows, you should always define HOST,
as UNIX domain sockets are not available.

NAME

Default: '' (Empty string)

The name of the database to use. For SQLite, it’s the full path to the database file. When specifying the path, always
use forward slashes, even on Windows (e.g. C:/homes/user/mysite/sqlite3.db).

CONN_MAX_AGE

Default: 0

The lifetime of a database connection, in seconds. Use 0 to close database connections at the end of each request —
Django’s historical behavior — and None for unlimited persistent connections.

OPTIONS

Default: {} (Empty dictionary)

Extra parameters to use when connecting to the database. Available parameters vary depending on your database
backend.

Some information on available parameters can be found in the Database Backends documentation. For more informa-
tion, consult your backend module’s own documentation.

PASSWORD

Default: '' (Empty string)

The password to use when connecting to the database. Not used with SQLite.

6.18. Settings 1239

Django Documentation, Release 1.10.9.dev20171123183751

PORT

Default: '' (Empty string)

The port to use when connecting to the database. An empty string means the default port. Not used with SQLite.

TIME_ZONE

Default: None

A string representing the time zone for datetimes stored in this database (assuming that it doesn’t support time zones)
or None. The same values are accepted as in the general TIME_ZONE setting.

This allows interacting with third-party databases that store datetimes in local time rather than UTC. To avoid issues
around DST changes, you shouldn’t set this option for databases managed by Django.

Setting this option requires installing pytz.

When USE_TZ is True and the database doesn’t support time zones (e.g. SQLite, MySQL, Oracle), Django reads
and writes datetimes in local time according to this option if it is set and in UTC if it isn’t.

When USE_TZ is True and the database supports time zones (e.g. PostgreSQL), it is an error to set this option.

Before Django 1.9, the PostgreSQL database backend accepted an undocumented TIME_ZONE option, which caused
data corruption.

When USE_TZ is False, it is an error to set this option.

USER

Default: '' (Empty string)

The username to use when connecting to the database. Not used with SQLite.

TEST

Default: {} (Empty dictionary)

A dictionary of settings for test databases; for more details about the creation and use of test databases, see The test
database.

Here’s an example with a test database configuration:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql',
'USER': 'mydatabaseuser',
'NAME': 'mydatabase',
'TEST': {

'NAME': 'mytestdatabase',
},

},
}

The following keys in the TEST dictionary are available:

1240 Chapter 6. API Reference

http://pytz.sourceforge.net/

Django Documentation, Release 1.10.9.dev20171123183751

CHARSET

Default: None

The character set encoding used to create the test database. The value of this string is passed directly through to the
database, so its format is backend-specific.

Supported by the PostgreSQL (postgresql) and MySQL (mysql) backends.

COLLATION

Default: None

The collation order to use when creating the test database. This value is passed directly to the backend, so its format
is backend-specific.

Only supported for the mysql backend (see the MySQL manual for details).

DEPENDENCIES

Default: ['default'], for all databases other than default, which has no dependencies.

The creation-order dependencies of the database. See the documentation on controlling the creation order of test
databases for details.

MIRROR

Default: None

The alias of the database that this database should mirror during testing.

This setting exists to allow for testing of primary/replica (referred to as master/slave by some databases) configurations
of multiple databases. See the documentation on testing primary/replica configurations for details.

NAME

Default: None

The name of database to use when running the test suite.

If the default value (None) is used with the SQLite database engine, the tests will use a memory resident database.
For all other database engines the test database will use the name 'test_' + DATABASE_NAME.

See The test database.

SERIALIZE

Boolean value to control whether or not the default test runner serializes the database into an in-memory JSON string
before running tests (used to restore the database state between tests if you don’t have transactions). You can set this
to False to speed up creation time if you don’t have any test classes with serialized_rollback=True.

6.18. Settings 1241

https://www.postgresql.org/docs/current/static/multibyte.html
https://dev.mysql.com/doc/refman/en/charset-database.html
https://dev.mysql.com/doc/refman/en/charset-database.html

Django Documentation, Release 1.10.9.dev20171123183751

CREATE_DB

Default: True

This is an Oracle-specific setting.

If it is set to False, the test tablespaces won’t be automatically created at the beginning of the tests or dropped at the
end.

CREATE_USER

Default: True

This is an Oracle-specific setting.

If it is set to False, the test user won’t be automatically created at the beginning of the tests and dropped at the end.

USER

Default: None

This is an Oracle-specific setting.

The username to use when connecting to the Oracle database that will be used when running tests. If not provided,
Django will use 'test_' + USER.

PASSWORD

Default: None

This is an Oracle-specific setting.

The password to use when connecting to the Oracle database that will be used when running tests. If not provided,
Django will generate a random password.

Older versions used a hardcoded default password. This was also changed in 1.9.11 and 1.8.16 to fix possible security
implications.

TBLSPACE

Default: None

This is an Oracle-specific setting.

The name of the tablespace that will be used when running tests. If not provided, Django will use 'test_' +
USER.

TBLSPACE_TMP

Default: None

This is an Oracle-specific setting.

The name of the temporary tablespace that will be used when running tests. If not provided, Django will use 'test_'
+ USER + '_temp'.

1242 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

DATAFILE

Default: None

This is an Oracle-specific setting.

The name of the datafile to use for the TBLSPACE. If not provided, Django will use TBLSPACE + '.dbf'.

DATAFILE_TMP

Default: None

This is an Oracle-specific setting.

The name of the datafile to use for the TBLSPACE_TMP. If not provided, Django will use TBLSPACE_TMP +
'.dbf'.

DATAFILE_MAXSIZE

Default: '500M'

This is an Oracle-specific setting.

The maximum size that the DATAFILE is allowed to grow to.

DATAFILE_TMP_MAXSIZE

Default: '500M'

This is an Oracle-specific setting.

The maximum size that the DATAFILE_TMP is allowed to grow to.

DATA_UPLOAD_MAX_MEMORY_SIZE

Default: 2621440 (i.e. 2.5 MB).

The maximum size in bytes that a request body may be before a SuspiciousOperation
(RequestDataTooBig) is raised. The check is done when accessing request.body or request.POST and
is calculated against the total request size excluding any file upload data. You can set this to None to disable the
check. Applications that are expected to receive unusually large form posts should tune this setting.

The amount of request data is correlated to the amount of memory needed to process the request and populate the GET
and POST dictionaries. Large requests could be used as a denial-of-service attack vector if left unchecked. Since web
servers don’t typically perform deep request inspection, it’s not possible to perform a similar check at that level.

See also FILE_UPLOAD_MAX_MEMORY_SIZE.

DATA_UPLOAD_MAX_NUMBER_FIELDS

Default: 1000

The maximum number of parameters that may be received via GET or POST before a SuspiciousOperation
(TooManyFields) is raised. You can set this to None to disable the check. Applications that are expected to receive
an unusually large number of form fields should tune this setting.

6.18. Settings 1243

Django Documentation, Release 1.10.9.dev20171123183751

The number of request parameters is correlated to the amount of time needed to process the request and populate the
GET and POST dictionaries. Large requests could be used as a denial-of-service attack vector if left unchecked. Since
web servers don’t typically perform deep request inspection, it’s not possible to perform a similar check at that level.

DATABASE_ROUTERS

Default: [] (Empty list)

The list of routers that will be used to determine which database to use when performing a database query.

See the documentation on automatic database routing in multi database configurations.

DATE_FORMAT

Default: 'N j, Y' (e.g. Feb. 4, 2003)

The default formatting to use for displaying date fields in any part of the system. Note that if USE_L10N is set
to True, then the locale-dictated format has higher precedence and will be applied instead. See allowed date
format strings.

See also DATETIME_FORMAT, TIME_FORMAT and SHORT_DATE_FORMAT.

DATE_INPUT_FORMATS

Default:

[
'%Y-%m-%d', '%m/%d/%Y', '%m/%d/%y', # '2006-10-25', '10/25/2006', '10/25/06'
'%b %d %Y', '%b %d, %Y', # 'Oct 25 2006', 'Oct 25, 2006'
'%d %b %Y', '%d %b, %Y', # '25 Oct 2006', '25 Oct, 2006'
'%B %d %Y', '%B %d, %Y', # 'October 25 2006', 'October 25, 2006'
'%d %B %Y', '%d %B, %Y', # '25 October 2006', '25 October, 2006'

]

A list of formats that will be accepted when inputting data on a date field. Formats will be tried in order, using the first
valid one. Note that these format strings use Python’s datetime module syntax, not the format strings from the date
template filter.

When USE_L10N is True, the locale-dictated format has higher precedence and will be applied instead.

See also DATETIME_INPUT_FORMATS and TIME_INPUT_FORMATS.

DATETIME_FORMAT

Default: 'N j, Y, P' (e.g. Feb. 4, 2003, 4 p.m.)

The default formatting to use for displaying datetime fields in any part of the system. Note that if USE_L10N is set
to True, then the locale-dictated format has higher precedence and will be applied instead. See allowed date
format strings.

See also DATE_FORMAT, TIME_FORMAT and SHORT_DATETIME_FORMAT.

1244 Chapter 6. API Reference

https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior

Django Documentation, Release 1.10.9.dev20171123183751

DATETIME_INPUT_FORMATS

Default:

[
'%Y-%m-%d %H:%M:%S', # '2006-10-25 14:30:59'
'%Y-%m-%d %H:%M:%S.%f', # '2006-10-25 14:30:59.000200'
'%Y-%m-%d %H:%M', # '2006-10-25 14:30'
'%Y-%m-%d', # '2006-10-25'
'%m/%d/%Y %H:%M:%S', # '10/25/2006 14:30:59'
'%m/%d/%Y %H:%M:%S.%f', # '10/25/2006 14:30:59.000200'
'%m/%d/%Y %H:%M', # '10/25/2006 14:30'
'%m/%d/%Y', # '10/25/2006'
'%m/%d/%y %H:%M:%S', # '10/25/06 14:30:59'
'%m/%d/%y %H:%M:%S.%f', # '10/25/06 14:30:59.000200'
'%m/%d/%y %H:%M', # '10/25/06 14:30'
'%m/%d/%y', # '10/25/06'

]

A list of formats that will be accepted when inputting data on a datetime field. Formats will be tried in order, using
the first valid one. Note that these format strings use Python’s datetime module syntax, not the format strings from the
date template filter.

When USE_L10N is True, the locale-dictated format has higher precedence and will be applied instead.

See also DATE_INPUT_FORMATS and TIME_INPUT_FORMATS.

DEBUG

Default: False

A boolean that turns on/off debug mode.

Never deploy a site into production with DEBUG turned on.

Did you catch that? NEVER deploy a site into production with DEBUG turned on.

One of the main features of debug mode is the display of detailed error pages. If your app raises an exception when
DEBUG is True, Django will display a detailed traceback, including a lot of metadata about your environment, such
as all the currently defined Django settings (from settings.py).

As a security measure, Django will not include settings that might be sensitive, such as SECRET_KEY . Specifically,
it will exclude any setting whose name includes any of the following:

• 'API'

• 'KEY'

• 'PASS'

• 'SECRET'

• 'SIGNATURE'

• 'TOKEN'

Note that these are partial matches. 'PASS' will also match PASSWORD, just as 'TOKEN' will also match TOK-
ENIZED and so on.

Still, note that there are always going to be sections of your debug output that are inappropriate for public consumption.
File paths, configuration options and the like all give attackers extra information about your server.

6.18. Settings 1245

https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior

Django Documentation, Release 1.10.9.dev20171123183751

It is also important to remember that when running with DEBUG turned on, Django will remember every SQL query it
executes. This is useful when you’re debugging, but it’ll rapidly consume memory on a production server.

Finally, if DEBUG is False, you also need to properly set the ALLOWED_HOSTS setting. Failing to do so will result
in all requests being returned as “Bad Request (400)”.

Note: The default settings.py file created by django-admin startproject sets DEBUG = True for
convenience.

DEBUG_PROPAGATE_EXCEPTIONS

Default: False

If set to True, Django’s normal exception handling of view functions will be suppressed, and exceptions will propagate
upwards. This can be useful for some test setups, and should never be used on a live site.

DECIMAL_SEPARATOR

Default: '.' (Dot)

Default decimal separator used when formatting decimal numbers.

Note that if USE_L10N is set to True, then the locale-dictated format has higher precedence and will be applied
instead.

See also NUMBER_GROUPING, THOUSAND_SEPARATOR and USE_THOUSAND_SEPARATOR.

DEFAULT_CHARSET

Default: 'utf-8'

Default charset to use for all HttpResponse objects, if a MIME type isn’t manually specified. Used with
DEFAULT_CONTENT_TYPE to construct the Content-Type header.

DEFAULT_CONTENT_TYPE

Default: 'text/html'

Default content type to use for all HttpResponse objects, if a MIME type isn’t manually specified. Used with
DEFAULT_CHARSET to construct the Content-Type header.

DEFAULT_EXCEPTION_REPORTER_FILTER

Default: 'django.views.debug.SafeExceptionReporterFilter'

Default exception reporter filter class to be used if none has been assigned to the HttpRequest instance yet. See
Filtering error reports.

1246 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

DEFAULT_FILE_STORAGE

Default: 'django.core.files.storage.FileSystemStorage'

Default file storage class to be used for any file-related operations that don’t specify a particular storage system. See
Managing files.

DEFAULT_FROM_EMAIL

Default: 'webmaster@localhost'

Default email address to use for various automated correspondence from the site manager(s). This doesn’t include
error messages sent to ADMINS and MANAGERS; for that, see SERVER_EMAIL.

DEFAULT_INDEX_TABLESPACE

Default: '' (Empty string)

Default tablespace to use for indexes on fields that don’t specify one, if the backend supports it (see Tablespaces).

DEFAULT_TABLESPACE

Default: '' (Empty string)

Default tablespace to use for models that don’t specify one, if the backend supports it (see Tablespaces).

DISALLOWED_USER_AGENTS

Default: [] (Empty list)

List of compiled regular expression objects representing User-Agent strings that are not allowed to visit any page, sys-
temwide. Use this for bad robots/crawlers. This is only used if CommonMiddleware is installed (see Middleware).

EMAIL_BACKEND

Default: 'django.core.mail.backends.smtp.EmailBackend'

The backend to use for sending emails. For the list of available backends see Sending email.

EMAIL_FILE_PATH

Default: Not defined

The directory used by the file email backend to store output files.

EMAIL_HOST

Default: 'localhost'

The host to use for sending email.

See also EMAIL_PORT.

6.18. Settings 1247

Django Documentation, Release 1.10.9.dev20171123183751

EMAIL_HOST_PASSWORD

Default: '' (Empty string)

Password to use for the SMTP server defined in EMAIL_HOST. This setting is used in conjunction with
EMAIL_HOST_USER when authenticating to the SMTP server. If either of these settings is empty, Django won’t
attempt authentication.

See also EMAIL_HOST_USER.

EMAIL_HOST_USER

Default: '' (Empty string)

Username to use for the SMTP server defined in EMAIL_HOST. If empty, Django won’t attempt authentication.

See also EMAIL_HOST_PASSWORD.

EMAIL_PORT

Default: 25

Port to use for the SMTP server defined in EMAIL_HOST.

EMAIL_SUBJECT_PREFIX

Default: '[Django] '

Subject-line prefix for email messages sent with django.core.mail.mail_admins or django.core.
mail.mail_managers. You’ll probably want to include the trailing space.

EMAIL_USE_TLS

Default: False

Whether to use a TLS (secure) connection when talking to the SMTP server. This is used for explicit TLS connections,
generally on port 587. If you are experiencing hanging connections, see the implicit TLS setting EMAIL_USE_SSL.

EMAIL_USE_SSL

Default: False

Whether to use an implicit TLS (secure) connection when talking to the SMTP server. In most email documentation
this type of TLS connection is referred to as SSL. It is generally used on port 465. If you are experiencing problems,
see the explicit TLS setting EMAIL_USE_TLS.

Note that EMAIL_USE_TLS/EMAIL_USE_SSL are mutually exclusive, so only set one of those settings to True.

EMAIL_SSL_CERTFILE

Default: None

If EMAIL_USE_SSL or EMAIL_USE_TLS is True, you can optionally specify the path to a PEM-formatted certifi-
cate chain file to use for the SSL connection.

1248 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

EMAIL_SSL_KEYFILE

Default: None

If EMAIL_USE_SSL or EMAIL_USE_TLS is True, you can optionally specify the path to a PEM-formatted private
key file to use for the SSL connection.

Note that setting EMAIL_SSL_CERTFILE and EMAIL_SSL_KEYFILE doesn’t result in any certificate check-
ing. They’re passed to the underlying SSL connection. Please refer to the documentation of Python’s ssl.
wrap_socket() function for details on how the certificate chain file and private key file are handled.

EMAIL_TIMEOUT

Default: None

Specifies a timeout in seconds for blocking operations like the connection attempt.

FILE_CHARSET

Default: 'utf-8'

The character encoding used to decode any files read from disk. This includes template files and initial SQL data files.

FILE_UPLOAD_HANDLERS

Default:

[
'django.core.files.uploadhandler.MemoryFileUploadHandler',
'django.core.files.uploadhandler.TemporaryFileUploadHandler',

]

A list of handlers to use for uploading. Changing this setting allows complete customization – even replacement – of
Django’s upload process.

See Managing files for details.

FILE_UPLOAD_MAX_MEMORY_SIZE

Default: 2621440 (i.e. 2.5 MB).

The maximum size (in bytes) that an upload will be before it gets streamed to the file system. See Managing files for
details.

See also DATA_UPLOAD_MAX_MEMORY_SIZE.

FILE_UPLOAD_DIRECTORY_PERMISSIONS

Default: None

The numeric mode to apply to directories created in the process of uploading files.

This setting also determines the default permissions for collected static directories when using the collectstatic
management command. See collectstatic for details on overriding it.

6.18. Settings 1249

https://docs.python.org/3/library/ssl.html#ssl.wrap_socket
https://docs.python.org/3/library/ssl.html#ssl.wrap_socket

Django Documentation, Release 1.10.9.dev20171123183751

This value mirrors the functionality and caveats of the FILE_UPLOAD_PERMISSIONS setting.

FILE_UPLOAD_PERMISSIONS

Default: None

The numeric mode (i.e. 0o644) to set newly uploaded files to. For more information about what these modes mean,
see the documentation for os.chmod().

If this isn’t given or is None, you’ll get operating-system dependent behavior. On most platforms, temporary files will
have a mode of 0o600, and files saved from memory will be saved using the system’s standard umask.

For security reasons, these permissions aren’t applied to the temporary files that are stored in
FILE_UPLOAD_TEMP_DIR.

This setting also determines the default permissions for collected static files when using the collectstatic man-
agement command. See collectstatic for details on overriding it.

Warning: Always prefix the mode with a 0.

If you’re not familiar with file modes, please note that the leading 0 is very important: it indicates an octal number,
which is the way that modes must be specified. If you try to use 644, you’ll get totally incorrect behavior.

FILE_UPLOAD_TEMP_DIR

Default: None

The directory to store data to (typically files larger than FILE_UPLOAD_MAX_MEMORY_SIZE) temporarily while
uploading files. If None, Django will use the standard temporary directory for the operating system. For example,
this will default to /tmp on *nix-style operating systems.

See Managing files for details.

FIRST_DAY_OF_WEEK

Default: 0 (Sunday)

A number representing the first day of the week. This is especially useful when displaying a calendar. This value is
only used when not using format internationalization, or when a format cannot be found for the current locale.

The value must be an integer from 0 to 6, where 0 means Sunday, 1 means Monday and so on.

FIXTURE_DIRS

Default: [] (Empty list)

List of directories searched for fixture files, in addition to the fixtures directory of each application, in search
order.

Note that these paths should use Unix-style forward slashes, even on Windows.

See Providing initial data with fixtures and Fixture loading.

1250 Chapter 6. API Reference

https://docs.python.org/3/library/os.html#os.chmod

Django Documentation, Release 1.10.9.dev20171123183751

FORCE_SCRIPT_NAME

Default: None

If not None, this will be used as the value of the SCRIPT_NAME environment variable in any HTTP request. This
setting can be used to override the server-provided value of SCRIPT_NAME, which may be a rewritten version of
the preferred value or not supplied at all. It is also used by django.setup() to set the URL resolver script prefix
outside of the request/response cycle (e.g. in management commands and standalone scripts) to generate correct URLs
when SCRIPT_NAME is not /.

The setting’s use in django.setup() was added.

FORMAT_MODULE_PATH

Default: None

A full Python path to a Python package that contains format definitions for project locales. If not None, Django will
check for a formats.py file, under the directory named as the current locale, and will use the formats defined in
this file.

For example, if FORMAT_MODULE_PATH is set to mysite.formats, and current language is en (English),
Django will expect a directory tree like:

mysite/
formats/

__init__.py
en/

__init__.py
formats.py

You can also set this setting to a list of Python paths, for example:

FORMAT_MODULE_PATH = [
'mysite.formats',
'some_app.formats',

]

When Django searches for a certain format, it will go through all given Python paths until it finds a module that actually
defines the given format. This means that formats defined in packages farther up in the list will take precedence over
the same formats in packages farther down.

Available formats are DATE_FORMAT, TIME_FORMAT, DATETIME_FORMAT, YEAR_MONTH_FORMAT,
MONTH_DAY_FORMAT, SHORT_DATE_FORMAT, SHORT_DATETIME_FORMAT, FIRST_DAY_OF_WEEK,
DECIMAL_SEPARATOR, THOUSAND_SEPARATOR and NUMBER_GROUPING.

IGNORABLE_404_URLS

Default: [] (Empty list)

List of compiled regular expression objects describing URLs that should be ignored when reporting HTTP 404 errors
via email (see Error reporting). Regular expressions are matched against request's full paths (including
query string, if any). Use this if your site does not provide a commonly requested file such as favicon.ico or
robots.txt, or if it gets hammered by script kiddies.

This is only used if BrokenLinkEmailsMiddleware is enabled (see Middleware).

6.18. Settings 1251

Django Documentation, Release 1.10.9.dev20171123183751

INSTALLED_APPS

Default: [] (Empty list)

A list of strings designating all applications that are enabled in this Django installation. Each string should be a dotted
Python path to:

• an application configuration class (preferred), or

• a package containing an application.

Learn more about application configurations.

Use the application registry for introspection

Your code should never access INSTALLED_APPS directly. Use django.apps.apps instead.

Application names and labels must be unique in INSTALLED_APPS

Application names — the dotted Python path to the application package — must be unique. There is no way to
include the same application twice, short of duplicating its code under another name.

Application labels — by default the final part of the name — must be unique too. For example, you can’t include
both django.contrib.auth and myproject.auth. However, you can relabel an application with a custom
configuration that defines a different label.

These rules apply regardless of whether INSTALLED_APPS references application configuration classes or applica-
tion packages.

When several applications provide different versions of the same resource (template, static file, management command,
translation), the application listed first in INSTALLED_APPS has precedence.

INTERNAL_IPS

Default: [] (Empty list)

A list of IP addresses, as strings, that:

• Allow the debug() context processor to add some variables to the template context.

• Can use the admindocs bookmarklets even if not logged in as a staff user.

• Are marked as “internal” (as opposed to “EXTERNAL”) in AdminEmailHandler emails.

LANGUAGE_CODE

Default: 'en-us'

A string representing the language code for this installation. This should be in standard language ID format. For
example, U.S. English is "en-us". See also the list of language identifiers and Internationalization and localization.

USE_I18N must be active for this setting to have any effect.

It serves two purposes:

• If the locale middleware isn’t in use, it decides which translation is served to all users.

1252 Chapter 6. API Reference

http://www.i18nguy.com/unicode/language-identifiers.html

Django Documentation, Release 1.10.9.dev20171123183751

• If the locale middleware is active, it provides a fallback language in case the user’s preferred language can’t be
determined or is not supported by the website. It also provides the fallback translation when a translation for a
given literal doesn’t exist for the user’s preferred language.

See How Django discovers language preference for more details.

LANGUAGE_COOKIE_AGE

Default: None (expires at browser close)

The age of the language cookie, in seconds.

LANGUAGE_COOKIE_DOMAIN

Default: None

The domain to use for the language cookie. Set this to a string such as ".example.com" (note the leading dot!) for
cross-domain cookies, or use None for a standard domain cookie.

Be cautious when updating this setting on a production site. If you update this setting to enable cross-domain cookies
on a site that previously used standard domain cookies, existing user cookies that have the old domain will not be
updated. This will result in site users being unable to switch the language as long as these cookies persist. The
only safe and reliable option to perform the switch is to change the language cookie name permanently (via the
LANGUAGE_COOKIE_NAME setting) and to add a middleware that copies the value from the old cookie to a new one
and then deletes the old one.

LANGUAGE_COOKIE_NAME

Default: 'django_language'

The name of the cookie to use for the language cookie. This can be whatever you want (as long as it’s different from
the other cookie names in your application). See Internationalization and localization.

LANGUAGE_COOKIE_PATH

Default: '/'

The path set on the language cookie. This should either match the URL path of your Django installation or be a parent
of that path.

This is useful if you have multiple Django instances running under the same hostname. They can use different cookie
paths and each instance will only see its own language cookie.

Be cautious when updating this setting on a production site. If you update this setting to use a deeper path than it
previously used, existing user cookies that have the old path will not be updated. This will result in site users being
unable to switch the language as long as these cookies persist. The only safe and reliable option to perform the
switch is to change the language cookie name permanently (via the LANGUAGE_COOKIE_NAME setting), and to add
a middleware that copies the value from the old cookie to a new one and then deletes the one.

LANGUAGES

Default: A list of all available languages. This list is continually growing and including a copy here would inevitably
become rapidly out of date. You can see the current list of translated languages by looking in django/conf/
global_settings.py (or view the online source).

6.18. Settings 1253

https://github.com/django/django/blob/master/django/conf/global_settings.py

Django Documentation, Release 1.10.9.dev20171123183751

The list is a list of two-tuples in the format (language code, language name) – for example, ('ja',
'Japanese'). This specifies which languages are available for language selection. See Internationalization and
localization.

Generally, the default value should suffice. Only set this setting if you want to restrict language selection to a subset
of the Django-provided languages.

If you define a custom LANGUAGES setting, you can mark the language names as translation strings using the
ugettext_lazy() function.

Here’s a sample settings file:

from django.utils.translation import ugettext_lazy as _

LANGUAGES = [
('de', _('German')),
('en', _('English')),

]

LOCALE_PATHS

Default: [] (Empty list)

A list of directories where Django looks for translation files. See How Django discovers translations.

Example:

LOCALE_PATHS = [
'/home/www/project/common_files/locale',
'/var/local/translations/locale',

]

Django will look within each of these paths for the <locale_code>/LC_MESSAGES directories containing the
actual translation files.

LOGGING

Default: A logging configuration dictionary.

A data structure containing configuration information. The contents of this data structure will be passed as the argu-
ment to the configuration method described in LOGGING_CONFIG.

Among other things, the default logging configuration passes HTTP 500 server errors to an email log handler when
DEBUG is False. See also Configuring logging.

You can see the default logging configuration by looking in django/utils/log.py (or view the online source).

LOGGING_CONFIG

Default: 'logging.config.dictConfig'

A path to a callable that will be used to configure logging in the Django project. Points at a instance of Python’s
dictConfig configuration method by default.

If you set LOGGING_CONFIG to None, the logging configuration process will be skipped.

1254 Chapter 6. API Reference

https://github.com/django/django/blob/master/django/utils/log.py
https://docs.python.org/3/library/logging.config.html#logging-config-dictschema

Django Documentation, Release 1.10.9.dev20171123183751

MANAGERS

Default: [] (Empty list)

A list in the same format as ADMINS that specifies who should get broken link notifications when
BrokenLinkEmailsMiddleware is enabled.

MEDIA_ROOT

Default: '' (Empty string)

Absolute filesystem path to the directory that will hold user-uploaded files.

Example: "/var/www/example.com/media/"

See also MEDIA_URL.

Warning: MEDIA_ROOT and STATIC_ROOT must have different values. Before STATIC_ROOT was intro-
duced, it was common to rely or fallback on MEDIA_ROOT to also serve static files; however, since this can have
serious security implications, there is a validation check to prevent it.

MEDIA_URL

Default: '' (Empty string)

URL that handles the media served from MEDIA_ROOT, used for managing stored files. It must end in a slash if
set to a non-empty value. You will need to configure these files to be served in both development and production
environments.

If you want to use {{ MEDIA_URL }} in your templates, add 'django.template.context_processors.
media' in the 'context_processors' option of TEMPLATES.

Example: "http://media.example.com/"

Warning: There are security risks if you are accepting uploaded content from untrusted users! See the security
guide’s topic on User-uploaded content for mitigation details.

Warning: MEDIA_URL and STATIC_URL must have different values. See MEDIA_ROOT for more details.

MIDDLEWARE

Default:: None

A list of middleware to use. See Middleware.

MIDDLEWARE_CLASSES

Deprecated since version 1.10: Old-style middleware that uses settings.MIDDLEWARE_CLASSES are depre-
cated. Adapt old, custom middleware and use the MIDDLEWARE setting.

6.18. Settings 1255

Django Documentation, Release 1.10.9.dev20171123183751

Default:

[
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',

]

A list of middleware classes to use. This was the default setting used in Django 1.9 and earlier. Django 1.10 introduced
a new style of middleware. If you have an older project using this setting you should update any middleware you’ve
written yourself to the new style and then use the MIDDLEWARE setting.

MIGRATION_MODULES

Default: {} (Empty dictionary)

A dictionary specifying the package where migration modules can be found on a per-app basis. The default value of
this setting is an empty dictionary, but the default package name for migration modules is migrations.

Example:

{'blog': 'blog.db_migrations'}

In this case, migrations pertaining to the blog app will be contained in the blog.db_migrations package.

If you provide the app_label argument, makemigrations will automatically create the package if it doesn’t
already exist.

When you supply None as a value for an app, Django will consider the app as an app without migrations regardless
of an existing migrations submodule. This can be used, for example, in a test settings file to skip migrations while
testing (tables will still be created for the apps’ models). If this is used in your general project settings, remember to
use the migrate --run-syncdb option if you want to create tables for the app.

MONTH_DAY_FORMAT

Default: 'F j'

The default formatting to use for date fields on Django admin change-list pages – and, possibly, by other parts of the
system – in cases when only the month and day are displayed.

For example, when a Django admin change-list page is being filtered by a date drilldown, the header for a given day
displays the day and month. Different locales have different formats. For example, U.S. English would say “January
1,” whereas Spanish might say “1 Enero.”

Note that if USE_L10N is set to True, then the corresponding locale-dictated format has higher precedence and will
be applied.

See allowed date format strings. See also DATE_FORMAT, DATETIME_FORMAT, TIME_FORMAT and
YEAR_MONTH_FORMAT.

NUMBER_GROUPING

Default: 0

Number of digits grouped together on the integer part of a number.

Common use is to display a thousand separator. If this setting is 0, then no grouping will be applied to the number. If
this setting is greater than 0, then THOUSAND_SEPARATOR will be used as the separator between those groups.

1256 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Note that if USE_L10N is set to True, then the locale-dictated format has higher precedence and will be applied
instead.

See also DECIMAL_SEPARATOR, THOUSAND_SEPARATOR and USE_THOUSAND_SEPARATOR.

PREPEND_WWW

Default: False

Whether to prepend the “www.” subdomain to URLs that don’t have it. This is only used if CommonMiddleware is
installed (see Middleware). See also APPEND_SLASH .

ROOT_URLCONF

Default: Not defined

A string representing the full Python import path to your root URLconf. For example: "mydjangoapps.urls".
Can be overridden on a per-request basis by setting the attribute urlconf on the incoming HttpRequest object.
See How Django processes a request for details.

SECRET_KEY

Default: '' (Empty string)

A secret key for a particular Django installation. This is used to provide cryptographic signing, and should be set to a
unique, unpredictable value.

django-admin startproject automatically adds a randomly-generated SECRET_KEY to each new project.

Uses of the key shouldn’t assume that it’s text or bytes. Every use should go through force_text() or
force_bytes() to convert it to the desired type.

Django will refuse to start if SECRET_KEY is not set.

Warning: Keep this value secret.

Running Django with a known SECRET_KEY defeats many of Django’s security protections, and can lead to
privilege escalation and remote code execution vulnerabilities.

The secret key is used for:

• All sessions if you are using any other session backend than django.contrib.sessions.backends.
cache, or are using the default get_session_auth_hash().

• All messages if you are using CookieStorage or FallbackStorage.

• All password_reset() tokens.

• Any usage of cryptographic signing, unless a different key is provided.

If you rotate your secret key, all of the above will be invalidated. Secret keys are not used for passwords of users and
key rotation will not affect them.

Note: The default settings.py file created by django-admin startproject creates a unique
SECRET_KEY for convenience.

6.18. Settings 1257

Django Documentation, Release 1.10.9.dev20171123183751

SECURE_BROWSER_XSS_FILTER

Default: False

If True, the SecurityMiddleware sets the X-XSS-Protection: 1; mode=block header on all responses that do
not already have it.

SECURE_CONTENT_TYPE_NOSNIFF

Default: False

If True, the SecurityMiddleware sets the X-Content-Type-Options: nosniff header on all responses that do not
already have it.

SECURE_HSTS_INCLUDE_SUBDOMAINS

Default: False

If True, the SecurityMiddleware adds the includeSubDomains directive to the HTTP Strict Transport
Security header. It has no effect unless SECURE_HSTS_SECONDS is set to a non-zero value.

Warning: Setting this incorrectly can irreversibly (for the value of SECURE_HSTS_SECONDS) break your site.
Read the HTTP Strict Transport Security documentation first.

SECURE_HSTS_SECONDS

Default: 0

If set to a non-zero integer value, the SecurityMiddleware sets the HTTP Strict Transport Security header on all
responses that do not already have it.

Warning: Setting this incorrectly can irreversibly (for some time) break your site. Read the HTTP Strict Transport
Security documentation first.

SECURE_PROXY_SSL_HEADER

Default: None

A tuple representing a HTTP header/value combination that signifies a request is secure. This controls the behavior of
the request object’s is_secure() method.

This takes some explanation. By default, is_secure() is able to determine whether a request is secure by looking
at whether the requested URL uses “https://”. This is important for Django’s CSRF protection, and may be used by
your own code or third-party apps.

If your Django app is behind a proxy, though, the proxy may be “swallowing” the fact that a request is HTTPS, using
a non-HTTPS connection between the proxy and Django. In this case, is_secure() would always return False
– even for requests that were made via HTTPS by the end user.

In this situation, you’ll want to configure your proxy to set a custom HTTP header that tells Django whether the request
came in via HTTPS, and you’ll want to set SECURE_PROXY_SSL_HEADER so that Django knows what header to
look for.

1258 Chapter 6. API Reference

https://

Django Documentation, Release 1.10.9.dev20171123183751

You’ll need to set a tuple with two elements – the name of the header to look for and the required value. For example:

SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https')

Here, we’re telling Django that we trust the X-Forwarded-Proto header that comes from our proxy, and any time
its value is 'https', then the request is guaranteed to be secure (i.e., it originally came in via HTTPS). Obviously,
you should only set this setting if you control your proxy or have some other guarantee that it sets/strips this header
appropriately.

Note that the header needs to be in the format as used by request.META – all caps and likely starting with HTTP_.
(Remember, Django automatically adds 'HTTP_' to the start of x-header names before making the header available
in request.META.)

Warning: You will probably open security holes in your site if you set this without knowing what you’re
doing. And if you fail to set it when you should. Seriously.

Make sure ALL of the following are true before setting this (assuming the values from the example above):

• Your Django app is behind a proxy.

• Your proxy strips the X-Forwarded-Proto header from all incoming requests. In other words, if end
users include that header in their requests, the proxy will discard it.

• Your proxy sets the X-Forwarded-Proto header and sends it to Django, but only for requests that
originally come in via HTTPS.

If any of those are not true, you should keep this setting set to None and find another way of determining HTTPS,
perhaps via custom middleware.

SECURE_REDIRECT_EXEMPT

Default: [] (Empty list)

If a URL path matches a regular expression in this list, the request will not be redirected to HTTPS. If
SECURE_SSL_REDIRECT is False, this setting has no effect.

SECURE_SSL_HOST

Default: None

If a string (e.g. secure.example.com), all SSL redirects will be directed to this host rather than the originally-
requested host (e.g. www.example.com). If SECURE_SSL_REDIRECT is False, this setting has no effect.

SECURE_SSL_REDIRECT

Default: False

If True, the SecurityMiddleware redirects all non-HTTPS requests to HTTPS (except for those URLs matching
a regular expression listed in SECURE_REDIRECT_EXEMPT).

Note: If turning this to True causes infinite redirects, it probably means your site is running behind a proxy and can’t
tell which requests are secure and which are not. Your proxy likely sets a header to indicate secure requests; you can

6.18. Settings 1259

Django Documentation, Release 1.10.9.dev20171123183751

correct the problem by finding out what that header is and configuring the SECURE_PROXY_SSL_HEADER setting
accordingly.

SERIALIZATION_MODULES

Default: Not defined

A dictionary of modules containing serializer definitions (provided as strings), keyed by a string identifier for that
serialization type. For example, to define a YAML serializer, use:

SERIALIZATION_MODULES = {'yaml': 'path.to.yaml_serializer'}

SERVER_EMAIL

Default: 'root@localhost'

The email address that error messages come from, such as those sent to ADMINS and MANAGERS.

Why are my emails sent from a different address?

This address is used only for error messages. It is not the address that regular email messages sent with
send_mail() come from; for that, see DEFAULT_FROM_EMAIL.

SHORT_DATE_FORMAT

Default: 'm/d/Y' (e.g. 12/31/2003)

An available formatting that can be used for displaying date fields on templates. Note that if USE_L10N is set
to True, then the corresponding locale-dictated format has higher precedence and will be applied. See allowed
date format strings.

See also DATE_FORMAT and SHORT_DATETIME_FORMAT.

SHORT_DATETIME_FORMAT

Default: 'm/d/Y P' (e.g. 12/31/2003 4 p.m.)

An available formatting that can be used for displaying datetime fields on templates. Note that if USE_L10N is set
to True, then the corresponding locale-dictated format has higher precedence and will be applied. See allowed
date format strings.

See also DATE_FORMAT and SHORT_DATE_FORMAT.

SIGNING_BACKEND

Default: 'django.core.signing.TimestampSigner'

The backend used for signing cookies and other data.

See also the Cryptographic signing documentation.

1260 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

SILENCED_SYSTEM_CHECKS

Default: [] (Empty list)

A list of identifiers of messages generated by the system check framework (i.e. ["models.W001"]) that you wish
to permanently acknowledge and ignore. Silenced checks will not be output to the console.

In older versions, silenced messages of ERROR level or higher were printed to the console.

See also the System check framework documentation.

TEMPLATES

Default: [] (Empty list)

A list containing the settings for all template engines to be used with Django. Each item of the list is a dictionary
containing the options for an individual engine.

Here’s a simple setup that tells the Django template engine to load templates from the templates subdirectory
inside each installed application:

TEMPLATES = [
{

'BACKEND': 'django.template.backends.django.DjangoTemplates',
'APP_DIRS': True,

},
]

The following options are available for all backends.

BACKEND

Default: Not defined

The template backend to use. The built-in template backends are:

• 'django.template.backends.django.DjangoTemplates'

• 'django.template.backends.jinja2.Jinja2'

You can use a template backend that doesn’t ship with Django by setting BACKEND to a fully-qualified path (i.e.
'mypackage.whatever.Backend').

NAME

Default: see below

The alias for this particular template engine. It’s an identifier that allows selecting an engine for rendering. Aliases
must be unique across all configured template engines.

It defaults to the name of the module defining the engine class, i.e. the next to last piece of BACKEND, when it isn’t pro-
vided. For example if the backend is 'mypackage.whatever.Backend' then its default name is 'whatever'.

6.18. Settings 1261

Django Documentation, Release 1.10.9.dev20171123183751

DIRS

Default: [] (Empty list)

Directories where the engine should look for template source files, in search order.

APP_DIRS

Default: False

Whether the engine should look for template source files inside installed applications.

Note: The default settings.py file created by django-admin startproject sets 'APP_DIRS': True.

OPTIONS

Default: {} (Empty dict)

Extra parameters to pass to the template backend. Available parameters vary depending on the template backend. See
DjangoTemplates and Jinja2 for the options of the built-in backends.

TEST_RUNNER

Default: 'django.test.runner.DiscoverRunner'

The name of the class to use for starting the test suite. See Using different testing frameworks.

TEST_NON_SERIALIZED_APPS

Default: [] (Empty list)

In order to restore the database state between tests for TransactionTestCases and database backends without
transactions, Django will serialize the contents of all apps when it starts the test run so it can then reload from that
copy before running tests that need it.

This slows down the startup time of the test runner; if you have apps that you know don’t need this feature, you can
add their full names in here (e.g. 'django.contrib.contenttypes') to exclude them from this serialization
process.

THOUSAND_SEPARATOR

Default: ',' (Comma)

Default thousand separator used when formatting numbers. This setting is used only when
USE_THOUSAND_SEPARATOR is True and NUMBER_GROUPING is greater than 0.

Note that if USE_L10N is set to True, then the locale-dictated format has higher precedence and will be applied
instead.

See also NUMBER_GROUPING, DECIMAL_SEPARATOR and USE_THOUSAND_SEPARATOR.

1262 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

TIME_FORMAT

Default: 'P' (e.g. 4 p.m.)

The default formatting to use for displaying time fields in any part of the system. Note that if USE_L10N is set
to True, then the locale-dictated format has higher precedence and will be applied instead. See allowed date
format strings.

See also DATE_FORMAT and DATETIME_FORMAT.

TIME_INPUT_FORMATS

Default:

[
'%H:%M:%S', # '14:30:59'
'%H:%M:%S.%f', # '14:30:59.000200'
'%H:%M', # '14:30'

]

A list of formats that will be accepted when inputting data on a time field. Formats will be tried in order, using the first
valid one. Note that these format strings use Python’s datetime module syntax, not the format strings from the date
template filter.

When USE_L10N is True, the locale-dictated format has higher precedence and will be applied instead.

See also DATE_INPUT_FORMATS and DATETIME_INPUT_FORMATS.

TIME_ZONE

Default: 'America/Chicago'

A string representing the time zone for this installation, or None. See the list of time zones.

Note: Since Django was first released with the TIME_ZONE set to 'America/Chicago', the global setting (used
if nothing is defined in your project’s settings.py) remains 'America/Chicago' for backwards compatibility.
New project templates default to 'UTC'.

Note that this isn’t necessarily the time zone of the server. For example, one server may serve multiple Django-powered
sites, each with a separate time zone setting.

When USE_TZ is False, this is the time zone in which Django will store all datetimes. When USE_TZ is True,
this is the default time zone that Django will use to display datetimes in templates and to interpret datetimes entered
in forms.

Django sets the os.environ['TZ'] variable to the time zone you specify in the TIME_ZONE setting. Thus, all
your views and models will automatically operate in this time zone. However, Django won’t set the TZ environment
variable under the following conditions:

• If you’re using the manual configuration option as described in manually configuring settings, or

• If you specify TIME_ZONE = None. This will cause Django to fall back to using the system timezone.
However, this is discouraged when USE_TZ = True, because it makes conversions between local time and
UTC less reliable.

6.18. Settings 1263

https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Django Documentation, Release 1.10.9.dev20171123183751

If Django doesn’t set the TZ environment variable, it’s up to you to ensure your processes are running in the correct
environment.

Note: Django cannot reliably use alternate time zones in a Windows environment. If you’re running Django on
Windows, TIME_ZONE must be set to match the system time zone.

USE_ETAGS

Default: False

A boolean that specifies whether to output the ETag header. This saves bandwidth but slows down performance. This
is used by the CommonMiddleware and in the cache framework.

USE_I18N

Default: True

A boolean that specifies whether Django’s translation system should be enabled. This provides an easy way to turn it
off, for performance. If this is set to False, Django will make some optimizations so as not to load the translation
machinery.

See also LANGUAGE_CODE, USE_L10N and USE_TZ.

Note: The default settings.py file created by django-admin startproject includes USE_I18N =
True for convenience.

USE_L10N

Default: False

A boolean that specifies if localized formatting of data will be enabled by default or not. If this is set to True, e.g.
Django will display numbers and dates using the format of the current locale.

See also LANGUAGE_CODE, USE_I18N and USE_TZ.

Note: The default settings.py file created by django-admin startproject includes USE_L10N =
True for convenience.

USE_THOUSAND_SEPARATOR

Default: False

A boolean that specifies whether to display numbers using a thousand separator. When USE_L10N is set to True
and if this is also set to True, Django will use the values of THOUSAND_SEPARATOR and NUMBER_GROUPING to
format numbers unless the locale already has an existing thousands separator. If there is a thousands separator in the
locale format, it will have higher precedence and will be applied instead.

See also DECIMAL_SEPARATOR, NUMBER_GROUPING and THOUSAND_SEPARATOR.

1264 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

USE_TZ

Default: False

A boolean that specifies if datetimes will be timezone-aware by default or not. If this is set to True, Django will use
timezone-aware datetimes internally. Otherwise, Django will use naive datetimes in local time.

See also TIME_ZONE, USE_I18N and USE_L10N .

Note: The default settings.py file created by django-admin startproject includes USE_TZ = True
for convenience.

USE_X_FORWARDED_HOST

Default: False

A boolean that specifies whether to use the X-Forwarded-Host header in preference to the Host header. This
should only be enabled if a proxy which sets this header is in use.

This setting takes priority over USE_X_FORWARDED_PORT. Per RFC 7239#page-7, the X-Forwarded-Host
header can include the port number, in which case you shouldn’t use USE_X_FORWARDED_PORT.

USE_X_FORWARDED_PORT

Default: False

A boolean that specifies whether to use the X-Forwarded-Port header in preference to the SERVER_PORT META
variable. This should only be enabled if a proxy which sets this header is in use.

USE_X_FORWARDED_HOST takes priority over this setting.

WSGI_APPLICATION

Default: None

The full Python path of the WSGI application object that Django’s built-in servers (e.g. runserver) will
use. The django-admin startproject management command will create a simple wsgi.py file with an
application callable in it, and point this setting to that application.

If not set, the return value of django.core.wsgi.get_wsgi_application() will be used. In this case, the
behavior of runserver will be identical to previous Django versions.

YEAR_MONTH_FORMAT

Default: 'F Y'

The default formatting to use for date fields on Django admin change-list pages – and, possibly, by other parts of the
system – in cases when only the year and month are displayed.

For example, when a Django admin change-list page is being filtered by a date drilldown, the header for a given
month displays the month and the year. Different locales have different formats. For example, U.S. English would say
“January 2006,” whereas another locale might say “2006/January.”

Note that if USE_L10N is set to True, then the corresponding locale-dictated format has higher precedence and will
be applied.

6.18. Settings 1265

https://tools.ietf.org/html/rfc7239.html#page-7

Django Documentation, Release 1.10.9.dev20171123183751

See allowed date format strings. See also DATE_FORMAT, DATETIME_FORMAT, TIME_FORMAT and
MONTH_DAY_FORMAT.

X_FRAME_OPTIONS

Default: 'SAMEORIGIN'

The default value for the X-Frame-Options header used by XFrameOptionsMiddleware. See the clickjacking
protection documentation.

6.18.2 Auth

Settings for django.contrib.auth.

AUTHENTICATION_BACKENDS

Default: ['django.contrib.auth.backends.ModelBackend']

A list of authentication backend classes (as strings) to use when attempting to authenticate a user. See the authentica-
tion backends documentation for details.

AUTH_USER_MODEL

Default: 'auth.User'

The model to use to represent a User. See Substituting a custom User model.

Warning: You cannot change the AUTH_USER_MODEL setting during the lifetime of a project (i.e. once you
have made and migrated models that depend on it) without serious effort. It is intended to be set at the project
start, and the model it refers to must be available in the first migration of the app that it lives in. See Substituting a
custom User model for more details.

LOGIN_REDIRECT_URL

Default: '/accounts/profile/'

The URL where requests are redirected after login when the contrib.auth.login view gets no next parameter.

This is used by the login_required() decorator, for example.

This setting also accepts named URL patterns which can be used to reduce configuration duplication since you don’t
have to define the URL in two places (settings and URLconf).

LOGIN_URL

Default: '/accounts/login/'

The URL where requests are redirected for login, especially when using the login_required() decorator.

This setting also accepts named URL patterns which can be used to reduce configuration duplication since you don’t
have to define the URL in two places (settings and URLconf).

1266 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

LOGOUT_REDIRECT_URL

Default: None

The URL where requests are redirected after a user logs out using the logout() view (if the view doesn’t get a
next_page argument).

If None, no redirect will be performed and the logout view will be rendered.

This setting also accepts named URL patterns which can be used to reduce configuration duplication since you don’t
have to define the URL in two places (settings and URLconf).

PASSWORD_RESET_TIMEOUT_DAYS

Default: 3

The number of days a password reset link is valid for. Used by the django.contrib.auth password reset
mechanism.

PASSWORD_HASHERS

See How Django stores passwords.

Default:

[
'django.contrib.auth.hashers.PBKDF2PasswordHasher',
'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher',
'django.contrib.auth.hashers.Argon2PasswordHasher',
'django.contrib.auth.hashers.BCryptSHA256PasswordHasher',
'django.contrib.auth.hashers.BCryptPasswordHasher',

]

The following hashers were removed from the defaults:

'django.contrib.auth.hashers.SHA1PasswordHasher'
'django.contrib.auth.hashers.MD5PasswordHasher'
'django.contrib.auth.hashers.UnsaltedSHA1PasswordHasher'
'django.contrib.auth.hashers.UnsaltedMD5PasswordHasher'
'django.contrib.auth.hashers.CryptPasswordHasher'

Consider using a wrapped password hasher to strengthen the hashes in your database. If that’s not feasible, add this
setting to your project and add back any hashers that you need.

Also, the Argon2PasswordHasher was added.

AUTH_PASSWORD_VALIDATORS

Default: [] (Empty list)

The list of validators that are used to check the strength of user’s passwords. See Password validation for more details.
By default, no validation is performed and all passwords are accepted.

6.18.3 Messages

Settings for django.contrib.messages.

6.18. Settings 1267

Django Documentation, Release 1.10.9.dev20171123183751

MESSAGE_LEVEL

Default: messages.INFO

Sets the minimum message level that will be recorded by the messages framework. See message levels for more
details.

Important

If you override MESSAGE_LEVEL in your settings file and rely on any of the built-in constants, you must import the
constants module directly to avoid the potential for circular imports, e.g.:

from django.contrib.messages import constants as message_constants
MESSAGE_LEVEL = message_constants.DEBUG

If desired, you may specify the numeric values for the constants directly according to the values in the above constants
table.

MESSAGE_STORAGE

Default: 'django.contrib.messages.storage.fallback.FallbackStorage'

Controls where Django stores message data. Valid values are:

• 'django.contrib.messages.storage.fallback.FallbackStorage'

• 'django.contrib.messages.storage.session.SessionStorage'

• 'django.contrib.messages.storage.cookie.CookieStorage'

See message storage backends for more details.

The backends that use cookies – CookieStorage and FallbackStorage – use the value of
SESSION_COOKIE_DOMAIN , SESSION_COOKIE_SECURE and SESSION_COOKIE_HTTPONLY when setting
their cookies.

MESSAGE_TAGS

Default:

{
messages.DEBUG: 'debug',
messages.INFO: 'info',
messages.SUCCESS: 'success',
messages.WARNING: 'warning',
messages.ERROR: 'error',

}

This sets the mapping of message level to message tag, which is typically rendered as a CSS class in HTML. If you
specify a value, it will extend the default. This means you only have to specify those values which you need to override.
See Displaying messages above for more details.

Important

If you override MESSAGE_TAGS in your settings file and rely on any of the built-in constants, you must import the
constants module directly to avoid the potential for circular imports, e.g.:

1268 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

from django.contrib.messages import constants as message_constants
MESSAGE_TAGS = {message_constants.INFO: ''}

If desired, you may specify the numeric values for the constants directly according to the values in the above constants
table.

6.18.4 Sessions

Settings for django.contrib.sessions.

SESSION_CACHE_ALIAS

Default: 'default'

If you’re using cache-based session storage, this selects the cache to use.

SESSION_COOKIE_AGE

Default: 1209600 (2 weeks, in seconds)

The age of session cookies, in seconds.

SESSION_COOKIE_DOMAIN

Default: None

The domain to use for session cookies. Set this to a string such as ".example.com" (note the leading dot!) for
cross-domain cookies, or use None for a standard domain cookie.

Be cautious when updating this setting on a production site. If you update this setting to enable cross-domain cookies
on a site that previously used standard domain cookies, existing user cookies will be set to the old domain. This may
result in them being unable to log in as long as these cookies persist.

This setting also affects cookies set by django.contrib.messages.

SESSION_COOKIE_HTTPONLY

Default: True

Whether to use HTTPOnly flag on the session cookie. If this is set to True, client-side JavaScript will not to be able
to access the session cookie.

HTTPOnly is a flag included in a Set-Cookie HTTP response header. It is not part of the RFC 2109 standard for
cookies, and it isn’t honored consistently by all browsers. However, when it is honored, it can be a useful way to
mitigate the risk of a client side script accessing the protected cookie data.

Turning it on makes it less trivial for an attacker to escalate a cross-site scripting vulnerability into full hijacking of a
user’s session. There’s not much excuse for leaving this off, either: if your code depends on reading session cookies
from JavaScript, you’re probably doing it wrong.

6.18. Settings 1269

https://www.owasp.org/index.php/HTTPOnly
https://tools.ietf.org/html/rfc2109.html

Django Documentation, Release 1.10.9.dev20171123183751

SESSION_COOKIE_NAME

Default: 'sessionid'

The name of the cookie to use for sessions. This can be whatever you want (as long as it’s different from the other
cookie names in your application).

SESSION_COOKIE_PATH

Default: '/'

The path set on the session cookie. This should either match the URL path of your Django installation or be parent of
that path.

This is useful if you have multiple Django instances running under the same hostname. They can use different cookie
paths, and each instance will only see its own session cookie.

SESSION_COOKIE_SECURE

Default: False

Whether to use a secure cookie for the session cookie. If this is set to True, the cookie will be marked as “secure,”
which means browsers may ensure that the cookie is only sent under an HTTPS connection.

Since it’s trivial for a packet sniffer (e.g. Firesheep) to hijack a user’s session if the session cookie is sent unencrypted,
there’s really no good excuse to leave this off. It will prevent you from using sessions on insecure requests and that’s
a good thing.

SESSION_ENGINE

Default: 'django.contrib.sessions.backends.db'

Controls where Django stores session data. Included engines are:

• 'django.contrib.sessions.backends.db'

• 'django.contrib.sessions.backends.file'

• 'django.contrib.sessions.backends.cache'

• 'django.contrib.sessions.backends.cached_db'

• 'django.contrib.sessions.backends.signed_cookies'

See Configuring the session engine for more details.

SESSION_EXPIRE_AT_BROWSER_CLOSE

Default: False

Whether to expire the session when the user closes their browser. See Browser-length sessions vs. persistent sessions.

1270 Chapter 6. API Reference

http://codebutler.com/firesheep

Django Documentation, Release 1.10.9.dev20171123183751

SESSION_FILE_PATH

Default: None

If you’re using file-based session storage, this sets the directory in which Django will store session data. When the
default value (None) is used, Django will use the standard temporary directory for the system.

SESSION_SAVE_EVERY_REQUEST

Default: False

Whether to save the session data on every request. If this is False (default), then the session data will only be saved
if it has been modified – that is, if any of its dictionary values have been assigned or deleted. Empty sessions won’t be
created, even if this setting is active.

SESSION_SERIALIZER

Default: 'django.contrib.sessions.serializers.JSONSerializer'

Full import path of a serializer class to use for serializing session data. Included serializers are:

• 'django.contrib.sessions.serializers.PickleSerializer'

• 'django.contrib.sessions.serializers.JSONSerializer'

See Session serialization for details, including a warning regarding possible remote code execution when using
PickleSerializer.

6.18.5 Sites

Settings for django.contrib.sites.

SITE_ID

Default: Not defined

The ID, as an integer, of the current site in the django_site database table. This is used so that application data
can hook into specific sites and a single database can manage content for multiple sites.

6.18.6 Static Files

Settings for django.contrib.staticfiles.

STATIC_ROOT

Default: None

The absolute path to the directory where collectstatic will collect static files for deployment.

Example: "/var/www/example.com/static/"

If the staticfiles contrib app is enabled (as in the default project template), the collectstatic management com-
mand will collect static files into this directory. See the how-to on managing static files for more details about usage.

6.18. Settings 1271

Django Documentation, Release 1.10.9.dev20171123183751

Warning: This should be an initially empty destination directory for collecting your static files from their per-
manent locations into one directory for ease of deployment; it is not a place to store your static files permanently.
You should do that in directories that will be found by staticfiles’s finders, which by default, are 'static/'
app sub-directories and any directories you include in STATICFILES_DIRS).

STATIC_URL

Default: None

URL to use when referring to static files located in STATIC_ROOT.

Example: "/static/" or "http://static.example.com/"

If not None, this will be used as the base path for asset definitions (the Media class) and the staticfiles app.

It must end in a slash if set to a non-empty value.

You may need to configure these files to be served in development and will definitely need to do so in production.

STATICFILES_DIRS

Default: [] (Empty list)

This setting defines the additional locations the staticfiles app will traverse if the FileSystemFinder finder is
enabled, e.g. if you use the collectstatic or findstatic management command or use the static file serving
view.

This should be set to a list of strings that contain full paths to your additional files directory(ies) e.g.:

STATICFILES_DIRS = [
"/home/special.polls.com/polls/static",
"/home/polls.com/polls/static",
"/opt/webfiles/common",

]

Note that these paths should use Unix-style forward slashes, even on Windows (e.g. "C:/Users/user/mysite/
extra_static_content").

Prefixes (optional)

In case you want to refer to files in one of the locations with an additional namespace, you can optionally provide a
prefix as (prefix, path) tuples, e.g.:

STATICFILES_DIRS = [
...
("downloads", "/opt/webfiles/stats"),

]

For example, assuming you have STATIC_URL set to '/static/', the collectstatic management command
would collect the “stats” files in a 'downloads' subdirectory of STATIC_ROOT.

This would allow you to refer to the local file '/opt/webfiles/stats/polls_20101022.tar.gz' with
'/static/downloads/polls_20101022.tar.gz' in your templates, e.g.:

1272 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

STATICFILES_STORAGE

Default: 'django.contrib.staticfiles.storage.StaticFilesStorage'

The file storage engine to use when collecting static files with the collectstatic management command.

A ready-to-use instance of the storage backend defined in this setting can be found at django.contrib.
staticfiles.storage.staticfiles_storage.

For an example, see Serving static files from a cloud service or CDN.

STATICFILES_FINDERS

Default:

[
'django.contrib.staticfiles.finders.FileSystemFinder',
'django.contrib.staticfiles.finders.AppDirectoriesFinder',

]

The list of finder backends that know how to find static files in various locations.

The default will find files stored in the STATICFILES_DIRS setting (using django.contrib.staticfiles.
finders.FileSystemFinder) and in a static subdirectory of each app (using django.contrib.
staticfiles.finders.AppDirectoriesFinder). If multiple files with the same name are present, the
first file that is found will be used.

One finder is disabled by default: django.contrib.staticfiles.finders.DefaultStorageFinder.
If added to your STATICFILES_FINDERS setting, it will look for static files in the default file storage as defined by
the DEFAULT_FILE_STORAGE setting.

Note: When using the AppDirectoriesFinder finder, make sure your apps can be found by staticfiles. Simply
add the app to the INSTALLED_APPS setting of your site.

Static file finders are currently considered a private interface, and this interface is thus undocumented.

6.18.7 Core Settings Topical Index

Cache

• CACHES

• CACHE_MIDDLEWARE_ALIAS

• CACHE_MIDDLEWARE_KEY_PREFIX

• CACHE_MIDDLEWARE_SECONDS

6.18. Settings 1273

Django Documentation, Release 1.10.9.dev20171123183751

Database

• DATABASES

• DATABASE_ROUTERS

• DEFAULT_INDEX_TABLESPACE

• DEFAULT_TABLESPACE

Debugging

• DEBUG

• DEBUG_PROPAGATE_EXCEPTIONS

Email

• ADMINS

• DEFAULT_CHARSET

• DEFAULT_FROM_EMAIL

• EMAIL_BACKEND

• EMAIL_FILE_PATH

• EMAIL_HOST

• EMAIL_HOST_PASSWORD

• EMAIL_HOST_USER

• EMAIL_PORT

• EMAIL_SSL_CERTFILE

• EMAIL_SSL_KEYFILE

• EMAIL_SUBJECT_PREFIX

• EMAIL_TIMEOUT

• EMAIL_USE_TLS

• MANAGERS

• SERVER_EMAIL

Error reporting

• DEFAULT_EXCEPTION_REPORTER_FILTER

• IGNORABLE_404_URLS

• MANAGERS

• SILENCED_SYSTEM_CHECKS

1274 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

File uploads

• DEFAULT_FILE_STORAGE

• FILE_CHARSET

• FILE_UPLOAD_HANDLERS

• FILE_UPLOAD_MAX_MEMORY_SIZE

• FILE_UPLOAD_PERMISSIONS

• FILE_UPLOAD_TEMP_DIR

• MEDIA_ROOT

• MEDIA_URL

Globalization (i18n/l10n)

• DATE_FORMAT

• DATE_INPUT_FORMATS

• DATETIME_FORMAT

• DATETIME_INPUT_FORMATS

• DECIMAL_SEPARATOR

• FIRST_DAY_OF_WEEK

• FORMAT_MODULE_PATH

• LANGUAGE_CODE

• LANGUAGE_COOKIE_AGE

• LANGUAGE_COOKIE_DOMAIN

• LANGUAGE_COOKIE_NAME

• LANGUAGE_COOKIE_PATH

• LANGUAGES

• LOCALE_PATHS

• MONTH_DAY_FORMAT

• NUMBER_GROUPING

• SHORT_DATE_FORMAT

• SHORT_DATETIME_FORMAT

• THOUSAND_SEPARATOR

• TIME_FORMAT

• TIME_INPUT_FORMATS

• TIME_ZONE

• USE_I18N

• USE_L10N

• USE_THOUSAND_SEPARATOR

6.18. Settings 1275

Django Documentation, Release 1.10.9.dev20171123183751

• USE_TZ

• YEAR_MONTH_FORMAT

HTTP

• DATA_UPLOAD_MAX_MEMORY_SIZE

• DATA_UPLOAD_MAX_NUMBER_FIELDS

• DEFAULT_CHARSET

• DEFAULT_CONTENT_TYPE

• DISALLOWED_USER_AGENTS

• FORCE_SCRIPT_NAME

• INTERNAL_IPS

• MIDDLEWARE

• MIDDLEWARE_CLASSES

• Security

– SECURE_BROWSER_XSS_FILTER

– SECURE_CONTENT_TYPE_NOSNIFF

– SECURE_HSTS_INCLUDE_SUBDOMAINS

– SECURE_HSTS_SECONDS

– SECURE_PROXY_SSL_HEADER

– SECURE_REDIRECT_EXEMPT

– SECURE_SSL_HOST

– SECURE_SSL_REDIRECT

• SIGNING_BACKEND

• USE_ETAGS

• USE_X_FORWARDED_HOST

• USE_X_FORWARDED_PORT

• WSGI_APPLICATION

Logging

• LOGGING

• LOGGING_CONFIG

Models

• ABSOLUTE_URL_OVERRIDES

• FIXTURE_DIRS

• INSTALLED_APPS

1276 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Security

• Cross Site Request Forgery Protection

– CSRF_COOKIE_DOMAIN

– CSRF_COOKIE_NAME

– CSRF_COOKIE_PATH

– CSRF_COOKIE_SECURE

– CSRF_FAILURE_VIEW

– CSRF_HEADER_NAME

– CSRF_TRUSTED_ORIGINS

• SECRET_KEY

• X_FRAME_OPTIONS

Serialization

• DEFAULT_CHARSET

• SERIALIZATION_MODULES

Templates

• TEMPLATES

Testing

• Database: TEST

• TEST_NON_SERIALIZED_APPS

• TEST_RUNNER

URLs

• APPEND_SLASH

• PREPEND_WWW

• ROOT_URLCONF

6.19 Signals

A list of all the signals that Django sends. All built-in signals are sent using the send() method.

See also:

See the documentation on the signal dispatcher for information regarding how to register for and receive signals.

The authentication framework sends signals when a user is logged in / out.

6.19. Signals 1277

Django Documentation, Release 1.10.9.dev20171123183751

6.19.1 Model signals

The django.db.models.signals module defines a set of signals sent by the model system.

Warning: Many of these signals are sent by various model methods like __init__() or save() that you can
override in your own code.

If you override these methods on your model, you must call the parent class’ methods for this signals to be sent.

Note also that Django stores signal handlers as weak references by default, so if your handler is a local function, it
may be garbage collected. To prevent this, pass weak=False when you call the signal’s connect().

Note: Model signals sender model can be lazily referenced when connecting a receiver by specifying its full
application label. For example, an Answermodel defined in the polls application could be referenced as 'polls.
Answer'. This sort of reference can be quite handy when dealing with circular import dependencies and swappable
models.

pre_init

django.db.models.signals.pre_init

Whenever you instantiate a Django model, this signal is sent at the beginning of the model’s __init__() method.

Arguments sent with this signal:

sender The model class that just had an instance created.

args A list of positional arguments passed to __init__():

kwargs A dictionary of keyword arguments passed to __init__():

For example, the tutorial has this line:

p = Poll(question="What's up?", pub_date=datetime.now())

The arguments sent to a pre_init handler would be:

Argument Value
sender Poll (the class itself)
args [] (an empty list because there were no positional arguments passed to __init__().)
kwargs {'question': "What's up?", 'pub_date': datetime.now()}

post_init

django.db.models.signals.post_init

Like pre_init, but this one is sent when the __init__() method finishes.

Arguments sent with this signal:

sender As above: the model class that just had an instance created.

instance The actual instance of the model that’s just been created.

1278 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

pre_save

django.db.models.signals.pre_save

This is sent at the beginning of a model’s save() method.

Arguments sent with this signal:

sender The model class.

instance The actual instance being saved.

raw A boolean; True if the model is saved exactly as presented (i.e. when loading a fixture). One should not
query/modify other records in the database as the database might not be in a consistent state yet.

using The database alias being used.

update_fields The set of fields to update as passed to Model.save(), or None if update_fields wasn’t
passed to save().

post_save

django.db.models.signals.post_save

Like pre_save, but sent at the end of the save() method.

Arguments sent with this signal:

sender The model class.

instance The actual instance being saved.

created A boolean; True if a new record was created.

raw A boolean; True if the model is saved exactly as presented (i.e. when loading a fixture). One should not
query/modify other records in the database as the database might not be in a consistent state yet.

using The database alias being used.

update_fields The set of fields to update as passed to Model.save(), or None if update_fields wasn’t
passed to save().

pre_delete

django.db.models.signals.pre_delete

Sent at the beginning of a model’s delete() method and a queryset’s delete() method.

Arguments sent with this signal:

sender The model class.

instance The actual instance being deleted.

using The database alias being used.

post_delete

django.db.models.signals.post_delete

Like pre_delete, but sent at the end of a model’s delete() method and a queryset’s delete() method.

Arguments sent with this signal:

6.19. Signals 1279

Django Documentation, Release 1.10.9.dev20171123183751

sender The model class.

instance The actual instance being deleted.

Note that the object will no longer be in the database, so be very careful what you do with this instance.

using The database alias being used.

m2m_changed

django.db.models.signals.m2m_changed

Sent when a ManyToManyField is changed on a model instance. Strictly speaking, this is not a model sig-
nal since it is sent by the ManyToManyField, but since it complements the pre_save/post_save and
pre_delete/post_delete when it comes to tracking changes to models, it is included here.

Arguments sent with this signal:

sender The intermediate model class describing the ManyToManyField. This class is automatically created
when a many-to-many field is defined; you can access it using the through attribute on the many-to-many
field.

instance The instance whose many-to-many relation is updated. This can be an instance of the sender, or of the
class the ManyToManyField is related to.

action A string indicating the type of update that is done on the relation. This can be one of the following:

"pre_add" Sent before one or more objects are added to the relation.

"post_add" Sent after one or more objects are added to the relation.

"pre_remove" Sent before one or more objects are removed from the relation.

"post_remove" Sent after one or more objects are removed from the relation.

"pre_clear" Sent before the relation is cleared.

"post_clear" Sent after the relation is cleared.

reverse Indicates which side of the relation is updated (i.e., if it is the forward or reverse relation that is being
modified).

model The class of the objects that are added to, removed from or cleared from the relation.

pk_set For the pre_add, post_add, pre_remove and post_remove actions, this is a set of primary key
values that have been added to or removed from the relation.

For the pre_clear and post_clear actions, this is None.

using The database alias being used.

For example, if a Pizza can have multiple Topping objects, modeled like this:

class Topping(models.Model):
...
pass

class Pizza(models.Model):
...
toppings = models.ManyToManyField(Topping)

If we connected a handler like this:

1280 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

from django.db.models.signals import m2m_changed

def toppings_changed(sender, **kwargs):
Do something
pass

m2m_changed.connect(toppings_changed, sender=Pizza.toppings.through)

and then did something like this:

>>> p = Pizza.objects.create(...)
>>> t = Topping.objects.create(...)
>>> p.toppings.add(t)

the arguments sent to a m2m_changed handler (toppings_changed in the example above) would be:

Argument Value
sender Pizza.toppings.through (the intermediate m2m class)
instance p (the Pizza instance being modified)
action "pre_add" (followed by a separate signal with "post_add")
reverse False (Pizza contains the ManyToManyField, so this call modifies the forward relation)
model Topping (the class of the objects added to the Pizza)
pk_set {t.id} (since only Topping t was added to the relation)
using "default" (since the default router sends writes here)

And if we would then do something like this:

>>> t.pizza_set.remove(p)

the arguments sent to a m2m_changed handler would be:

Argument Value
sender Pizza.toppings.through (the intermediate m2m class)
instance t (the Topping instance being modified)
action "pre_remove" (followed by a separate signal with "post_remove")
reverse True (Pizza contains the ManyToManyField, so this call modifies the reverse relation)
model Pizza (the class of the objects removed from the Topping)
pk_set {p.id} (since only Pizza p was removed from the relation)
using "default" (since the default router sends writes here)

class_prepared

django.db.models.signals.class_prepared

Sent whenever a model class has been “prepared” – that is, once model has been defined and registered with Django’s
model system. Django uses this signal internally; it’s not generally used in third-party applications.

Since this signal is sent during the app registry population process, and AppConfig.ready() runs after the
app registry is fully populated, receivers cannot be connected in that method. One possibility is to connect them
AppConfig.__init__() instead, taking care not to import models or trigger calls to the app registry.

Arguments that are sent with this signal:

sender The model class which was just prepared.

6.19. Signals 1281

Django Documentation, Release 1.10.9.dev20171123183751

6.19.2 Management signals

Signals sent by django-admin.

pre_migrate

django.db.models.signals.pre_migrate

Sent by the migrate command before it starts to install an application. It’s not emitted for applications that lack a
models module.

Arguments sent with this signal:

sender An AppConfig instance for the application about to be migrated/synced.

app_config Same as sender.

verbosity Indicates how much information manage.py is printing on screen. See the --verbosity flag for
details.

Functions which listen for pre_migrate should adjust what they output to the screen based on the value of
this argument.

interactive If interactive is True, it’s safe to prompt the user to input things on the command line. If
interactive is False, functions which listen for this signal should not try to prompt for anything.

For example, the django.contrib.auth app only prompts to create a superuser when interactive is
True.

using The alias of database on which a command will operate.

plan The migration plan that is going to be used for the migration run. While the plan is not public API, this allows
for the rare cases when it is necessary to know the plan. A plan is a list of two-tuples with the first item being the
instance of a migration class and the second item showing if the migration was rolled back (True) or applied
(False).

apps An instance of Apps containing the state of the project before the migration run. It should be used instead of
the global apps registry to retrieve the models you want to perform operations on.

post_migrate

django.db.models.signals.post_migrate

Sent at the end of the migrate (even if no migrations are run) and flush commands. It’s not emitted for applications
that lack a models module.

Handlers of this signal must not perform database schema alterations as doing so may cause the flush command to
fail if it runs during the migrate command.

Arguments sent with this signal:

sender An AppConfig instance for the application that was just installed.

app_config Same as sender.

verbosity Indicates how much information manage.py is printing on screen. See the --verbosity flag for
details.

Functions which listen for post_migrate should adjust what they output to the screen based on the value of
this argument.

1282 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

interactive If interactive is True, it’s safe to prompt the user to input things on the command line. If
interactive is False, functions which listen for this signal should not try to prompt for anything.

For example, the django.contrib.auth app only prompts to create a superuser when interactive is
True.

using The database alias used for synchronization. Defaults to the default database.

plan The migration plan that was used for the migration run. While the plan is not public API, this allows for the
rare cases when it is necessary to know the plan. A plan is a list of two-tuples with the first item being the
instance of a migration class and the second item showing if the migration was rolled back (True) or applied
(False).

apps An instance of Apps containing the state of the project after the migration run. It should be used instead of the
global apps registry to retrieve the models you want to perform operations on.

For example, you could register a callback in an AppConfig like this:

from django.apps import AppConfig
from django.db.models.signals import post_migrate

def my_callback(sender, **kwargs):
Your specific logic here
pass

class MyAppConfig(AppConfig):
...

def ready(self):
post_migrate.connect(my_callback, sender=self)

Note: If you provide an AppConfig instance as the sender argument, please ensure that the signal is registered in
ready(). AppConfigs are recreated for tests that run with a modified set of INSTALLED_APPS (such as when
settings are overridden) and such signals should be connected for each new AppConfig instance.

6.19.3 Request/response signals

Signals sent by the core framework when processing a request.

request_started

django.core.signals.request_started

Sent when Django begins processing an HTTP request.

Arguments sent with this signal:

sender The handler class – e.g. django.core.handlers.wsgi.WsgiHandler – that handled the request.

environ The environ dictionary provided to the request.

request_finished

django.core.signals.request_finished

6.19. Signals 1283

Django Documentation, Release 1.10.9.dev20171123183751

Sent when Django finishes delivering an HTTP response to the client.

Note: Some WSGI servers and middleware do not always call close on the response object after handling a request,
most notably uWSGI prior to 1.2.6 and Sentry’s error reporting middleware up to 2.0.7. In those cases this signal isn’t
sent at all. This can result in idle connections to database and memcache servers.

Arguments sent with this signal:

sender The handler class, as above.

got_request_exception

django.core.signals.got_request_exception

This signal is sent whenever Django encounters an exception while processing an incoming HTTP request.

Arguments sent with this signal:

sender The handler class, as above.

request The HttpRequest object.

6.19.4 Test signals

Signals only sent when running tests.

setting_changed

django.test.signals.setting_changed

This signal is sent when the value of a setting is changed through the django.test.TestCase.settings()
context manager or the django.test.override_settings() decorator/context manager.

It’s actually sent twice: when the new value is applied (“setup”) and when the original value is restored (“teardown”).
Use the enter argument to distinguish between the two.

You can also import this signal from django.core.signals to avoid importing from django.test in non-test
situations.

Arguments sent with this signal:

sender The settings handler.

setting The name of the setting.

value The value of the setting after the change. For settings that initially don’t exist, in the “teardown” phase,
value is None.

enter A boolean; True if the setting is applied, False if restored.

template_rendered

django.test.signals.template_rendered

Sent when the test system renders a template. This signal is not emitted during normal operation of a Django server –
it is only available during testing.

Arguments sent with this signal:

1284 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

sender The Template object which was rendered.

template Same as sender

context The Context with which the template was rendered.

6.19.5 Database Wrappers

Signals sent by the database wrapper when a database connection is initiated.

connection_created

django.db.backends.signals.connection_created

Sent when the database wrapper makes the initial connection to the database. This is particularly useful if you’d like
to send any post connection commands to the SQL backend.

Arguments sent with this signal:

sender The database wrapper class – i.e. django.db.backends.postgresql.DatabaseWrapper or
django.db.backends.mysql.DatabaseWrapper, etc.

connection The database connection that was opened. This can be used in a multiple-database configuration to
differentiate connection signals from different databases.

6.20 Templates

Django’s template engine provides a powerful mini-language for defining the user-facing layer of your application,
encouraging a clean separation of application and presentation logic. Templates can be maintained by anyone with an
understanding of HTML; no knowledge of Python is required. For introductory material, see Templates topic guide.

6.20.1 The Django template language

This document explains the language syntax of the Django template system. If you’re looking for a more technical
perspective on how it works and how to extend it, see The Django template language: for Python programmers.

Django’s template language is designed to strike a balance between power and ease. It’s designed to feel comfortable
to those used to working with HTML. If you have any exposure to other text-based template languages, such as Smarty
or Jinja2, you should feel right at home with Django’s templates.

Philosophy

If you have a background in programming, or if you’re used to languages which mix programming code directly into
HTML, you’ll want to bear in mind that the Django template system is not simply Python embedded into HTML. This
is by design: the template system is meant to express presentation, not program logic.

The Django template system provides tags which function similarly to some programming constructs – an if tag for
boolean tests, a for tag for looping, etc. – but these are not simply executed as the corresponding Python code, and
the template system will not execute arbitrary Python expressions. Only the tags, filters and syntax listed below are
supported by default (although you can add your own extensions to the template language as needed).

6.20. Templates 1285

http://www.smarty.net/
http://jinja.pocoo.org/

Django Documentation, Release 1.10.9.dev20171123183751

Templates

A template is simply a text file. It can generate any text-based format (HTML, XML, CSV, etc.).

A template contains variables, which get replaced with values when the template is evaluated, and tags, which control
the logic of the template.

Below is a minimal template that illustrates a few basics. Each element will be explained later in this document.

{% extends "base_generic.html" %}

{% block title %}{{ section.title }}{% endblock %}

{% block content %}
<h1>{{ section.title }}</h1>

{% for story in story_list %}
<h2>

{{ story.headline|upper }}

</h2>
<p>{{ story.tease|truncatewords:"100" }}</p>
{% endfor %}
{% endblock %}

Philosophy

Why use a text-based template instead of an XML-based one (like Zope’s TAL)? We wanted Django’s template lan-
guage to be usable for more than just XML/HTML templates. At World Online, we use it for emails, JavaScript and
CSV. You can use the template language for any text-based format.

Oh, and one more thing: making humans edit XML is sadistic!

Variables

Variables look like this: {{ variable }}. When the template engine encounters a variable, it evaluates that
variable and replaces it with the result. Variable names consist of any combination of alphanumeric characters and the
underscore ("_"). The dot (".") also appears in variable sections, although that has a special meaning, as indicated
below. Importantly, you cannot have spaces or punctuation characters in variable names.

Use a dot (.) to access attributes of a variable.

Behind the scenes

Technically, when the template system encounters a dot, it tries the following lookups, in this order:

• Dictionary lookup

• Attribute or method lookup

• Numeric index lookup

If the resulting value is callable, it is called with no arguments. The result of the call becomes the template value.

This lookup order can cause some unexpected behavior with objects that override dictionary lookup. For example,
consider the following code snippet that attempts to loop over a collections.defaultdict:

1286 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

{% for k, v in defaultdict.iteritems %}
Do something with k and v here...

{% endfor %}

Because dictionary lookup happens first, that behavior kicks in and provides a default value instead of using the
intended .iteritems() method. In this case, consider converting to a dictionary first.

In the above example, {{ section.title }} will be replaced with the title attribute of the section object.

If you use a variable that doesn’t exist, the template system will insert the value of the string_if_invalid option,
which is set to '' (the empty string) by default.

Note that “bar” in a template expression like {{ foo.bar }} will be interpreted as a literal string and not using the
value of the variable “bar”, if one exists in the template context.

Filters

You can modify variables for display by using filters.

Filters look like this: {{ name|lower }}. This displays the value of the {{ name }} variable after being
filtered through the lower filter, which converts text to lowercase. Use a pipe (|) to apply a filter.

Filters can be “chained.” The output of one filter is applied to the next. {{ text|escape|linebreaks }} is a
common idiom for escaping text contents, then converting line breaks to <p> tags.

Some filters take arguments. A filter argument looks like this: {{ bio|truncatewords:30 }}. This will
display the first 30 words of the bio variable.

Filter arguments that contain spaces must be quoted; for example, to join a list with commas and spaces you’d use {{
list|join:", " }}.

Django provides about sixty built-in template filters. You can read all about them in the built-in filter reference. To
give you a taste of what’s available, here are some of the more commonly used template filters:

default If a variable is false or empty, use given default. Otherwise, use the value of the variable. For example:

{{ value|default:"nothing" }}

If value isn’t provided or is empty, the above will display “nothing”.

length Returns the length of the value. This works for both strings and lists. For example:

{{ value|length }}

If value is ['a', 'b', 'c', 'd'], the output will be 4.

filesizeformat Formats the value like a “human-readable” file size (i.e. '13 KB', '4.1 MB', '102
bytes', etc.). For example:

{{ value|filesizeformat }}

If value is 123456789, the output would be 117.7 MB.

Again, these are just a few examples; see the built-in filter reference for the complete list.

You can also create your own custom template filters; see Custom template tags and filters.

See also:

6.20. Templates 1287

Django Documentation, Release 1.10.9.dev20171123183751

Django’s admin interface can include a complete reference of all template tags and filters available for a given site.
See The Django admin documentation generator.

Tags

Tags look like this: {% tag %}. Tags are more complex than variables: Some create text in the output, some control
flow by performing loops or logic, and some load external information into the template to be used by later variables.

Some tags require beginning and ending tags (i.e. {% tag %} ... tag contents ... {% endtag %}).

Django ships with about two dozen built-in template tags. You can read all about them in the built-in tag reference.
To give you a taste of what’s available, here are some of the more commonly used tags:

for Loop over each item in an array. For example, to display a list of athletes provided in athlete_list:

{% for athlete in athlete_list %}

{{ athlete.name }}
{% endfor %}

if , elif, and else Evaluates a variable, and if that variable is “true” the contents of the block are displayed:

{% if athlete_list %}
Number of athletes: {{ athlete_list|length }}

{% elif athlete_in_locker_room_list %}
Athletes should be out of the locker room soon!

{% else %}
No athletes.

{% endif %}

In the above, if athlete_list is not empty, the number of athletes will be displayed by the {{
athlete_list|length }} variable. Otherwise, if athlete_in_locker_room_list is not empty,
the message “Athletes should be out...” will be displayed. If both lists are empty, “No athletes.” will be dis-
played.

You can also use filters and various operators in the if tag:

{% if athlete_list|length > 1 %}
Team: {% for athlete in athlete_list %} ... {% endfor %}

{% else %}
Athlete: {{ athlete_list.0.name }}

{% endif %}

While the above example works, be aware that most template filters return strings, so mathematical comparisons
using filters will generally not work as you expect. length is an exception.

block and extends Set up template inheritance (see below), a powerful way of cutting down on “boilerplate” in
templates.

Again, the above is only a selection of the whole list; see the built-in tag reference for the complete list.

You can also create your own custom template tags; see Custom template tags and filters.

See also:

Django’s admin interface can include a complete reference of all template tags and filters available for a given site.
See The Django admin documentation generator.

1288 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Comments

To comment-out part of a line in a template, use the comment syntax: {# #}.

For example, this template would render as 'hello':

{# greeting #}hello

A comment can contain any template code, invalid or not. For example:

{# {% if foo %}bar{% else %} #}

This syntax can only be used for single-line comments (no newlines are permitted between the {# and #} delimiters).
If you need to comment out a multiline portion of the template, see the comment tag.

Template inheritance

The most powerful – and thus the most complex – part of Django’s template engine is template inheritance. Template
inheritance allows you to build a base “skeleton” template that contains all the common elements of your site and
defines blocks that child templates can override.

It’s easiest to understand template inheritance by starting with an example:

<!DOCTYPE html>
<html lang="en">
<head>

<link rel="stylesheet" href="style.css" />
<title>{% block title %}My amazing site{% endblock %}</title>

</head>

<body>
<div id="sidebar">

{% block sidebar %}

Home
Blog

{% endblock %}

</div>

<div id="content">
{% block content %}{% endblock %}

</div>
</body>
</html>

This template, which we’ll call base.html, defines a simple HTML skeleton document that you might use for a
simple two-column page. It’s the job of “child” templates to fill the empty blocks with content.

In this example, the block tag defines three blocks that child templates can fill in. All the block tag does is to tell
the template engine that a child template may override those portions of the template.

A child template might look like this:

{% extends "base.html" %}

{% block title %}My amazing blog{% endblock %}

6.20. Templates 1289

Django Documentation, Release 1.10.9.dev20171123183751

{% block content %}
{% for entry in blog_entries %}

<h2>{{ entry.title }}</h2>
<p>{{ entry.body }}</p>

{% endfor %}
{% endblock %}

The extends tag is the key here. It tells the template engine that this template “extends” another template. When
the template system evaluates this template, first it locates the parent – in this case, “base.html”.

At that point, the template engine will notice the three block tags in base.html and replace those blocks with the
contents of the child template. Depending on the value of blog_entries, the output might look like:

<!DOCTYPE html>
<html lang="en">
<head>

<link rel="stylesheet" href="style.css" />
<title>My amazing blog</title>

</head>

<body>
<div id="sidebar">

Home
Blog

</div>

<div id="content">
<h2>Entry one</h2>
<p>This is my first entry.</p>

<h2>Entry two</h2>
<p>This is my second entry.</p>

</div>
</body>
</html>

Note that since the child template didn’t define the sidebar block, the value from the parent template is used instead.
Content within a {% block %} tag in a parent template is always used as a fallback.

You can use as many levels of inheritance as needed. One common way of using inheritance is the following three-level
approach:

• Create a base.html template that holds the main look-and-feel of your site.

• Create a base_SECTIONNAME.html template for each “section” of your site. For example, base_news.
html, base_sports.html. These templates all extend base.html and include section-specific
styles/design.

• Create individual templates for each type of page, such as a news article or blog entry. These templates extend
the appropriate section template.

This approach maximizes code reuse and makes it easy to add items to shared content areas, such as section-wide
navigation.

Here are some tips for working with inheritance:

• If you use {% extends %} in a template, it must be the first template tag in that template. Template inheri-
tance won’t work, otherwise.

1290 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

• More {% block %} tags in your base templates are better. Remember, child templates don’t have to define
all parent blocks, so you can fill in reasonable defaults in a number of blocks, then only define the ones you need
later. It’s better to have more hooks than fewer hooks.

• If you find yourself duplicating content in a number of templates, it probably means you should move that
content to a {% block %} in a parent template.

• If you need to get the content of the block from the parent template, the {{ block.super }} variable will
do the trick. This is useful if you want to add to the contents of a parent block instead of completely overriding
it. Data inserted using {{ block.super }} will not be automatically escaped (see the next section), since
it was already escaped, if necessary, in the parent template.

• For extra readability, you can optionally give a name to your {% endblock %} tag. For example:

{% block content %}
...
{% endblock content %}

In larger templates, this technique helps you see which {% block %} tags are being closed.

Finally, note that you can’t define multiple block tags with the same name in the same template. This limitation
exists because a block tag works in “both” directions. That is, a block tag doesn’t just provide a hole to fill – it also
defines the content that fills the hole in the parent. If there were two similarly-named block tags in a template, that
template’s parent wouldn’t know which one of the blocks’ content to use.

Automatic HTML escaping

When generating HTML from templates, there’s always a risk that a variable will include characters that affect the
resulting HTML. For example, consider this template fragment:

Hello, {{ name }}

At first, this seems like a harmless way to display a user’s name, but consider what would happen if the user entered
their name as this:

<script>alert('hello')</script>

With this name value, the template would be rendered as:

Hello, <script>alert('hello')</script>

...which means the browser would pop-up a JavaScript alert box!

Similarly, what if the name contained a '<' symbol, like this?

username

That would result in a rendered template like this:

Hello, username

...which, in turn, would result in the remainder of the Web page being bolded!

Clearly, user-submitted data shouldn’t be trusted blindly and inserted directly into your Web pages, because a malicious
user could use this kind of hole to do potentially bad things. This type of security exploit is called a Cross Site Scripting
(XSS) attack.

To avoid this problem, you have two options:

6.20. Templates 1291

https://en.wikipedia.org/wiki/Cross-site_scripting

Django Documentation, Release 1.10.9.dev20171123183751

• One, you can make sure to run each untrusted variable through the escape filter (documented below), which
converts potentially harmful HTML characters to unharmful ones. This was the default solution in Django for
its first few years, but the problem is that it puts the onus on you, the developer / template author, to ensure
you’re escaping everything. It’s easy to forget to escape data.

• Two, you can take advantage of Django’s automatic HTML escaping. The remainder of this section describes
how auto-escaping works.

By default in Django, every template automatically escapes the output of every variable tag. Specifically, these five
characters are escaped:

• < is converted to <

• > is converted to >

• ' (single quote) is converted to '

• " (double quote) is converted to "

• & is converted to &

Again, we stress that this behavior is on by default. If you’re using Django’s template system, you’re protected.

How to turn it off

If you don’t want data to be auto-escaped, on a per-site, per-template level or per-variable level, you can turn it off in
several ways.

Why would you want to turn it off? Because sometimes, template variables contain data that you intend to be rendered
as raw HTML, in which case you don’t want their contents to be escaped. For example, you might store a blob of
HTML in your database and want to embed that directly into your template. Or, you might be using Django’s template
system to produce text that is not HTML – like an email message, for instance.

For individual variables

To disable auto-escaping for an individual variable, use the safe filter:

This will be escaped: {{ data }}
This will not be escaped: {{ data|safe }}

Think of safe as shorthand for safe from further escaping or can be safely interpreted as HTML. In this example, if
data contains '', the output will be:

This will be escaped:
This will not be escaped:

For template blocks

To control auto-escaping for a template, wrap the template (or just a particular section of the template) in the
autoescape tag, like so:

{% autoescape off %}
Hello {{ name }}

{% endautoescape %}

1292 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

The autoescape tag takes either on or off as its argument. At times, you might want to force auto-escaping when
it would otherwise be disabled. Here is an example template:

Auto-escaping is on by default. Hello {{ name }}

{% autoescape off %}
This will not be auto-escaped: {{ data }}.

Nor this: {{ other_data }}
{% autoescape on %}

Auto-escaping applies again: {{ name }}
{% endautoescape %}

{% endautoescape %}

The auto-escaping tag passes its effect onto templates that extend the current one as well as templates included via the
include tag, just like all block tags. For example:

base.html

{% autoescape off %}
<h1>{% block title %}{% endblock %}</h1>
{% block content %}
{% endblock %}
{% endautoescape %}

child.html

{% extends "base.html" %}
{% block title %}This & that{% endblock %}
{% block content %}{{ greeting }}{% endblock %}

Because auto-escaping is turned off in the base template, it will also be turned off in the child template, resulting in
the following rendered HTML when the greeting variable contains the string Hello!:

<h1>This & that</h1>
Hello!

Notes

Generally, template authors don’t need to worry about auto-escaping very much. Developers on the Python side
(people writing views and custom filters) need to think about the cases in which data shouldn’t be escaped, and mark
data appropriately, so things Just Work in the template.

If you’re creating a template that might be used in situations where you’re not sure whether auto-escaping is enabled,
then add an escape filter to any variable that needs escaping. When auto-escaping is on, there’s no danger of the
escape filter double-escaping data – the escape filter does not affect auto-escaped variables.

String literals and automatic escaping

As we mentioned earlier, filter arguments can be strings:

{{ data|default:"This is a string literal." }}

All string literals are inserted without any automatic escaping into the template – they act as if they were all passed
through the safe filter. The reasoning behind this is that the template author is in control of what goes into the string
literal, so they can make sure the text is correctly escaped when the template is written.

6.20. Templates 1293

Django Documentation, Release 1.10.9.dev20171123183751

This means you would write

{{ data|default:"3 < 2" }}

...rather than:

{{ data|default:"3 < 2" }} {# Bad! Don't do this. #}

This doesn’t affect what happens to data coming from the variable itself. The variable’s contents are still automatically
escaped, if necessary, because they’re beyond the control of the template author.

Accessing method calls

Most method calls attached to objects are also available from within templates. This means that templates have access
to much more than just class attributes (like field names) and variables passed in from views. For example, the Django
ORM provides the “entry_set” syntax for finding a collection of objects related on a foreign key. Therefore, given a
model called “comment” with a foreign key relationship to a model called “task” you can loop through all comments
attached to a given task like this:

{% for comment in task.comment_set.all %}
{{ comment }}

{% endfor %}

Similarly, QuerySets provide a count() method to count the number of objects they contain. Therefore, you can
obtain a count of all comments related to the current task with:

{{ task.comment_set.all.count }}

And of course you can easily access methods you’ve explicitly defined on your own models:

models.py

class Task(models.Model):
def foo(self):

return "bar"

template.html

{{ task.foo }}

Because Django intentionally limits the amount of logic processing available in the template language, it is not possible
to pass arguments to method calls accessed from within templates. Data should be calculated in views, then passed to
templates for display.

Custom tag and filter libraries

Certain applications provide custom tag and filter libraries. To access them in a template, ensure the application is in
INSTALLED_APPS (we’d add 'django.contrib.humanize' for this example), and then use the load tag in
a template:

{% load humanize %}

{{ 45000|intcomma }}

In the above, the load tag loads the humanize tag library, which then makes the intcomma filter available for use.
If you’ve enabled django.contrib.admindocs, you can consult the documentation area in your admin to find
the list of custom libraries in your installation.

1294 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

The load tag can take multiple library names, separated by spaces. Example:

{% load humanize i18n %}

See Custom template tags and filters for information on writing your own custom template libraries.

Custom libraries and template inheritance

When you load a custom tag or filter library, the tags/filters are only made available to the current template – not any
parent or child templates along the template-inheritance path.

For example, if a template foo.html has {% load humanize %}, a child template (e.g., one that has {%
extends "foo.html" %}) will not have access to the humanize template tags and filters. The child template
is responsible for its own {% load humanize %}.

This is a feature for the sake of maintainability and sanity.

See also:

The Templates Reference Covers built-in tags, built-in filters, using an alternative template, language, and more.

6.20.2 Built-in template tags and filters

This document describes Django’s built-in template tags and filters. It is recommended that you use the automatic
documentation, if available, as this will also include documentation for any custom tags or filters installed.

Built-in tag reference

autoescape

Controls the current auto-escaping behavior. This tag takes either on or off as an argument and that determines
whether auto-escaping is in effect inside the block. The block is closed with an endautoescape ending tag.

When auto-escaping is in effect, all variable content has HTML escaping applied to it before placing the result into
the output (but after any filters have been applied). This is equivalent to manually applying the escape filter to each
variable.

The only exceptions are variables that are already marked as “safe” from escaping, either by the code that populated
the variable, or because it has had the safe or escape filters applied.

Sample usage:

{% autoescape on %}
{{ body }}

{% endautoescape %}

block

Defines a block that can be overridden by child templates. See Template inheritance for more information.

6.20. Templates 1295

Django Documentation, Release 1.10.9.dev20171123183751

comment

Ignores everything between {% comment %} and {% endcomment %}. An optional note may be inserted in the
first tag. For example, this is useful when commenting out code for documenting why the code was disabled.

Sample usage:

<p>Rendered text with {{ pub_date|date:"c" }}</p>
{% comment "Optional note" %}

<p>Commented out text with {{ create_date|date:"c" }}</p>
{% endcomment %}

comment tags cannot be nested.

csrf_token

This tag is used for CSRF protection, as described in the documentation for Cross Site Request Forgeries.

cycle

Produces one of its arguments each time this tag is encountered. The first argument is produced on the first encounter,
the second argument on the second encounter, and so forth. Once all arguments are exhausted, the tag cycles to the
first argument and produces it again.

This tag is particularly useful in a loop:

{% for o in some_list %}
<tr class="{% cycle 'row1' 'row2' %}">

...
</tr>

{% endfor %}

The first iteration produces HTML that refers to class row1, the second to row2, the third to row1 again, and so on
for each iteration of the loop.

You can use variables, too. For example, if you have two template variables, rowvalue1 and rowvalue2, you can
alternate between their values like this:

{% for o in some_list %}
<tr class="{% cycle rowvalue1 rowvalue2 %}">

...
</tr>

{% endfor %}

Variables included in the cycle will be escaped. You can disable auto-escaping with:

{% for o in some_list %}
<tr class="{% autoescape off %}{% cycle rowvalue1 rowvalue2 %}{% endautoescape %}

→˓">
...

</tr>
{% endfor %}

You can mix variables and strings:

1296 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

{% for o in some_list %}
<tr class="{% cycle 'row1' rowvalue2 'row3' %}">

...
</tr>

{% endfor %}

In some cases you might want to refer to the current value of a cycle without advancing to the next value. To do this,
just give the {% cycle %} tag a name, using “as”, like this:

{% cycle 'row1' 'row2' as rowcolors %}

From then on, you can insert the current value of the cycle wherever you’d like in your template by referencing the
cycle name as a context variable. If you want to move the cycle to the next value independently of the original cycle
tag, you can use another cycle tag and specify the name of the variable. So, the following template:

<tr>
<td class="{% cycle 'row1' 'row2' as rowcolors %}">...</td>
<td class="{{ rowcolors }}">...</td>

</tr>
<tr>

<td class="{% cycle rowcolors %}">...</td>
<td class="{{ rowcolors }}">...</td>

</tr>

would output:

<tr>
<td class="row1">...</td>
<td class="row1">...</td>

</tr>
<tr>

<td class="row2">...</td>
<td class="row2">...</td>

</tr>

You can use any number of values in a cycle tag, separated by spaces. Values enclosed in single quotes (') or double
quotes (") are treated as string literals, while values without quotes are treated as template variables.

By default, when you use the as keyword with the cycle tag, the usage of {% cycle %} that initiates the cycle will
itself produce the first value in the cycle. This could be a problem if you want to use the value in a nested loop or
an included template. If you only want to declare the cycle but not produce the first value, you can add a silent
keyword as the last keyword in the tag. For example:

{% for obj in some_list %}
{% cycle 'row1' 'row2' as rowcolors silent %}
<tr class="{{ rowcolors }}">{% include "subtemplate.html" %}</tr>

{% endfor %}

This will output a list of <tr> elements with class alternating between row1 and row2. The subtemplate will have
access to rowcolors in its context and the value will match the class of the <tr> that encloses it. If the silent
keyword were to be omitted, row1 and row2 would be emitted as normal text, outside the <tr> element.

When the silent keyword is used on a cycle definition, the silence automatically applies to all subsequent uses of that
specific cycle tag. The following template would output nothing, even though the second call to {% cycle %}
doesn’t specify silent:

6.20. Templates 1297

Django Documentation, Release 1.10.9.dev20171123183751

{% cycle 'row1' 'row2' as rowcolors silent %}
{% cycle rowcolors %}

debug

Outputs a whole load of debugging information, including the current context and imported modules.

extends

Signals that this template extends a parent template.

This tag can be used in two ways:

• {% extends "base.html" %} (with quotes) uses the literal value "base.html" as the name of the
parent template to extend.

• {% extends variable %} uses the value of variable. If the variable evaluates to a string, Django will
use that string as the name of the parent template. If the variable evaluates to a Template object, Django will
use that object as the parent template.

See Template inheritance for more information.

A string argument may be a relative path starting with ./ or ../. For example, assume the following directory
structure:

dir1/
template.html
base2.html
my/

base3.html
base1.html

In template.html, the following paths would be valid:

{% extends "./base2.html" %}
{% extends "../base1.html" %}
{% extends "./my/base3.html" %}

The ability to use relative paths was added.

filter

Filters the contents of the block through one or more filters. Multiple filters can be specified with pipes and filters can
have arguments, just as in variable syntax.

Note that the block includes all the text between the filter and endfilter tags.

Sample usage:

{% filter force_escape|lower %}
This text will be HTML-escaped, and will appear in all lowercase.

{% endfilter %}

1298 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Note: The escape and safe filters are not acceptable arguments. Instead, use the autoescape tag to manage
autoescaping for blocks of template code.

firstof

Outputs the first argument variable that is not False. Outputs nothing if all the passed variables are False.

Sample usage:

{% firstof var1 var2 var3 %}

This is equivalent to:

{% if var1 %}
{{ var1 }}

{% elif var2 %}
{{ var2 }}

{% elif var3 %}
{{ var3 }}

{% endif %}

You can also use a literal string as a fallback value in case all passed variables are False:

{% firstof var1 var2 var3 "fallback value" %}

This tag auto-escapes variable values. You can disable auto-escaping with:

{% autoescape off %}
{% firstof var1 var2 var3 "fallback value" %}

{% endautoescape %}

Or if only some variables should be escaped, you can use:

{% firstof var1 var2|safe var3 "fallback value"|safe %}

You can use the syntax {% firstof var1 var2 var3 as value %} to store the output inside a variable.

The “as” syntax was added.

for

Loops over each item in an array, making the item available in a context variable. For example, to display a list of
athletes provided in athlete_list:

{% for athlete in athlete_list %}

{{ athlete.name }}
{% endfor %}

You can loop over a list in reverse by using {% for obj in list reversed %}.

If you need to loop over a list of lists, you can unpack the values in each sublist into individual variables. For example,
if your context contains a list of (x,y) coordinates called points, you could use the following to output the list of
points:

6.20. Templates 1299

Django Documentation, Release 1.10.9.dev20171123183751

{% for x, y in points %}
There is a point at {{ x }},{{ y }}

{% endfor %}

This can also be useful if you need to access the items in a dictionary. For example, if your context contained a
dictionary data, the following would display the keys and values of the dictionary:

{% for key, value in data.items %}
{{ key }}: {{ value }}

{% endfor %}

Keep in mind that for the dot operator, dictionary key lookup takes precedence over method lookup. Therefore if the
data dictionary contains a key named 'items', data.items will return data['items'] instead of data.
items(). Avoid adding keys that are named like dictionary methods if you want to use those methods in a template
(items, values, keys, etc.). Read more about the lookup order of the dot operator in the documentation of
template variables.

The for loop sets a number of variables available within the loop:

Variable Description
forloop.counter The current iteration of the loop (1-indexed)
forloop.counter0 The current iteration of the loop (0-indexed)
forloop.revcounter The number of iterations from the end of the loop (1-indexed)
forloop.revcounter0 The number of iterations from the end of the loop (0-indexed)
forloop.first True if this is the first time through the loop
forloop.last True if this is the last time through the loop
forloop.parentloop For nested loops, this is the loop surrounding the current one

for ... empty

The for tag can take an optional {% empty %} clause whose text is displayed if the given array is empty or could
not be found:

{% for athlete in athlete_list %}

{{ athlete.name }}
{% empty %}

Sorry, no athletes in this list.
{% endfor %}

The above is equivalent to – but shorter, cleaner, and possibly faster than – the following:

{% if athlete_list %}
{% for athlete in athlete_list %}
{{ athlete.name }}

{% endfor %}
{% else %}
Sorry, no athletes in this list.

{% endif %}

1300 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

if

The {% if %} tag evaluates a variable, and if that variable is “true” (i.e. exists, is not empty, and is not a false
boolean value) the contents of the block are output:

{% if athlete_list %}
Number of athletes: {{ athlete_list|length }}

{% elif athlete_in_locker_room_list %}
Athletes should be out of the locker room soon!

{% else %}
No athletes.

{% endif %}

In the above, if athlete_list is not empty, the number of athletes will be displayed by the {{
athlete_list|length }} variable.

As you can see, the if tag may take one or several {% elif %} clauses, as well as an {% else %} clause that
will be displayed if all previous conditions fail. These clauses are optional.

Boolean operators

if tags may use and, or or not to test a number of variables or to negate a given variable:

{% if athlete_list and coach_list %}
Both athletes and coaches are available.

{% endif %}

{% if not athlete_list %}
There are no athletes.

{% endif %}

{% if athlete_list or coach_list %}
There are some athletes or some coaches.

{% endif %}

{% if not athlete_list or coach_list %}
There are no athletes or there are some coaches.

{% endif %}

{% if athlete_list and not coach_list %}
There are some athletes and absolutely no coaches.

{% endif %}

Use of both and and or clauses within the same tag is allowed, with and having higher precedence than or e.g.:

{% if athlete_list and coach_list or cheerleader_list %}

will be interpreted like:

if (athlete_list and coach_list) or cheerleader_list

Use of actual parentheses in the if tag is invalid syntax. If you need them to indicate precedence, you should use
nested if tags.

if tags may also use the operators ==, !=, <, >, <=, >=, in, not in, is, and is not which work as follows:

6.20. Templates 1301

Django Documentation, Release 1.10.9.dev20171123183751

== operator

Equality. Example:

{% if somevar == "x" %}
This appears if variable somevar equals the string "x"

{% endif %}

!= operator

Inequality. Example:

{% if somevar != "x" %}
This appears if variable somevar does not equal the string "x",
or if somevar is not found in the context

{% endif %}

< operator

Less than. Example:

{% if somevar < 100 %}
This appears if variable somevar is less than 100.

{% endif %}

> operator

Greater than. Example:

{% if somevar > 0 %}
This appears if variable somevar is greater than 0.

{% endif %}

<= operator

Less than or equal to. Example:

{% if somevar <= 100 %}
This appears if variable somevar is less than 100 or equal to 100.

{% endif %}

>= operator

Greater than or equal to. Example:

{% if somevar >= 1 %}
This appears if variable somevar is greater than 1 or equal to 1.

{% endif %}

1302 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

in operator

Contained within. This operator is supported by many Python containers to test whether the given value is in the
container. The following are some examples of how x in y will be interpreted:

{% if "bc" in "abcdef" %}
This appears since "bc" is a substring of "abcdef"

{% endif %}

{% if "hello" in greetings %}
If greetings is a list or set, one element of which is the string
"hello", this will appear.

{% endif %}

{% if user in users %}
If users is a QuerySet, this will appear if user is an
instance that belongs to the QuerySet.

{% endif %}

not in operator

Not contained within. This is the negation of the in operator.

is operator

Object identity. Tests if two values are the same object. Example:

{% if somevar is True %}
This appears if and only if somevar is True.

{% endif %}

{% if somevar is None %}
This appears if somevar is None, or if somevar is not found in the context.

{% endif %}

is not operator

Negated object identity. Tests if two values are not the same object. This is the negation of the is operator. Example:

{% if somevar is not True %}
This appears if somevar is not True, or if somevar is not found in the
context.

{% endif %}

{% if somevar is not None %}
This appears if and only if somevar is not None.

{% endif %}

Filters

You can also use filters in the if expression. For example:

6.20. Templates 1303

Django Documentation, Release 1.10.9.dev20171123183751

{% if messages|length >= 100 %}
You have lots of messages today!

{% endif %}

Complex expressions

All of the above can be combined to form complex expressions. For such expressions, it can be important to know
how the operators are grouped when the expression is evaluated - that is, the precedence rules. The precedence of the
operators, from lowest to highest, is as follows:

• or

• and

• not

• in

• ==, !=, <, >, <=, >=

(This follows Python exactly). So, for example, the following complex if tag:

{% if a == b or c == d and e %}

...will be interpreted as:

(a == b) or ((c == d) and e)

If you need different precedence, you will need to use nested if tags. Sometimes that is better for clarity anyway, for
the sake of those who do not know the precedence rules.

The comparison operators cannot be ‘chained’ like in Python or in mathematical notation. For example, instead of
using:

{% if a > b > c %} (WRONG)

you should use:

{% if a > b and b > c %}

ifequal and ifnotequal

{% ifequal a b %} ... {% endifequal %} is an obsolete way to write {% if a == b %} ... {%
endif %}. Likewise, {% ifnotequal a b %} ... {% endifnotequal %} is superseded by {% if a
!= b %} ... {% endif %}. The ifequal and ifnotequal tags will be deprecated in a future release.

ifchanged

Check if a value has changed from the last iteration of a loop.

The {% ifchanged %} block tag is used within a loop. It has two possible uses.

1. Checks its own rendered contents against its previous state and only displays the content if it has changed. For
example, this displays a list of days, only displaying the month if it changes:

1304 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

<h1>Archive for {{ year }}</h1>

{% for date in days %}
{% ifchanged %}<h3>{{ date|date:"F" }}</h3>{% endifchanged %}
{{ date|date:"j" }}

{% endfor %}

2. If given one or more variables, check whether any variable has changed. For example, the following shows the
date every time it changes, while showing the hour if either the hour or the date has changed:

{% for date in days %}
{% ifchanged date.date %} {{ date.date }} {% endifchanged %}
{% ifchanged date.hour date.date %}

{{ date.hour }}
{% endifchanged %}

{% endfor %}

The ifchanged tag can also take an optional {% else %} clause that will be displayed if the value has not
changed:

{% for match in matches %}
<div style="background-color:

{% ifchanged match.ballot_id %}
{% cycle "red" "blue" %}

{% else %}
gray

{% endifchanged %}
">{{ match }}</div>

{% endfor %}

include

Loads a template and renders it with the current context. This is a way of “including” other templates within a template.

The template name can either be a variable or a hard-coded (quoted) string, in either single or double quotes.

This example includes the contents of the template "foo/bar.html":

{% include "foo/bar.html" %}

A string argument may be a relative path starting with ./ or ../ as described in the extends tag.

The ability to use a relative path was added.

This example includes the contents of the template whose name is contained in the variable template_name:

{% include template_name %}

The variable may also be any object with a render() method that accepts a context. This allows you to reference a
compiled Template in your context.

An included template is rendered within the context of the template that includes it. This example produces the output
"Hello, John!":

• Context: variable person is set to "John" and variable greeting is set to "Hello".

• Template:

6.20. Templates 1305

Django Documentation, Release 1.10.9.dev20171123183751

{% include "name_snippet.html" %}

• The name_snippet.html template:

{{ greeting }}, {{ person|default:"friend" }}!

You can pass additional context to the template using keyword arguments:

{% include "name_snippet.html" with person="Jane" greeting="Hello" %}

If you want to render the context only with the variables provided (or even no variables at all), use the only option.
No other variables are available to the included template:

{% include "name_snippet.html" with greeting="Hi" only %}

If the included template causes an exception while it’s rendered (including if it’s missing or has syntax er-
rors), the behavior varies depending on the template engine's debug option (if not set, this option de-
faults to the value of DEBUG). When debug mode is turned on, an exception like TemplateDoesNotExist or
TemplateSyntaxError will be raised. When debug mode is turned off, {% include %} logs a warning to the
django.template logger with the exception that happens while rendering the included template and returns an
empty string.

Template logging now includes the warning logging mentioned above.

Note: The include tag should be considered as an implementation of “render this subtemplate and include the
HTML”, not as “parse this subtemplate and include its contents as if it were part of the parent”. This means that there
is no shared state between included templates – each include is a completely independent rendering process.

Blocks are evaluated before they are included. This means that a template that includes blocks from another will
contain blocks that have already been evaluated and rendered - not blocks that can be overridden by, for example, an
extending template.

load

Loads a custom template tag set.

For example, the following template would load all the tags and filters registered in somelibrary and
otherlibrary located in package package:

{% load somelibrary package.otherlibrary %}

You can also selectively load individual filters or tags from a library, using the from argument. In this example, the
template tags/filters named foo and bar will be loaded from somelibrary:

{% load foo bar from somelibrary %}

See Custom tag and filter libraries for more information.

lorem

Displays random “lorem ipsum” Latin text. This is useful for providing sample data in templates.

Usage:

1306 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

{% lorem [count] [method] [random] %}

The {% lorem %} tag can be used with zero, one, two or three arguments. The arguments are:

Argu-
ment

Description

count A number (or variable) containing the number of paragraphs or words to generate (default is 1).
method Either w for words, p for HTML paragraphs or b for plain-text paragraph blocks (default is b).
random The word random, which if given, does not use the common paragraph (“Lorem ipsum dolor sit

amet...”) when generating text.

Examples:

• {% lorem %} will output the common “lorem ipsum” paragraph.

• {% lorem 3 p %} will output the common “lorem ipsum” paragraph and two random paragraphs each
wrapped in HTML <p> tags.

• {% lorem 2 w random %} will output two random Latin words.

now

Displays the current date and/or time, using a format according to the given string. Such string can contain format
specifiers characters as described in the date filter section.

Example:

It is {% now "jS F Y H:i" %}

Note that you can backslash-escape a format string if you want to use the “raw” value. In this example, both “o” and
“f” are backslash-escaped, because otherwise each is a format string that displays the year and the time, respectively:

It is the {% now "jS \o\f F" %}

This would display as “It is the 4th of September”.

Note: The format passed can also be one of the predefined ones DATE_FORMAT, DATETIME_FORMAT,
SHORT_DATE_FORMAT or SHORT_DATETIME_FORMAT. The predefined formats may vary depending on the cur-
rent locale and if Format localization is enabled, e.g.:

It is {% now "SHORT_DATETIME_FORMAT" %}

You can also use the syntax {% now "Y" as current_year %} to store the output (as a string) inside a vari-
able. This is useful if you want to use {% now %} inside a template tag like blocktrans for example:

{% now "Y" as current_year %}
{% blocktrans %}Copyright {{ current_year }}{% endblocktrans %}

regroup

Regroups a list of alike objects by a common attribute.

This complex tag is best illustrated by way of an example: say that cities is a list of cities represented by dictionaries
containing "name", "population", and "country" keys:

6.20. Templates 1307

Django Documentation, Release 1.10.9.dev20171123183751

cities = [
{'name': 'Mumbai', 'population': '19,000,000', 'country': 'India'},
{'name': 'Calcutta', 'population': '15,000,000', 'country': 'India'},
{'name': 'New York', 'population': '20,000,000', 'country': 'USA'},
{'name': 'Chicago', 'population': '7,000,000', 'country': 'USA'},
{'name': 'Tokyo', 'population': '33,000,000', 'country': 'Japan'},

]

...and you’d like to display a hierarchical list that is ordered by country, like this:

• India

– Mumbai: 19,000,000

– Calcutta: 15,000,000

• USA

– New York: 20,000,000

– Chicago: 7,000,000

• Japan

– Tokyo: 33,000,000

You can use the {% regroup %} tag to group the list of cities by country. The following snippet of template code
would accomplish this:

{% regroup cities by country as country_list %}

{% for country in country_list %}

{{ country.grouper }}

{% for city in country.list %}
{{ city.name }}: {{ city.population }}

{% endfor %}

{% endfor %}

Let’s walk through this example. {% regroup %} takes three arguments: the list you want to regroup, the attribute
to group by, and the name of the resulting list. Here, we’re regrouping the cities list by the country attribute and
calling the result country_list.

{% regroup %} produces a list (in this case, country_list) of group objects. Each group object has two
attributes:

• grouper – the item that was grouped by (e.g., the string “India” or “Japan”).

• list – a list of all items in this group (e.g., a list of all cities with country=’India’).

Note that {% regroup %} does not order its input! Our example relies on the fact that the cities list was ordered
by country in the first place. If the cities list did not order its members by country, the regrouping would
naively display more than one group for a single country. For example, say the cities list was set to this (note that
the countries are not grouped together):

cities = [
{'name': 'Mumbai', 'population': '19,000,000', 'country': 'India'},
{'name': 'New York', 'population': '20,000,000', 'country': 'USA'},

1308 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

{'name': 'Calcutta', 'population': '15,000,000', 'country': 'India'},
{'name': 'Chicago', 'population': '7,000,000', 'country': 'USA'},
{'name': 'Tokyo', 'population': '33,000,000', 'country': 'Japan'},

]

With this input for cities, the example {% regroup %} template code above would result in the following
output:

• India

– Mumbai: 19,000,000

• USA

– New York: 20,000,000

• India

– Calcutta: 15,000,000

• USA

– Chicago: 7,000,000

• Japan

– Tokyo: 33,000,000

The easiest solution to this gotcha is to make sure in your view code that the data is ordered according to how you
want to display it.

Another solution is to sort the data in the template using the dictsort filter, if your data is in a list of dictionaries:

{% regroup cities|dictsort:"country" by country as country_list %}

Grouping on other properties

Any valid template lookup is a legal grouping attribute for the regroup tag, including methods, attributes, dictionary
keys and list items. For example, if the “country” field is a foreign key to a class with an attribute “description,” you
could use:

{% regroup cities by country.description as country_list %}

Or, if country is a field with choices, it will have a get_FOO_display() method available as an attribute,
allowing you to group on the display string rather than the choices key:

{% regroup cities by get_country_display as country_list %}

{{ country.grouper }} will now display the value fields from the choices set rather than the keys.

spaceless

Removes whitespace between HTML tags. This includes tab characters and newlines.

Example usage:

6.20. Templates 1309

Django Documentation, Release 1.10.9.dev20171123183751

{% spaceless %}
<p>

Foo
</p>

{% endspaceless %}

This example would return this HTML:

<p>Foo</p>

Only space between tags is removed – not space between tags and text. In this example, the space around Hello
won’t be stripped:

{% spaceless %}

Hello

{% endspaceless %}

templatetag

Outputs one of the syntax characters used to compose template tags.

Since the template system has no concept of “escaping”, to display one of the bits used in template tags, you must use
the {% templatetag %} tag.

The argument tells which template bit to output:

Argument Outputs
openblock {%
closeblock %}
openvariable {{
closevariable }}
openbrace {
closebrace }
opencomment {#
closecomment #}

Sample usage:

{% templatetag openblock %} url 'entry_list' {% templatetag closeblock %}

url

Returns an absolute path reference (a URL without the domain name) matching a given view and optional parameters.
Any special characters in the resulting path will be encoded using iri_to_uri().

This is a way to output links without violating the DRY principle by having to hard-code URLs in your templates:

{% url 'some-url-name' v1 v2 %}

The first argument is a url() name. It can be a quoted literal or any other context variable. Additional arguments are
optional and should be space-separated values that will be used as arguments in the URL. The example above shows
passing positional arguments. Alternatively you may use keyword syntax:

1310 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

{% url 'some-url-name' arg1=v1 arg2=v2 %}

Do not mix both positional and keyword syntax in a single call. All arguments required by the URLconf should be
present.

For example, suppose you have a view, app_views.client, whose URLconf takes a client ID (here, client()
is a method inside the views file app_views.py). The URLconf line might look like this:

('^client/([0-9]+)/$', app_views.client, name='app-views-client')

If this app’s URLconf is included into the project’s URLconf under a path such as this:

('^clients/', include('project_name.app_name.urls'))

...then, in a template, you can create a link to this view like this:

{% url 'app-views-client' client.id %}

The template tag will output the string /clients/client/123/.

Note that if the URL you’re reversing doesn’t exist, you’ll get an NoReverseMatch exception raised, which will
cause your site to display an error page.

If you’d like to retrieve a URL without displaying it, you can use a slightly different call:

{% url 'some-url-name' arg arg2 as the_url %}

I'm linking to {{ the_url }}

The scope of the variable created by the as var syntax is the {% block %} in which the {% url %} tag appears.

This {% url ... as var %} syntax will not cause an error if the view is missing. In practice you’ll use this to
link to views that are optional:

{% url 'some-url-name' as the_url %}
{% if the_url %}

Link to optional stuff
{% endif %}

If you’d like to retrieve a namespaced URL, specify the fully qualified name:

{% url 'myapp:view-name' %}

This will follow the normal namespaced URL resolution strategy, including using any hints provided by the context
as to the current application.

Warning: Don’t forget to put quotes around the url() name, otherwise the value will be interpreted as a context
variable!

verbatim

Stops the template engine from rendering the contents of this block tag.

A common use is to allow a JavaScript template layer that collides with Django’s syntax. For example:

6.20. Templates 1311

Django Documentation, Release 1.10.9.dev20171123183751

{% verbatim %}
{{if dying}}Still alive.{{/if}}

{% endverbatim %}

You can also designate a specific closing tag, allowing the use of {% endverbatim %} as part of the unrendered
contents:

{% verbatim myblock %}
Avoid template rendering via the {% verbatim %}{% endverbatim %} block.

{% endverbatim myblock %}

widthratio

For creating bar charts and such, this tag calculates the ratio of a given value to a maximum value, and then applies
that ratio to a constant.

For example:

<img src="bar.png" alt="Bar"
height="10" width="{% widthratio this_value max_value max_width %}" />

If this_value is 175, max_value is 200, and max_width is 100, the image in the above example will be 88
pixels wide (because 175/200 = .875; .875 * 100 = 87.5 which is rounded up to 88).

In some cases you might want to capture the result of widthratio in a variable. It can be useful, for instance, in a
blocktrans like this:

{% widthratio this_value max_value max_width as width %}
{% blocktrans %}The width is: {{ width }}{% endblocktrans %}

with

Caches a complex variable under a simpler name. This is useful when accessing an “expensive” method (e.g., one that
hits the database) multiple times.

For example:

{% with total=business.employees.count %}
{{ total }} employee{{ total|pluralize }}

{% endwith %}

The populated variable (in the example above, total) is only available between the {% with %} and {%
endwith %} tags.

You can assign more than one context variable:

{% with alpha=1 beta=2 %}
...

{% endwith %}

Note: The previous more verbose format is still supported: {% with business.employees.count as
total %}

1312 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Built-in filter reference

add

Adds the argument to the value.

For example:

{{ value|add:"2" }}

If value is 4, then the output will be 6.

This filter will first try to coerce both values to integers. If this fails, it’ll attempt to add the values together anyway.
This will work on some data types (strings, list, etc.) and fail on others. If it fails, the result will be an empty string.

For example, if we have:

{{ first|add:second }}

and first is [1, 2, 3] and second is [4, 5, 6], then the output will be [1, 2, 3, 4, 5, 6].

Warning: Strings that can be coerced to integers will be summed, not concatenated, as in the first example above.

addslashes

Adds slashes before quotes. Useful for escaping strings in CSV, for example.

For example:

{{ value|addslashes }}

If value is "I'm using Django", the output will be "I\'m using Django".

capfirst

Capitalizes the first character of the value. If the first character is not a letter, this filter has no effect.

For example:

{{ value|capfirst }}

If value is "django", the output will be "Django".

center

Centers the value in a field of a given width.

For example:

"{{ value|center:"15" }}"

If value is "Django", the output will be " Django ".

6.20. Templates 1313

Django Documentation, Release 1.10.9.dev20171123183751

cut

Removes all values of arg from the given string.

For example:

{{ value|cut:" " }}

If value is "String with spaces", the output will be "Stringwithspaces".

date

Formats a date according to the given format.

Uses a similar format as PHP’s date() function (https://php.net/date) with some differences.

Note: These format characters are not used in Django outside of templates. They were designed to be compatible
with PHP to ease transitioning for designers.

Available format strings:

Format character Description Example output
a 'a.m.' or 'p.m.' (Note that this is slightly different than PHP’s output, because this includes periods to match Associated Press style.) 'a.m.'
A 'AM' or 'PM'. 'AM'
b Month, textual, 3 letters, lowercase. 'jan'
B Not implemented.
c ISO 8601 format. (Note: unlike others formatters, such as “Z”, “O” or “r”, the “c” formatter will not add timezone offset if value is a naive datetime (see datetime.tzinfo). 2008-01-02T10:30:00.000123+02:00, or 2008-01-02T10:30:00.000123 if the datetime is naive
d Day of the month, 2 digits with leading zeros. '01' to '31'
D Day of the week, textual, 3 letters. 'Fri'
e Timezone name. Could be in any format, or might return an empty string, depending on the datetime. '', 'GMT', '-500', 'US/Eastern', etc.
E Month, locale specific alternative representation usually used for long date representation. 'listopada' (for Polish locale, as opposed to 'Listopad')
f Time, in 12-hour hours and minutes, with minutes left off if they’re zero. Proprietary extension. '1', '1:30'
F Month, textual, long. 'January'
g Hour, 12-hour format without leading zeros. '1' to '12'
G Hour, 24-hour format without leading zeros. '0' to '23'
h Hour, 12-hour format. '01' to '12'
H Hour, 24-hour format. '00' to '23'
i Minutes. '00' to '59'
I Daylight Savings Time, whether it’s in effect or not. '1' or '0'
j Day of the month without leading zeros. '1' to '31'
l Day of the week, textual, long. 'Friday'
L Boolean for whether it’s a leap year. True or False
m Month, 2 digits with leading zeros. '01' to '12'
M Month, textual, 3 letters. 'Jan'
n Month without leading zeros. '1' to '12'
N Month abbreviation in Associated Press style. Proprietary extension. 'Jan.', 'Feb.', 'March', 'May'
o ISO-8601 week-numbering year, corresponding to the ISO-8601 week number (W) which uses leap weeks. See Y for the more common year format. '1999'
O Difference to Greenwich time in hours. '+0200'
P Time, in 12-hour hours, minutes and ‘a.m.’/’p.m.’, with minutes left off if they’re zero and the special-case strings ‘midnight’ and ‘noon’ if appropriate. Proprietary extension. '1 a.m.', '1:30 p.m.', 'midnight', 'noon', '12:30 p.m.'
r RFC 5322 formatted date. 'Thu, 21 Dec 2000 16:01:07 +0200'
s Seconds, 2 digits with leading zeros. '00' to '59'

Continued on next page

1314 Chapter 6. API Reference

https://php.net/date
https://docs.python.org/3/library/datetime.html#datetime.tzinfo
https://tools.ietf.org/html/rfc5322.html

Django Documentation, Release 1.10.9.dev20171123183751

Table 6.3 – continued from previous page
Format character Description Example output
S English ordinal suffix for day of the month, 2 characters. 'st', 'nd', 'rd' or 'th'
t Number of days in the given month. 28 to 31
T Time zone of this machine. 'EST', 'MDT'
u Microseconds. 000000 to 999999
U Seconds since the Unix Epoch (January 1 1970 00:00:00 UTC).
w Day of the week, digits without leading zeros. '0' (Sunday) to '6' (Saturday)
W ISO-8601 week number of year, with weeks starting on Monday. 1, 53
y Year, 2 digits. '99'
Y Year, 4 digits. '1999'
z Day of the year. 0 to 365
Z Time zone offset in seconds. The offset for timezones west of UTC is always negative, and for those east of UTC is always positive. -43200 to 43200

For example:

{{ value|date:"D d M Y" }}

If value is a datetime object (e.g., the result of datetime.datetime.now()), the output will be the string
'Wed 09 Jan 2008'.

The format passed can be one of the predefined ones DATE_FORMAT, DATETIME_FORMAT,
SHORT_DATE_FORMAT or SHORT_DATETIME_FORMAT, or a custom format that uses the format specifiers
shown in the table above. Note that predefined formats may vary depending on the current locale.

Assuming that USE_L10N is True and LANGUAGE_CODE is, for example, "es", then for:

{{ value|date:"SHORT_DATE_FORMAT" }}

the output would be the string "09/01/2008" (the "SHORT_DATE_FORMAT" format specifier for the es locale
as shipped with Django is "d/m/Y").

When used without a format string, the DATE_FORMAT format specifier is used. Assuming the same settings as the
previous example:

{{ value|date }}

outputs 9 de Enero de 2008 (the DATE_FORMAT format specifier for the es locale is r'j \d\e F \d\e
Y'.

In older versions, the DATE_FORMAT setting (without localization) is always used when a format string isn’t given.

You can combine date with the time filter to render a full representation of a datetime value. E.g.:

{{ value|date:"D d M Y" }} {{ value|time:"H:i" }}

default

If value evaluates to False, uses the given default. Otherwise, uses the value.

For example:

{{ value|default:"nothing" }}

If value is "" (the empty string), the output will be nothing.

6.20. Templates 1315

https://docs.python.org/3/library/datetime.html#datetime.datetime

Django Documentation, Release 1.10.9.dev20171123183751

default_if_none

If (and only if) value is None, uses the given default. Otherwise, uses the value.

Note that if an empty string is given, the default value will not be used. Use the default filter if you want to fallback
for empty strings.

For example:

{{ value|default_if_none:"nothing" }}

If value is None, the output will be the string "nothing".

dictsort

Takes a list of dictionaries and returns that list sorted by the key given in the argument.

For example:

{{ value|dictsort:"name" }}

If value is:

[
{'name': 'zed', 'age': 19},
{'name': 'amy', 'age': 22},
{'name': 'joe', 'age': 31},

]

then the output would be:

[
{'name': 'amy', 'age': 22},
{'name': 'joe', 'age': 31},
{'name': 'zed', 'age': 19},

]

You can also do more complicated things like:

{% for book in books|dictsort:"author.age" %}

* {{ book.title }} ({{ book.author.name }})
{% endfor %}

If books is:

[
{'title': '1984', 'author': {'name': 'George', 'age': 45}},
{'title': 'Timequake', 'author': {'name': 'Kurt', 'age': 75}},
{'title': 'Alice', 'author': {'name': 'Lewis', 'age': 33}},

]

then the output would be:

* Alice (Lewis)

* 1984 (George)

* Timequake (Kurt)

1316 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

dictsort can also order a list of lists (or any other object implementing __getitem__()) by elements at specified
index. For example:

{{ value|dictsort:0 }}

If value is:

[
('a', '42'),
('c', 'string'),
('b', 'foo'),

]

then the output would be:

[
('a', '42'),
('b', 'foo'),
('c', 'string'),

]

You must pass the index as an integer rather than a string. The following produce empty output:

{{ values|dictsort:"0" }}

The ability to order a list of lists was added.

dictsortreversed

Takes a list of dictionaries and returns that list sorted in reverse order by the key given in the argument. This works
exactly the same as the above filter, but the returned value will be in reverse order.

divisibleby

Returns True if the value is divisible by the argument.

For example:

{{ value|divisibleby:"3" }}

If value is 21, the output would be True.

escape

Escapes a string’s HTML. Specifically, it makes these replacements:

• < is converted to <

• > is converted to >

• ' (single quote) is converted to '

• " (double quote) is converted to "

• & is converted to &

6.20. Templates 1317

Django Documentation, Release 1.10.9.dev20171123183751

The escaping is only applied when the string is output, so it does not matter where in a chained sequence of filters you
put escape: it will always be applied as though it were the last filter. If you want escaping to be applied immediately,
use the force_escape filter.

Applying escape to a variable that would normally have auto-escaping applied to the result will only result in one
round of escaping being done. So it is safe to use this function even in auto-escaping environments. If you want
multiple escaping passes to be applied, use the force_escape filter.

For example, you can apply escape to fields when autoescape is off:

{% autoescape off %}
{{ title|escape }}

{% endautoescape %}

Deprecated since version 1.10: The “lazy” behavior of the escape filter is deprecated. It will change to immediately
apply conditional_escape() in Django 2.0.

escapejs

Escapes characters for use in JavaScript strings. This does not make the string safe for use in HTML, but does protect
you from syntax errors when using templates to generate JavaScript/JSON.

For example:

{{ value|escapejs }}

If value is "testing\r\njavascript \'string" escaping", the out-
put will be "testing\\u000D\\u000Ajavascript \\u0027string\\u0022
\\u003Cb\\u003Eescaping\\u003C/b\\u003E".

filesizeformat

Formats the value like a ‘human-readable’ file size (i.e. '13 KB', '4.1 MB', '102 bytes', etc.).

For example:

{{ value|filesizeformat }}

If value is 123456789, the output would be 117.7 MB.

File sizes and SI units

Strictly speaking, filesizeformat does not conform to the International System of Units which recommends
using KiB, MiB, GiB, etc. when byte sizes are calculated in powers of 1024 (which is the case here). Instead, Django
uses traditional unit names (KB, MB, GB, etc.) corresponding to names that are more commonly used.

first

Returns the first item in a list.

For example:

{{ value|first }}

1318 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

If value is the list ['a', 'b', 'c'], the output will be 'a'.

floatformat

When used without an argument, rounds a floating-point number to one decimal place – but only if there’s a decimal
part to be displayed. For example:

value Template Output
34.23234 {{ value|floatformat }} 34.2
34.00000 {{ value|floatformat }} 34
34.26000 {{ value|floatformat }} 34.3

If used with a numeric integer argument, floatformat rounds a number to that many decimal places. For example:

value Template Output
34.23234 {{ value|floatformat:3 }} 34.232
34.00000 {{ value|floatformat:3 }} 34.000
34.26000 {{ value|floatformat:3 }} 34.260

Particularly useful is passing 0 (zero) as the argument which will round the float to the nearest integer.

value Template Output
34.23234 {{ value|floatformat:"0" }} 34
34.00000 {{ value|floatformat:"0" }} 34
39.56000 {{ value|floatformat:"0" }} 40

If the argument passed to floatformat is negative, it will round a number to that many decimal places – but only
if there’s a decimal part to be displayed. For example:

value Template Output
34.23234 {{ value|floatformat:"-3" }} 34.232
34.00000 {{ value|floatformat:"-3" }} 34
34.26000 {{ value|floatformat:"-3" }} 34.260

Using floatformat with no argument is equivalent to using floatformat with an argument of -1.

force_escape

Applies HTML escaping to a string (see the escape filter for details). This filter is applied immediately and returns
a new, escaped string. This is useful in the rare cases where you need multiple escaping or want to apply other filters
to the escaped results. Normally, you want to use the escape filter.

For example, if you want to catch the <p> HTML elements created by the linebreaks filter:

{% autoescape off %}
{{ body|linebreaks|force_escape }}

{% endautoescape %}

get_digit

Given a whole number, returns the requested digit, where 1 is the right-most digit, 2 is the second-right-most digit,
etc. Returns the original value for invalid input (if input or argument is not an integer, or if argument is less than 1).
Otherwise, output is always an integer.

For example:

6.20. Templates 1319

Django Documentation, Release 1.10.9.dev20171123183751

{{ value|get_digit:"2" }}

If value is 123456789, the output will be 8.

iriencode

Converts an IRI (Internationalized Resource Identifier) to a string that is suitable for including in a URL. This is
necessary if you’re trying to use strings containing non-ASCII characters in a URL.

It’s safe to use this filter on a string that has already gone through the urlencode filter.

For example:

{{ value|iriencode }}

If value is "?test=1&me=2", the output will be "?test=1&me=2".

join

Joins a list with a string, like Python’s str.join(list)

For example:

{{ value|join:" // " }}

If value is the list ['a', 'b', 'c'], the output will be the string "a // b // c".

last

Returns the last item in a list.

For example:

{{ value|last }}

If value is the list ['a', 'b', 'c', 'd'], the output will be the string "d".

length

Returns the length of the value. This works for both strings and lists.

For example:

{{ value|length }}

If value is ['a', 'b', 'c', 'd'] or "abcd", the output will be 4.

The filter returns 0 for an undefined variable.

1320 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

length_is

Returns True if the value’s length is the argument, or False otherwise.

For example:

{{ value|length_is:"4" }}

If value is ['a', 'b', 'c', 'd'] or "abcd", the output will be True.

linebreaks

Replaces line breaks in plain text with appropriate HTML; a single newline becomes an HTML line break (
)
and a new line followed by a blank line becomes a paragraph break (</p>).

For example:

{{ value|linebreaks }}

If value is Joel\nis a slug, the output will be <p>Joel
is a slug</p>.

linebreaksbr

Converts all newlines in a piece of plain text to HTML line breaks (
).

For example:

{{ value|linebreaksbr }}

If value is Joel\nis a slug, the output will be Joel
is a slug.

linenumbers

Displays text with line numbers.

For example:

{{ value|linenumbers }}

If value is:

one
two
three

the output will be:

1. one
2. two
3. three

6.20. Templates 1321

Django Documentation, Release 1.10.9.dev20171123183751

ljust

Left-aligns the value in a field of a given width.

Argument: field size

For example:

"{{ value|ljust:"10" }}"

If value is Django, the output will be "Django ".

lower

Converts a string into all lowercase.

For example:

{{ value|lower }}

If value is Totally LOVING this Album!, the output will be totally loving this album!.

make_list

Returns the value turned into a list. For a string, it’s a list of characters. For an integer, the argument is cast into an
unicode string before creating a list.

For example:

{{ value|make_list }}

If value is the string "Joel", the output would be the list ['J', 'o', 'e', 'l']. If value is 123, the
output will be the list ['1', '2', '3'].

phone2numeric

Converts a phone number (possibly containing letters) to its numerical equivalent.

The input doesn’t have to be a valid phone number. This will happily convert any string.

For example:

{{ value|phone2numeric }}

If value is 800-COLLECT, the output will be 800-2655328.

pluralize

Returns a plural suffix if the value is not 1. By default, this suffix is 's'.

Example:

You have {{ num_messages }} message{{ num_messages|pluralize }}.

1322 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

If num_messages is 1, the output will be You have 1 message. If num_messages is 2 the output will be
You have 2 messages.

For words that require a suffix other than 's', you can provide an alternate suffix as a parameter to the filter.

Example:

You have {{ num_walruses }} walrus{{ num_walruses|pluralize:"es" }}.

For words that don’t pluralize by simple suffix, you can specify both a singular and plural suffix, separated by a
comma.

Example:

You have {{ num_cherries }} cherr{{ num_cherries|pluralize:"y,ies" }}.

Note: Use blocktrans to pluralize translated strings.

pprint

A wrapper around pprint.pprint() – for debugging, really.

random

Returns a random item from the given list.

For example:

{{ value|random }}

If value is the list ['a', 'b', 'c', 'd'], the output could be "b".

rjust

Right-aligns the value in a field of a given width.

Argument: field size

For example:

"{{ value|rjust:"10" }}"

If value is Django, the output will be " Django".

safe

Marks a string as not requiring further HTML escaping prior to output. When autoescaping is off, this filter has no
effect.

Note: If you are chaining filters, a filter applied after safe can make the contents unsafe again. For example, the
following code prints the variable as is, unescaped:

6.20. Templates 1323

https://docs.python.org/3/library/pprint.html#pprint.pprint

Django Documentation, Release 1.10.9.dev20171123183751

{{ var|safe|escape }}

safeseq

Applies the safe filter to each element of a sequence. Useful in conjunction with other filters that operate on se-
quences, such as join. For example:

{{ some_list|safeseq|join:", " }}

You couldn’t use the safe filter directly in this case, as it would first convert the variable into a string, rather than
working with the individual elements of the sequence.

slice

Returns a slice of the list.

Uses the same syntax as Python’s list slicing. See http://www.diveintopython3.net/native-datatypes.html#slicinglists
for an introduction.

Example:

{{ some_list|slice:":2" }}

If some_list is ['a', 'b', 'c'], the output will be ['a', 'b'].

slugify

Converts to ASCII. Converts spaces to hyphens. Removes characters that aren’t alphanumerics, underscores, or hy-
phens. Converts to lowercase. Also strips leading and trailing whitespace.

For example:

{{ value|slugify }}

If value is "Joel is a slug", the output will be "joel-is-a-slug".

stringformat

Formats the variable according to the argument, a string formatting specifier. This specifier uses the printf-style String
Formatting syntax, with the exception that the leading “%” is dropped.

For example:

{{ value|stringformat:"E" }}

If value is 10, the output will be 1.000000E+01.

1324 Chapter 6. API Reference

http://www.diveintopython3.net/native-datatypes.html#slicinglists
https://docs.python.org/3/library/stdtypes.html#old-string-formatting
https://docs.python.org/3/library/stdtypes.html#old-string-formatting

Django Documentation, Release 1.10.9.dev20171123183751

striptags

Makes all possible efforts to strip all [X]HTML tags.

For example:

{{ value|striptags }}

If value is "Joel <button>is</button> a slug", the output will be
"Joel is a slug".

No safety guarantee

Note that striptags doesn’t give any guarantee about its output being HTML safe, particularly with non valid
HTML input. So NEVER apply the safe filter to a striptags output. If you are looking for something more
robust, you can use the bleach Python library, notably its clean method.

time

Formats a time according to the given format.

Given format can be the predefined one TIME_FORMAT, or a custom format, same as the date filter. Note that the
predefined format is locale-dependent.

For example:

{{ value|time:"H:i" }}

If value is equivalent to datetime.datetime.now(), the output will be the string "01:23".

Another example:

Assuming that USE_L10N is True and LANGUAGE_CODE is, for example, "de", then for:

{{ value|time:"TIME_FORMAT" }}

the output will be the string "01:23:00" (The "TIME_FORMAT" format specifier for the de locale as shipped with
Django is "H:i:s").

The time filter will only accept parameters in the format string that relate to the time of day, not the date (for obvious
reasons). If you need to format a date value, use the date filter instead (or along time if you need to render a full
datetime value).

There is one exception the above rule: When passed a datetime value with attached timezone information (a time-
zone-aware datetime instance) the time filter will accept the timezone-related format specifiers 'e', 'O' , 'T'
and 'Z'.

When used without a format string, the TIME_FORMAT format specifier is used:

{{ value|time }}

is the same as:

{{ value|time:"TIME_FORMAT" }}

In older versions, the TIME_FORMAT setting (without localization) is always used when a format string isn’t given.

6.20. Templates 1325

https://bleach.readthedocs.io/en/latest/clean.html
https://docs.python.org/3/library/datetime.html#datetime.datetime

Django Documentation, Release 1.10.9.dev20171123183751

timesince

Formats a date as the time since that date (e.g., “4 days, 6 hours”).

Takes an optional argument that is a variable containing the date to use as the comparison point (without the argument,
the comparison point is now). For example, if blog_date is a date instance representing midnight on 1 June 2006,
and comment_date is a date instance for 08:00 on 1 June 2006, then the following would return “8 hours”:

{{ blog_date|timesince:comment_date }}

Comparing offset-naive and offset-aware datetimes will return an empty string.

Minutes is the smallest unit used, and “0 minutes” will be returned for any date that is in the future relative to the
comparison point.

timeuntil

Similar to timesince, except that it measures the time from now until the given date or datetime. For ex-
ample, if today is 1 June 2006 and conference_date is a date instance holding 29 June 2006, then {{
conference_date|timeuntil }} will return “4 weeks”.

Takes an optional argument that is a variable containing the date to use as the comparison point (instead of now). If
from_date contains 22 June 2006, then the following will return “1 week”:

{{ conference_date|timeuntil:from_date }}

Comparing offset-naive and offset-aware datetimes will return an empty string.

Minutes is the smallest unit used, and “0 minutes” will be returned for any date that is in the past relative to the
comparison point.

title

Converts a string into titlecase by making words start with an uppercase character and the remaining characters low-
ercase. This tag makes no effort to keep “trivial words” in lowercase.

For example:

{{ value|title }}

If value is "my FIRST post", the output will be "My First Post".

truncatechars

Truncates a string if it is longer than the specified number of characters. Truncated strings will end with a translatable
ellipsis sequence (”...”).

Argument: Number of characters to truncate to

For example:

{{ value|truncatechars:9 }}

If value is "Joel is a slug", the output will be "Joel i...".

1326 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

truncatechars_html

Similar to truncatechars, except that it is aware of HTML tags. Any tags that are opened in the string and not
closed before the truncation point are closed immediately after the truncation.

For example:

{{ value|truncatechars_html:9 }}

If value is "<p>Joel is a slug</p>", the output will be "<p>Joel i...</p>".

Newlines in the HTML content will be preserved.

truncatewords

Truncates a string after a certain number of words.

Argument: Number of words to truncate after

For example:

{{ value|truncatewords:2 }}

If value is "Joel is a slug", the output will be "Joel is ...".

Newlines within the string will be removed.

truncatewords_html

Similar to truncatewords, except that it is aware of HTML tags. Any tags that are opened in the string and not
closed before the truncation point, are closed immediately after the truncation.

This is less efficient than truncatewords, so should only be used when it is being passed HTML text.

For example:

{{ value|truncatewords_html:2 }}

If value is "<p>Joel is a slug</p>", the output will be "<p>Joel is ...</p>".

Newlines in the HTML content will be preserved.

unordered_list

Recursively takes a self-nested list and returns an HTML unordered list – WITHOUT opening and closing tags.

The list is assumed to be in the proper format. For example, if var contains ['States', ['Kansas',
['Lawrence', 'Topeka'], 'Illinois']], then {{ var|unordered_list }} would return:

States

Kansas

Lawrence
Topeka

6.20. Templates 1327

Django Documentation, Release 1.10.9.dev20171123183751

Illinois

upper

Converts a string into all uppercase.

For example:

{{ value|upper }}

If value is "Joel is a slug", the output will be "JOEL IS A SLUG".

urlencode

Escapes a value for use in a URL.

For example:

{{ value|urlencode }}

If value is "https://www.example.org/foo?a=b&c=d", the output will be "https%3A//www.
example.org/foo%3Fa%3Db%26c%3Dd".

An optional argument containing the characters which should not be escaped can be provided.

If not provided, the ‘/’ character is assumed safe. An empty string can be provided when all characters should be
escaped. For example:

{{ value|urlencode:"" }}

If value is "https://www.example.org/", the output will be "https%3A%2F%2Fwww.example.
org%2F".

urlize

Converts URLs and email addresses in text into clickable links.

This template tag works on links prefixed with http://, https://, or www.. For example, https://goo.
gl/aia1t will get converted but goo.gl/aia1t won’t.

It also supports domain-only links ending in one of the original top level domains (.com, .edu, .gov, .int, .mil,
.net, and .org). For example, djangoproject.com gets converted.

Links can have trailing punctuation (periods, commas, close-parens) and leading punctuation (opening parens), and
urlize will still do the right thing.

Links generated by urlize have a rel="nofollow" attribute added to them.

For example:

{{ value|urlize }}

1328 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

If value is "Check out www.djangoproject.com", the output will be "Check out www.djangoproject.com".

In addition to web links, urlize also converts email addresses into mailto: links. If value
is "Send questions to foo@example.com", the output will be "Send questions to foo@example.com".

The urlize filter also takes an optional parameter autoescape. If autoescape is True, the link text and URLs
will be escaped using Django’s built-in escape filter. The default value for autoescape is True.

Note: If urlize is applied to text that already contains HTML markup, things won’t work as expected. Apply this
filter only to plain text.

urlizetrunc

Converts URLs and email addresses into clickable links just like urlize, but truncates URLs longer than the given
character limit.

Argument: Number of characters that link text should be truncated to, including the ellipsis that’s added if truncation
is necessary.

For example:

{{ value|urlizetrunc:15 }}

If value is "Check out www.djangoproject.com", the output would be 'Check out www.djangopr...'.

As with urlize, this filter should only be applied to plain text.

wordcount

Returns the number of words.

For example:

{{ value|wordcount }}

If value is "Joel is a slug", the output will be 4.

wordwrap

Wraps words at specified line length.

Argument: number of characters at which to wrap the text

For example:

{{ value|wordwrap:5 }}

If value is Joel is a slug, the output would be:

Joel
is a
slug

6.20. Templates 1329

Django Documentation, Release 1.10.9.dev20171123183751

yesno

Maps values for True, False, and (optionally) None, to the strings “yes”, “no”, “maybe”, or a custom mapping
passed as a comma-separated list, and returns one of those strings according to the value:

For example:

{{ value|yesno:"yeah,no,maybe" }}

Value Argument Outputs
True yes
True "yeah,no,maybe" yeah
False "yeah,no,maybe" no
None "yeah,no,maybe" maybe
None "yeah,no" no (converts None to False if no mapping for None is given)

Internationalization tags and filters

Django provides template tags and filters to control each aspect of internationalization in templates. They allow for
granular control of translations, formatting, and time zone conversions.

i18n

This library allows specifying translatable text in templates. To enable it, set USE_I18N to True, then load it with
{% load i18n %}.

See Internationalization: in template code.

l10n

This library provides control over the localization of values in templates. You only need to load the library using {%
load l10n %}, but you’ll often set USE_L10N to True so that localization is active by default.

See Controlling localization in templates.

tz

This library provides control over time zone conversions in templates. Like l10n, you only need to load the library
using {% load tz %}, but you’ll usually also set USE_TZ to True so that conversion to local time happens by
default.

See Time zone aware output in templates.

Other tags and filters libraries

Django comes with a couple of other template-tag libraries that you have to enable explicitly in your
INSTALLED_APPS setting and enable in your template with the {% load %} tag.

django.contrib.humanize

A set of Django template filters useful for adding a “human touch” to data. See django.contrib.humanize.

1330 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

static

static

To link to static files that are saved in STATIC_ROOT Django ships with a static template tag. If the django.
contrib.staticfiles app is installed, the tag will serve files using url() method of the storage specified by
STATICFILES_STORAGE. For example:

{% load static %}

It is also able to consume standard context variables, e.g. assuming a user_stylesheet variable is passed to the
template:

{% load static %}
<link rel="stylesheet" href="{% static user_stylesheet %}" type="text/css" media=
→˓"screen" />

If you’d like to retrieve a static URL without displaying it, you can use a slightly different call:

{% load static %}
{% static "images/hi.jpg" as myphoto %}

Using Jinja2 templates?

See Jinja2 for information on using the static tag with Jinja2.

In older versions, you had to use {% load static from staticfiles %} in your template to serve files
from the storage defined in STATICFILES_STORAGE. This is no longer required.

get_static_prefix

You should prefer the static template tag, but if you need more control over exactly where and how STATIC_URL
is injected into the template, you can use the get_static_prefix template tag:

{% load static %}

There’s also a second form you can use to avoid extra processing if you need the value multiple times:

{% load static %}
{% get_static_prefix as STATIC_PREFIX %}

get_media_prefix

Similar to the get_static_prefix, get_media_prefix populates a template variable with the media prefix
MEDIA_URL, e.g.:

6.20. Templates 1331

Django Documentation, Release 1.10.9.dev20171123183751

{% load static %}
<body data-media-url="{% get_media_prefix %}">

By storing the value in a data attribute, we ensure it’s escaped appropriately if we want to use it in a JavaScript context.

6.20.3 The Django template language: for Python programmers

This document explains the Django template system from a technical perspective – how it works and how to extend it.
If you’re just looking for reference on the language syntax, see The Django template language.

It assumes an understanding of templates, contexts, variables, tags, and rendering. Start with the introduction to the
Django template language if you aren’t familiar with these concepts.

Overview

Using the template system in Python is a three-step process:

1. You configure an Engine.

2. You compile template code into a Template.

3. You render the template with a Context.

Django projects generally rely on the high level, backend agnostic APIs for each of these steps instead of the template
system’s lower level APIs:

1. For each DjangoTemplates backend in the TEMPLATES setting, Django instantiates an Engine.
DjangoTemplates wraps Engine and adapts it to the common template backend API.

2. The django.template.loader module provides functions such as get_template() for loading
templates. They return a django.template.backends.django.Template which wraps the actual
django.template.Template.

3. The Template obtained in the previous step has a render() method which marshals a context and possibly
a request into a Context and delegates the rendering to the underlying Template.

Configuring an engine

If you are simply using the DjangoTemplates backend, this probably isn’t the documentation you’re looking for.
An instance of the Engine class described below is accessible using the engine attribute of that backend and any
attribute defaults mentioned below are overridden by what’s passed by DjangoTemplates.

class Engine(dirs=None, app_dirs=False, context_processors=None, debug=False, loaders=None,
string_if_invalid=’‘, file_charset=’utf-8’, libraries=None, builtins=None, autoescape=True)

When instantiating an Engine all arguments must be passed as keyword arguments:

• dirs is a list of directories where the engine should look for template source files. It is used to configure
filesystem.Loader.

It defaults to an empty list.

• app_dirs only affects the default value of loaders. See below.

It defaults to False.

• autoescape controls whether HTML autoescaping is enabled.

It defaults to True.

1332 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Warning: Only set it to False if you’re rendering non-HTML templates!

The autoescape option was added.

• context_processors is a list of dotted Python paths to callables that are used to populate the context
when a template is rendered with a request. These callables take a request object as their argument and
return a dict of items to be merged into the context.

It defaults to an empty list.

See RequestContext for more information.

• debug is a boolean that turns on/off template debug mode. If it is True, the template engine will store
additional debug information which can be used to display a detailed report for any exception raised during
template rendering.

It defaults to False.

• loaders is a list of template loader classes, specified as strings. Each Loader class knows how to
import templates from a particular source. Optionally, a tuple can be used instead of a string. The first
item in the tuple should be the Loader class name, subsequent items are passed to the Loader during
initialization.

It defaults to a list containing:

– 'django.template.loaders.filesystem.Loader'

– 'django.template.loaders.app_directories.Loader' if and only if app_dirs is
True.

See Loader types for details.

• string_if_invalid is the output, as a string, that the template system should use for invalid (e.g.
misspelled) variables.

It defaults to the empty string.

See How invalid variables are handled for details.

• file_charset is the charset used to read template files on disk.

It defaults to 'utf-8'.

• 'libraries': A dictionary of labels and dotted Python paths of template tag modules to register with
the template engine. This is used to add new libraries or provide alternate labels for existing ones. For
example:

Engine(
libraries={

'myapp_tags': 'path.to.myapp.tags',
'admin.urls': 'django.contrib.admin.templatetags.admin_urls',

},
)

Libraries can be loaded by passing the corresponding dictionary key to the {% load %} tag.

• 'builtins': A list of dotted Python paths of template tag modules to add to built-ins. For example:

Engine(
builtins=['myapp.builtins'],

)

6.20. Templates 1333

https://docs.python.org/3/library/stdtypes.html#dict

Django Documentation, Release 1.10.9.dev20171123183751

Tags and filters from built-in libraries can be used without first calling the {% load %} tag.

The libraries and builtins arguments were added.

static Engine.get_default()
When a Django project configures one and only one DjangoTemplates engine, this method returns the
underlying Engine. In other circumstances it will raise ImproperlyConfigured.

It’s required for preserving APIs that rely on a globally available, implicitly configured engine. Any other use
is strongly discouraged.

Engine.from_string(template_code)
Compiles the given template code and returns a Template object.

Engine.get_template(template_name)
Loads a template with the given name, compiles it and returns a Template object.

Engine.select_template(self, template_name_list)
Like get_template(), except it takes a list of names and returns the first template that was found.

Loading a template

The recommended way to create a Template is by calling the factory methods of the Engine: get_template(),
select_template() and from_string().

In a Django project where the TEMPLATES setting defines exactly one DjangoTemplates engine, it’s possible to
instantiate a Template directly.

class Template
This class lives at django.template.Template. The constructor takes one argument — the raw template
code:

from django.template import Template

template = Template("My name is {{ my_name }}.")

Behind the scenes

The system only parses your raw template code once – when you create the Template object. From then on, it’s
stored internally as a tree structure for performance.

Even the parsing itself is quite fast. Most of the parsing happens via a single call to a single, short, regular expression.

Rendering a context

Once you have a compiled Template object, you can render a context with it. You can reuse the same template to
render it several times with different contexts.

class Context(dict_=None)
The constructor of django.template.Context takes an optional argument — a dictionary mapping vari-
able names to variable values.

For details, see Playing with Context objects below.

Template.render(context)
Call the Template object’s render() method with a Context to “fill” the template:

1334 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

>>> from django.template import Context, Template
>>> template = Template("My name is {{ my_name }}.")

>>> context = Context({"my_name": "Adrian"})
>>> template.render(context)
"My name is Adrian."

>>> context = Context({"my_name": "Dolores"})
>>> template.render(context)
"My name is Dolores."

Variables and lookups

Variable names must consist of any letter (A-Z), any digit (0-9), an underscore (but they must not start with an under-
score) or a dot.

Dots have a special meaning in template rendering. A dot in a variable name signifies a lookup. Specifically, when
the template system encounters a dot in a variable name, it tries the following lookups, in this order:

• Dictionary lookup. Example: foo["bar"]

• Attribute lookup. Example: foo.bar

• List-index lookup. Example: foo[bar]

Note that “bar” in a template expression like {{ foo.bar }} will be interpreted as a literal string and not using the
value of the variable “bar”, if one exists in the template context.

The template system uses the first lookup type that works. It’s short-circuit logic. Here are a few examples:

>>> from django.template import Context, Template
>>> t = Template("My name is {{ person.first_name }}.")
>>> d = {"person": {"first_name": "Joe", "last_name": "Johnson"}}
>>> t.render(Context(d))
"My name is Joe."

>>> class PersonClass: pass
>>> p = PersonClass()
>>> p.first_name = "Ron"
>>> p.last_name = "Nasty"
>>> t.render(Context({"person": p}))
"My name is Ron."

>>> t = Template("The first stooge in the list is {{ stooges.0 }}.")
>>> c = Context({"stooges": ["Larry", "Curly", "Moe"]})
>>> t.render(c)
"The first stooge in the list is Larry."

If any part of the variable is callable, the template system will try calling it. Example:

>>> class PersonClass2:
... def name(self):
... return "Samantha"
>>> t = Template("My name is {{ person.name }}.")
>>> t.render(Context({"person": PersonClass2}))
"My name is Samantha."

6.20. Templates 1335

Django Documentation, Release 1.10.9.dev20171123183751

Callable variables are slightly more complex than variables which only require straight lookups. Here are some things
to keep in mind:

• If the variable raises an exception when called, the exception will be propagated, unless the exception
has an attribute silent_variable_failure whose value is True. If the exception does have a
silent_variable_failure attribute whose value is True, the variable will render as the value of the
engine’s string_if_invalid configuration option (an empty string, by default). Example:

>>> t = Template("My name is {{ person.first_name }}.")
>>> class PersonClass3:
... def first_name(self):
... raise AssertionError("foo")
>>> p = PersonClass3()
>>> t.render(Context({"person": p}))
Traceback (most recent call last):
...
AssertionError: foo

>>> class SilentAssertionError(Exception):
... silent_variable_failure = True
>>> class PersonClass4:
... def first_name(self):
... raise SilentAssertionError
>>> p = PersonClass4()
>>> t.render(Context({"person": p}))
"My name is ."

Note that django.core.exceptions.ObjectDoesNotExist, which is the base class for all Django
database API DoesNotExist exceptions, has silent_variable_failure = True. So if you’re us-
ing Django templates with Django model objects, any DoesNotExist exception will fail silently.

• A variable can only be called if it has no required arguments. Otherwise, the system will return the value of the
engine’s string_if_invalid option.

• Obviously, there can be side effects when calling some variables, and it’d be either foolish or a security hole to
allow the template system to access them.

A good example is the delete() method on each Django model object. The template system shouldn’t be
allowed to do something like this:

I will now delete this valuable data. {{ data.delete }}

To prevent this, set an alters_data attribute on the callable variable. The template system won’t call a vari-
able if it has alters_data=True set, and will instead replace the variable with string_if_invalid,
unconditionally. The dynamically-generated delete() and save() methods on Django model objects get
alters_data=True automatically. Example:

def sensitive_function(self):
self.database_record.delete()

sensitive_function.alters_data = True

• Occasionally you may want to turn off this feature for other reasons, and tell the template system to leave a
variable uncalled no matter what. To do so, set a do_not_call_in_templates attribute on the callable
with the value True. The template system then will act as if your variable is not callable (allowing you to
access attributes of the callable, for example).

1336 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

How invalid variables are handled

Generally, if a variable doesn’t exist, the template system inserts the value of the engine’s string_if_invalid
configuration option, which is set to '' (the empty string) by default.

Filters that are applied to an invalid variable will only be applied if string_if_invalid is set to '' (the empty
string). If string_if_invalid is set to any other value, variable filters will be ignored.

This behavior is slightly different for the if, for and regroup template tags. If an invalid variable is provided to
one of these template tags, the variable will be interpreted as None. Filters are always applied to invalid variables
within these template tags.

If string_if_invalid contains a '%s', the format marker will be replaced with the name of the invalid variable.

For debug purposes only!

While string_if_invalid can be a useful debugging tool, it is a bad idea to turn it on as a ‘development default’.

Many templates, including those in the Admin site, rely upon the silence of the template system when a non-existent
variable is encountered. If you assign a value other than '' to string_if_invalid, you will experience rendering
problems with these templates and sites.

Generally, string_if_invalid should only be enabled in order to debug a specific template problem, then cleared
once debugging is complete.

Built-in variables

Every context contains True, False and None. As you would expect, these variables resolve to the corresponding
Python objects.

Limitations with string literals

Django’s template language has no way to escape the characters used for its own syntax. For example, the
templatetag tag is required if you need to output character sequences like {% and %}.

A similar issue exists if you want to include these sequences in template filter or tag arguments. For example, when
parsing a block tag, Django’s template parser looks for the first occurrence of %} after a {%. This prevents the use of
"%}" as a string literal. For example, a TemplateSyntaxError will be raised for the following expressions:

{% include "template.html" tvar="Some string literal with %} in it." %}

{% with tvar="Some string literal with %} in it." %}{% endwith %}

The same issue can be triggered by using a reserved sequence in filter arguments:

{{ some.variable|default:"}}" }}

If you need to use strings with these sequences, store them in template variables or use a custom template tag or filter
to workaround the limitation.

Playing with Context objects

Most of the time, you’ll instantiate Context objects by passing in a fully-populated dictionary to Context(). But
you can add and delete items from a Context object once it’s been instantiated, too, using standard dictionary syntax:

6.20. Templates 1337

Django Documentation, Release 1.10.9.dev20171123183751

>>> from django.template import Context
>>> c = Context({"foo": "bar"})
>>> c['foo']
'bar'
>>> del c['foo']
>>> c['foo']
Traceback (most recent call last):
...
KeyError: 'foo'
>>> c['newvariable'] = 'hello'
>>> c['newvariable']
'hello'

Context.get(key, otherwise=None)
Returns the value for key if key is in the context, else returns otherwise.

Context.setdefault(key, default=None)
If key is in the context, returns its value. Otherwise inserts key with a value of default and returns
default.

Context.pop()

Context.push()

exception ContextPopException

A Context object is a stack. That is, you can push() and pop() it. If you pop() too much, it’ll raise django.
template.ContextPopException:

>>> c = Context()
>>> c['foo'] = 'first level'
>>> c.push()
{}
>>> c['foo'] = 'second level'
>>> c['foo']
'second level'
>>> c.pop()
{'foo': 'second level'}
>>> c['foo']
'first level'
>>> c['foo'] = 'overwritten'
>>> c['foo']
'overwritten'
>>> c.pop()
Traceback (most recent call last):
...
ContextPopException

You can also use push() as a context manager to ensure a matching pop() is called.

>>> c = Context()
>>> c['foo'] = 'first level'
>>> with c.push():
... c['foo'] = 'second level'
... c['foo']
'second level'
>>> c['foo']
'first level'

1338 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

All arguments passed to push() will be passed to the dict constructor used to build the new context level.

>>> c = Context()
>>> c['foo'] = 'first level'
>>> with c.push(foo='second level'):
... c['foo']
'second level'
>>> c['foo']
'first level'

Context.update(other_dict)

In addition to push() and pop(), the Context object also defines an update() method. This works like
push() but takes a dictionary as an argument and pushes that dictionary onto the stack instead of an empty one.

>>> c = Context()
>>> c['foo'] = 'first level'
>>> c.update({'foo': 'updated'})
{'foo': 'updated'}
>>> c['foo']
'updated'
>>> c.pop()
{'foo': 'updated'}
>>> c['foo']
'first level'

Like push(), you can use update() as a context manager to ensure a matching pop() is called.

>>> c = Context()
>>> c['foo'] = 'first level'
>>> with c.update({'foo': 'second level'}):
... c['foo']
'second level'
>>> c['foo']
'first level'

The ability to use update() as a context manager was added.

Using a Context as a stack comes in handy in some custom template tags.

Context.flatten()

Using flatten() method you can get whole Context stack as one dictionary including builtin variables.

>>> c = Context()
>>> c['foo'] = 'first level'
>>> c.update({'bar': 'second level'})
{'bar': 'second level'}
>>> c.flatten()
{'True': True, 'None': None, 'foo': 'first level', 'False': False, 'bar': 'second
→˓level'}

A flatten() method is also internally used to make Context objects comparable.

>>> c1 = Context()
>>> c1['foo'] = 'first level'
>>> c1['bar'] = 'second level'
>>> c2 = Context()
>>> c2.update({'bar': 'second level', 'foo': 'first level'})
{'foo': 'first level', 'bar': 'second level'}

6.20. Templates 1339

Django Documentation, Release 1.10.9.dev20171123183751

>>> c1 == c2
True

Result from flatten() can be useful in unit tests to compare Context against dict:

class ContextTest(unittest.TestCase):
def test_against_dictionary(self):

c1 = Context()
c1['update'] = 'value'
self.assertEqual(c1.flatten(), {

'True': True,
'None': None,
'False': False,
'update': 'value',

})

Using RequestContext

class RequestContext(request, dict_=None, processors=None)

Django comes with a special Context class, django.template.RequestContext, that acts slightly differ-
ently from the normal django.template.Context. The first difference is that it takes an HttpRequest as its
first argument. For example:

c = RequestContext(request, {
'foo': 'bar',

})

The second difference is that it automatically populates the context with a few variables, according to the engine’s
context_processors configuration option.

The context_processors option is a list of callables – called context processors – that take a request object as
their argument and return a dictionary of items to be merged into the context. In the default generated settings file, the
default template engine contains the following context processors:

[
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',

]

In addition to these, RequestContext always enables 'django.template.context_processors.
csrf'. This is a security related context processor required by the admin and other contrib apps, and, in case of
accidental misconfiguration, it is deliberately hardcoded in and cannot be turned off in the context_processors
option.

Each processor is applied in order. That means, if one processor adds a variable to the context and a second processor
adds a variable with the same name, the second will override the first. The default processors are explained below.

When context processors are applied

Context processors are applied on top of context data. This means that a context processor may overwrite variables
you’ve supplied to your Context or RequestContext, so take care to avoid variable names that overlap with
those supplied by your context processors.

1340 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

If you want context data to take priority over context processors, use the following pattern:

from django.template import RequestContext

request_context = RequestContext(request)
request_context.push({"my_name": "Adrian"})

Django does this to allow context data to override context processors in APIs such as render() and
TemplateResponse.

Also, you can give RequestContext a list of additional processors, using the optional, third positional argument,
processors. In this example, the RequestContext instance gets a ip_address variable:

from django.http import HttpResponse
from django.template import RequestContext, Template

def ip_address_processor(request):
return {'ip_address': request.META['REMOTE_ADDR']}

def client_ip_view(request):
template = Template('{{ title }}: {{ ip_address }}')
context = RequestContext(request, {

'title': 'Your IP Address',
}, [ip_address_processor])
return HttpResponse(template.render(context))

Built-in template context processors

Here’s what each of the built-in processors does:

django.contrib.auth.context_processors.auth

auth()

If this processor is enabled, every RequestContext will contain these variables:

• user – An auth.User instance representing the currently logged-in user (or an AnonymousUser instance,
if the client isn’t logged in).

• perms – An instance of django.contrib.auth.context_processors.PermWrapper, represent-
ing the permissions that the currently logged-in user has.

django.template.context_processors.debug

debug()

If this processor is enabled, every RequestContext will contain these two variables – but only if your DEBUG set-
ting is set to True and the request’s IP address (request.META['REMOTE_ADDR']) is in the INTERNAL_IPS
setting:

• debug – True. You can use this in templates to test whether you’re in DEBUG mode.

• sql_queries – A list of {'sql': ..., 'time': ...} dictionaries, representing every SQL
query that has happened so far during the request and how long it took. The list is in order by database alias and
then by query. It’s lazily generated on access.

6.20. Templates 1341

Django Documentation, Release 1.10.9.dev20171123183751

In older versions, only the queries for the default database alias were included.

django.template.context_processors.i18n

If this processor is enabled, every RequestContext will contain these two variables:

• LANGUAGES – The value of the LANGUAGES setting.

• LANGUAGE_CODE – request.LANGUAGE_CODE, if it exists. Otherwise, the value of the
LANGUAGE_CODE setting.

See Internationalization and localization for more.

django.template.context_processors.media

If this processor is enabled, every RequestContext will contain a variable MEDIA_URL, providing the value of
the MEDIA_URL setting.

django.template.context_processors.static

static()

If this processor is enabled, every RequestContext will contain a variable STATIC_URL, providing the value of
the STATIC_URL setting.

django.template.context_processors.csrf

This processor adds a token that is needed by the csrf_token template tag for protection against Cross Site Request
Forgeries.

django.template.context_processors.request

If this processor is enabled, every RequestContext will contain a variable request, which is the current
HttpRequest.

django.template.context_processors.tz

tz()

If this processor is enabled, every RequestContext will contain a variable TIME_ZONE, providing the name of
the currently active time zone.

django.contrib.messages.context_processors.messages

If this processor is enabled, every RequestContext will contain these two variables:

• messages – A list of messages (as strings) that have been set via the messages framework.

• DEFAULT_MESSAGE_LEVELS – A mapping of the message level names to their numeric value.

1342 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

Writing your own context processors

A context processor has a very simple interface: It’s a Python function that takes one argument, an HttpRequest
object, and returns a dictionary that gets added to the template context. Each context processor must return a dictionary.

Custom context processors can live anywhere in your code base. All Django cares about is that your custom con-
text processors are pointed to by the 'context_processors' option in your TEMPLATES setting — or the
context_processors argument of Engine if you’re using it directly.

Loading templates

Generally, you’ll store templates in files on your filesystem rather than using the low-level Template API yourself.
Save templates in a directory specified as a template directory.

Django searches for template directories in a number of places, depending on your template loading settings (see
“Loader types” below), but the most basic way of specifying template directories is by using the DIRS option.

The DIRS option

Tell Django what your template directories are by using the DIRS option in the TEMPLATES setting in your settings
file — or the dirs argument of Engine. This should be set to a list of strings that contain full paths to your template
directories:

TEMPLATES = [
{

'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [

'/home/html/templates/lawrence.com',
'/home/html/templates/default',

],
},

]

Your templates can go anywhere you want, as long as the directories and templates are readable by the Web server.
They can have any extension you want, such as .html or .txt, or they can have no extension at all.

Note that these paths should use Unix-style forward slashes, even on Windows.

Loader types

By default, Django uses a filesystem-based template loader, but Django comes with a few other template loaders,
which know how to load templates from other sources.

Some of these other loaders are disabled by default, but you can activate them by adding a 'loaders' option to your
DjangoTemplates backend in the TEMPLATES setting or passing a loaders argument to Engine. loaders
should be a list of strings or tuples, where each represents a template loader class. Here are the template loaders that
come with Django:

django.template.loaders.filesystem.Loader

class filesystem.Loader
Loads templates from the filesystem, according to DIRS.

This loader is enabled by default. However it won’t find any templates until you set DIRS to a non-empty list:

6.20. Templates 1343

Django Documentation, Release 1.10.9.dev20171123183751

TEMPLATES = [{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [os.path.join(BASE_DIR, 'templates')],

}]

django.template.loaders.app_directories.Loader

class app_directories.Loader
Loads templates from Django apps on the filesystem. For each app in INSTALLED_APPS, the loader looks for
a templates subdirectory. If the directory exists, Django looks for templates in there.

This means you can store templates with your individual apps. This also makes it easy to distribute Django apps
with default templates.

For example, for this setting:

INSTALLED_APPS = ['myproject.polls', 'myproject.music']

...then get_template('foo.html') will look for foo.html in these directories, in this order:

• /path/to/myproject/polls/templates/

• /path/to/myproject/music/templates/

... and will use the one it finds first.

The order of INSTALLED_APPS is significant! For example, if you want to customize the Django admin,
you might choose to override the standard admin/base_site.html template, from django.contrib.
admin, with your own admin/base_site.html in myproject.polls. You must then make sure
that your myproject.polls comes before django.contrib.admin in INSTALLED_APPS, otherwise
django.contrib.admin’s will be loaded first and yours will be ignored.

Note that the loader performs an optimization when it first runs: it caches a list of which INSTALLED_APPS
packages have a templates subdirectory.

You can enable this loader simply by setting APP_DIRS to True:

TEMPLATES = [{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'APP_DIRS': True,

}]

django.template.loaders.eggs.Loader

class eggs.Loader
Deprecated since version 1.9: Distributing applications as eggs is not recommended.

Just like app_directories above, but it loads templates from Python eggs rather than from the filesystem.

This loader is disabled by default.

django.template.loaders.cached.Loader

class cached.Loader
By default, the templating system will read and compile your templates every time they need to be rendered.
While the Django templating system is quite fast, the overhead from reading and compiling templates can add
up.

The cached template loader is a class-based loader that you configure with a list of other loaders that it should
wrap. The wrapped loaders are used to locate unknown templates when they are first encountered. The cached
loader then stores the compiled Template in memory. The cached Template instance is returned for subse-
quent requests to load the same template.

1344 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

For example, to enable template caching with the filesystem and app_directories template loaders
you might use the following settings:

TEMPLATES = [{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [os.path.join(BASE_DIR, 'templates')],
'OPTIONS': {

'loaders': [
('django.template.loaders.cached.Loader', [

'django.template.loaders.filesystem.Loader',
'django.template.loaders.app_directories.Loader',

]),
],

},
}]

Note: All of the built-in Django template tags are safe to use with the cached loader, but if you’re using custom
template tags that come from third party packages, or that you wrote yourself, you should ensure that the Node
implementation for each tag is thread-safe. For more information, see template tag thread safety considerations.

This loader is disabled by default.

django.template.loaders.locmem.Loader

class locmem.Loader
Loads templates from a Python dictionary. This is useful for testing.

This loader takes a dictionary of templates as its first argument:

TEMPLATES = [{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'OPTIONS': {

'loaders': [
('django.template.loaders.locmem.Loader', {

'index.html': 'content here',
}),

],
},

}]

This loader is disabled by default.

Django uses the template loaders in order according to the 'loaders' option. It uses each loader until a loader finds
a match.

Custom loaders

It’s possible to load templates from additional sources using custom template loaders. Custom Loader classes
should inherit from django.template.loaders.base.Loader and define the get_contents() and
get_template_sources() methods.

In previous versions of Django, custom loaders defined a single method: load_template_source().

6.20. Templates 1345

Django Documentation, Release 1.10.9.dev20171123183751

Loader methods

class Loader
Loads templates from a given source, such as the filesystem or a database.

get_template_sources(template_name)
A method that takes a template_name and yields Origin instances for each possible source.

For example, the filesystem loader may receive 'index.html' as a template_name argument. This
method would yield origins for the full path of index.html as it appears in each template directory the
loader looks at.

The method doesn’t need to verify that the template exists at a given path, but it should ensure the path is
valid. For instance, the filesystem loader makes sure the path lies under a valid template directory.

get_contents(origin)
Returns the contents for a template given a Origin instance.

This is where a filesystem loader would read contents from the filesystem, or a database loader would read
from the database. If a matching template doesn’t exist, this should raise a TemplateDoesNotExist
error.

get_template(template_name, skip=None)
Returns a Template object for a given template_name by looping through results from
get_template_sources() and calling get_contents(). This returns the first matching tem-
plate. If no template is found, TemplateDoesNotExist is raised.

The optional skip argument is a list of origins to ignore when extending templates. This allow templates
to extend other templates of the same name. It also used to avoid recursion errors.

In general, it is enough to define get_template_sources() and get_contents() for custom
template loaders. get_template() will usually not need to be overridden.

load_template_source(template_name, template_dirs=None)
Returns a tuple of (template_string, template_origin), where template_string is a
string containing the template contents, and template_origin is a string identifying the template
source. A filesystem-based loader may return the full path to the file as the template_origin, for
example.

template_dirs is an optional argument used to control which directories the loader will search.

This method is called automatically by load_template() and should be overridden when writing
custom template loaders.

Deprecated since version 1.9: Custom loaders should use get_template() and get_contents()
instead.

load_template(template_name, template_dirs=None)
Returns a tuple of (template, template_origin), where template is a Template object and
template_origin is a string identifying the template source. A filesystem-based loader may return
the full path to the file as the template_origin, for example.

Deprecated since version 1.9: Custom loaders should use get_template() and get_contents()
instead.

Building your own

For examples, read the source code for Django’s built-in loaders.

1346 Chapter 6. API Reference

https://github.com/django/django/tree/master/django/template/loaders

Django Documentation, Release 1.10.9.dev20171123183751

Template origin

Templates have an origin containing attributes depending on the source they are loaded from.

Django used to create an origin based on django.template.loader.LoaderOrigin or django.
template.base.StringOrigin. These have been replaced by django.template.base.Origin.

class Origin

name
The path to the template as returned by the template loader. For loaders that read from the file system, this
is the full path to the template.

If the template is instantiated directly rather than through a template loader, this is a string value of
<unknown_source>.

template_name
The relative path to the template as passed into the template loader.

If the template is instantiated directly rather than through a template loader, this is None.

6.20.4 Upgrading templates to Django 1.8

Django’s template system was overhauled in Django 1.8 when it gained support for multiple template engines. This
document complements the release notes with detailed upgrade instructions on some topics.

The TEMPLATES settings

A new setting was introduced in Django 1.8: TEMPLATES. All existing template-related settings were deprecated.

During the deprecation period, Django will create a backwards-compatible TEMPLATES based on the TEMPLATE_*
settings if you don’t define it yourself.

Here’s how to define TEMPLATES in your settings module.

If you’re using the default value of TEMPLATE_LOADERS, that is, if it isn’t defined in your settings file or if it’s set
to:

['django.template.loaders.filesystem.Loader',
'django.template.loaders.app_directories.Loader']

then you should define TEMPLATES as follows:

TEMPLATES = [
{

'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [

insert your TEMPLATE_DIRS here
],
'APP_DIRS': True,
'OPTIONS': {

'context_processors': [
Insert your TEMPLATE_CONTEXT_PROCESSORS here or use this
list if you haven't customized them:
'django.contrib.auth.context_processors.auth',
'django.template.context_processors.debug',
'django.template.context_processors.i18n',

6.20. Templates 1347

Django Documentation, Release 1.10.9.dev20171123183751

'django.template.context_processors.media',
'django.template.context_processors.static',
'django.template.context_processors.tz',
'django.contrib.messages.context_processors.messages',

],
},

},
]

If you aren’t using the default value of TEMPLATE_LOADERS, then you should define TEMPLATES as follows:

TEMPLATES = [
{

'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [

insert your TEMPLATE_DIRS here
],
'OPTIONS': {

'context_processors': [
Insert your TEMPLATE_CONTEXT_PROCESSORS here or use this
list if you haven't customized them:
'django.contrib.auth.context_processors.auth',
'django.template.context_processors.debug',
'django.template.context_processors.i18n',
'django.template.context_processors.media',
'django.template.context_processors.static',
'django.template.context_processors.tz',
'django.contrib.messages.context_processors.messages',

],
'loaders': [

insert your TEMPLATE_LOADERS here
]

},
},

]

Furthermore you should replace django.core.context_processors with django.template.
context_processors in the names of context processors.

If your settings module defines ALLOWED_INCLUDE_ROOTS or TEMPLATE_STRING_IF_INVALID, include
their values under the 'allowed_include_roots' and 'string_if_invalid' keys in the 'OPTIONS'
dictionary.

If it sets TEMPLATE_DEBUG to a value that differs from DEBUG, include that value under the 'debug' key in
'OPTIONS'.

Once you have defined TEMPLATES, you can safely remove ALLOWED_INCLUDE_ROOTS,
TEMPLATE_CONTEXT_PROCESSORS, TEMPLATE_DEBUG, TEMPLATE_DIRS, TEMPLATE_LOADERS,
and TEMPLATE_STRING_IF_INVALID.

If you are overriding some of these settings in tests, you should override the entire TEMPLATES setting instead.

1348 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

django.template.loader

get_template() and select_template()

In Django 1.8 get_template() and select_template() return a backend-dependent Template instead of
a django.template.Template.

For example, if get_template() loads a template with a DjangoTemplates backend, then it returns a
django.template.backends.django.Template.

Template objects must provide a render() method whose signature differs slightly from the Django template
language’s render().

Instead of:

from django.template import Context
from django.template.loader import get_template

template = get_template('hello.html')
html = template.render(Context({'name': 'world'}))

You should write:

from django.template.loader import get_template

template = get_template('hello.html')
html = template.render({'name': 'world'})

And instead of:

from django.template import RequestContext
from django.template.loader import get_template

template = get_template('hello.html')
html = template.render(RequestContext(request, {'name': 'world'}))

You should write:

from django.template.loader import get_template

template = get_template('hello.html')
html = template.render({'name': 'world'}, request)

Passing a Context or a RequestContext is still possible when the template is loaded by a DjangoTemplates
backend but it’s deprecated and won’t be supported in Django 1.10.

If you’re loading a template while you’re rendering another template with the Django template language and you have
access to the current context, for instance in the render()method of a template tag, you can use the current Engine
directly. Instead of:

from django.template.loader import get_template
template = get_template('included.html')

You can write:

template = context.template.engine.get_template('included.html')

6.20. Templates 1349

Django Documentation, Release 1.10.9.dev20171123183751

This will load the template with the current engine without triggering the multiple template engines machinery, which
is usually the desired behavior. Unlike previous solutions, this returns a django.template.Template, like
get_template() used to in Django 1.7 and earlier, avoiding all backwards-compatibility problems.

get_template_from_string()

Private API get_template_from_string(template_code) was removed in Django 1.8 because it had no
way to choose an engine to compile the template.

Three alternatives are available.

If you control the project’s setting, you can use one of the configured engines:

from django.template import engines

template = engines['django'].from_string(template_code)

This returns a backend-dependent Template object.

For trivial templates that don’t need context processors nor anything else, you can create a bare-bones engine and use
its from_string() method:

from django.template import Engine

template = Engine().from_string(template_code)

This returns a django.template.Template because Engine is part of the Django template language’s APIs.
The multiple template engines machinery isn’t involved here.

Finally, if you have access to the current context, you can use the same trick as above:

template = context.template.engine.from_string(template_code)

Template()

To a lesser extent, instantiating a template with Template(template_code) suffers from the same issue as
get_template_from_string().

It still works when the TEMPLATES setting defines exactly one DjangoTemplates backend, but pluggable appli-
cations can’t control this requirement.

The last two solutions described in the previous section are recommended in that case.

See also:

For information on writing your own custom tags and filters, see Custom template tags and filters.

6.21 TemplateResponse and SimpleTemplateResponse

Standard HttpResponse objects are static structures. They are provided with a block of pre-rendered content at time
of construction, and while that content can be modified, it isn’t in a form that makes it easy to perform modifications.

However, it can sometimes be beneficial to allow decorators or middleware to modify a response after it has been
constructed by the view. For example, you may want to change the template that is used, or put additional data into
the context.

1350 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

TemplateResponse provides a way to do just that. Unlike basic HttpResponse objects, TemplateResponse objects
retain the details of the template and context that was provided by the view to compute the response. The final output
of the response is not computed until it is needed, later in the response process.

6.21.1 SimpleTemplateResponse objects

class SimpleTemplateResponse

Attributes

SimpleTemplateResponse.template_name
The name of the template to be rendered. Accepts a backend-dependent template object (such as those returned
by get_template()), the name of a template, or a list of template names.

Example: ['foo.html', 'path/to/bar.html']

SimpleTemplateResponse.context_data
The context data to be used when rendering the template. It must be a dict.

Example: {'foo': 123}

SimpleTemplateResponse.rendered_content
The current rendered value of the response content, using the current template and context data.

SimpleTemplateResponse.is_rendered
A boolean indicating whether the response content has been rendered.

Methods

SimpleTemplateResponse.__init__(template, context=None, content_type=None, status=None,
charset=None, using=None)

Instantiates a SimpleTemplateResponse object with the given template, context, content type, HTTP
status, and charset.

template A backend-dependent template object (such as those returned by get_template()), the name
of a template, or a list of template names.

context A dict of values to add to the template context. By default, this is an empty dictionary.

content_type The value included in the HTTP Content-Type header, including the MIME type speci-
fication and the character set encoding. If content_type is specified, then its value is used. Otherwise,
DEFAULT_CONTENT_TYPE is used.

status The HTTP status code for the response.

charset The charset in which the response will be encoded. If not given it will be extracted from
content_type, and if that is unsuccessful, the DEFAULT_CHARSET setting will be used.

using The NAME of a template engine to use for loading the template.

SimpleTemplateResponse.resolve_context(context)
Preprocesses context data that will be used for rendering a template. Accepts a dict of context data. By
default, returns the same dict.

Override this method in order to customize the context.

SimpleTemplateResponse.resolve_template(template)
Resolves the template instance to use for rendering. Accepts a backend-dependent template object (such as
those returned by get_template()), the name of a template, or a list of template names.

6.21. TemplateResponse and SimpleTemplateResponse 1351

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Django Documentation, Release 1.10.9.dev20171123183751

Returns the backend-dependent template object instance to be rendered.

Override this method in order to customize template loading.

SimpleTemplateResponse.add_post_render_callback()
Add a callback that will be invoked after rendering has taken place. This hook can be used to defer certain
processing operations (such as caching) until after rendering has occurred.

If the SimpleTemplateResponse has already been rendered, the callback will be invoked immediately.

When called, callbacks will be passed a single argument – the rendered SimpleTemplateResponse in-
stance.

If the callback returns a value that is not None, this will be used as the response instead of the original response
object (and will be passed to the next post rendering callback etc.)

SimpleTemplateResponse.render()
Sets response.content to the result obtained by SimpleTemplateResponse.
rendered_content, runs all post-rendering callbacks, and returns the resulting response object.

render() will only have an effect the first time it is called. On subsequent calls, it will return the result
obtained from the first call.

6.21.2 TemplateResponse objects

class TemplateResponse
TemplateResponse is a subclass of SimpleTemplateResponse that knows about the current
HttpRequest.

Methods

TemplateResponse.__init__(request, template, context=None, content_type=None, status=None,
charset=None, using=None)

Instantiates a TemplateResponse object with the given request, template, context, content type, HTTP
status, and charset.

request An HttpRequest instance.

template A backend-dependent template object (such as those returned by get_template()), the name
of a template, or a list of template names.

context A dict of values to add to the template context. By default, this is an empty dictionary.

content_type The value included in the HTTP Content-Type header, including the MIME type speci-
fication and the character set encoding. If content_type is specified, then its value is used. Otherwise,
DEFAULT_CONTENT_TYPE is used.

status The HTTP status code for the response.

charset The charset in which the response will be encoded. If not given it will be extracted from
content_type, and if that is unsuccessful, the DEFAULT_CHARSET setting will be used.

using The NAME of a template engine to use for loading the template.

6.21.3 The rendering process

Before a TemplateResponse instance can be returned to the client, it must be rendered. The rendering process
takes the intermediate representation of template and context, and turns it into the final byte stream that can be served
to the client.

1352 Chapter 6. API Reference

https://docs.python.org/3/library/stdtypes.html#dict

Django Documentation, Release 1.10.9.dev20171123183751

There are three circumstances under which a TemplateResponse will be rendered:

• When the TemplateResponse instance is explicitly rendered, using the SimpleTemplateResponse.
render() method.

• When the content of the response is explicitly set by assigning response.content.

• After passing through template response middleware, but before passing through response middleware.

A TemplateResponse can only be rendered once. The first call to SimpleTemplateResponse.render()
sets the content of the response; subsequent rendering calls do not change the response content.

However, when response.content is explicitly assigned, the change is always applied. If you want to force the
content to be re-rendered, you can re-evaluate the rendered content, and assign the content of the response manually:

Set up a rendered TemplateResponse
>>> from django.template.response import TemplateResponse
>>> t = TemplateResponse(request, 'original.html', {})
>>> t.render()
>>> print(t.content)
Original content

Re-rendering doesn't change content
>>> t.template_name = 'new.html'
>>> t.render()
>>> print(t.content)
Original content

Assigning content does change, no render() call required
>>> t.content = t.rendered_content
>>> print(t.content)
New content

Post-render callbacks

Some operations – such as caching – cannot be performed on an unrendered template. They must be performed on a
fully complete and rendered response.

If you’re using middleware, the solution is easy. Middleware provides multiple opportunities to process a response on
exit from a view. If you put behavior in the response middleware, it’s guaranteed to execute after template rendering
has taken place.

However, if you’re using a decorator, the same opportunities do not exist. Any behavior defined in a decorator is
handled immediately.

To compensate for this (and any other analogous use cases), TemplateResponse allows you to register callbacks
that will be invoked when rendering has completed. Using this callback, you can defer critical processing until a point
where you can guarantee that rendered content will be available.

To define a post-render callback, just define a function that takes a single argument – response – and register that
function with the template response:

from django.template.response import TemplateResponse

def my_render_callback(response):
Do content-sensitive processing
do_post_processing()

def my_view(request):

6.21. TemplateResponse and SimpleTemplateResponse 1353

Django Documentation, Release 1.10.9.dev20171123183751

Create a response
response = TemplateResponse(request, 'mytemplate.html', {})
Register the callback
response.add_post_render_callback(my_render_callback)
Return the response
return response

my_render_callback() will be invoked after the mytemplate.html has been rendered, and will be provided
the fully rendered TemplateResponse instance as an argument.

If the template has already been rendered, the callback will be invoked immediately.

6.21.4 Using TemplateResponse and SimpleTemplateResponse

A TemplateResponse object can be used anywhere that a normal django.http.HttpResponse can be used.
It can also be used as an alternative to calling render().

For example, the following simple view returns a TemplateResponse with a simple template and a context con-
taining a queryset:

from django.template.response import TemplateResponse

def blog_index(request):
return TemplateResponse(request, 'entry_list.html', {'entries': Entry.objects.

→˓all()})

6.22 Unicode data

Django natively supports Unicode data everywhere. Providing your database can somehow store the data, you can
safely pass around Unicode strings to templates, models and the database.

This document tells you what you need to know if you’re writing applications that use data or templates that are
encoded in something other than ASCII.

6.22.1 Creating the database

Make sure your database is configured to be able to store arbitrary string data. Normally, this means giving it an
encoding of UTF-8 or UTF-16. If you use a more restrictive encoding – for example, latin1 (iso8859-1) – you won’t
be able to store certain characters in the database, and information will be lost.

• MySQL users, refer to the MySQL manual for details on how to set or alter the database character set encoding.

• PostgreSQL users, refer to the PostgreSQL manual (section 22.3.2 in PostgreSQL 9) for details on creating
databases with the correct encoding.

• Oracle users, refer to the Oracle manual for details on how to set (section 2) or alter (section 11) the database
character set encoding.

• SQLite users, there is nothing you need to do. SQLite always uses UTF-8 for internal encoding.

All of Django’s database backends automatically convert Unicode strings into the appropriate encoding for talking to
the database. They also automatically convert strings retrieved from the database into Python Unicode strings. You
don’t even need to tell Django what encoding your database uses: that is handled transparently.

For more, see the section “The database API” below.

1354 Chapter 6. API Reference

https://dev.mysql.com/doc/refman/en/charset-database.html
https://www.postgresql.org/docs/current/static/multibyte.html
https://docs.oracle.com/cd/E11882_01/server.112/e10729/toc.htm
https://docs.oracle.com/cd/E11882_01/server.112/e10729/ch2charset.htm#NLSPG002
https://docs.oracle.com/cd/E11882_01/server.112/e10729/ch11charsetmig.htm#NLSPG011

Django Documentation, Release 1.10.9.dev20171123183751

6.22.2 General string handling

Whenever you use strings with Django – e.g., in database lookups, template rendering or anywhere else – you have
two choices for encoding those strings. You can use Unicode strings, or you can use normal strings (sometimes called
“bytestrings”) that are encoded using UTF-8.

In Python 3, the logic is reversed, that is normal strings are Unicode, and when you want to specifically create a
bytestring, you have to prefix the string with a ‘b’. As we are doing in Django code from version 1.5, we recommend
that you import unicode_literals from the __future__ library in your code. Then, when you specifically want
to create a bytestring literal, prefix the string with ‘b’.

Python 2 legacy:

my_string = "This is a bytestring"
my_unicode = u"This is an Unicode string"

Python 2 with unicode literals or Python 3:

from __future__ import unicode_literals

my_string = b"This is a bytestring"
my_unicode = "This is an Unicode string"

See also Python 3 compatibility.

Warning: A bytestring does not carry any information with it about its encoding. For that reason, we have to
make an assumption, and Django assumes that all bytestrings are in UTF-8.

If you pass a string to Django that has been encoded in some other format, things will go wrong in interesting
ways. Usually, Django will raise a UnicodeDecodeError at some point.

If your code only uses ASCII data, it’s safe to use your normal strings, passing them around at will, because ASCII is
a subset of UTF-8.

Don’t be fooled into thinking that if your DEFAULT_CHARSET setting is set to something other than 'utf-8' you
can use that other encoding in your bytestrings! DEFAULT_CHARSET only applies to the strings generated as the
result of template rendering (and email). Django will always assume UTF-8 encoding for internal bytestrings. The
reason for this is that the DEFAULT_CHARSET setting is not actually under your control (if you are the application
developer). It’s under the control of the person installing and using your application – and if that person chooses a
different setting, your code must still continue to work. Ergo, it cannot rely on that setting.

In most cases when Django is dealing with strings, it will convert them to Unicode strings before doing anything else.
So, as a general rule, if you pass in a bytestring, be prepared to receive a Unicode string back in the result.

Translated strings

Aside from Unicode strings and bytestrings, there’s a third type of string-like object you may encounter when using
Django. The framework’s internationalization features introduce the concept of a “lazy translation” – a string that has
been marked as translated but whose actual translation result isn’t determined until the object is used in a string. This
feature is useful in cases where the translation locale is unknown until the string is used, even though the string might
have originally been created when the code was first imported.

Normally, you won’t have to worry about lazy translations. Just be aware that if you examine an object and it claims
to be a django.utils.functional.__proxy__ object, it is a lazy translation. Calling unicode() with the
lazy translation as the argument will generate a Unicode string in the current locale.

6.22. Unicode data 1355

Django Documentation, Release 1.10.9.dev20171123183751

For more details about lazy translation objects, refer to the internationalization documentation.

Useful utility functions

Because some string operations come up again and again, Django ships with a few useful functions that should make
working with Unicode and bytestring objects a bit easier.

Conversion functions

The django.utils.encoding module contains a few functions that are handy for converting back and forth
between Unicode and bytestrings.

• smart_text(s, encoding='utf-8', strings_only=False, errors='strict') converts
its input to a Unicode string. The encoding parameter specifies the input encoding. (For example, Django uses
this internally when processing form input data, which might not be UTF-8 encoded.) The strings_only
parameter, if set to True, will result in Python numbers, booleans and None not being converted to a string
(they keep their original types). The errors parameter takes any of the values that are accepted by Python’s
unicode() function for its error handling.

If you pass smart_text() an object that has a __unicode__ method, it will use that method to do the
conversion.

• force_text(s, encoding='utf-8', strings_only=False, errors='strict') is identi-
cal to smart_text() in almost all cases. The difference is when the first argument is a lazy translation
instance. While smart_text() preserves lazy translations, force_text() forces those objects to a
Unicode string (causing the translation to occur). Normally, you’ll want to use smart_text(). However,
force_text() is useful in template tags and filters that absolutely must have a string to work with, not just
something that can be converted to a string.

• smart_bytes(s, encoding='utf-8', strings_only=False, errors='strict') is es-
sentially the opposite of smart_text(). It forces the first argument to a bytestring. The strings_only
parameter has the same behavior as for smart_text() and force_text(). This is slightly different se-
mantics from Python’s builtin str() function, but the difference is needed in a few places within Django’s
internals.

Normally, you’ll only need to use smart_text(). Call it as early as possible on any input data that might be either
Unicode or a bytestring, and from then on, you can treat the result as always being Unicode.

URI and IRI handling

Web frameworks have to deal with URLs (which are a type of IRI). One requirement of URLs is that they are encoded
using only ASCII characters. However, in an international environment, you might need to construct a URL from an
IRI – very loosely speaking, a URI that can contain Unicode characters. Quoting and converting an IRI to URI can be
a little tricky, so Django provides some assistance.

• The function django.utils.encoding.iri_to_uri() implements the conversion from IRI to URI as
required by the specification (RFC 3987#section-3.1).

• The functions django.utils.http.urlquote() and django.utils.http.urlquote_plus()
are versions of Python’s standard urllib.quote() and urllib.quote_plus() that work with non-
ASCII characters. (The data is converted to UTF-8 prior to encoding.)

These two groups of functions have slightly different purposes, and it’s important to keep them straight. Normally,
you would use urlquote() on the individual portions of the IRI or URI path so that any reserved characters such

1356 Chapter 6. API Reference

https://www.ietf.org/rfc/rfc3987.txt
https://www.ietf.org/rfc/rfc3987.txt
https://www.ietf.org/rfc/rfc2396.txt
https://tools.ietf.org/html/rfc3987.html#section-3.1

Django Documentation, Release 1.10.9.dev20171123183751

as ‘&’ or ‘%’ are correctly encoded. Then, you apply iri_to_uri() to the full IRI and it converts any non-ASCII
characters to the correct encoded values.

Note: Technically, it isn’t correct to say that iri_to_uri() implements the full algorithm in the IRI specification.
It doesn’t (yet) perform the international domain name encoding portion of the algorithm.

The iri_to_uri() function will not change ASCII characters that are otherwise permitted in a URL. So, for
example, the character ‘%’ is not further encoded when passed to iri_to_uri(). This means you can pass a full
URL to this function and it will not mess up the query string or anything like that.

An example might clarify things here:

>>> urlquote('Paris & Orléans')
'Paris%20%26%20Orl%C3%A9ans'
>>> iri_to_uri('/favorites/François/%s' % urlquote('Paris & Orléans'))
'/favorites/Fran%C3%A7ois/Paris%20%26%20Orl%C3%A9ans'

If you look carefully, you can see that the portion that was generated by urlquote() in the second example was not
double-quoted when passed to iri_to_uri(). This is a very important and useful feature. It means that you can
construct your IRI without worrying about whether it contains non-ASCII characters and then, right at the end, call
iri_to_uri() on the result.

Similarly, Django provides django.utils.encoding.uri_to_iri()which implements the conversion from
URI to IRI as per RFC 3987#section-3.2. It decodes all percent-encodings except those that don’t represent a valid
UTF-8 sequence.

An example to demonstrate:

>>> uri_to_iri('/%E2%99%A5%E2%99%A5/?utf8=%E2%9C%93')
'/[unicode-heart][unicode-heart]/?utf8=X'
>>> uri_to_iri('%A9helloworld')
'%A9helloworld'

In the first example, the UTF-8 characters and reserved characters are unquoted. In the second, the percent-encoding
remains unchanged because it lies outside the valid UTF-8 range.

Both iri_to_uri() and uri_to_iri() functions are idempotent, which means the following is always true:

iri_to_uri(iri_to_uri(some_string)) == iri_to_uri(some_string)
uri_to_iri(uri_to_iri(some_string)) == uri_to_iri(some_string)

So you can safely call it multiple times on the same URI/IRI without risking double-quoting problems.

6.22.3 Models

Because all strings are returned from the database as Unicode strings, model fields that are character based (CharField,
TextField, URLField, etc.) will contain Unicode values when Django retrieves data from the database. This is always
the case, even if the data could fit into an ASCII bytestring.

You can pass in bytestrings when creating a model or populating a field, and Django will convert it to Unicode when
it needs to.

Choosing between __str__() and __unicode__()

6.22. Unicode data 1357

https://tools.ietf.org/html/rfc3987.html#section-3.2

Django Documentation, Release 1.10.9.dev20171123183751

Note: If you are on Python 3, you can skip this section because you’ll always create __str__() rather
than __unicode__(). If you’d like compatibility with Python 2, you can decorate your model class with
python_2_unicode_compatible().

One consequence of using Unicode by default is that you have to take some care when printing data from the model.

In particular, rather than giving your model a __str__() method, we recommended you implement a
__unicode__() method. In the __unicode__() method, you can quite safely return the values of all your
fields without having to worry about whether they fit into a bytestring or not. (The way Python works, the result of
__str__() is always a bytestring, even if you accidentally try to return a Unicode object).

You can still create a __str__() method on your models if you want, of course, but you shouldn’t need to do this
unless you have a good reason. Django’s Model base class automatically provides a __str__() implementation
that calls __unicode__() and encodes the result into UTF-8. This means you’ll normally only need to implement
a __unicode__() method and let Django handle the coercion to a bytestring when required.

Taking care in get_absolute_url()

URLs can only contain ASCII characters. If you’re constructing a URL from pieces of data that might be non-ASCII,
be careful to encode the results in a way that is suitable for a URL. The reverse() function handles this for you
automatically.

If you’re constructing a URL manually (i.e., not using the reverse() function), you’ll need to take care of the
encoding yourself. In this case, use the iri_to_uri() and urlquote() functions that were documented above.
For example:

from django.utils.encoding import iri_to_uri
from django.utils.http import urlquote

def get_absolute_url(self):
url = '/person/%s/?x=0&y=0' % urlquote(self.location)
return iri_to_uri(url)

This function returns a correctly encoded URL even if self.location is something like “Jack visited Paris &
Orléans”. (In fact, the iri_to_uri() call isn’t strictly necessary in the above example, because all the non-ASCII
characters would have been removed in quoting in the first line.)

6.22.4 The database API

You can pass either Unicode strings or UTF-8 bytestrings as arguments to filter() methods and the like in the
database API. The following two querysets are identical:

from __future__ import unicode_literals

qs = People.objects.filter(name__contains='Å')
qs = People.objects.filter(name__contains=b'\xc3\x85') # UTF-8 encoding of Å

6.22.5 Templates

You can use either Unicode or bytestrings when creating templates manually:

1358 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

from __future__ import unicode_literals
from django.template import Template
t1 = Template(b'This is a bytestring template.')
t2 = Template('This is a Unicode template.')

But the common case is to read templates from the filesystem, and this creates a slight complication: not all filesys-
tems store their data encoded as UTF-8. If your template files are not stored with a UTF-8 encoding, set the
FILE_CHARSET setting to the encoding of the files on disk. When Django reads in a template file, it will convert the
data from this encoding to Unicode. (FILE_CHARSET is set to 'utf-8' by default.)

The DEFAULT_CHARSET setting controls the encoding of rendered templates. This is set to UTF-8 by default.

Template tags and filters

A couple of tips to remember when writing your own template tags and filters:

• Always return Unicode strings from a template tag’s render() method and from template filters.

• Use force_text() in preference to smart_text() in these places. Tag rendering and filter calls occur as
the template is being rendered, so there is no advantage to postponing the conversion of lazy translation objects
into strings. It’s easier to work solely with Unicode strings at that point.

6.22.6 Files

If you intend to allow users to upload files, you must ensure that the environment used to run Django is con-
figured to work with non-ASCII file names. If your environment isn’t configured correctly, you’ll encounter
UnicodeEncodeError exceptions when saving files with file names that contain non-ASCII characters.

Filesystem support for UTF-8 file names varies and might depend on the environment. Check your current configura-
tion in an interactive Python shell by running:

import sys
sys.getfilesystemencoding()

This should output “UTF-8”.

The LANG environment variable is responsible for setting the expected encoding on Unix platforms. Consult the
documentation for your operating system and application server for the appropriate syntax and location to set this
variable.

In your development environment, you might need to add a setting to your ~.bashrc analogous to::

export LANG="en_US.UTF-8"

6.22.7 Email

Django’s email framework (in django.core.mail) supports Unicode transparently. You can use Unicode data
in the message bodies and any headers. However, you’re still obligated to respect the requirements of the email
specifications, so, for example, email addresses should use only ASCII characters.

The following code example demonstrates that everything except email addresses can be non-ASCII:

from __future__ import unicode_literals
from django.core.mail import EmailMessage

6.22. Unicode data 1359

Django Documentation, Release 1.10.9.dev20171123183751

subject = 'My visit to Sør-Trøndelag'
sender = 'Arnbjörg Ráðormsdóttir <arnbjorg@example.com>'
recipients = ['Fred <fred@example.com']
body = '...'
msg = EmailMessage(subject, body, sender, recipients)
msg.attach("Une pièce jointe.pdf", "%PDF-1.4.%...", mimetype="application/pdf")
msg.send()

6.22.8 Form submission

HTML form submission is a tricky area. There’s no guarantee that the submission will include encoding information,
which means the framework might have to guess at the encoding of submitted data.

Django adopts a “lazy” approach to decoding form data. The data in an HttpRequest object is only decoded when
you access it. In fact, most of the data is not decoded at all. Only the HttpRequest.GET and HttpRequest.
POST data structures have any decoding applied to them. Those two fields will return their members as Unicode data.
All other attributes and methods of HttpRequest return data exactly as it was submitted by the client.

By default, the DEFAULT_CHARSET setting is used as the assumed encoding for form data. If you need to change
this for a particular form, you can set the encoding attribute on an HttpRequest instance. For example:

def some_view(request):
We know that the data must be encoded as KOI8-R (for some reason).
request.encoding = 'koi8-r'
...

You can even change the encoding after having accessed request.GET or request.POST, and all subsequent
accesses will use the new encoding.

Most developers won’t need to worry about changing form encoding, but this is a useful feature for applications that
talk to legacy systems whose encoding you cannot control.

Django does not decode the data of file uploads, because that data is normally treated as collections of bytes, rather
than strings. Any automatic decoding there would alter the meaning of the stream of bytes.

6.23 django.urls utility functions

Deprecated since version 1.10: In older versions, these functions are located in django.core.urlresolvers.
Importing from the old location will continue to work until Django 2.0.

6.23.1 reverse()

If you need to use something similar to the url template tag in your code, Django provides the following function:

reverse(viewname, urlconf=None, args=None, kwargs=None, current_app=None)

viewname can be a URL pattern name or the callable view object. For example, given the following url:

from news import views

url(r'^archive/$', views.archive, name='news-archive')

you can use any of the following to reverse the URL:

1360 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

using the named URL
reverse('news-archive')

passing a callable object
(This is discouraged because you can't reverse namespaced views this way.)
from news import views
reverse(views.archive)

If the URL accepts arguments, you may pass them in args. For example:

from django.urls import reverse

def myview(request):
return HttpResponseRedirect(reverse('arch-summary', args=[1945]))

You can also pass kwargs instead of args. For example:

>>> reverse('admin:app_list', kwargs={'app_label': 'auth'})
'/admin/auth/'

args and kwargs cannot be passed to reverse() at the same time.

If no match can be made, reverse() raises a NoReverseMatch exception.

The reverse() function can reverse a large variety of regular expression patterns for URLs, but not every possible
one. The main restriction at the moment is that the pattern cannot contain alternative choices using the vertical bar
("|") character. You can quite happily use such patterns for matching against incoming URLs and sending them off
to views, but you cannot reverse such patterns.

The current_app argument allows you to provide a hint to the resolver indicating the application to which the
currently executing view belongs. This current_app argument is used as a hint to resolve application namespaces
into URLs on specific application instances, according to the namespaced URL resolution strategy.

The urlconf argument is the URLconf module containing the URL patterns to use for reversing. By default, the
root URLconf for the current thread is used.

Note: The string returned by reverse() is already urlquoted. For example:

>>> reverse('cities', args=['Orléans'])
'.../Orl%C3%A9ans/'

Applying further encoding (such as urlquote() or urllib.quote) to the output of reverse() may produce
undesirable results.

6.23.2 reverse_lazy()

A lazily evaluated version of reverse().

reverse_lazy(viewname, urlconf=None, args=None, kwargs=None, current_app=None)

It is useful for when you need to use a URL reversal before your project’s URLConf is loaded. Some common cases
where this function is necessary are:

• providing a reversed URL as the url attribute of a generic class-based view.

• providing a reversed URL to a decorator (such as the login_url argument for the django.contrib.
auth.decorators.permission_required() decorator).

6.23. django.urls utility functions 1361

Django Documentation, Release 1.10.9.dev20171123183751

• providing a reversed URL as a default value for a parameter in a function’s signature.

6.23.3 resolve()

The resolve() function can be used for resolving URL paths to the corresponding view functions. It has the
following signature:

resolve(path, urlconf=None)

path is the URL path you want to resolve. As with reverse(), you don’t need to worry about the urlconf
parameter. The function returns a ResolverMatch object that allows you to access various metadata about the
resolved URL.

If the URL does not resolve, the function raises a Resolver404 exception (a subclass of Http404) .

class ResolverMatch

func
The view function that would be used to serve the URL

args
The arguments that would be passed to the view function, as parsed from the URL.

kwargs
The keyword arguments that would be passed to the view function, as parsed from the URL.

url_name
The name of the URL pattern that matches the URL.

app_name
The application namespace for the URL pattern that matches the URL.

app_names
The list of individual namespace components in the full application namespace for the URL pattern that
matches the URL. For example, if the app_name is 'foo:bar', then app_names will be ['foo',
'bar'].

namespace
The instance namespace for the URL pattern that matches the URL.

namespaces
The list of individual namespace components in the full instance namespace for the URL pattern that
matches the URL. i.e., if the namespace is foo:bar, then namespaces will be ['foo', 'bar'].

view_name
The name of the view that matches the URL, including the namespace if there is one.

A ResolverMatch object can then be interrogated to provide information about the URL pattern that matches a
URL:

Resolve a URL
match = resolve('/some/path/')
Print the URL pattern that matches the URL
print(match.url_name)

A ResolverMatch object can also be assigned to a triple:

func, args, kwargs = resolve('/some/path/')

1362 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

One possible use of resolve() would be to test whether a view would raise a Http404 error before redirecting to
it:

from django.urls import resolve
from django.http import HttpResponseRedirect, Http404
from django.utils.six.moves.urllib.parse import urlparse

def myview(request):
next = request.META.get('HTTP_REFERER', None) or '/'
response = HttpResponseRedirect(next)

modify the request and response as required, e.g. change locale
and set corresponding locale cookie

view, args, kwargs = resolve(urlparse(next)[2])
kwargs['request'] = request
try:

view(*args, **kwargs)
except Http404:

return HttpResponseRedirect('/')
return response

6.23.4 get_script_prefix()

get_script_prefix()

Normally, you should always use reverse() to define URLs within your application. However, if your application
constructs part of the URL hierarchy itself, you may occasionally need to generate URLs. In that case, you need to be
able to find the base URL of the Django project within its Web server (normally, reverse() takes care of this for
you). In that case, you can call get_script_prefix(), which will return the script prefix portion of the URL for
your Django project. If your Django project is at the root of its web server, this is always "/".

6.24 django.conf.urls utility functions

6.24.1 static()

static.static(prefix, view=django.views.static.serve, **kwargs)

Helper function to return a URL pattern for serving files in debug mode:

from django.conf import settings
from django.conf.urls.static import static

urlpatterns = [
... the rest of your URLconf goes here ...

] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

6.24.2 url()

url(regex, view, kwargs=None, name=None)

urlpatterns should be a list of url() instances. For example:

6.24. django.conf.urls utility functions 1363

Django Documentation, Release 1.10.9.dev20171123183751

from django.conf.urls import include, url

urlpatterns = [
url(r'^index/$', index_view, name='main-view'),
url(r'^weblog/', include('blog.urls')),
...

]

The regex parameter should be a string or ugettext_lazy() (see Translating URL patterns) that contains a
regular expression compatible with Python’s re module. Strings typically use raw string syntax (r'') so that they
can contain sequences like \d without the need to escape the backslash with another backslash.

The view parameter is a view function or the result of as_view() for class-based views. It can also be an
include().

The kwargs parameter allows you to pass additional arguments to the view function or method. See Passing extra
options to view functions for an example.

See Naming URL patterns for why the name parameter is useful.

6.24.3 include()

include(module, namespace=None, app_name=None)
include(pattern_list)
include((pattern_list, app_namespace), namespace=None)
include((pattern_list, app_namespace, instance_namespace))

A function that takes a full Python import path to another URLconf module that should be “included” in this
place. Optionally, the application namespace and instance namespace where the entries will be included into
can also be specified.

Usually, the application namespace should be specified by the included module. If an application namespace is
set, the namespace argument can be used to set a different instance namespace.

include() also accepts as an argument either an iterable that returns URL patterns, a 2-tuple containing such
iterable plus the names of the application namespaces, or a 3-tuple containing the iterable and the names of both
the application and instance namespace.

Parameters

• module – URLconf module (or module name)

• namespace (string) – Instance namespace for the URL entries being included

• app_name (string) – Application namespace for the URL entries being included

• pattern_list – Iterable of django.conf.urls.url() instances

• app_namespace (string) – Application namespace for the URL entries being included

• instance_namespace (string) – Instance namespace for the URL entries being in-
cluded

See Including other URLconfs and URL namespaces and included URLconfs.

Deprecated since version 1.9: Support for the app_name argument is deprecated and will be removed in Django 2.0.
Specify the app_name as explained in URL namespaces and included URLconfs instead.

Support for passing a 3-tuple is also deprecated and will be removed in Django 2.0. Pass a 2-tuple containing the
pattern list and application namespace, and use the namespace argument instead.

1364 Chapter 6. API Reference

https://docs.python.org/3/library/re.html#module-re
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string

Django Documentation, Release 1.10.9.dev20171123183751

Lastly, support for an instance namespace without an application namespace has been deprecated and will be removed
in Django 2.0. Specify the application namespace or remove the instance namespace.

6.24.4 handler400

handler400

A callable, or a string representing the full Python import path to the view that should be called if the HTTP client has
sent a request that caused an error condition and a response with a status code of 400.

By default, this is 'django.views.defaults.bad_request'. If you implement a custom view, be sure it
returns an HttpResponseBadRequest.

See the documentation about the 400 (bad request) view for more information.

6.24.5 handler403

handler403

A callable, or a string representing the full Python import path to the view that should be called if the user doesn’t
have the permissions required to access a resource.

By default, this is 'django.views.defaults.permission_denied'. If you implement a custom view, be
sure it returns an HttpResponseForbidden.

See the documentation about the 403 (HTTP Forbidden) view for more information.

6.24.6 handler404

handler404

A callable, or a string representing the full Python import path to the view that should be called if none of the URL
patterns match.

By default, this is 'django.views.defaults.page_not_found'. If you implement a custom view, be sure
it returns an HttpResponseNotFound.

See the documentation about the 404 (HTTP Not Found) view for more information.

6.24.7 handler500

handler500

A callable, or a string representing the full Python import path to the view that should be called in case of server errors.
Server errors happen when you have runtime errors in view code.

By default, this is 'django.views.defaults.server_error'. If you implement a custom view, be sure it
returns an HttpResponseServerError.

See the documentation about the 500 (HTTP Internal Server Error) view for more information.

6.24. django.conf.urls utility functions 1365

Django Documentation, Release 1.10.9.dev20171123183751

6.25 Django Utils

This document covers all stable modules in django.utils. Most of the modules in django.utils are designed
for internal use and only the following parts can be considered stable and thus backwards compatible as per the internal
release deprecation policy.

6.25.1 django.utils.cache

This module contains helper functions for controlling caching. It does so by managing the Vary header of responses.
It includes functions to patch the header of response objects directly and decorators that change functions to do that
header-patching themselves.

For information on the Vary header, see RFC 7231#section-7.1.4.

Essentially, the Vary HTTP header defines which headers a cache should take into account when building its cache
key. Requests with the same path but different header content for headers named in Vary need to get different cache
keys to prevent delivery of wrong content.

For example, internationalization middleware would need to distinguish caches by the Accept-language header.

patch_cache_control(response, **kwargs)
This function patches the Cache-Control header by adding all keyword arguments to it. The transformation
is as follows:

• All keyword parameter names are turned to lowercase, and underscores are converted to hyphens.

• If the value of a parameter is True (exactly True, not just a true value), only the parameter name is added
to the header.

• All other parameters are added with their value, after applying str() to it.

get_max_age(response)
Returns the max-age from the response Cache-Control header as an integer (or None if it wasn’t found or wasn’t
an integer).

patch_response_headers(response, cache_timeout=None)
Adds some useful headers to the given HttpResponse object:

• ETag

• Last-Modified

• Expires

• Cache-Control

Each header is only added if it isn’t already set.

cache_timeout is in seconds. The CACHE_MIDDLEWARE_SECONDS setting is used by default.

add_never_cache_headers(response)
Adds a Cache-Control: max-age=0, no-cache, no-store, must-revalidate header to
a response to indicate that a page should never be cached.

In older versions, Cache-Control: max-age=0 was sent. This didn’t reliably prevent caching in all
browsers.

patch_vary_headers(response, newheaders)
Adds (or updates) the Vary header in the given HttpResponse object. newheaders is a list of header
names that should be in Vary. Existing headers in Vary aren’t removed.

1366 Chapter 6. API Reference

https://tools.ietf.org/html/rfc7231.html#section-7.1.4

Django Documentation, Release 1.10.9.dev20171123183751

get_cache_key(request, key_prefix=None)
Returns a cache key based on the request path. It can be used in the request phase because it pulls the list of
headers to take into account from the global path registry and uses those to build a cache key to check against.

If there is no headerlist stored, the page needs to be rebuilt, so this function returns None.

learn_cache_key(request, response, cache_timeout=None, key_prefix=None)
Learns what headers to take into account for some request path from the response object. It stores those headers
in a global path registry so that later access to that path will know what headers to take into account without
building the response object itself. The headers are named in the Vary header of the response, but we want to
prevent response generation.

The list of headers to use for cache key generation is stored in the same cache as the pages themselves. If the
cache ages some data out of the cache, this just means that we have to build the response once to get at the Vary
header and so at the list of headers to use for the cache key.

6.25.2 django.utils.dateparse

The functions defined in this module share the following properties:

• They raise ValueError if their input is well formatted but isn’t a valid date or time.

• They return None if it isn’t well formatted at all.

• They accept up to picosecond resolution in input, but they truncate it to microseconds, since that’s what Python
supports.

parse_date(value)
Parses a string and returns a datetime.date.

parse_time(value)
Parses a string and returns a datetime.time.

UTC offsets aren’t supported; if value describes one, the result is None.

parse_datetime(value)
Parses a string and returns a datetime.datetime.

UTC offsets are supported; if value describes one, the result’s tzinfo attribute is a FixedOffset instance.

parse_duration(value)
Parses a string and returns a datetime.timedelta.

Expects data in the format "DD HH:MM:SS.uuuuuu" or as specified by ISO 8601 (e.g. P4DT1H15M20S
which is equivalent to 4 1:15:20).

6.25.3 django.utils.decorators

method_decorator(decorator, name=’‘)
Converts a function decorator into a method decorator. It can be used to decorate methods or classes; in the
latter case, name is the name of the method to be decorated and is required.

decorator may also be a list or tuple of functions. They are wrapped in reverse order so that the call order is
the order in which the functions appear in the list/tuple.

See decorating class based views for example usage.

The ability to decorate classes, the name parameter, and the ability for decorator to accept a list/tuple of
decorator functions were added.

6.25. Django Utils 1367

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta

Django Documentation, Release 1.10.9.dev20171123183751

decorator_from_middleware(middleware_class)
Given a middleware class, returns a view decorator. This lets you use middleware functionality on a per-view
basis. The middleware is created with no params passed.

It assumes middleware that’s compatible with the old style of Django 1.9 and earlier (having methods like
process_request(), process_exception(), and process_response()).

decorator_from_middleware_with_args(middleware_class)
Like decorator_from_middleware, but returns a function that accepts the arguments to be passed to the
middleware_class. For example, the cache_page() decorator is created from the CacheMiddleware like
this:

cache_page = decorator_from_middleware_with_args(CacheMiddleware)

@cache_page(3600)
def my_view(request):

pass

6.25.4 django.utils.encoding

python_2_unicode_compatible()
A decorator that defines __unicode__ and __str__ methods under Python 2. Under Python 3 it does
nothing.

To support Python 2 and 3 with a single code base, define a __str__ method returning text and apply this
decorator to the class.

smart_text(s, encoding=’utf-8’, strings_only=False, errors=’strict’)
Returns a text object representing s – unicode on Python 2 and str on Python 3. Treats bytestrings using
the encoding codec.

If strings_only is True, don’t convert (some) non-string-like objects.

smart_unicode(s, encoding=’utf-8’, strings_only=False, errors=’strict’)
Historical name of smart_text(). Only available under Python 2.

is_protected_type(obj)
Determine if the object instance is of a protected type.

Objects of protected types are preserved as-is when passed to force_text(strings_only=True).

force_text(s, encoding=’utf-8’, strings_only=False, errors=’strict’)
Similar to smart_text, except that lazy instances are resolved to strings, rather than kept as lazy objects.

If strings_only is True, don’t convert (some) non-string-like objects.

force_unicode(s, encoding=’utf-8’, strings_only=False, errors=’strict’)
Historical name of force_text(). Only available under Python 2.

smart_bytes(s, encoding=’utf-8’, strings_only=False, errors=’strict’)
Returns a bytestring version of s, encoded as specified in encoding.

If strings_only is True, don’t convert (some) non-string-like objects.

force_bytes(s, encoding=’utf-8’, strings_only=False, errors=’strict’)
Similar to smart_bytes, except that lazy instances are resolved to bytestrings, rather than kept as lazy objects.

If strings_only is True, don’t convert (some) non-string-like objects.

1368 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

smart_str(s, encoding=’utf-8’, strings_only=False, errors=’strict’)
Alias of smart_bytes() on Python 2 and smart_text() on Python 3. This function returns a str or a
lazy string.

For instance, this is suitable for writing to sys.stdout on Python 2 and 3.

force_str(s, encoding=’utf-8’, strings_only=False, errors=’strict’)
Alias of force_bytes() on Python 2 and force_text() on Python 3. This function always returns a
str.

iri_to_uri(iri)
Convert an Internationalized Resource Identifier (IRI) portion to a URI portion that is suitable for inclusion in a
URL.

This is the algorithm from section 3.1 of RFC 3987#section-3.1. However, since we are assuming input is either
UTF-8 or unicode already, we can simplify things a little from the full method.

Takes an IRI in UTF-8 bytes and returns ASCII bytes containing the encoded result.

uri_to_iri(uri)
Converts a Uniform Resource Identifier into an Internationalized Resource Identifier.

This is an algorithm from section 3.2 of RFC 3987#section-3.2.

Takes a URI in ASCII bytes and returns a unicode string containing the encoded result.

filepath_to_uri(path)
Convert a file system path to a URI portion that is suitable for inclusion in a URL. The path is assumed to be
either UTF-8 or unicode.

This method will encode certain characters that would normally be recognized as special characters for
URIs. Note that this method does not encode the ‘ character, as it is a valid character within URIs. See
encodeURIComponent() JavaScript function for more details.

Returns an ASCII string containing the encoded result.

escape_uri_path(path)
Escapes the unsafe characters from the path portion of a Uniform Resource Identifier (URI).

6.25.5 django.utils.feedgenerator

Sample usage:

>>> from django.utils import feedgenerator
>>> feed = feedgenerator.Rss201rev2Feed(
... title="Poynter E-Media Tidbits",
... link="http://www.poynter.org/column.asp?id=31",
... description="A group Weblog by the sharpest minds in online media/journalism/
→˓publishing.",
... language="en",
...)
>>> feed.add_item(
... title="Hello",
... link="http://www.holovaty.com/test/",
... description="Testing.",
...)
>>> with open('test.rss', 'w') as fp:
... feed.write(fp, 'utf-8')

For simplifying the selection of a generator use feedgenerator.DefaultFeed which is currently
Rss201rev2Feed

6.25. Django Utils 1369

https://docs.python.org/3/library/sys.html#sys.stdout
https://tools.ietf.org/html/rfc3987.html#section-3.1
https://tools.ietf.org/html/rfc3987.html#section-3.2

Django Documentation, Release 1.10.9.dev20171123183751

For definitions of the different versions of RSS, see: https://web.archive.org/web/20110718035220/http://
diveintomark.org/archives/2004/02/04/incompatible-rss

get_tag_uri(url, date)
Creates a TagURI.

See https://web.archive.org/web/20110514113830/http://diveintomark.org/archives/2004/05/28/howto-atom-id

SyndicationFeed

class SyndicationFeed
Base class for all syndication feeds. Subclasses should provide write().

__init__(title, link, description, language=None, author_email=None, author_name=None, au-
thor_link=None, subtitle=None, categories=None, feed_url=None, feed_copyright=None,
feed_guid=None, ttl=None, **kwargs)

Initialize the feed with the given dictionary of metadata, which applies to the entire feed.

Any extra keyword arguments you pass to __init__ will be stored in self.feed.

All parameters should be Unicode objects, except categories, which should be a sequence of Unicode
objects.

add_item(title, link, description, author_email=None, author_name=None, author_link=None,
pubdate=None, comments=None, unique_id=None, enclosure=None, categories=(),
item_copyright=None, ttl=None, updateddate=None, enclosures=None, **kwargs)

Adds an item to the feed. All args are expected to be Python unicode objects except pubdate and
updateddate, which are datetime.datetime objects, enclosure, which is an Enclosure
instance, and enclosures, which is a list of Enclosure instances.

Deprecated since version 1.9: The enclosure keyword argument is deprecated in favor of the new
enclosures keyword argument which accepts a list of Enclosure objects.

num_items()

root_attributes()
Return extra attributes to place on the root (i.e. feed/channel) element. Called from write().

add_root_elements(handler)
Add elements in the root (i.e. feed/channel) element. Called from write().

item_attributes(item)
Return extra attributes to place on each item (i.e. item/entry) element.

add_item_elements(handler, item)
Add elements on each item (i.e. item/entry) element.

write(outfile, encoding)
Outputs the feed in the given encoding to outfile, which is a file-like object. Subclasses should override
this.

writeString(encoding)
Returns the feed in the given encoding as a string.

latest_post_date()
Returns the latest pubdate or updateddate for all items in the feed. If no items have either of these
attributes this returns the current date/time.

1370 Chapter 6. API Reference

https://web.archive.org/web/20110718035220/http://diveintomark.org/archives/2004/02/04/incompatible-rss
https://web.archive.org/web/20110718035220/http://diveintomark.org/archives/2004/02/04/incompatible-rss
https://web.archive.org/web/20110514113830/http://diveintomark.org/archives/2004/05/28/howto-atom-id

Django Documentation, Release 1.10.9.dev20171123183751

Enclosure

class Enclosure
Represents an RSS enclosure

RssFeed

class RssFeed(SyndicationFeed)

Rss201rev2Feed

class Rss201rev2Feed(RssFeed)
Spec: https://cyber.law.harvard.edu/rss/rss.html

RssUserland091Feed

class RssUserland091Feed(RssFeed)
Spec: http://backend.userland.com/rss091

Atom1Feed

class Atom1Feed(SyndicationFeed)
Spec: https://tools.ietf.org/html/rfc4287

6.25.6 django.utils.functional

class cached_property(object, name)
The @cached_property decorator caches the result of a method with a single self argument as a property.
The cached result will persist as long as the instance does, so if the instance is passed around and the function
subsequently invoked, the cached result will be returned.

Consider a typical case, where a view might need to call a model’s method to perform some computation, before
placing the model instance into the context, where the template might invoke the method once more:

the model
class Person(models.Model):

def friends(self):
expensive computation
...
return friends

in the view:
if person.friends():

...

And in the template you would have:

{% for friend in person.friends %}

Here, friends() will be called twice. Since the instance person in the view and the template are the same,
@cached_property can avoid that:

6.25. Django Utils 1371

https://cyber.law.harvard.edu/rss/rss.html
http://backend.userland.com/rss091
https://tools.ietf.org/html/rfc4287

Django Documentation, Release 1.10.9.dev20171123183751

from django.utils.functional import cached_property

@cached_property
def friends(self):

expensive computation
...
return friends

Note that as the method is now a property, in Python code it will need to be invoked appropriately:

in the view:
if person.friends:

...

The cached value can be treated like an ordinary attribute of the instance:

clear it, requiring re-computation next time it's called
del person.friends # or delattr(person, "friends")

set a value manually, that will persist on the instance until cleared
person.friends = ["Huckleberry Finn", "Tom Sawyer"]

As well as offering potential performance advantages, @cached_property can ensure that an attribute’s
value does not change unexpectedly over the life of an instance. This could occur with a method whose compu-
tation is based on datetime.now(), or simply if a change were saved to the database by some other process
in the brief interval between subsequent invocations of a method on the same instance.

You can use the name argument to make cached properties of other methods. For example, if you had an
expensive get_friends() method and wanted to allow calling it without retrieving the cached value, you
could write:

friends = cached_property(get_friends, name='friends')

While person.get_friends() will recompute the friends on each call, the value of the cached property
will persist until you delete it as described above:

x = person.friends # calls first time
y = person.get_friends() # calls again
z = person.friends # does not call
x is z # is True

allow_lazy(func, *resultclasses)
Deprecated since version 1.10.

Works like keep_lazy() except that it can’t be used as a decorator.

keep_lazy(func, *resultclasses)
Django offers many utility functions (particularly in django.utils) that take a string as their first argument
and do something to that string. These functions are used by template filters as well as directly in other code.

If you write your own similar functions and deal with translations, you’ll face the problem of what to do when
the first argument is a lazy translation object. You don’t want to convert it to a string immediately, because you
might be using this function outside of a view (and hence the current thread’s locale setting will not be correct).

For cases like this, use the django.utils.functional.keep_lazy() decorator. It modifies the func-
tion so that if it’s called with a lazy translation as one of its arguments, the function evaluation is delayed until
it needs to be converted to a string.

For example:

1372 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

from django.utils import six
from django.utils.functional import keep_lazy, keep_lazy_text

def fancy_utility_function(s, ...):
Do some conversion on string 's'
...

fancy_utility_function = keep_lazy(six.text_type)(fancy_utility_function)

Or more succinctly:
@keep_lazy(six.text_type)
def fancy_utility_function(s, ...):

...

The keep_lazy() decorator takes a number of extra arguments (*args) specifying the type(s) that the
original function can return. A common use case is to have functions that return text. For these, you can just
pass the six.text_type type to keep_lazy (or even simpler, use the keep_lazy_text() decorator
described in the next section).

Using this decorator means you can write your function and assume that the input is a proper string, then add
support for lazy translation objects at the end.

keep_lazy_text(func)
A shortcut for keep_lazy(six.text_type)(func).

If you have a function that returns text and you want to be able to take lazy arguments while delaying their
evaluation, simply use this decorator:

from django.utils import six
from django.utils.functional import keep_lazy, keep_lazy_text

Our previous example was:
@keep_lazy(six.text_type)
def fancy_utility_function(s, ...):

...

Which can be rewritten as:
@keep_lazy_text
def fancy_utility_function(s, ...):

...

6.25.7 django.utils.html

Usually you should build up HTML using Django’s templates to make use of its autoescape mechanism, using the
utilities in django.utils.safestring where appropriate. This module provides some additional low level
utilities for escaping HTML.

escape(text)
Returns the given text with ampersands, quotes and angle brackets encoded for use in HTML. The input is first
passed through force_text() and the output has mark_safe() applied.

conditional_escape(text)
Similar to escape(), except that it doesn’t operate on pre-escaped strings, so it will not double escape.

format_html(format_string, *args, **kwargs)
This is similar to str.format(), except that it is appropriate for building up HTML fragments. All args and
kwargs are passed through conditional_escape() before being passed to str.format().

6.25. Django Utils 1373

https://docs.python.org/3/library/stdtypes.html#str.format

Django Documentation, Release 1.10.9.dev20171123183751

For the case of building up small HTML fragments, this function is to be preferred over string interpolation
using % or str.format() directly, because it applies escaping to all arguments - just like the template system
applies escaping by default.

So, instead of writing:

mark_safe("%s %s %s" % (
some_html,
escape(some_text),
escape(some_other_text),

))

You should instead use:

format_html("{} {} {}",
mark_safe(some_html),
some_text,
some_other_text,

)

This has the advantage that you don’t need to apply escape() to each argument and risk a bug and an XSS
vulnerability if you forget one.

Note that although this function uses str.format() to do the interpolation, some of the formatting options
provided by str.format() (e.g. number formatting) will not work, since all arguments are passed through
conditional_escape() which (ultimately) calls force_text() on the values.

format_html_join(sep, format_string, args_generator)
A wrapper of format_html(), for the common case of a group of arguments that need to be formatted using
the same format string, and then joined using sep. sep is also passed through conditional_escape().

args_generator should be an iterator that returns the sequence of args that will be passed to
format_html(). For example:

format_html_join(
'\n', "{} {}",
((u.first_name, u.last_name) for u in users)

)

strip_tags(value)
Tries to remove anything that looks like an HTML tag from the string, that is anything contained within <>.

Absolutely NO guarantee is provided about the resulting string being HTML safe. So NEVER mark safe the
result of a strip_tag call without escaping it first, for example with escape().

For example:

strip_tags(value)

If value is "Joel <button>is</button> a slug" the return value
will be "Joel is a slug".

If you are looking for a more robust solution, take a look at the bleach Python library.

html_safe()
The __html__() method on a class helps non-Django templates detect classes whose output doesn’t require
HTML escaping.

This decorator defines the __html__() method on the decorated class by wrapping the __unicode__()
(Python 2) or __str__() (Python 3) in mark_safe(). Ensure the __unicode__() or __str__()
method does indeed return text that doesn’t require HTML escaping.

1374 Chapter 6. API Reference

https://pypi.python.org/pypi/bleach

Django Documentation, Release 1.10.9.dev20171123183751

6.25.8 django.utils.http

urlquote(url, safe=’/’)
A version of Python’s urllib.quote() function that can operate on unicode strings. The url is first UTF-
8 encoded before quoting. The returned string can safely be used as part of an argument to a subsequent
iri_to_uri() call without double-quoting occurring. Employs lazy execution.

urlquote_plus(url, safe=’‘)
A version of Python’s urllib.quote_plus() function that can operate on unicode strings. The url is first UTF-
8 encoded before quoting. The returned string can safely be used as part of an argument to a subsequent
iri_to_uri() call without double-quoting occurring. Employs lazy execution.

urlencode(query, doseq=0)
A version of Python’s urllib.urlencode() function that can operate on unicode strings. The parameters are first
cast to UTF-8 encoded strings and then encoded as per normal.

cookie_date(epoch_seconds=None)
Formats the time to ensure compatibility with Netscape’s cookie standard.

Accepts a floating point number expressed in seconds since the epoch in UTC–such as that outputted by time.
time(). If set to None, defaults to the current time.

Outputs a string in the format Wdy, DD-Mon-YYYY HH:MM:SS GMT.

http_date(epoch_seconds=None)
Formats the time to match the RFC 1123 date format as specified by HTTP RFC 7231#section-7.1.1.1.

Accepts a floating point number expressed in seconds since the epoch in UTC–such as that outputted by time.
time(). If set to None, defaults to the current time.

Outputs a string in the format Wdy, DD Mon YYYY HH:MM:SS GMT.

base36_to_int(s)
Converts a base 36 string to an integer. On Python 2 the output is guaranteed to be an int and not a long.

int_to_base36(i)
Converts a positive integer to a base 36 string. On Python 2 i must be smaller than sys.maxint.

urlsafe_base64_encode(s)
Encodes a bytestring in base64 for use in URLs, stripping any trailing equal signs.

urlsafe_base64_decode(s)
Decodes a base64 encoded string, adding back any trailing equal signs that might have been stripped.

6.25.9 django.utils.module_loading

Functions for working with Python modules.

import_string(dotted_path)
Imports a dotted module path and returns the attribute/class designated by the last name in the path. Raises
ImportError if the import failed. For example:

from django.utils.module_loading import import_string
ValidationError = import_string('django.core.exceptions.ValidationError')

is equivalent to:

from django.core.exceptions import ValidationError

6.25. Django Utils 1375

https://tools.ietf.org/html/rfc1123.html
https://tools.ietf.org/html/rfc7231.html#section-7.1.1.1
https://docs.python.org/2/library/sys.html#sys.maxint

Django Documentation, Release 1.10.9.dev20171123183751

6.25.10 django.utils.safestring

Functions and classes for working with “safe strings”: strings that can be displayed safely without further escaping in
HTML. Marking something as a “safe string” means that the producer of the string has already turned characters that
should not be interpreted by the HTML engine (e.g. ‘<’) into the appropriate entities.

class SafeBytes
A bytes subclass that has been specifically marked as “safe” (requires no further escaping) for HTML output
purposes.

class SafeString
A str subclass that has been specifically marked as “safe” (requires no further escaping) for HTML output
purposes. This is SafeBytes on Python 2 and SafeText on Python 3.

class SafeText
A str (in Python 3) or unicode (in Python 2) subclass that has been specifically marked as “safe” for HTML
output purposes.

class SafeUnicode
Historical name of SafeText. Only available under Python 2.

mark_safe(s)
Explicitly mark a string as safe for (HTML) output purposes. The returned object can be used everywhere a
string or unicode object is appropriate.

Can be called multiple times on a single string.

For building up fragments of HTML, you should normally be using django.utils.html.
format_html() instead.

String marked safe will become unsafe again if modified. For example:

>>> mystr = 'Hello World '
>>> mystr = mark_safe(mystr)
>>> type(mystr)
<class 'django.utils.safestring.SafeBytes'>

>>> mystr = mystr.strip() # removing whitespace
>>> type(mystr)
<type 'str'>

mark_for_escaping(s)
Deprecated since version 1.10.

Explicitly mark a string as requiring HTML escaping upon output. Has no effect on SafeData subclasses.

Can be called multiple times on a single string (the resulting escaping is only applied once).

6.25.11 django.utils.text

slugify(allow_unicode=False)
Converts to ASCII if allow_unicode is False (default). Converts spaces to hyphens. Removes characters
that aren’t alphanumerics, underscores, or hyphens. Converts to lowercase. Also strips leading and trailing
whitespace.

For example:

slugify(value)

1376 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

If value is "Joel is a slug", the output will be "joel-is-a-slug".

You can set the allow_unicode parameter to True, if you want to allow Unicode characters:

slugify(value, allow_unicode=True)

If value is " World", the output will be "-world".

The allow_unicode parameter was added.

6.25.12 django.utils.timezone

utc
tzinfo instance that represents UTC.

class FixedOffset(offset=None, name=None)
A tzinfo subclass modeling a fixed offset from UTC. offset is an integer number of minutes east of UTC.

get_fixed_timezone(offset)
Returns a tzinfo instance that represents a time zone with a fixed offset from UTC.

offset is a datetime.timedelta or an integer number of minutes. Use positive values for time zones
east of UTC and negative values for west of UTC.

get_default_timezone()
Returns a tzinfo instance that represents the default time zone.

get_default_timezone_name()
Returns the name of the default time zone.

get_current_timezone()
Returns a tzinfo instance that represents the current time zone.

get_current_timezone_name()
Returns the name of the current time zone.

activate(timezone)
Sets the current time zone. The timezone argument must be an instance of a tzinfo subclass or, if pytz is
available, a time zone name.

deactivate()
Unsets the current time zone.

override(timezone)
This is a Python context manager that sets the current time zone on entry with activate(), and restores the
previously active time zone on exit. If the timezone argument is None, the current time zone is unset on entry
with deactivate() instead.

override is also usable as a function decorator.

localtime(value, timezone=None)
Converts an aware datetime to a different time zone, by default the current time zone.

This function doesn’t work on naive datetimes; use make_aware() instead.

now()
Returns a datetime that represents the current point in time. Exactly what’s returned depends on the value of
USE_TZ:

• If USE_TZ is False, this will be a naive datetime (i.e. a datetime without an associated timezone) that
represents the current time in the system’s local timezone.

6.25. Django Utils 1377

https://docs.python.org/3/library/datetime.html#datetime.tzinfo
https://docs.python.org/3/library/datetime.html#datetime.tzinfo
https://docs.python.org/3/library/datetime.html#datetime.tzinfo
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.tzinfo
https://docs.python.org/3/library/datetime.html#datetime.tzinfo
https://docs.python.org/3/library/datetime.html#datetime.tzinfo
http://pytz.sourceforge.net/
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

Django Documentation, Release 1.10.9.dev20171123183751

• If USE_TZ is True, this will be an aware datetime representing the current time in UTC. Note that now()
will always return times in UTC regardless of the value of TIME_ZONE; you can use localtime() to
convert to a time in the current time zone.

is_aware(value)
Returns True if value is aware, False if it is naive. This function assumes that value is a datetime.

is_naive(value)
Returns True if value is naive, False if it is aware. This function assumes that value is a datetime.

make_aware(value, timezone=None, is_dst=None)
Returns an aware datetime that represents the same point in time as value in timezone, value being a
naive datetime. If timezone is set to None, it defaults to the current time zone.

When pytz is installed, the exception pytz.AmbiguousTimeErrorwill be raised if you try to make value
aware during a DST transition where the same time occurs twice (when reverting from DST). Setting is_dst to
True or False will avoid the exception by choosing if the time is pre-transition or post-transition respectively.

When pytz is installed, the exception pytz.NonExistentTimeError will be raised if you try to make
value aware during a DST transition such that the time never occurred (when entering into DST). Setting
is_dst to True or False will avoid the exception by moving the hour backwards or forwards by 1 respec-
tively. For example, is_dst=True would change a non-existent time of 2:30 to 1:30 and is_dst=False
would change the time to 3:30.

is_dst has no effect when pytz is not installed.

The is_dst argument was added.

make_naive(value, timezone=None)
Returns an naive datetime that represents in timezone the same point in time as value, value being an
aware datetime. If timezone is set to None, it defaults to the current time zone.

6.25.13 django.utils.translation

For a complete discussion on the usage of the following see the translation documentation.

gettext(message)
Translates message and returns it in a UTF-8 bytestring

ugettext(message)
Translates message and returns it in a unicode string

pgettext(context, message)
Translates message given the context and returns it in a unicode string.

For more information, see Contextual markers.

gettext_lazy(message)

ugettext_lazy(message)

pgettext_lazy(context, message)
Same as the non-lazy versions above, but using lazy execution.

See lazy translations documentation.

gettext_noop(message)

ugettext_noop(message)
Marks strings for translation but doesn’t translate them now. This can be used to store strings in global variables
that should stay in the base language (because they might be used externally) and will be translated later.

1378 Chapter 6. API Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
http://pytz.sourceforge.net/
http://pytz.sourceforge.net/
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

Django Documentation, Release 1.10.9.dev20171123183751

ngettext(singular, plural, number)
Translates singular and plural and returns the appropriate string based on number in a UTF-8 bytestring.

ungettext(singular, plural, number)
Translates singular and plural and returns the appropriate string based on number in a unicode string.

npgettext(context, singular, plural, number)
Translates singular and plural and returns the appropriate string based on number and the context in
a unicode string.

ngettext_lazy(singular, plural, number)

ungettext_lazy(singular, plural, number)

npgettext_lazy(context, singular, plural, number)
Same as the non-lazy versions above, but using lazy execution.

See lazy translations documentation.

string_concat(*strings)
Lazy variant of string concatenation, needed for translations that are constructed from multiple parts.

activate(language)
Fetches the translation object for a given language and activates it as the current translation object for the current
thread.

deactivate()
Deactivates the currently active translation object so that further _ calls will resolve against the default translation
object, again.

deactivate_all()
Makes the active translation object a NullTranslations() instance. This is useful when we want delayed
translations to appear as the original string for some reason.

override(language, deactivate=False)
A Python context manager that uses django.utils.translation.activate() to fetch the translation
object for a given language, activates it as the translation object for the current thread and reactivates the previous
active language on exit. Optionally, it can simply deactivate the temporary translation on exit with django.
utils.translation.deactivate() if the deactivate argument is True. If you pass None as the
language argument, a NullTranslations() instance is activated within the context.

override is also usable as a function decorator.

check_for_language(lang_code)
Checks whether there is a global language file for the given language code (e.g. ‘fr’, ‘pt_BR’). This is used to
decide whether a user-provided language is available.

get_language()
Returns the currently selected language code. Returns None if translations are temporarily deactivated (by
deactivate_all() or when None is passed to override()).

get_language_bidi()
Returns selected language’s BiDi layout:

• False = left-to-right layout

• True = right-to-left layout

get_language_from_request(request, check_path=False)
Analyzes the request to find what language the user wants the system to show. Only languages listed in set-
tings.LANGUAGES are taken into account. If the user requests a sublanguage where we have a main language,
we send out the main language.

6.25. Django Utils 1379

Django Documentation, Release 1.10.9.dev20171123183751

If check_path is True, the function first checks the requested URL for whether its path begins with a
language code listed in the LANGUAGES setting.

to_locale(language)
Turns a language name (en-us) into a locale name (en_US).

templatize(src)
Turns a Django template into something that is understood by xgettext. It does so by translating the Django
translation tags into standard gettext function invocations.

LANGUAGE_SESSION_KEY
Session key under which the active language for the current session is stored.

6.26 Validators

6.26.1 Writing validators

A validator is a callable that takes a value and raises a ValidationError if it doesn’t meet some criteria. Validators
can be useful for re-using validation logic between different types of fields.

For example, here’s a validator that only allows even numbers:

from django.core.exceptions import ValidationError
from django.utils.translation import ugettext_lazy as _

def validate_even(value):
if value % 2 != 0:

raise ValidationError(
_('%(value)s is not an even number'),
params={'value': value},

)

You can add this to a model field via the field’s validators argument:

from django.db import models

class MyModel(models.Model):
even_field = models.IntegerField(validators=[validate_even])

Because values are converted to Python before validators are run, you can even use the same validator with forms:

from django import forms

class MyForm(forms.Form):
even_field = forms.IntegerField(validators=[validate_even])

You can also use a class with a __call__() method for more complex or configurable validators.
RegexValidator, for example, uses this technique. If a class-based validator is used in the validators
model field option, you should make sure it is serializable by the migration framework by adding deconstruct() and
__eq__() methods.

6.26.2 How validators are run

See the form validation for more information on how validators are run in forms, and Validating objects for how
they’re run in models. Note that validators will not be run automatically when you save a model, but if you are

1380 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

using a ModelForm, it will run your validators on any fields that are included in your form. See the ModelForm
documentation for information on how model validation interacts with forms.

6.26.3 Built-in validators

The django.core.validators module contains a collection of callable validators for use with model and form
fields. They’re used internally but are available for use with your own fields, too. They can be used in addition to, or
in lieu of custom field.clean() methods.

RegexValidator

class RegexValidator(regex=None, message=None, code=None, inverse_match=None, flags=0)

Parameters

• regex – If not None, overrides regex. Can be a regular expression string or a pre-
compiled regular expression.

• message – If not None, overrides message.

• code – If not None, overrides code.

• inverse_match – If not None, overrides inverse_match.

• flags – If not None, overrides flags. In that case, regex must be a regular expression
string, or TypeError is raised.

regex
The regular expression pattern to search for the provided value, or a pre-compiled regular expression. By
default, raises a ValidationError with message and code if a match is not found. That standard
behavior can be reversed by setting inverse_match to True, in which case the ValidationError
is raised when a match is found. By default, matches any string (including an empty string).

message
The error message used by ValidationError if validation fails. Defaults to "Enter a valid
value".

code
The error code used by ValidationError if validation fails. Defaults to "invalid".

inverse_match
The match mode for regex. Defaults to False.

flags
The flags used when compiling the regular expression string regex. If regex is a pre-compiled regular
expression, and flags is overridden, TypeError is raised. Defaults to 0.

EmailValidator

class EmailValidator(message=None, code=None, whitelist=None)

Parameters

• message – If not None, overrides message.

• code – If not None, overrides code.

• whitelist – If not None, overrides whitelist.

6.26. Validators 1381

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError

Django Documentation, Release 1.10.9.dev20171123183751

message
The error message used by ValidationError if validation fails. Defaults to "Enter a valid
email address".

code
The error code used by ValidationError if validation fails. Defaults to "invalid".

whitelist
Whitelist of email domains to allow. By default, a regular expression (the domain_regex attribute) is
used to validate whatever appears after the @ sign. However, if that string appears in the whitelist, this
validation is bypassed. If not provided, the default whitelist is ['localhost']. Other domains that
don’t contain a dot won’t pass validation, so you’d need to whitelist them as necessary.

URLValidator

class URLValidator(schemes=None, regex=None, message=None, code=None)
A RegexValidator that ensures a value looks like a URL, and raises an error code of 'invalid' if it
doesn’t.

Loopback addresses and reserved IP spaces are considered valid. Literal IPv6 addresses (RFC 2732) and uni-
code domains are both supported.

In addition to the optional arguments of its parent RegexValidator class, URLValidator accepts an extra
optional attribute:

schemes
URL/URI scheme list to validate against. If not provided, the default list is ['http', 'https',
'ftp', 'ftps']. As a reference, the IANA website provides a full list of valid URI schemes.

validate_email

validate_email
An EmailValidator instance without any customizations.

validate_slug

validate_slug
A RegexValidator instance that ensures a value consists of only letters, numbers, underscores or hyphens.

validate_unicode_slug

validate_unicode_slug
A RegexValidator instance that ensures a value consists of only Unicode letters, numbers, underscores, or
hyphens.

validate_ipv4_address

validate_ipv4_address
A RegexValidator instance that ensures a value looks like an IPv4 address.

1382 Chapter 6. API Reference

https://tools.ietf.org/html/rfc2732.html
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml

Django Documentation, Release 1.10.9.dev20171123183751

validate_ipv6_address

validate_ipv6_address
Uses django.utils.ipv6 to check the validity of an IPv6 address.

validate_ipv46_address

validate_ipv46_address
Uses both validate_ipv4_address and validate_ipv6_address to ensure a value is either a valid
IPv4 or IPv6 address.

validate_comma_separated_integer_list

validate_comma_separated_integer_list
A RegexValidator instance that ensures a value is a comma-separated list of integers.

int_list_validator

int_list_validator(sep=’, ‘, message=None, code=’invalid’, allow_negative=False)
Returns a RegexValidator instance that ensures a string consists of integers separated by sep. It allows
negative integers when allow_negative is True.

The allow_negative parameter was added.

MaxValueValidator

class MaxValueValidator(max_value, message=None)
Raises a ValidationError with a code of 'max_value' if value is greater than max_value.

MinValueValidator

class MinValueValidator(min_value, message=None)
Raises a ValidationError with a code of 'min_value' if value is less than min_value.

MaxLengthValidator

class MaxLengthValidator(max_length, message=None)
Raises a ValidationError with a code of 'max_length' if the length of value is greater than
max_length.

MinLengthValidator

class MinLengthValidator(min_length, message=None)
Raises a ValidationError with a code of 'min_length' if the length of value is less than
min_length.

6.26. Validators 1383

Django Documentation, Release 1.10.9.dev20171123183751

DecimalValidator

class DecimalValidator(max_digits, decimal_places)
Raises ValidationError with the following codes:

• 'max_digits' if the number of digits is larger than max_digits.

• 'max_decimal_places' if the number of decimals is larger than decimal_places.

• 'max_whole_digits' if the number of whole digits is larger than the difference between
max_digits and decimal_places.

6.27 Built-in Views

Several of Django’s built-in views are documented in Writing views as well as elsewhere in the documentation.

6.27.1 Serving files in development

static.serve(request, path, document_root, show_indexes=False)

There may be files other than your project’s static assets that, for convenience, you’d like to have Django serve for you
in local development. The serve() view can be used to serve any directory you give it. (This view is not hardened
for production use and should be used only as a development aid; you should serve these files in production using a
real front-end web server).

The most likely example is user-uploaded content in MEDIA_ROOT. django.contrib.staticfiles is in-
tended for static assets and has no built-in handling for user-uploaded files, but you can have Django serve your
MEDIA_ROOT by appending something like this to your URLconf:

from django.conf import settings
from django.views.static import serve

... the rest of your URLconf goes here ...

if settings.DEBUG:
urlpatterns += [

url(r'^media/(?P<path>.*)$', serve, {
'document_root': settings.MEDIA_ROOT,

}),
]

Note, the snippet assumes your MEDIA_URL has a value of '/media/'. This will call the serve() view, passing
in the path from the URLconf and the (required) document_root parameter.

Since it can become a bit cumbersome to define this URL pattern, Django ships with a small URL helper function
static() that takes as parameters the prefix such as MEDIA_URL and a dotted path to a view, such as 'django.
views.static.serve'. Any other function parameter will be transparently passed to the view.

6.27.2 Error views

Django comes with a few views by default for handling HTTP errors. To override these with your own custom views,
see Customizing error views.

1384 Chapter 6. API Reference

Django Documentation, Release 1.10.9.dev20171123183751

The 404 (page not found) view

defaults.page_not_found(request, exception, template_name=‘404.html’)

When you raise Http404 from within a view, Django loads a special view devoted to handling 404 errors. By
default, it’s the view django.views.defaults.page_not_found(), which either produces a very simple
“Not Found” message or loads and renders the template 404.html if you created it in your root template directory.

The default 404 view will pass two variables to the template: request_path, which is the URL that resulted in the
error, and exception, which is a useful representation of the exception that triggered the view (e.g. containing any
message passed to a specific Http404 instance).

Three things to note about 404 views:

• The 404 view is also called if Django doesn’t find a match after checking every regular expression in the
URLconf.

• The 404 view is passed a RequestContext and will have access to variables supplied by your template
context processors (e.g. MEDIA_URL).

• If DEBUG is set to True (in your settings module), then your 404 view will never be used, and your URLconf
will be displayed instead, with some debug information.

The signature of page_not_found() changed. The function now accepts a second parameter, the exception that
triggered the error. A useful representation of the exception is also passed in the template context.

Passing a nonexistent template_name will raise TemplateDoesNotExist.

The 500 (server error) view

defaults.server_error(request, template_name=‘500.html’)

Similarly, Django executes special-case behavior in the case of runtime errors in view code. If a view results in
an exception, Django will, by default, call the view django.views.defaults.server_error, which either
produces a very simple “Server Error” message or loads and renders the template 500.html if you created it in your
root template directory.

The default 500 view passes no variables to the 500.html template and is rendered with an empty Context to
lessen the chance of additional errors.

If DEBUG is set to True (in your settings module), then your 500 view will never be used, and the traceback will be
displayed instead, with some debug information.

Passing a nonexistent template_name will raise TemplateDoesNotExist.

The 403 (HTTP Forbidden) view

defaults.permission_denied(request, exception, template_name=‘403.html’)

In the same vein as the 404 and 500 views, Django has a view to handle 403 Forbidden errors. If a view results in a
403 exception then Django will, by default, call the view django.views.defaults.permission_denied.

This view loads and renders the template 403.html in your root template directory, or if this file does not exist,
instead serves the text “403 Forbidden”, as per RFC 7231#section-6.5.3 (the HTTP 1.1 Specification). The template
context contains exception, which is the unicode representation of the exception that triggered the view.

django.views.defaults.permission_denied is triggered by a PermissionDenied exception. To
deny access in a view you can use code like this:

6.27. Built-in Views 1385

https://tools.ietf.org/html/rfc7231.html#section-6.5.3

Django Documentation, Release 1.10.9.dev20171123183751

from django.core.exceptions import PermissionDenied

def edit(request, pk):
if not request.user.is_staff:

raise PermissionDenied
...

The signature of permission_denied() changed in Django 1.9. The function now accepts a second parameter,
the exception that triggered the error. The unicode representation of the exception is also passed in the template
context.

Passing a nonexistent template_name will raise TemplateDoesNotExist.

The 400 (bad request) view

defaults.bad_request(request, exception, template_name=‘400.html’)

When a SuspiciousOperation is raised in Django, it may be handled by a component of Django (for example
resetting the session data). If not specifically handled, Django will consider the current request a ‘bad request’ instead
of a server error.

django.views.defaults.bad_request, is otherwise very similar to the server_error view, but returns
with the status code 400 indicating that the error condition was the result of a client operation. By default, nothing
related to the exception that triggered the view is passed to the template context, as the exception message might
contain sensitive information like filesystem paths.

bad_request views are also only used when DEBUG is False.

The signature of bad_request() changed in Django 1.9. The function now accepts a second parameter, the
exception that triggered the error.

Passing a nonexistent template_name will raise TemplateDoesNotExist.

1386 Chapter 6. API Reference

CHAPTER 7

Meta-documentation and miscellany

Documentation that we can’t find a more organized place for. Like that drawer in your kitchen with the scissors,
batteries, duct tape, and other junk.

7.1 API stability

Django promises API stability and forwards-compatibility since version 1.0. In a nutshell, this means that code you
develop against a version of Django will continue to work with future releases. You may need to make minor changes
when upgrading the version of Django your project uses: see the “Backwards incompatible changes” section of the
release note for the version or versions to which you are upgrading.

7.1.1 What “stable” means

In this context, stable means:

• All the public APIs (everything in this documentation) will not be moved or renamed without providing
backwards-compatible aliases.

• If new features are added to these APIs – which is quite possible – they will not break or change the meaning of
existing methods. In other words, “stable” does not (necessarily) mean “complete.”

• If, for some reason, an API declared stable must be removed or replaced, it will be declared deprecated but
will remain in the API for at least two feature releases. Warnings will be issued when the deprecated method is
called.

See Official releases for more details on how Django’s version numbering scheme works, and how features will
be deprecated.

• We’ll only break backwards compatibility of these APIs if a bug or security hole makes it completely unavoid-
able.

1387

Django Documentation, Release 1.10.9.dev20171123183751

7.1.2 Stable APIs

In general, everything covered in the documentation – with the exception of anything in the internals area is considered
stable.

7.1.3 Exceptions

There are a few exceptions to this stability and backwards-compatibility promise.

Security fixes

If we become aware of a security problem – hopefully by someone following our security reporting policy – we’ll do
everything necessary to fix it. This might mean breaking backwards compatibility; security trumps the compatibility
guarantee.

APIs marked as internal

Certain APIs are explicitly marked as “internal” in a couple of ways:

• Some documentation refers to internals and mentions them as such. If the documentation says that something is
internal, we reserve the right to change it.

• Functions, methods, and other objects prefixed by a leading underscore (_). This is the standard Python way of
indicating that something is private; if any method starts with a single _, it’s an internal API.

7.2 Design philosophies

This document explains some of the fundamental philosophies Django’s developers have used in creating the frame-
work. Its goal is to explain the past and guide the future.

7.2.1 Overall

Loose coupling

A fundamental goal of Django’s stack is loose coupling and tight cohesion. The various layers of the framework
shouldn’t “know” about each other unless absolutely necessary.

For example, the template system knows nothing about Web requests, the database layer knows nothing about data
display and the view system doesn’t care which template system a programmer uses.

Although Django comes with a full stack for convenience, the pieces of the stack are independent of another wherever
possible.

Less code

Django apps should use as little code as possible; they should lack boilerplate. Django should take full advantage of
Python’s dynamic capabilities, such as introspection.

1388 Chapter 7. Meta-documentation and miscellany

http://c2.com/cgi/wiki?CouplingAndCohesion

Django Documentation, Release 1.10.9.dev20171123183751

Quick development

The point of a Web framework in the 21st century is to make the tedious aspects of Web development fast. Django
should allow for incredibly quick Web development.

Don’t repeat yourself (DRY)

Every distinct concept and/or piece of data should live in one, and only one, place. Redundancy is bad. Normalization
is good.

The framework, within reason, should deduce as much as possible from as little as possible.

See also:

The discussion of DRY on the Portland Pattern Repository

Explicit is better than implicit

This is a core Python principle listed in PEP 20, and it means Django shouldn’t do too much “magic.” Magic shouldn’t
happen unless there’s a really good reason for it. Magic is worth using only if it creates a huge convenience unattainable
in other ways, and it isn’t implemented in a way that confuses developers who are trying to learn how to use the feature.

Consistency

The framework should be consistent at all levels. Consistency applies to everything from low-level (the Python coding
style used) to high-level (the “experience” of using Django).

7.2.2 Models

Explicit is better than implicit

Fields shouldn’t assume certain behaviors based solely on the name of the field. This requires too much knowledge of
the system and is prone to errors. Instead, behaviors should be based on keyword arguments and, in some cases, on
the type of the field.

Include all relevant domain logic

Models should encapsulate every aspect of an “object,” following Martin Fowler’s Active Record design pattern.

This is why both the data represented by a model and information about it (its human-readable name, options like
default ordering, etc.) are defined in the model class; all the information needed to understand a given model should
be stored in the model.

7.2.3 Database API

The core goals of the database API are:

7.2. Design philosophies 1389

http://c2.com/cgi/wiki?DontRepeatYourself
https://www.python.org/dev/peps/pep-0020
http://www.martinfowler.com/eaaCatalog/activeRecord.html

Django Documentation, Release 1.10.9.dev20171123183751

SQL efficiency

It should execute SQL statements as few times as possible, and it should optimize statements internally.

This is why developers need to call save() explicitly, rather than the framework saving things behind the scenes
silently.

This is also why the select_related() QuerySet method exists. It’s an optional performance booster for the
common case of selecting “every related object.”

Terse, powerful syntax

The database API should allow rich, expressive statements in as little syntax as possible. It should not rely on importing
other modules or helper objects.

Joins should be performed automatically, behind the scenes, when necessary.

Every object should be able to access every related object, systemwide. This access should work both ways.

Option to drop into raw SQL easily, when needed

The database API should realize it’s a shortcut but not necessarily an end-all-be-all. The framework should make it
easy to write custom SQL – entire statements, or just custom WHERE clauses as custom parameters to API calls.

7.2.4 URL design

Loose coupling

URLs in a Django app should not be coupled to the underlying Python code. Tying URLs to Python function names
is a Bad And Ugly Thing.

Along these lines, the Django URL system should allow URLs for the same app to be different in different contexts.
For example, one site may put stories at /stories/, while another may use /news/.

Infinite flexibility

URLs should be as flexible as possible. Any conceivable URL design should be allowed.

Encourage best practices

The framework should make it just as easy (or even easier) for a developer to design pretty URLs than ugly ones.

File extensions in Web-page URLs should be avoided.

Vignette-style commas in URLs deserve severe punishment.

Definitive URLs

Technically, foo.com/bar and foo.com/bar/ are two different URLs, and search-engine robots (and some Web
traffic-analyzing tools) would treat them as separate pages. Django should make an effort to “normalize” URLs so that
search-engine robots don’t get confused.

This is the reasoning behind the APPEND_SLASH setting.

1390 Chapter 7. Meta-documentation and miscellany

Django Documentation, Release 1.10.9.dev20171123183751

7.2.5 Template system

Separate logic from presentation

We see a template system as a tool that controls presentation and presentation-related logic – and that’s it. The template
system shouldn’t support functionality that goes beyond this basic goal.

Discourage redundancy

The majority of dynamic websites use some sort of common sitewide design – a common header, footer, navigation
bar, etc. The Django template system should make it easy to store those elements in a single place, eliminating
duplicate code.

This is the philosophy behind template inheritance.

Be decoupled from HTML

The template system shouldn’t be designed so that it only outputs HTML. It should be equally good at generating
other text-based formats, or just plain text.

XML should not be used for template languages

Using an XML engine to parse templates introduces a whole new world of human error in editing templates – and
incurs an unacceptable level of overhead in template processing.

Assume designer competence

The template system shouldn’t be designed so that templates necessarily are displayed nicely in WYSIWYG editors
such as Dreamweaver. That is too severe of a limitation and wouldn’t allow the syntax to be as nice as it is. Django
expects template authors are comfortable editing HTML directly.

Treat whitespace obviously

The template system shouldn’t do magic things with whitespace. If a template includes whitespace, the system should
treat the whitespace as it treats text – just display it. Any whitespace that’s not in a template tag should be displayed.

Don’t invent a programming language

The goal is not to invent a programming language. The goal is to offer just enough programming-esque functionality,
such as branching and looping, that is essential for making presentation-related decisions. The Django Template
Language (DTL) aims to avoid advanced logic.

The Django template system recognizes that templates are most often written by designers, not programmers, and
therefore should not assume Python knowledge.

Safety and security

The template system, out of the box, should forbid the inclusion of malicious code – such as commands that delete
database records.

This is another reason the template system doesn’t allow arbitrary Python code.

7.2. Design philosophies 1391

Django Documentation, Release 1.10.9.dev20171123183751

Extensibility

The template system should recognize that advanced template authors may want to extend its technology.

This is the philosophy behind custom template tags and filters.

7.2.6 Views

Simplicity

Writing a view should be as simple as writing a Python function. Developers shouldn’t have to instantiate a class when
a function will do.

Use request objects

Views should have access to a request object – an object that stores metadata about the current request. The object
should be passed directly to a view function, rather than the view function having to access the request data from a
global variable. This makes it light, clean and easy to test views by passing in “fake” request objects.

Loose coupling

A view shouldn’t care about which template system the developer uses – or even whether a template system is used at
all.

Differentiate between GET and POST

GET and POST are distinct; developers should explicitly use one or the other. The framework should make it easy to
distinguish between GET and POST data.

7.2.7 Cache Framework

The core goals of Django’s cache framework are:

Less code

A cache should be as fast as possible. Hence, all framework code surrounding the cache backend should be kept to the
absolute minimum, especially for get() operations.

Consistency

The cache API should provide a consistent interface across the different cache backends.

Extensibility

The cache API should be extensible at the application level based on the developer’s needs (for example, see Cache
key transformation).

1392 Chapter 7. Meta-documentation and miscellany

Django Documentation, Release 1.10.9.dev20171123183751

7.3 Third-party distributions of Django

Many third-party distributors are now providing versions of Django integrated with their package-management sys-
tems. These can make installation and upgrading much easier for users of Django since the integration includes the
ability to automatically install dependencies (like database adapters) that Django requires.

Typically, these packages are based on the latest stable release of Django, so if you want to use the development
version of Django you’ll need to follow the instructions for installing the development version from our Git repository.

If you’re using Linux or a Unix installation, such as OpenSolaris, check with your distributor to see if they already
package Django. If you’re using a Linux distro and don’t know how to find out if a package is available, then now is a
good time to learn. The Django Wiki contains a list of Third Party Distributions to help you out.

7.3.1 For distributors

If you’d like to package Django for distribution, we’d be happy to help out! Please join the django-developers mailing
list and introduce yourself.

We also encourage all distributors to subscribe to the django-announce mailing list, which is a (very) low-traffic list
for announcing new releases of Django and important bugfixes.

7.3. Third-party distributions of Django 1393

https://code.djangoproject.com/wiki/Distributions

Django Documentation, Release 1.10.9.dev20171123183751

1394 Chapter 7. Meta-documentation and miscellany

CHAPTER 8

Glossary

concrete model A non-abstract (abstract=False) model.

field An attribute on a model; a given field usually maps directly to a single database column.

See Models.

generic view A higher-order view function that provides an abstract/generic implementation of a common idiom or
pattern found in view development.

See Class-based views.

model Models store your application’s data.

See Models.

MTV “Model-template-view”; a software pattern, similar in style to MVC, but a better description of the way Django
does things.

See the FAQ entry.

MVC Model-view-controller; a software pattern. Django follows MVC to some extent.

project A Python package – i.e. a directory of code – that contains all the settings for an instance of Django. This
would include database configuration, Django-specific options and application-specific settings.

property Also known as “managed attributes”, and a feature of Python since version 2.2. This is a neat way to
implement attributes whose usage resembles attribute access, but whose implementation uses method calls.

See property.

queryset An object representing some set of rows to be fetched from the database.

See Making queries.

slug A short label for something, containing only letters, numbers, underscores or hyphens. They’re generally used
in URLs. For example, in a typical blog entry URL:

https://www.djangoproject.com/weblog/2008/apr/12/spring/

the last bit (spring) is the slug.

1395

https://en.wikipedia.org/wiki/Model-view-controller
https://docs.python.org/3/library/functions.html#property
https://www.djangoproject.com/weblog/2008/apr/12/

Django Documentation, Release 1.10.9.dev20171123183751

template A chunk of text that acts as formatting for representing data. A template helps to abstract the presentation
of data from the data itself.

See Templates.

view A function responsible for rendering a page.

1396 Chapter 8. Glossary

CHAPTER 9

Release notes

Release notes for the official Django releases. Each release note will tell you what’s new in each version, and will also
describe any backwards-incompatible changes made in that version.

For those upgrading to a new version of Django, you will need to check all the backwards-incompatible changes and
deprecated features for each ‘final’ release from the one after your current Django version, up to and including the
new version.

9.1 Final releases

Below are release notes through Django 1.10 and its patch releases. Newer versions of the documentation contain the
release notes for any later releases.

9.1.1 1.10 release

Django 1.10.8 release notes

September 5, 2017

Django 1.10.8 fixes a security issue in 1.10.7.

CVE-2017-12794: Possible XSS in traceback section of technical 500 debug page

In older versions, HTML autoescaping was disabled in a portion of the template for the technical 500 debug page.
Given the right circumstances, this allowed a cross-site scripting attack. This vulnerability shouldn’t affect most
production sites since you shouldn’t run with DEBUG = True (which makes this page accessible) in your production
settings.

1397

Django Documentation, Release 1.10.9.dev20171123183751

Django 1.10.7 release notes

April 4, 2017

Django 1.10.7 fixes two security issues and a bug in 1.10.6.

CVE-2017-7233: Open redirect and possible XSS attack via user-supplied numeric redirect URLs

Django relies on user input in some cases (e.g. django.contrib.auth.views.login() and i18n) to redi-
rect the user to an “on success” URL. The security check for these redirects (namely django.utils.http.
is_safe_url()) considered some numeric URLs (e.g. http:999999999) “safe” when they shouldn’t be.

Also, if a developer relies on is_safe_url() to provide safe redirect targets and puts such a URL into a link, they
could suffer from an XSS attack.

CVE-2017-7234: Open redirect vulnerability in django.views.static.serve()

A maliciously crafted URL to a Django site using the serve() view could redirect to any other domain. The view
no longer does any redirects as they don’t provide any known, useful functionality.

Note, however, that this view has always carried a warning that it is not hardened for production use and should be
used only as a development aid.

Bugfixes

• Made admin’s RelatedFieldWidgetWrapper use the wrapped widget’s
value_omitted_from_data() method (#27905).

• Fixed model form default fallback for SelectMultiple (#27993).

Django 1.10.6 release notes

March 1, 2017

Django 1.10.6 fixes several bugs in 1.10.5.

Bugfixes

• Fixed ClearableFileInput’s “Clear” checkbox on model form fields where the model field has a
default (#27805).

• Fixed RequestDataTooBig and TooManyFieldsSent exceptions crashing rather than generating a bad
request response (#27820).

• Fixed a crash on Oracle and PostgreSQL when subtracting DurationField or IntegerField from
DateField (#27828).

• Fixed query expression date subtraction accuracy on PostgreSQL for differences larger than a month (#27856).

• Fixed a GDALException raised by GDALClose on GDAL ≥ 2.0 (#27479).

1398 Chapter 9. Release notes

https://code.djangoproject.com/ticket/27905
https://code.djangoproject.com/ticket/27993
https://code.djangoproject.com/ticket/27805
https://code.djangoproject.com/ticket/27820
https://code.djangoproject.com/ticket/27828
https://code.djangoproject.com/ticket/27856
https://code.djangoproject.com/ticket/27479

Django Documentation, Release 1.10.9.dev20171123183751

Django 1.10.5 release notes

January 4, 2017

Django 1.10.5 fixes several bugs in 1.10.4.

Bugfixes

• Fixed a crash in the debug view if request.user can’t be retrieved, such as if the database is unavailable
(#27567).

• Fixed occasional missing plural forms in JavaScriptCatalog (#27418).

• Fixed a regression in the timesince and timeuntil filters that caused incorrect results for dates in a leap
year (#27637).

• Fixed a regression where collectstatic overwrote newer files in remote storages (#27658).

Django 1.10.4 release notes

December 1, 2016

Django 1.10.4 fixes several bugs in 1.10.3.

Bugfixes

• Quoted the Oracle test user’s password in queries to fix the “ORA-00922: missing or invalid option” error when
the password starts with a number or special character (#27420).

• Fixed incorrect app_label / model_name arguments for allow_migrate() in makemigrations
migration consistency checks (#27461).

• Made Model.delete(keep_parents=True) preserve parent reverse relationships in multi-table inheri-
tance (#27407).

• Fixed a QuerySet.update() crash on SQLite when updating a DateTimeField with an F() expression
and a timedelta (#27544).

• Prevented LocaleMiddleware from redirecting on URLs that should return 404 when using
prefix_default_language=False (#27402).

• Prevented an unnecessary index from being created on an InnoDB ForeignKey when the field was added
after the model was created (#27558).

Django 1.10.3 release notes

November 1, 2016

Django 1.10.3 fixes two security issues and several bugs in 1.10.2.

User with hardcoded password created when running tests on Oracle

When running tests with an Oracle database, Django creates a temporary database user. In older versions, if a password
isn’t manually specified in the database settings TEST dictionary, a hardcoded password is used. This could allow an
attacker with network access to the database server to connect.

9.1. Final releases 1399

https://code.djangoproject.com/ticket/27567
https://code.djangoproject.com/ticket/27418
https://code.djangoproject.com/ticket/27637
https://code.djangoproject.com/ticket/27658
https://code.djangoproject.com/ticket/27420
https://code.djangoproject.com/ticket/27461
https://code.djangoproject.com/ticket/27407
https://code.djangoproject.com/ticket/27544
https://code.djangoproject.com/ticket/27402
https://code.djangoproject.com/ticket/27558

Django Documentation, Release 1.10.9.dev20171123183751

This user is usually dropped after the test suite completes, but not when using the manage.py test --keepdb
option or if the user has an active session (such as an attacker’s connection).

A randomly generated password is now used for each test run.

DNS rebinding vulnerability when DEBUG=True

Older versions of Django don’t validate the Host header against settings.ALLOWED_HOSTSwhen settings.
DEBUG=True. This makes them vulnerable to a DNS rebinding attack.

While Django doesn’t ship a module that allows remote code execution, this is at least a cross-site scripting vector,
which could be quite serious if developers load a copy of the production database in development or connect to some
production services for which there’s no development instance, for example. If a project uses a package like the
django-debug-toolbar, then the attacker could execute arbitrary SQL, which could be especially bad if the
developers connect to the database with a superuser account.

settings.ALLOWED_HOSTS is now validated regardless of DEBUG. For convenience, if ALLOWED_HOSTS is
empty and DEBUG=True, the following variations of localhost are allowed ['localhost', '127.0.0.1',
'::1']. If your local settings file has your production ALLOWED_HOSTS value, you must now omit it to get those
fallback values.

Bugfixes

• Allowed User.is_authenticated and User.is_anonymous properties to be tested for set member-
ship (#27309).

• Fixed a performance regression when running migrate in projects with RenameModel operations (#27279).

• Added model_name to the allow_migrate() calls in makemigrations (#27200).

• Made the JavaScriptCatalog view respect the packages argument; previously it was ignored (#27374).

• Fixed QuerySet.bulk_create() on PostgreSQL when the number of objects is a multiple plus one of
batch_size (#27385).

• Prevented i18n_patterns() from using too much of the URL as the language to fix a use case for
prefix_default_language=False (#27063).

• Replaced a possibly incorrect redirect from SessionMiddlewarewhen a session is destroyed in a concurrent
request with a SuspiciousOperation to indicate that the request can’t be completed (#27363).

Django 1.10.2 release notes

October 1, 2016

Django 1.10.2 fixes several bugs in 1.10.1.

Bugfixes

• Fixed a crash in MySQL database validation where SELECT @@sql_mode doesn’t return a result (#27180).

• Allowed combining contrib.postgres.search.SearchQuery with more than one & or | operators
(#27143).

• Disabled system check for URL patterns beginning with a ‘/’ when APPEND_SLASH=False (#27238).

1400 Chapter 9. Release notes

http://benmmurphy.github.io/blog/2016/07/11/rails-webconsole-dns-rebinding/
https://code.djangoproject.com/ticket/27309
https://code.djangoproject.com/ticket/27279
https://code.djangoproject.com/ticket/27200
https://code.djangoproject.com/ticket/27374
https://code.djangoproject.com/ticket/27385
https://code.djangoproject.com/ticket/27063
https://code.djangoproject.com/ticket/27363
https://code.djangoproject.com/ticket/27180
https://code.djangoproject.com/ticket/27143
https://code.djangoproject.com/ticket/27238

Django Documentation, Release 1.10.9.dev20171123183751

• Fixed model form default fallback for CheckboxSelectMultiple, MultiWidget, FileInput,
SplitDateTimeWidget, SelectDateWidget, and SplitArrayWidget (#27186). Custom widgets
affected by this issue should implement value_omitted_from_data().

• Fixed a crash in runserver logging during a “Broken pipe” error (#27271).

• Fixed a regression where unchanged localized date/time fields were listed as changed in the admin’s model
history messages (#27302).

Django 1.10.1 release notes

September 1, 2016

Django 1.10.1 fixes several bugs in 1.10.

Bugfixes

• Fixed a crash in MySQL connections where SELECT @@SQL_AUTO_IS_NULL doesn’t return a result
(#26991).

• Allowed User.is_authenticated and User.is_anonymous properties to be compared using ==, !=,
and | (#26988, #27154).

• Removed the broken BaseCommand.usage() method which was for optparse support (#27000).

• Fixed a checks framework crash with an empty Meta.default_permissions (#26997).

• Fixed a regression in the number of queries when using RadioSelect with a ModelChoiceField form
field (#27001).

• Fixed a crash if request.META['CONTENT_LENGTH'] is an empty string (#27005).

• Fixed the isnull lookup on a ForeignKey with its to_field pointing to a CharField or pointing to a
CharField defined with primary_key=True (#26983).

• Prevented the migrate command from raising InconsistentMigrationHistory in the presence of
unapplied squashed migrations (#27004).

• Fixed a regression in Client.force_login() which required specifying a backend rather than automat-
ically using the first one if multiple backends are configured (#27027).

• Made QuerySet.bulk_create() properly initialize model instances on backends, such as PostgreSQL,
that support returning the IDs of the created records so that many-to-many relationships can be used on the new
objects (#27026).

• Fixed crash of django.views.static.serve() with show_indexes enabled (#26973).

• Fixed ClearableFileInput to avoid the required HTML attribute when initial data exists (#27037).

• Fixed annotations with database functions when combined with lookups on PostGIS (#27014).

• Reallowed the {% for %} tag to unpack any iterable (#27058).

• Made makemigrations skip inconsistent history checks on non-default databases if database routers aren’t
in use or if no apps can be migrated to the database (#27054, #27110, #27142).

• Removed duplicated managers in Model._meta.managers (#27073).

• Fixed contrib.admindocs crash when a view is in a class, such as some of the admin views (#27018).

9.1. Final releases 1401

https://code.djangoproject.com/ticket/27186
https://code.djangoproject.com/ticket/27271
https://code.djangoproject.com/ticket/27302
https://code.djangoproject.com/ticket/26991
https://code.djangoproject.com/ticket/26988
https://code.djangoproject.com/ticket/27154
https://code.djangoproject.com/ticket/27000
https://code.djangoproject.com/ticket/26997
https://code.djangoproject.com/ticket/27001
https://code.djangoproject.com/ticket/27005
https://code.djangoproject.com/ticket/26983
https://code.djangoproject.com/ticket/27004
https://code.djangoproject.com/ticket/27027
https://code.djangoproject.com/ticket/27026
https://code.djangoproject.com/ticket/26973
https://code.djangoproject.com/ticket/27037
https://code.djangoproject.com/ticket/27014
https://code.djangoproject.com/ticket/27058
https://code.djangoproject.com/ticket/27054
https://code.djangoproject.com/ticket/27110
https://code.djangoproject.com/ticket/27142
https://code.djangoproject.com/ticket/27073
https://code.djangoproject.com/ticket/27018

Django Documentation, Release 1.10.9.dev20171123183751

• Reverted a few admin checks that checked field.many_to_many back to isinstance(field,
models.ManyToManyField) since it turned out the checks weren’t suitable to be generalized like that
(#26998).

• Added the database alias to the InconsistentMigrationHistory message raised by
makemigrations and migrate (#27089).

• Fixed the creation of ContentType and Permission objects for models of applications without migrations
when calling the migrate command with no migrations to apply (#27044).

• Included the already applied migration state changes in the Apps instance provided to the pre_migrate
signal receivers to allow ContentType renaming to be performed on model rename (#27100).

• Reallowed subclassing UserCreationForm without USERNAME_FIELD in Meta.fields (#27111).

• Fixed a regression in model forms where model fields with a default that didn’t appear in POST data no
longer used the default (#27039).

Django 1.10 release notes

August 1, 2016

Welcome to Django 1.10!

These release notes cover the new features, as well as some backwards incompatible changes you’ll want to be aware
of when upgrading from Django 1.9 or older versions. We’ve dropped some features that have reached the end of their
deprecation cycle, and we’ve begun the deprecation process for some features.

See the Upgrading Django to a newer version guide if you’re updating an existing project.

Python compatibility

Like Django 1.9, Django 1.10 requires Python 2.7, 3.4, or 3.5. We highly recommend and only officially support the
latest release of each series.

What’s new in Django 1.10

Full text search for PostgreSQL

django.contrib.postgres now includes a collection of database functions to allow the use of the full text
search engine. You can search across multiple fields in your relational database, combine the searches with other
lookups, use different language configurations and weightings, and rank the results by relevance.

It also now includes trigram support, using the trigram_similar lookup, and the TrigramSimilarity and
TrigramDistance expressions.

New-style middleware

A new style of middleware is introduced to solve the lack of strict request/response layering of the old-style
of middleware described in DEP 0005. You’ll need to adapt old, custom middleware and switch from the
MIDDLEWARE_CLASSES setting to the new MIDDLEWARE setting to take advantage of the improvements.

1402 Chapter 9. Release notes

https://code.djangoproject.com/ticket/26998
https://code.djangoproject.com/ticket/27089
https://code.djangoproject.com/ticket/27044
https://code.djangoproject.com/ticket/27100
https://code.djangoproject.com/ticket/27111
https://code.djangoproject.com/ticket/27039
https://github.com/django/deps/blob/master/final/0005-improved-middleware.rst

Django Documentation, Release 1.10.9.dev20171123183751

Official support for Unicode usernames

The User model in django.contrib.auth originally only accepted ASCII letters in usernames. Although it
wasn’t a deliberate choice, Unicode characters have always been accepted when using Python 3.

The username validator now explicitly accepts Unicode letters by default on Python 3 only.

Custom user models may use the new ASCIIUsernameValidator or UnicodeUsernameValidator.

Minor features

django.contrib.admin

• For sites running on a subpath, the default URL for the "View site" link at the top of each admin
page will now point to request.META['SCRIPT_NAME'] if set, instead of /.

• The success message that appears after adding or editing an object now contains a link to the object’s change
form.

• All inline JavaScript is removed so you can enable the Content-Security-Policy HTTP header if you
wish.

• The new InlineModelAdmin.classes attribute allows specifying classes on inline fieldsets. Inlines with
a collapse class will be initially collapsed and their header will have a small “show” link.

• If a user doesn’t have the add permission, the object-tools block on a model’s changelist will now be
rendered (without the add button, of course). This makes it easier to add custom tools in this case.

• The LogEntry model now stores change messages in a JSON structure so that the message can be dynamically
translated using the current active language. A new LogEntry.get_change_message() method is now
the preferred way of retrieving the change message.

• Selected objects for fields in ModelAdmin.raw_id_fields now have a link to object’s change form.

• Added “No date” and “Has date” choices for DateFieldListFilter if the field is nullable.

• The jQuery library embedded in the admin is upgraded from version 2.1.4 to 2.2.3.

django.contrib.auth

• Added support for the Argon2 password hash. It’s recommended over PBKDF2, however, it’s not the default as
it requires a third-party library.

• The default iteration count for the PBKDF2 password hasher has been increased by 25%. This back-
wards compatible change will not affect users who have subclassed django.contrib.auth.hashers.
PBKDF2PasswordHasher to change the default value.

• The logout() view sends “no-cache” headers to prevent an issue where Safari caches redirects and prevents
a user from being able to log out.

• Added the optional backend argument to login() to allow using it without credentials.

• The new LOGOUT_REDIRECT_URL setting controls the redirect of the logout() view, if the view doesn’t
get a next_page argument.

• The new redirect_authenticated_user parameter for the login() view allows redirecting authen-
ticated users visiting the login page.

9.1. Final releases 1403

Django Documentation, Release 1.10.9.dev20171123183751

• The new AllowAllUsersModelBackend and AllowAllUsersRemoteUserBackend ignore the
value of User.is_active, while ModelBackend and RemoteUserBackend now reject inactive users.

django.contrib.gis

• Distance lookups now accept expressions as the distance value parameter.

• The new GEOSGeometry.unary_union property computes the union of all the elements of this geometry.

• Added the GEOSGeometry.covers() binary predicate.

• Added the GDALBand.statistics() method and mean and std attributes.

• Added support for the MakeLine aggregate and GeoHash function on SpatiaLite.

• Added support for the Difference, Intersection, and SymDifference functions on MySQL.

• Added support for instantiating empty GEOS geometries.

• The new trim and precision properties of WKTWriter allow controlling output of the fractional part of
the coordinates in WKT.

• Added the LineString.closed and MultiLineString.closed properties.

• The GeoJSON serializer now outputs the primary key of objects in the properties dictionary if specific
fields aren’t specified.

• The ability to replicate input data on the GDALBand.data() method was added. Band data can now be
updated with repeated values efficiently.

• Added database functions IsValid and MakeValid, as well as the isvalid lookup, all for PostGIS. This
allows filtering and repairing invalid geometries on the database side.

• Added raster support for all spatial lookups.

django.contrib.postgres

• For convenience, HStoreField now casts its keys and values to strings.

django.contrib.sessions

• The clearsessions management command now removes file-based sessions.

django.contrib.sites

• The Site model now supports natural keys.

django.contrib.staticfiles

• The static template tag now uses django.contrib.staticfiles if it’s in INSTALLED_APPS.
This is especially useful for third-party apps which can now always use {% load static %} (instead of
{% load staticfiles %} or {% load static from staticfiles %}) and not worry about
whether or not the staticfiles app is installed.

• You can more easily customize the collectstatic --ignore option with a custom AppConfig.

1404 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Cache

• The file-based cache backend now uses the highest pickling protocol.

CSRF

• The default CSRF_FAILURE_VIEW , views.csrf.csrf_failure() now accepts an optional
template_name parameter, defaulting to '403_csrf.html', to control the template used to render the
page.

• To protect against BREACH attacks, the CSRF protection mechanism now changes the form token value on
every request (while keeping an invariant secret which can be used to validate the different tokens).

Database backends

• Temporal data subtraction was unified on all backends.

• If the database supports it, backends can set DatabaseFeatures.
can_return_ids_from_bulk_insert=True and implement DatabaseOperations.
fetch_returned_insert_ids() to set primary keys on objects created using QuerySet.
bulk_create().

• Added keyword arguments to the as_sql() methods of various expressions (Func, When, Case, and
OrderBy) to allow database backends to customize them without mutating self, which isn’t safe when
using different database backends. See the arg_joiner and **extra_context parameters of Func.
as_sql() for an example.

File Storage

• Storage backends now present a timezone-aware API with new methods get_accessed_time(),
get_created_time(), and get_modified_time(). They return a timezone-aware datetime if
USE_TZ is True and a naive datetime in the local timezone otherwise.

• The new Storage.generate_filename() method makes it easier to implement custom storages that
don’t use the os.path calls previously in FileField.

Forms

• Form and widget Media is now served using django.contrib.staticfiles if installed.

• The <input> tag rendered by CharField now includes a minlength attribute if the field has a
min_length.

• Required form fields now have the required HTML attribute. Set the new Form.
use_required_attribute attribute to False to disable it. The required attribute isn’t included on
forms of formsets because the browser validation may not be correct when adding and deleting formsets.

Generic Views

• The View class can now be imported from django.views.

9.1. Final releases 1405

http://breachattack.com/

Django Documentation, Release 1.10.9.dev20171123183751

Internationalization

• The i18n_patterns() helper function can now be used in a root URLConf specified using request.
urlconf.

• By setting the new prefix_default_language parameter for i18n_patterns() to False, you can
allow accessing the default language without a URL prefix.

• set_language() now returns a 204 status code (No Content) for AJAX requests when there is no next
parameter in POST or GET.

• The JavaScriptCatalog and JSONCatalog class-based views supersede the deprecated
javascript_catalog() and json_catalog() function-based views. The new views are almost
equivalent to the old ones except that by default the new views collect all JavaScript strings in the djangojs
translation domain from all installed apps rather than only the JavaScript strings from LOCALE_PATHS.

Management Commands

• call_command() now returns the value returned from the command.handle() method.

• The new check --fail-level option allows specifying the message level that will cause the command to
exit with a non-zero status.

• The new makemigrations --check option makes the command exit with a non-zero status when model
changes without migrations are detected.

• makemigrations now displays the path to the migration files that it generates.

• The shell --interface option now accepts python to force use of the “plain” Python interpreter.

• The new shell --command option lets you run a command as Django and exit, instead of opening the
interactive shell.

• Added a warning to dumpdata if a proxy model is specified (which results in no output) without its concrete
parent.

• The new BaseCommand.requires_migrations_checks attribute may be set to True if you want your
command to print a warning, like runserver does, if the set of migrations on disk don’t match the migrations
in the database.

• To assist with testing, call_command() now accepts a command object as the first argument.

• The shell command supports tab completion on systems using libedit, e.g. Mac OSX.

• The inspectdb command lets you choose what tables should be inspected by specifying their names as
arguments.

Migrations

• Added support for serialization of enum.Enum objects.

• Added the elidable argument to the RunSQL and RunPython operations to allow them to be removed
when squashing migrations.

• Added support for non-atomic migrations by setting the atomic attribute on a Migration.

• The migrate and makemigrations commands now check for a consistent migration history. If they find
some unapplied dependencies of an applied migration, InconsistentMigrationHistory is raised.

• The pre_migrate() and post_migrate() signals now dispatch their migration plan and apps.

1406 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Models

• Reverse foreign keys from proxy models are now propagated to their concrete class. The reverse relation at-
tached by a ForeignKey pointing to a proxy model is now accessible as a descriptor on the proxied model
class and may be referenced in queryset filtering.

• The new Field.rel_db_type() method returns the database column data type for fields such as
ForeignKey and OneToOneField that point to another field.

• The arity class attribute is added to Func. This attribute can be used to set the number of arguments the
function accepts.

• Added BigAutoField which acts much like an AutoField except that it is guaranteed to fit numbers from
1 to 9223372036854775807.

• QuerySet.in_bulk() may be called without any arguments to return all objects in the queryset.

• related_query_name now supports app label and class interpolation using the '%(app_label)s' and
'%(class)s' strings.

• Allowed overriding model fields inherited from abstract base classes.

• The prefetch_related_objects() function is now a public API.

• QuerySet.bulk_create() sets the primary key on objects when using PostgreSQL.

• Added the Cast database function.

• A proxy model may now inherit multiple proxy models that share a common non-abstract parent class.

• Added Extract functions to extract datetime components as integers, such as year and hour.

• Added Trunc functions to truncate a date or datetime to a significant component. They enable queries like
sales-per-day or sales-per-hour.

• Model.__init__() now sets values of virtual fields from its keyword arguments.

• The new Meta.base_manager_name and Meta.default_manager_name options allow controlling
the _base_manager and _default_manager, respectively.

Requests and Responses

• Added request.user to the debug view.

• Added HttpResponse methods readable() and seekable() to make an instance a stream-like object
and allow wrapping it with io.TextIOWrapper.

• Added the HttpRequest.content_type and content_params attributes which are parsed from the
CONTENT_TYPE header.

• The parser for request.COOKIES is simplified to better match the behavior of browsers. request.
COOKIES may now contain cookies that are invalid according to RFC 6265 but are possible to set via
document.cookie.

Serialization

• The django.core.serializers.json.DjangoJSONEncoder now knows how to serialize lazy
strings, typically used for translatable content.

9.1. Final releases 1407

https://docs.python.org/3/library/io.html#io.TextIOWrapper
https://tools.ietf.org/html/rfc6265.html

Django Documentation, Release 1.10.9.dev20171123183751

Templates

• Added the autoescape option to the DjangoTemplates backend and the Engine class.

• Added the is and is not comparison operators to the if tag.

• Allowed dictsort to order a list of lists by an element at a specified index.

• The debug() context processor contains queries for all database aliases instead of only the default alias.

• Added relative path support for string arguments of the extends and include template tags.

Tests

• To better catch bugs, TestCase now checks deferrable database constraints at the end of each test.

• Tests and test cases can be marked with tags and run selectively with the new test --tag and test
--exclude-tag options.

• You can now login and use sessions with the test client even if django.contrib.sessions is not in
INSTALLED_APPS.

URLs

• An addition in django.setup() allows URL resolving that happens outside of the request/response cycle
(e.g. in management commands and standalone scripts) to take FORCE_SCRIPT_NAME into account when it
is set.

Validators

• URLValidator now limits the length of domain name labels to 63 characters and the total length of domain
names to 253 characters per RFC 1034.

• int_list_validator() now accepts an optional allow_negative boolean parameter, defaulting to
False, to allow negative integers.

Backwards incompatible changes in 1.10

Warning: In addition to the changes outlined in this section, be sure to review the Features removed in 1.10 for the
features that have reached the end of their deprecation cycle and therefore been removed. If you haven’t updated
your code within the deprecation timeline for a given feature, its removal may appear as a backwards incompatible
change.

Database backend API

• GIS’s AreaField uses an unspecified underlying numeric type that could in practice be any numeric Python
type. decimal.Decimal values retrieved from the database are now converted to float to make it easier
to combine them with values used by the GIS libraries.

1408 Chapter 9. Release notes

https://tools.ietf.org/html/rfc1034.html

Django Documentation, Release 1.10.9.dev20171123183751

• In order to enable temporal subtraction you must set the supports_temporal_subtraction database
feature flag to True and implement the DatabaseOperations.subtract_temporals() method.
This method should return the SQL and parameters required to compute the difference in microseconds be-
tween the lhs and rhs arguments in the datatype used to store DurationField.

select_related() prohibits non-relational fields for nested relations

Django 1.8 added validation for non-relational fields in select_related():

>>> Book.objects.select_related('title')
Traceback (most recent call last):
...
FieldError: Non-relational field given in select_related: 'title'

But it didn’t prohibit nested non-relation fields as it does now:

>>> Book.objects.select_related('author__name')
Traceback (most recent call last):
...
FieldError: Non-relational field given in select_related: 'name'

_meta.get_fields() returns consistent reverse fields for proxy models

Before Django 1.10, the get_fields() method returned different reverse fields when called on a proxy model
compared to its proxied concrete class. This inconsistency was fixed by returning the full set of fields pointing to a
concrete class or one of its proxies in both cases.

AbstractUser.username max_length increased to 150

A migration for django.contrib.auth.models.User.username is included. If you have a custom user
model inheriting from AbstractUser, you’ll need to generate and apply a database migration for your user model.

We considered an increase to 254 characters to more easily allow the use of email addresses (which are limited
to 254 characters) as usernames but rejected it due to a MySQL limitation. When using the utf8mb4 encoding
(recommended for proper Unicode support), MySQL can only create unique indexes with 191 characters by default.
Therefore, if you need a longer length, please use a custom user model.

If you want to preserve the 30 character limit for usernames, use a custom form when creating a user or changing
usernames:

from django.contrib.auth.forms import UserCreationForm

class MyUserCreationForm(UserCreationForm):
username = forms.CharField(

max_length=30,
help_text='Required. 30 characters or fewer. Letters, digits and @/./+/-/_

→˓only.',
)

If you wish to keep this restriction in the admin, set UserAdmin.add_form to use this form:

from django.contrib.auth.admin import UserAdmin as BaseUserAdmin
from django.contrib.auth.models import User

9.1. Final releases 1409

Django Documentation, Release 1.10.9.dev20171123183751

class UserAdmin(BaseUserAdmin):
add_form = MyUserCreationForm

admin.site.unregister(User)
admin.site.register(User, UserAdmin)

Dropped support for PostgreSQL 9.1

Upstream support for PostgreSQL 9.1 ends in September 2016. As a consequence, Django 1.10 sets PostgreSQL 9.2
as the minimum version it officially supports.

runserver output goes through logging

Request and response handling of the runserver command is sent to the django.server logger instead of to sys.
stderr. If you disable Django’s logging configuration or override it with your own, you’ll need to add the appropriate
logging configuration if you want to see that output:

'formatters': {
'django.server': {

'()': 'django.utils.log.ServerFormatter',
'format': '[%(server_time)s] %(message)s',

}
},
'handlers': {

'django.server': {
'level': 'INFO',
'class': 'logging.StreamHandler',
'formatter': 'django.server',

},
},
'loggers': {

'django.server': {
'handlers': ['django.server'],
'level': 'INFO',
'propagate': False,

}
}

auth.CustomUser and auth.ExtensionUser test models were removed

Since the introduction of migrations for the contrib apps in Django 1.8, the tables of these custom user test models
were not created anymore making them unusable in a testing context.

Apps registry is no longer auto-populated when unpickling models outside of Django

The apps registry is no longer auto-populated when unpickling models. This was added in Django 1.7.2 as an attempt
to allow unpickling models outside of Django, such as in an RQ worker, without calling django.setup(), but it
creates the possibility of a deadlock. To adapt your code in the case of RQ, you can provide your own worker script
that calls django.setup().

1410 Chapter 9. Release notes

http://python-rq.org/docs/workers/

Django Documentation, Release 1.10.9.dev20171123183751

Removed null assignment check for non-null foreign key fields

In older versions, assigning None to a non-nullable ForeignKey or OneToOneField raised
ValueError('Cannot assign None: "model.field" does not allow null values.').
For consistency with other model fields which don’t have a similar check, this check is removed.

Removed weak password hashers from the default PASSWORD_HASHERS setting

Django 0.90 stored passwords as unsalted MD5. Django 0.91 added support for salted SHA1 with automatic upgrade
of passwords when a user logs in. Django 1.4 added PBKDF2 as the default password hasher.

If you have an old Django project with MD5 or SHA1 (even salted) encoded passwords, be aware that these can be
cracked fairly easily with today’s hardware. To make Django users acknowledge continued use of weak hashers, the
following hashers are removed from the default PASSWORD_HASHERS setting:

'django.contrib.auth.hashers.SHA1PasswordHasher'
'django.contrib.auth.hashers.MD5PasswordHasher'
'django.contrib.auth.hashers.UnsaltedSHA1PasswordHasher'
'django.contrib.auth.hashers.UnsaltedMD5PasswordHasher'
'django.contrib.auth.hashers.CryptPasswordHasher'

Consider using a wrapped password hasher to strengthen the hashes in your database. If that’s not feasible, add the
PASSWORD_HASHERS setting to your project and add back any hashers that you need.

You can check if your database has any of the removed hashers like this:

from django.contrib.auth import get_user_model
User = get_user_model()

Unsalted MD5/SHA1:
User.objects.filter(password__startswith='md5$$')
User.objects.filter(password__startswith='sha1$$')
Salted MD5/SHA1:
User.objects.filter(password__startswith='md5$').exclude(password__startswith='md5$$')
User.objects.filter(password__startswith='sha1$').exclude(password__startswith='sha1$$
→˓')
Crypt hasher:
User.objects.filter(password__startswith='crypt$$')

from django.db.models import CharField
from django.db.models.functions import Length
CharField.register_lookup(Length)
Unsalted MD5 passwords might not have an 'md5$$' prefix:
User.objects.filter(password__length=32)

Field.get_prep_lookup() and Field.get_db_prep_lookup() methods are removed

If you have a custom field that implements either of these methods, register a custom lookup for it. For example:

from django.db.models import Field
from django.db.models.lookups import Exact

class MyField(Field):
...

9.1. Final releases 1411

Django Documentation, Release 1.10.9.dev20171123183751

class MyFieldExact(Exact):
def get_prep_lookup(self):

do_custom_stuff_for_myfield
....

MyField.register_lookup(MyFieldExact)

django.contrib.gis

• Support for SpatiaLite < 3.0 and GEOS < 3.3 is dropped.

• The add_postgis_srs() backwards compatibility alias for django.contrib.gis.utils.
add_srs_entry() is removed.

• On Oracle/GIS, the Area aggregate function now returns a float instead of decimal.Decimal. (It’s still
wrapped in a measure of square meters.)

• The default GEOSGeometry representation (WKT output) is trimmed by default. That is, instead of POINT
(23.0000000000000000 5.5000000000000000), you’ll get POINT (23 5.5).

Maximum size of a request body and the number of GET/POST parameters is limited

Two new settings help mitigate denial-of-service attacks via large requests:

• DATA_UPLOAD_MAX_MEMORY_SIZE limits the size that a request body may be. File uploads don’t count
towards this limit.

• DATA_UPLOAD_MAX_NUMBER_FIELDS limits the number of GET/POST parameters that are parsed.

Applications that receive unusually large form posts may need to tune these settings.

Miscellaneous

• The repr() of a QuerySet is wrapped in <QuerySet > to disambiguate it from a plain list when debug-
ging.

• utils.version.get_version() returns PEP 440 compliant release candidate versions (e.g. ‘1.10rc1’
instead of ‘1.10c1’).

• CSRF token values are now required to be strings of 64 alphanumerics; values of 32 alphanumerics, as set by
older versions of Django by default, are automatically replaced by strings of 64 characters. Other values are
considered invalid. This should only affect developers or users who replace these tokens.

• The LOGOUT_URL setting is removed as Django hasn’t made use of it since pre-1.0. If you use it in your
project, you can add it to your project’s settings. The default value was '/accounts/logout/'.

• Objects with a close() method such as files and generators passed to HttpResponse are now closed
immediately instead of when the WSGI server calls close() on the response.

• A redundant transaction.atomic() call in QuerySet.update_or_create() is removed. This
may affect query counts tested by TransactionTestCase.assertNumQueries().

• Support for skip_validation in BaseCommand.execute(**options) is removed. Use
skip_checks (added in Django 1.7) instead.

• loaddata now raises a CommandError instead of showing a warning when the specified fixture file is not
found.

1412 Chapter 9. Release notes

https://www.python.org/dev/peps/pep-0440

Django Documentation, Release 1.10.9.dev20171123183751

• Instead of directly accessing the LogEntry.change_message attribute, it’s now better to call the
LogEntry.get_change_message() method which will provide the message in the current language.

• The default error views now raise TemplateDoesNotExist if a nonexistent template_name is specified.

• The unused choices keyword argument of the Select and SelectMultiple widgets’ render()
method is removed. The choices argument of the render_options() method is also removed, mak-
ing selected_choices the first argument.

• Tests that violate deferrable database constraints will now error when run on a database that supports deferrable
constraints.

• Built-in management commands now use indexing of keys in options, e.g. options['verbosity'],
instead of options.get() and no longer perform any type coercion. This could be a problem if you’re
calling commands using Command.execute() (which bypasses the argument parser that sets a default value)
instead of call_command(). Instead of calling Command.execute(), pass the command object as the
first argument to call_command().

• ModelBackend and RemoteUserBackend now reject inactive users. This means that inactive users can’t
login and will be logged out if they are switched from is_active=True to False. If you need the previous
behavior, use the new AllowAllUsersModelBackend or AllowAllUsersRemoteUserBackend in
AUTHENTICATION_BACKENDS instead.

• In light of the previous change, the test client’s login() method no longer always rejects inactive users but
instead delegates this decision to the authentication backend. force_login() also delegates the decision to
the authentication backend, so if you’re using the default backends, you need to use an active user.

• django.views.i18n.set_language() may now return a 204 status code for AJAX requests.

• The base_field attribute of RangeField is now a type of field, not an instance of a field. If you have
created a custom subclass of RangeField, you should change the base_field attribute.

• Middleware classes are now initialized when the server starts rather than during the first request.

• If you override is_authenticated() or is_anonymous() in a custom user model, you must convert
them to attributes or properties as described in the deprecation note.

• When using ModelAdmin.save_as=True, the “Save as new” button now redirects to the change view
for the new object instead of to the model’s changelist. If you need the previous behavior, set the new
ModelAdmin.save_as_continue attribute to False.

• Required form fields now have the required HTML attribute. Set the Form.
use_required_attribute attribute to False to disable it. You could also add the novalidate
attribute to <form> if you don’t want browser validation. To disable the required attribute on custom
widgets, override the Widget.use_required_attribute() method.

• The WSGI handler no longer removes content of responses from HEAD requests or responses with a
status_code of 100-199, 204, or 304. Most Web servers already implement this behavior. Responses
retrieved using the Django test client continue to have these “response fixes” applied.

• Model.__init__() now receives django.db.models.DEFERRED as the value of deferred fields.

• The Model._deferred attribute is removed as dynamic model classes when using QuerySet.defer()
and only() is removed.

• Storage.save() no longer replaces '\' with '/'. This behavior is moved to FileSystemStorage
since this is a storage specific implementation detail. Any Windows user with a custom storage implementation
that relies on this behavior will need to implement it in the custom storage’s save() method.

• Private FileField methods get_directory_name() and get_filename() are no longer called
(and are now deprecated) which is a backwards incompatible change for users overriding those methods

9.1. Final releases 1413

Django Documentation, Release 1.10.9.dev20171123183751

on custom fields. To adapt such code, override FileField.generate_filename() or Storage.
generate_filename() instead. It might be possible to use upload_to also.

• The subject of mail sent by AdminEmailHandler is no longer truncated at 989 characters. If you were
counting on a limited length, truncate the subject yourself.

• Private expressions django.db.models.expressions.Date and DateTime are removed. The new
Trunc expressions provide the same functionality.

• The _base_manager and _default_manager attributes are removed from model instances. They remain
accessible on the model class.

• Accessing a deleted field on a model instance, e.g. after del obj.field, reloads the field’s value instead of
raising AttributeError.

• If you subclass AbstractBaseUser and override clean(), be sure it calls super().
AbstractBaseUser.normalize_username() is called in a new AbstractBaseUser.clean()
method.

• Private API django.forms.models.model_to_dict() returns a queryset rather than a list of primary
keys for ManyToManyFields.

• If django.contrib.staticfiles is installed, the static template tag uses the staticfiles stor-
age to construct the URL rather than simply joining the value with STATIC_ROOT. The new approach encodes
the URL, which could be backwards-incompatible in cases such as including a fragment in a path, e.g. {%
static 'img.svg#fragment' %}, since the # is encoded as %23. To adapt, move the fragment outside
the template tag: {% static 'img.svg' %}#fragment.

• When USE_L10N is True, localization is now applied for the date and time filters when no format string
is specified. The DATE_FORMAT and TIME_FORMAT specifiers from the active locale are used instead of the
settings of the same name.

Features deprecated in 1.10

Direct assignment to a reverse foreign key or many-to-many relation

Instead of assigning related objects using direct assignment:

>>> new_list = [obj1, obj2, obj3]
>>> e.related_set = new_list

Use the set() method added in Django 1.9:

>>> e.related_set.set([obj1, obj2, obj3])

This prevents confusion about an assignment resulting in an implicit save.

Non-timezone-aware Storage API

The old, non-timezone-aware methods accessed_time(), created_time(), and modified_time() are
deprecated in favor of the new get_*_time() methods.

Third-party storage backends should implement the new methods and mark the old ones as deprecated. Until then, the
new get_*_time() methods on the base Storage class convert datetimes from the old methods as required
and emit a deprecation warning as they do so.

Third-party storage backends may retain the old methods as long as they wish to support earlier versions of Django.

1414 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

django.contrib.gis

• The get_srid() and set_srid() methods of GEOSGeometry are deprecated in favor of the srid
property.

• The get_x(), set_x(), get_y(), set_y(), get_z(), and set_z() methods of Point are depre-
cated in favor of the x, y, and z properties.

• The get_coords() and set_coords()methods of Point are deprecated in favor of the tuple property.

• The cascaded_union property of MultiPolygon is deprecated in favor of the unary_union property.

• The django.contrib.gis.utils.precision_wkt() function is deprecated in favor of
WKTWriter.

CommaSeparatedIntegerField model field

CommaSeparatedIntegerField is deprecated in favor of CharField with the
validate_comma_separated_integer_list() validator:

from django.core.validators import validate_comma_separated_integer_list
from django.db import models

class MyModel(models.Model):
numbers = models.CharField(..., validators=[validate_comma_separated_integer_

→˓list])

If you’re using Oracle, CharField uses a different database field type (NVARCHAR2) than
CommaSeparatedIntegerField (VARCHAR2). Depending on your database settings, this might imply a
different encoding, and thus a different length (in bytes) for the same contents. If your stored values are longer than
the 4000 byte limit of NVARCHAR2, you should use TextField (NCLOB) instead. In this case, if you have any
queries that group by the field (e.g. annotating the model with an aggregation or using distinct()) you’ll need to
change them (to defer the field).

Using a model name as a query lookup when default_related_name is set

Assume the following models:

from django.db import models

class Foo(models.Model):
pass

class Bar(models.Model):
foo = models.ForeignKey(Foo)

class Meta:
default_related_name = 'bars'

In older versions, default_related_name couldn’t be used as a query lookup. This is fixed and support for the
old lookup name is deprecated. For example, since default_related_name is set in model Bar, instead of using
the model name bar as the lookup:

>>> bar = Bar.objects.get(pk=1)
>>> Foo.objects.get(bar=bar)

9.1. Final releases 1415

Django Documentation, Release 1.10.9.dev20171123183751

use the default_related_name bars:

>>> Foo.objects.get(bars=bar)

__search query lookup

The search lookup, which supports MySQL only and is extremely limited in features, is deprecated. Replace it with
a custom lookup:

from django.db import models

class Search(models.Lookup):
lookup_name = 'search'

def as_mysql(self, compiler, connection):
lhs, lhs_params = self.process_lhs(compiler, connection)
rhs, rhs_params = self.process_rhs(compiler, connection)
params = lhs_params + rhs_params
return 'MATCH (%s) AGAINST (%s IN BOOLEAN MODE)' % (lhs, rhs), params

models.CharField.register_lookup(Search)
models.TextField.register_lookup(Search)

Using User.is_authenticated() and User.is_anonymous() as methods

The is_authenticated() and is_anonymous()methods of AbstractBaseUser and AnonymousUser
classes are now properties. They will still work as methods until Django 2.0, but all usage in Django now uses attribute
access.

For example, if you use AuthenticationMiddleware and want to know whether the user is currently logged-in
you would use:

if request.user.is_authenticated:
... # Do something for logged-in users.

else:
... # Do something for anonymous users.

instead of request.user.is_authenticated().

This change avoids accidental information leakage if you forget to call the method, e.g.:

if request.user.is_authenticated:
return sensitive_information

If you override these methods in a custom user model, you must change them to properties or attributes.

Django uses a CallableBool object to allow these attributes to work as both a property and a method. Thus, until
the deprecation period ends, you cannot compare these properties using the is operator. That is, the following won’t
work:

if request.user.is_authenticated is True:
...

1416 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Custom manager classes available through prefetch_related must define a
_apply_rel_filters() method

If you defined a custom manager class available through prefetch_related() you must make sure it defines a
_apply_rel_filters() method.

This method must accept a QuerySet instance as its single argument and return a filtered version of the queryset for
the model instance the manager is bound to.

The “escape” half of django.utils.safestring

The mark_for_escaping() function and the classes it uses: EscapeData, EscapeBytes, EscapeText,
EscapeString, and EscapeUnicode are deprecated.

As a result, the “lazy” behavior of the escape filter (where it would always be applied as the last filter no matter where
in the filter chain it appeared) is deprecated. The filter will change to immediately apply conditional_escape()
in Django 2.0.

Manager.use_for_related_fields and inheritance changes

Manager.use_for_related_fields is deprecated in favor of setting Meta.base_manager_name on the
model.

Model Manager inheritance will follow MRO inheritance rules in Django 2.0, changing the current behavior where
managers defined on non-abstract base classes aren’t inherited by child classes. A deprecating warning with instruc-
tions on how to adapt your code is raised if you have any affected managers. You’ll either redeclare a manager
from an abstract model on the child class to override the manager from the concrete model, or you’ll set the model’s
Meta.manager_inheritance_from_future=True option to opt-in to the new inheritance behavior.

During the deprecation period, use_for_related_fields will be honored and raise a warning, even if a
base_manager_name is set. This allows third-party code to preserve legacy behavior while transitioning to the new
API. The warning can be silenced by setting silence_use_for_related_fields_deprecation=True on
the manager.

Miscellaneous

• The makemigrations --exit option is deprecated in favor of the makemigrations --check op-
tion.

• django.utils.functional.allow_lazy() is deprecated in favor of the new keep_lazy() func-
tion which can be used with a more natural decorator syntax.

• The shell --plain option is deprecated in favor of -i python or --interface python.

• Importing from the django.core.urlresolvers module is deprecated in favor of its new location,
django.urls.

• The template Context.has_key() method is deprecated in favor of in.

• The private attribute virtual_fields of Model._meta is deprecated in favor of private_fields.

• The private keyword arguments virtual_only in Field.contribute_to_class() and virtual in
Model._meta.add_field() are deprecated in favor of private_only and private, respectively.

• The javascript_catalog() and json_catalog() views are deprecated in favor of class-based views
JavaScriptCatalog and JSONCatalog.

9.1. Final releases 1417

Django Documentation, Release 1.10.9.dev20171123183751

• In multi-table inheritance, implicit promotion of a OneToOneField to a parent_link is deprecated. Add
parent_link=True to such fields.

• The private API Widget._format_value() is made public and renamed to format_value(). The old
name will work through a deprecation period.

• Private FileField methods get_directory_name() and get_filename() are deprecated in favor
of performing this work in Storage.generate_filename()).

• Old-style middleware that uses settings.MIDDLEWARE_CLASSES are deprecated. Adapt old, custom mid-
dleware and use the new MIDDLEWARE setting.

Features removed in 1.10

These features have reached the end of their deprecation cycle and are removed in Django 1.10. See Features depre-
cated in 1.8 for details, including how to remove usage of these features.

• Support for calling a SQLCompiler directly as an alias for calling its quote_name_unless_alias
method is removed.

• The cycle and firstof template tags are removed from the future template tag library.

• django.conf.urls.patterns() is removed.

• Support for the prefix argument to django.conf.urls.i18n.i18n_patterns() is removed.

• SimpleTestCase.urls is removed.

• Using an incorrect count of unpacked values in the for template tag raises an exception rather than failing
silently.

• The ability to reverse() URLs using a dotted Python path is removed.

• The ability to use a dotted Python path for the LOGIN_URL and LOGIN_REDIRECT_URL settings is removed.

• Support for optparse is dropped for custom management commands.

• The class django.core.management.NoArgsCommand is removed.

• django.core.context_processors module is removed.

• django.db.models.sql.aggregates module is removed.

• django.contrib.gis.db.models.sql.aggregates module is removed.

• The following methods and properties of django.db.sql.query.Query are removed:

– Properties: aggregates and aggregate_select

– Methods: add_aggregate, set_aggregate_mask, and append_aggregate_mask.

• django.template.resolve_variable is removed.

• The following private APIs are removed from django.db.models.options.Options (Model.
_meta):

– get_field_by_name()

– get_all_field_names()

– get_fields_with_model()

– get_concrete_fields_with_model()

– get_m2m_with_model()

1418 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

– get_all_related_objects()

– get_all_related_objects_with_model()

– get_all_related_many_to_many_objects()

– get_all_related_m2m_objects_with_model()

• The error_message argument of django.forms.RegexField is removed.

• The unordered_list filter no longer supports old style lists.

• Support for string view arguments to url() is removed.

• The backward compatible shim to rename django.forms.Form._has_changed() to
has_changed() is removed.

• The removetags template filter is removed.

• The remove_tags() and strip_entities() functions in django.utils.html is removed.

• The is_admin_site argument to django.contrib.auth.views.password_reset() is re-
moved.

• django.db.models.field.subclassing.SubfieldBase is removed.

• django.utils.checksums is removed.

• The original_content_type_id attribute on django.contrib.admin.helpers.
InlineAdminForm is removed.

• The backwards compatibility shim to allow FormMixin.get_form() to be defined with no default value
for its form_class argument is removed.

• The following settings are removed, and you must upgrade to the TEMPLATES setting:

– ALLOWED_INCLUDE_ROOTS

– TEMPLATE_CONTEXT_PROCESSORS

– TEMPLATE_DEBUG

– TEMPLATE_DIRS

– TEMPLATE_LOADERS

– TEMPLATE_STRING_IF_INVALID

• The backwards compatibility alias django.template.loader.BaseLoader is removed.

• Django template objects returned by get_template() and select_template() no longer accept a
Context in their render() method.

• Template response APIs enforce the use of dict and backend-dependent template objects instead of Context
and Template respectively.

• The current_app parameter for the following function and classes is removed:

– django.shortcuts.render()

– django.template.Context()

– django.template.RequestContext()

– django.template.response.TemplateResponse()

• The dictionary and context_instance parameters for the following functions are removed:

– django.shortcuts.render()

9.1. Final releases 1419

https://docs.python.org/3/library/stdtypes.html#dict

Django Documentation, Release 1.10.9.dev20171123183751

– django.shortcuts.render_to_response()

– django.template.loader.render_to_string()

• The dirs parameter for the following functions is removed:

– django.template.loader.get_template()

– django.template.loader.select_template()

– django.shortcuts.render()

– django.shortcuts.render_to_response()

• Session verification is enabled regardless of whether or not 'django.contrib.auth.
middleware.SessionAuthenticationMiddleware' is in MIDDLEWARE_CLASSES.
SessionAuthenticationMiddleware no longer has any purpose and can be removed from
MIDDLEWARE_CLASSES. It’s kept as a stub until Django 2.0 as a courtesy for users who don’t read
this note.

• Private attribute django.db.models.Field.related is removed.

• The --list option of the migrate management command is removed.

• The ssi template tag is removed.

• Support for the = comparison operator in the if template tag is removed.

• The backwards compatibility shims to allow Storage.get_available_name() and Storage.
save() to be defined without a max_length argument are removed.

• Support for the legacy %(<foo>)s syntax in ModelFormMixin.success_url is removed.

• GeoQuerySet aggregate methods collect(), extent(), extent3d(), make_line(), and
unionagg() are removed.

• The ability to specify ContentType.name when creating a content type instance is removed.

• Support for the old signature of allow_migrate is removed.

• Support for the syntax of {% cycle %} that uses comma-separated arguments is removed.

• The warning that Signer issued when given an invalid separator is now a ValueError.

9.1.2 1.9 release

Django 1.9.13 release notes

April 4, 2017

Django 1.9.13 fixes two security issues and a bug in 1.9.12. This is the final release of the 1.9.x series.

CVE-2017-7233: Open redirect and possible XSS attack via user-supplied numeric redirect URLs

Django relies on user input in some cases (e.g. django.contrib.auth.views.login() and i18n) to redi-
rect the user to an “on success” URL. The security check for these redirects (namely django.utils.http.
is_safe_url()) considered some numeric URLs (e.g. http:999999999) “safe” when they shouldn’t be.

Also, if a developer relies on is_safe_url() to provide safe redirect targets and puts such a URL into a link, they
could suffer from an XSS attack.

1420 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

CVE-2017-7234: Open redirect vulnerability in django.views.static.serve()

A maliciously crafted URL to a Django site using the serve() view could redirect to any other domain. The view
no longer does any redirects as they don’t provide any known, useful functionality.

Note, however, that this view has always carried a warning that it is not hardened for production use and should be
used only as a development aid.

Bugfixes

• Fixed a regression in the timesince and timeuntil filters that caused incorrect results for dates in a leap
year (#27637).

Django 1.9.12 release notes

December 1, 2016

Django 1.9.12 fixes a regression in 1.9.11.

Bugfixes

• Quoted the Oracle test user’s password in queries to fix the “ORA-00922: missing or invalid option” error when
the password starts with a number or special character (#27420).

Django 1.9.11 release notes

November 1, 2016

Django 1.9.11 fixes two security issues in 1.9.10.

User with hardcoded password created when running tests on Oracle

When running tests with an Oracle database, Django creates a temporary database user. In older versions, if a password
isn’t manually specified in the database settings TEST dictionary, a hardcoded password is used. This could allow an
attacker with network access to the database server to connect.

This user is usually dropped after the test suite completes, but not when using the manage.py test --keepdb
option or if the user has an active session (such as an attacker’s connection).

A randomly generated password is now used for each test run.

DNS rebinding vulnerability when DEBUG=True

Older versions of Django don’t validate the Host header against settings.ALLOWED_HOSTSwhen settings.
DEBUG=True. This makes them vulnerable to a DNS rebinding attack.

While Django doesn’t ship a module that allows remote code execution, this is at least a cross-site scripting vector,
which could be quite serious if developers load a copy of the production database in development or connect to some
production services for which there’s no development instance, for example. If a project uses a package like the
django-debug-toolbar, then the attacker could execute arbitrary SQL, which could be especially bad if the
developers connect to the database with a superuser account.

9.1. Final releases 1421

https://code.djangoproject.com/ticket/27637
https://code.djangoproject.com/ticket/27420
http://benmmurphy.github.io/blog/2016/07/11/rails-webconsole-dns-rebinding/

Django Documentation, Release 1.10.9.dev20171123183751

settings.ALLOWED_HOSTS is now validated regardless of DEBUG. For convenience, if ALLOWED_HOSTS is
empty and DEBUG=True, the following variations of localhost are allowed ['localhost', '127.0.0.1',
'::1']. If your local settings file has your production ALLOWED_HOSTS value, you must now omit it to get those
fallback values.

Django 1.9.10 release notes

September 26, 2016

Django 1.9.10 fixes a security issue in 1.9.9.

CSRF protection bypass on a site with Google Analytics

An interaction between Google Analytics and Django’s cookie parsing could allow an attacker to set arbitrary cookies
leading to a bypass of CSRF protection.

The parser for request.COOKIES is simplified to better match the behavior of browsers and to mitigate this attack.
request.COOKIES may now contain cookies that are invalid according to RFC 6265 but are possible to set via
document.cookie.

Django 1.9.9 release notes

August 1, 2016

Django 1.9.9 fixes several bugs in 1.9.8.

Bugfixes

• Fixed invalid HTML in template postmortem on the debug page (#26938).

• Fixed some GIS database function crashes on MySQL 5.7 (#26657).

Django 1.9.8 release notes

July 18, 2016

Django 1.9.8 fixes a security issue and several bugs in 1.9.7.

XSS in admin’s add/change related popup

Unsafe usage of JavaScript’s Element.innerHTML could result in XSS in the admin’s add/change related popup.
Element.textContent is now used to prevent execution of the data.

The debug view also used innerHTML. Although a security issue wasn’t identified there, out of an abundance of
caution it’s also updated to use textContent.

Bugfixes

• Fixed missing varchar/text_pattern_ops index on CharField and TextField respectively when
using AddField on PostgreSQL (#26889).

• Fixed makemessages crash on Python 2 with non-ASCII file names (#26897).

1422 Chapter 9. Release notes

https://tools.ietf.org/html/rfc6265.html
https://code.djangoproject.com/ticket/26938
https://code.djangoproject.com/ticket/26657
https://code.djangoproject.com/ticket/26889
https://code.djangoproject.com/ticket/26897

Django Documentation, Release 1.10.9.dev20171123183751

Django 1.9.7 release notes

June 4, 2016

Django 1.9.7 fixes several bugs in 1.9.6.

Bugfixes

• Removed the need for the request context processor on the admin login page to fix a regression in 1.9
(#26558).

• Fixed translation of password validators’ help_text in forms (#26544).

• Fixed a regression causing the cached template loader to crash when using lazy template names (#26603).

• Fixed on_commit callbacks execution order when callbacks make transactions (#26627).

• Fixed HStoreField to raise a ValidationError instead of crashing on non-dictionary JSON input
(#26672).

• Fixed dbshell crash on PostgreSQL with an empty database name (#26698).

• Fixed a regression in queries on a OneToOneField that has to_field and primary_key=True
(#26667).

Django 1.9.6 release notes

May 2, 2016

Django 1.9.6 fixes several bugs in 1.9.5.

Bugfixes

• Added support for relative path redirects to the test client and to SimpleTestCase.assertRedirects()
because Django 1.9 no longer converts redirects to absolute URIs (#26428).

• Fixed TimeField microseconds round-tripping on MySQL and SQLite (#26498).

• Prevented makemigrations from generating infinite migrations for a model field that references a
functools.partial (#26475).

• Fixed a regression where SessionBase.pop() returned None rather than raising a KeyError for nonex-
istent values (#26520).

• Fixed a regression causing the cached template loader to crash when using template names starting with a dash
(#26536).

• Restored conversion of an empty string to null when saving values of GenericIPAddressField on SQLite
and MySQL (#26557).

• Fixed a makemessages regression where temporary .py extensions were leaked in source file paths (#26341).

Django 1.9.5 release notes

April 1, 2016

Django 1.9.5 fixes several bugs in 1.9.4.

9.1. Final releases 1423

https://code.djangoproject.com/ticket/26558
https://code.djangoproject.com/ticket/26544
https://code.djangoproject.com/ticket/26603
https://code.djangoproject.com/ticket/26627
https://code.djangoproject.com/ticket/26672
https://code.djangoproject.com/ticket/26698
https://code.djangoproject.com/ticket/26667
https://code.djangoproject.com/ticket/26428
https://code.djangoproject.com/ticket/26498
https://code.djangoproject.com/ticket/26475
https://code.djangoproject.com/ticket/26520
https://code.djangoproject.com/ticket/26536
https://code.djangoproject.com/ticket/26557
https://code.djangoproject.com/ticket/26341

Django Documentation, Release 1.10.9.dev20171123183751

Bugfixes

• Made MultiPartParser ignore filenames that normalize to an empty string to fix crash in
MemoryFileUploadHandler on specially crafted user input (#26325).

• Fixed a race condition in BaseCache.get_or_set() (#26332). It now returns the default value instead
of False if there’s an error when trying to add the value to the cache.

• Fixed data loss on SQLite where DurationField values with fractional seconds could be saved as None
(#26324).

• The forms in contrib.auth no longer strip trailing and leading whitespace from the password fields
(#26334). The change requires users who set their password to something with such whitespace after a site up-
dated to Django 1.9 to reset their password. It provides backwards-compatibility for earlier versions of Django.

• Fixed a memory leak in the cached template loader (#26306).

• Fixed a regression that caused collectstatic --clear to fail if the storage doesn’t implement path()
(#26297).

• Fixed a crash when using a reverse lookup with a subquery when a ForeignKey has a to_field set to
something other than the primary key (#26373).

• Fixed a regression in CommonMiddleware that caused spurious warnings in logs on requests missing a trailing
slash (#26293).

• Restored the functionality of the admin’s raw_id_fields in list_editable (#26387).

• Fixed a regression with abstract model inheritance and explicit parent links (#26413).

• Fixed a migrations crash on SQLite when renaming the primary key of a model containing a ForeignKey to
'self' (#26384).

• Fixed JSONField inadvertently escaping its contents when displaying values after failed form validation
(#25532).

Django 1.9.4 release notes

March 5, 2016

Django 1.9.4 fixes a regression on Python 2 in the 1.9.3 security release where utils.http.is_safe_url()
crashes on bytestring URLs (#26308).

Django 1.9.3 release notes

March 1, 2016

Django 1.9.3 fixes two security issues and several bugs in 1.9.2.

CVE-2016-2512: Malicious redirect and possible XSS attack via user-supplied redirect URLs con-
taining basic auth

Django relies on user input in some cases (e.g. django.contrib.auth.views.login() and i18n) to redi-
rect the user to an “on success” URL. The security check for these redirects (namely django.utils.http.
is_safe_url()) considered some URLs with basic authentication credentials “safe” when they shouldn’t be.

For example, a URL like http://mysite.example.com\@attacker.com would be considered safe if the
request’s host is http://mysite.example.com, but redirecting to this URL sends the user to attacker.com.

1424 Chapter 9. Release notes

https://code.djangoproject.com/ticket/26325
https://code.djangoproject.com/ticket/26332
https://code.djangoproject.com/ticket/26324
https://code.djangoproject.com/ticket/26334
https://code.djangoproject.com/ticket/26306
https://code.djangoproject.com/ticket/26297
https://code.djangoproject.com/ticket/26373
https://code.djangoproject.com/ticket/26293
https://code.djangoproject.com/ticket/26387
https://code.djangoproject.com/ticket/26413
https://code.djangoproject.com/ticket/26384
https://code.djangoproject.com/ticket/25532
https://code.djangoproject.com/ticket/26308

Django Documentation, Release 1.10.9.dev20171123183751

Also, if a developer relies on is_safe_url() to provide safe redirect targets and puts such a URL into a link, they
could suffer from an XSS attack.

CVE-2016-2513: User enumeration through timing difference on password hasher work factor up-
grade

In each major version of Django since 1.6, the default number of iterations for the PBKDF2PasswordHasher and
its subclasses has increased. This improves the security of the password as the speed of hardware increases, however,
it also creates a timing difference between a login request for a user with a password encoded in an older number of
iterations and login request for a nonexistent user (which runs the default hasher’s default number of iterations since
Django 1.6).

This only affects users who haven’t logged in since the iterations were increased. The first time a user logs in after an
iterations increase, their password is updated with the new iterations and there is no longer a timing difference.

The new BasePasswordHasher.harden_runtime() method allows hashers to bridge the runtime gap be-
tween the work factor (e.g. iterations) supplied in existing encoded passwords and the default work factor of the
hasher. This method is implemented for PBKDF2PasswordHasher and BCryptPasswordHasher. The num-
ber of rounds for the latter hasher hasn’t changed since Django 1.4, but some projects may subclass it and increase the
work factor as needed.

A warning will be emitted for any third-party password hashers that don’t implement a harden_runtime()
method.

If you have different password hashes in your database (such as SHA1 hashes from users who haven’t logged in since
the default hasher switched to PBKDF2 in Django 1.4), the timing difference on a login request for these users may be
even greater and this fix doesn’t remedy that difference (or any difference when changing hashers). You may be able
to upgrade those hashes to prevent a timing attack for that case.

Bugfixes

• Skipped URL checks (new in 1.9) if the ROOT_URLCONF setting isn’t defined (#26155).

• Fixed a crash on PostgreSQL that prevented using TIME_ZONE=None and USE_TZ=False (#26177).

• Added system checks for query name clashes of hidden relationships (#26162).

• Fixed a regression for cases where ForeignObject.get_extra_descriptor_filter() returned a
Q object (#26153).

• Fixed regression with an __in=qs lookup for a ForeignKey with to_field set (#26196).

• Made forms.FileField and utils.translation.lazy_number() picklable (#26212).

• Fixed RangeField and ArrayField serialization with None values (#26215).

• Fixed a crash when filtering by a Decimal in RawQuery (#26219).

• Reallowed dashes in top-level domain names of URLs checked by URLValidator to fix a regression in
Django 1.8 (#26204).

• Fixed some crashing deprecation shims in SimpleTemplateResponse that regressed in Django 1.9
(#26253).

• Fixed BoundField to reallow slices of subwidgets (#26267).

• Changed the admin’s “permission denied” message in the login template to use get_username instead of
username to support custom user models (#26231).

9.1. Final releases 1425

https://code.djangoproject.com/ticket/26155
https://code.djangoproject.com/ticket/26177
https://code.djangoproject.com/ticket/26162
https://code.djangoproject.com/ticket/26153
https://code.djangoproject.com/ticket/26196
https://code.djangoproject.com/ticket/26212
https://code.djangoproject.com/ticket/26215
https://code.djangoproject.com/ticket/26219
https://code.djangoproject.com/ticket/26204
https://code.djangoproject.com/ticket/26253
https://code.djangoproject.com/ticket/26267
https://code.djangoproject.com/ticket/26231

Django Documentation, Release 1.10.9.dev20171123183751

• Fixed a crash when passing a nonexistent template name to the cached template loader’s load_template()
method (#26280).

• Prevented ContentTypeManager instances from sharing their cache (#26286).

• Reverted a change in Django 1.9.2 (#25858) that prevented relative lazy relationships defined on abstract models
to be resolved according to their concrete model’s app_label (#26186).

Django 1.9.2 release notes

February 1, 2016

Django 1.9.2 fixes a security regression in 1.9 and several bugs in 1.9.1. It also makes a small backwards incompatible
change that hopefully doesn’t affect any users.

Security issue: User with “change” but not “add” permission can create objects for ModelAdmin’s
with save_as=True

If a ModelAdmin uses save_as=True (not the default), the admin provides an option when editing objects to
“Save as new”. A regression in Django 1.9 prevented that form submission from raising a “Permission Denied” error
for users without the “add” permission.

Backwards incompatible change: .py-tpl files rewritten in project/app templates

The addition of some Django template language syntax to the default app template in Django 1.9 means those files now
have some invalid Python syntax. This causes difficulties for packaging systems that unconditionally byte-compile *.
py files.

To remedy this, a .py-tpl suffix is now used for the project and app template files included in Django. The .
py-tpl suffix is replaced with .py by the startproject and startapp commands. For example, a template
with the filename manage.py-tpl will be created as manage.py.

Please file a ticket if you have a custom project template containing .py-tpl files and find this behavior problematic.

Bugfixes

• Fixed a regression in ConditionalGetMiddleware causing If-None-Match checks to always return
HTTP 200 (#26024).

• Fixed a regression that caused the “user-tools” items to display on the admin’s logout page (#26035).

• Fixed a crash in the translations system when the current language has no translations (#26046).

• Fixed a regression that caused the incorrect day to be selected when opening the admin calendar widget for
timezones from GMT+0100 to GMT+1200 (#24980).

• Fixed a regression in the admin’s edit related model popup that caused an escaped value to be displayed in the
select dropdown of the parent window (#25997).

• Fixed a regression in 1.8.8 causing incorrect index handling in migrations on PostgreSQL when adding
db_index=True or unique=True to a CharField or TextField that already had the other specified,
or when removing one of them from a field that had both, or when adding unique=True to a field already
listed in unique_together (#26034).

1426 Chapter 9. Release notes

https://code.djangoproject.com/ticket/26280
https://code.djangoproject.com/ticket/26286
https://code.djangoproject.com/ticket/25858
https://code.djangoproject.com/ticket/26186
https://code.djangoproject.com/ticket/26024
https://code.djangoproject.com/ticket/26035
https://code.djangoproject.com/ticket/26046
https://code.djangoproject.com/ticket/24980
https://code.djangoproject.com/ticket/25997
https://code.djangoproject.com/ticket/26034

Django Documentation, Release 1.10.9.dev20171123183751

• Fixed a regression where defining a relation on an abstract model’s field using a string model name without an
app_label no longer resolved that reference to the abstract model’s app if using that model in another application
(#25858).

• Fixed a crash when destroying an existing test database on MySQL or PostgreSQL (#26096).

• Fixed CSRF cookie check on POST requests when USE_X_FORWARDED_PORT=True (#26094).

• Fixed a QuerySet.order_by() crash when ordering by a relational field of a ManyToManyField
through model (#26092).

• Fixed a regression that caused an exception when making database queries on SQLite with more than 2000
parameters when DEBUG is True on distributions that increase the SQLITE_MAX_VARIABLE_NUMBER
compile-time limit to over 2000, such as Debian (#26063).

• Fixed a crash when using a reverse OneToOneField in ModelAdmin.readonly_fields (#26060).

• Fixed a crash when calling the migrate command in a test case with the available_apps attribute point-
ing to an application with migrations disabled using the MIGRATION_MODULES setting (#26135).

• Restored the ability for testing and debugging tools to determine the template from which a node came from,
even during template inheritance or inclusion. Prior to Django 1.9, debugging tools could access the template
origin from the node via Node.token.source[0]. This was an undocumented, private API. The origin is
now available directly on each node using the Node.origin attribute (#25848).

• Fixed a regression in Django 1.8.5 that broke copying a SimpleLazyObjectwith copy.copy() (#26122).

• Always included geometry_field in the GeoJSON serializer output regardless of the fields parameter
(#26138).

• Fixed the contrib.gis map widgets when using USE_THOUSAND_SEPARATOR=True (#20415).

• Made invalid forms display the initial of values of their disabled fields (#26129).

Django 1.9.1 release notes

January 2, 2016

Django 1.9.1 fixes several bugs in 1.9.

Bugfixes

• Fixed BaseCache.get_or_set() with the DummyCache backend (#25840).

• Fixed a regression in FormMixin causing forms to be validated twice (#25548, #26018).

• Fixed a system check crash with nested ArrayFields (#25867).

• Fixed a state bug when migrating a SeparateDatabaseAndState operation backwards (#25896).

• Fixed a regression in CommonMiddleware causing If-None-Match checks to always return HTTP 200
(#25900).

• Fixed missing varchar/text_pattern_ops index on CharField and TextField respectively when
using AlterField on PostgreSQL (#25412).

• Fixed admin’s delete confirmation page’s summary counts of related objects (#25883).

• Added from __future__ import unicode_literals to the default apps.py created by
startapp on Python 2 (#25909). Add this line to your own apps.py files created using Django 1.9 if
you want your migrations to work on both Python 2 and Python 3.

9.1. Final releases 1427

https://code.djangoproject.com/ticket/25858
https://code.djangoproject.com/ticket/26096
https://code.djangoproject.com/ticket/26094
https://code.djangoproject.com/ticket/26092
https://code.djangoproject.com/ticket/26063
https://code.djangoproject.com/ticket/26060
https://code.djangoproject.com/ticket/26135
https://code.djangoproject.com/ticket/25848
https://code.djangoproject.com/ticket/26122
https://code.djangoproject.com/ticket/26138
https://code.djangoproject.com/ticket/20415
https://code.djangoproject.com/ticket/26129
https://code.djangoproject.com/ticket/25840
https://code.djangoproject.com/ticket/25548
https://code.djangoproject.com/ticket/26018
https://code.djangoproject.com/ticket/25867
https://code.djangoproject.com/ticket/25896
https://code.djangoproject.com/ticket/25900
https://code.djangoproject.com/ticket/25412
https://code.djangoproject.com/ticket/25883
https://code.djangoproject.com/ticket/25909

Django Documentation, Release 1.10.9.dev20171123183751

• Prevented QuerySet.delete() from crashing on MySQL when querying across relations (#25882).

• Fixed evaluation of zero-length slices of QuerySet.values() (#25894).

• Fixed a state bug when using an AlterModelManagers operation (#25852).

• Fixed TypedChoiceField change detection with nullable fields (#25942).

• Fixed incorrect timezone warnings in custom admin templates that don’t have a data-admin-utc-offset
attribute in the body tag. (#25845).

• Fixed a regression which prevented using a language not in Django’s default language list (LANGUAGES)
(#25915).

• Avoided hiding some exceptions, like an invalid INSTALLED_APPS setting, behind
AppRegistryNotReady when starting runserver (#25510). This regression appeared in 1.8.5 as
a side effect of fixing #24704 and by mistake the fix wasn’t applied to the stable/1.9.x branch.

• Fixed migrate --fake-initial detection of many-to-many tables (#25922).

• Restored the functionality of the admin’s list_editable add and change buttons (#25903).

• Fixed isnull query lookup for ForeignObject (#25972).

• Fixed a regression in the admin which ignored line breaks in read-only fields instead of converting them to

(#25465).

• Fixed incorrect object reference in SingleObjectMixin.get_context_object_name() (#26006).

• Made loaddata skip disabling and enabling database constraints when it doesn’t load any fixtures (#23372).

• Restored contrib.auth hashers compatibility with py-bcrypt (#26016).

• Fixed a crash in QuerySet.values()/values_list() after an annotate() and order_by()
when values()/values_list() includes a field not in the order_by() (#25316).

Django 1.9 release notes

December 1, 2015

Welcome to Django 1.9!

These release notes cover the new features, as well as some backwards incompatible changes you’ll want to be aware
of when upgrading from Django 1.8 or older versions. We’ve dropped some features that have reached the end of their
deprecation cycle, and we’ve begun the deprecation process for some features.

See the Upgrading Django to a newer version guide if you’re updating an existing project.

Python compatibility

Django 1.9 requires Python 2.7, 3.4, or 3.5. We highly recommend and only officially support the latest release of
each series.

The Django 1.8 series is the last to support Python 3.2 and 3.3.

1428 Chapter 9. Release notes

https://code.djangoproject.com/ticket/25882
https://code.djangoproject.com/ticket/25894
https://code.djangoproject.com/ticket/25852
https://code.djangoproject.com/ticket/25942
https://code.djangoproject.com/ticket/25845
https://code.djangoproject.com/ticket/25915
https://code.djangoproject.com/ticket/25510
https://code.djangoproject.com/ticket/24704
https://code.djangoproject.com/ticket/25922
https://code.djangoproject.com/ticket/25903
https://code.djangoproject.com/ticket/25972
https://code.djangoproject.com/ticket/25465
https://code.djangoproject.com/ticket/26006
https://code.djangoproject.com/ticket/23372
https://code.djangoproject.com/ticket/26016
https://code.djangoproject.com/ticket/25316

Django Documentation, Release 1.10.9.dev20171123183751

What’s new in Django 1.9

Performing actions after a transaction commit

The new on_commit() hook allows performing actions after a database transaction is successfully committed. This
is useful for tasks such as sending notification emails, creating queued tasks, or invalidating caches.

This functionality from the django-transaction-hooks package has been integrated into Django.

Password validation

Django now offers password validation to help prevent the usage of weak passwords by users. The validation is
integrated in the included password change and reset forms and is simple to integrate in any other code. Validation is
performed by one or more validators, configured in the new AUTH_PASSWORD_VALIDATORS setting.

Four validators are included in Django, which can enforce a minimum length, compare the password to the user’s
attributes like their name, ensure passwords aren’t entirely numeric, or check against an included list of common
passwords. You can combine multiple validators, and some validators have custom configuration options. For example,
you can choose to provide a custom list of common passwords. Each validator provides a help text to explain its
requirements to the user.

By default, no validation is performed and all passwords are accepted, so if you don’t set
AUTH_PASSWORD_VALIDATORS, you will not see any change. In new projects created with the default
startproject template, a simple set of validators is enabled. To enable basic validation in the included auth
forms for your project, you could set, for example:

AUTH_PASSWORD_VALIDATORS = [
{

'NAME': 'django.contrib.auth.password_validation.
→˓UserAttributeSimilarityValidator',

},
{

'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
},
{

'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{

'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},

]

See Password validation for more details.

Permission mixins for class-based views

Django now ships with the mixins AccessMixin, LoginRequiredMixin, PermissionRequiredMixin,
and UserPassesTestMixin to provide the functionality of the django.contrib.auth.decorators for
class-based views. These mixins have been taken from, or are at least inspired by, the django-braces project.

There are a few differences between Django’s and django-braces‘ implementation, though:

• The raise_exception attribute can only be True or False. Custom exceptions or callables are not
supported.

9.1. Final releases 1429

https://pypi.python.org/pypi/django-transaction-hooks
https://django-braces.readthedocs.io/en/latest/index.html

Django Documentation, Release 1.10.9.dev20171123183751

• The handle_no_permission() method does not take a request argument. The current request is avail-
able in self.request.

• The custom test_func() of UserPassesTestMixin does not take a user argument. The current user
is available in self.request.user.

• The permission_required attribute supports a string (defining one permission) or a list/tuple of strings
(defining multiple permissions) that need to be fulfilled to grant access.

• The new permission_denied_message attribute allows passing a message to the PermissionDenied
exception.

New styling for contrib.admin

The admin sports a modern, flat design with new SVG icons which look perfect on HiDPI screens. It still provides
a fully-functional experience to YUI’s A-grade browsers. Older browser may experience varying levels of graceful
degradation.

Running tests in parallel

The test command now supports a --parallel option to run a project’s tests in multiple processes in parallel.

Each process gets its own database. You must ensure that different test cases don’t access the same resources. For
instance, test cases that touch the filesystem should create a temporary directory for their own use.

This option is enabled by default for Django’s own test suite provided:

• the OS supports it (all but Windows)

• the database backend supports it (all the built-in backends but Oracle)

Minor features

django.contrib.admin

• Admin views now have model_admin or admin_site attributes.

• The URL of the admin change view has been changed (was at /admin/<app>/<model>/<pk>/ by default
and is now at /admin/<app>/<model>/<pk>/change/). This should not affect your application unless
you have hardcoded admin URLs. In that case, replace those links by reversing admin URLs instead. Note that
the old URL still redirects to the new one for backwards compatibility, but it may be removed in a future version.

• ModelAdmin.get_list_select_related()was added to allow changing the select_related()
values used in the admin’s changelist query based on the request.

• The available_apps context variable, which lists the available applications for the current user, has been
added to the AdminSite.each_context() method.

• AdminSite.empty_value_display and ModelAdmin.empty_value_display were added to
override the display of empty values in admin change list. You can also customize the value for each field.

• Added jQuery events when an inline form is added or removed on the change form page.

• The time picker widget includes a ‘6 p.m’ option for consistency of having predefined options every 6 hours.

• JavaScript slug generation now supports Romanian characters.

1430 Chapter 9. Release notes

https://github.com/yui/yui3/wiki/Graded-Browser-Support

Django Documentation, Release 1.10.9.dev20171123183751

django.contrib.admindocs

• The model section of the admindocs now also describes methods that take arguments, rather than ignoring
them.

django.contrib.auth

• The default iteration count for the PBKDF2 password hasher has been increased by 20%. This back-
wards compatible change will not affect users who have subclassed django.contrib.auth.hashers.
PBKDF2PasswordHasher to change the default value.

• The BCryptSHA256PasswordHasher will now update passwords if its rounds attribute is changed.

• AbstractBaseUser and BaseUserManager were moved to a new django.contrib.auth.
base_user module so that they can be imported without including django.contrib.auth in
INSTALLED_APPS (doing so raised a deprecation warning in older versions and is no longer supported in
Django 1.9).

• The permission argument of permission_required() accepts all kinds of iterables, not only list and
tuples.

• The new PersistentRemoteUserMiddleware makes it possible to use REMOTE_USER for setups
where the header is only populated on login pages instead of every request in the session.

• The password_reset() view accepts an extra_email_context parameter.

django.contrib.contenttypes

• It’s now possible to use order_with_respect_to with a GenericForeignKey.

django.contrib.gis

• All GeoQuerySet methods have been deprecated and replaced by equivalent database functions. As soon
as the legacy methods have been replaced in your code, you should even be able to remove the special
GeoManager from your GIS-enabled classes.

• The GDAL interface now supports instantiating file-based and in-memory GDALRaster objects from raw data.
Setters for raster properties such as projection or pixel values have been added.

• For PostGIS users, the new RasterField allows storing GDALRaster objects. It supports automatic spatial
index creation and reprojection when saving a model. It does not yet support spatial querying.

• The new GDALRaster.warp() method allows warping a raster by specifying target raster properties such as
origin, width, height, or pixel size (amongst others).

• The new GDALRaster.transform() method allows transforming a raster into a different spatial reference
system by specifying a target srid.

• The new GeoIP2 class allows using MaxMind’s GeoLite2 databases which includes support for IPv6 addresses.

• The default OpenLayers library version included in widgets has been updated from 2.13 to 2.13.1.

9.1. Final releases 1431

Django Documentation, Release 1.10.9.dev20171123183751

django.contrib.postgres

• Added support for the rangefield.contained_by lookup for some built in fields which correspond to
the range fields.

• Added JSONField.

• Added PostgreSQL specific aggregation functions.

• Added the TransactionNow database function.

django.contrib.sessions

• The session model and SessionStore classes for the db and cached_db backends are refactored to allow
a custom database session backend to build upon them. See Extending database-backed session engines for
more details.

django.contrib.sites

• get_current_site() now handles the case where request.get_host() returns domain:port,
e.g. example.com:80. If the lookup fails because the host does not match a record in the database and the
host has a port, the port is stripped and the lookup is retried with the domain part only.

django.contrib.syndication

• Support for multiple enclosures per feed item has been added. If multiple enclosures are defined on a RSS feed,
an exception is raised as RSS feeds, unlike Atom feeds, do not support multiple enclosures per feed item.

Cache

• django.core.cache.backends.base.BaseCache now has a get_or_set() method.

• django.views.decorators.cache.never_cache() now sends more persuasive headers (added
no-cache, no-store, must-revalidate to Cache-Control) to better prevent caching. This was
also added in Django 1.8.8.

CSRF

• The request header’s name used for CSRF authentication can be customized with CSRF_HEADER_NAME.

• The CSRF referer header is now validated against the CSRF_COOKIE_DOMAIN setting if set. See How it
works for details.

• The new CSRF_TRUSTED_ORIGINS setting provides a way to allow cross-origin unsafe requests (e.g. POST)
over HTTPS.

Database backends

• The PostgreSQL backend (django.db.backends.postgresql_psycopg2) is also available as
django.db.backends.postgresql. The old name will continue to be available for backwards com-
patibility.

1432 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

File Storage

• Storage.get_valid_name() is now called when the upload_to is a callable.

• File now has the seekable() method when using Python 3.

Forms

• ModelForm accepts the new Meta option field_classes to customize the type of the fields. See Over-
riding the default fields for details.

• You can now specify the order in which form fields are rendered with the field_order attribute, the
field_order constructor argument , or the order_fields() method.

• A form prefix can be specified inside a form class, not only when instantiating a form. See Prefixes for forms
for details.

• You can now specify keyword arguments that you want to pass to the constructor of forms in a formset.

• SlugField now accepts an allow_unicode argument to allow Unicode characters in slugs.

• CharField now accepts a strip argument to strip input data of leading and trailing whitespace. As this
defaults to True this is different behavior from previous releases.

• Form fields now support the disabled argument, allowing the field widget to be displayed disabled by
browsers.

• It’s now possible to customize bound fields by overriding a field’s get_bound_field() method.

Generic Views

• Class-based views generated using as_view() now have view_class and view_initkwargs attributes.

• method_decorator() can now be used with a list or tuple of decorators. It can also be used to decorate
classes instead of methods.

Internationalization

• The django.views.i18n.set_language() view now properly redirects to translated URLs, when
available.

• The django.views.i18n.javascript_catalog() view now works correctly if used multiple times
with different configurations on the same page.

• The django.utils.timezone.make_aware() function gained an is_dst argument to help resolve
ambiguous times during DST transitions.

• You can now use locale variants supported by gettext. These are usually used for languages which can be written
in different scripts, for example Latin and Cyrillic (e.g. be@latin).

• Added the django.views.i18n.json_catalog() view to help build a custom client-side i18n library
upon Django translations. It returns a JSON object containing a translations catalog, formatting settings, and a
plural rule.

• Added the name_translated attribute to the object returned by the get_language_info template tag.
Also added a corresponding template filter: language_name_translated.

9.1. Final releases 1433

Django Documentation, Release 1.10.9.dev20171123183751

• You can now run compilemessages from the root directory of your project and it will find all the app
message files that were created by makemessages.

• makemessages now calls xgettext once per locale directory rather than once per translatable file. This speeds
up localization builds.

• blocktrans supports assigning its output to a variable using asvar.

• Two new languages are available: Colombian Spanish and Scottish Gaelic.

Management Commands

• The new sendtestemail command lets you send a test email to easily confirm that email sending through
Django is working.

• To increase the readability of the SQL code generated by sqlmigrate, the SQL code generated for each
migration operation is preceded by the operation’s description.

• The dumpdata command output is now deterministically ordered. Moreover, when the --output option is
specified, it also shows a progress bar in the terminal.

• The createcachetable command now has a --dry-run flag to print out the SQL rather than execute it.

• The startapp command creates an apps.py file. Since it doesn’t use default_app_config (a
discouraged API), you must specify the app config’s path, e.g. 'polls.apps.PollsConfig', in
INSTALLED_APPS for it to be used (instead of just 'polls').

• When using the PostgreSQL backend, the dbshell command can connect to the database using the password
from your settings file (instead of requiring it to be manually entered).

• The django package may be run as a script, i.e. python -m django, which will behave the same as
django-admin.

• Management commands that have the --noinput option now also take --no-input as an alias for that
option.

Migrations

• Initial migrations are now marked with an initial = True class attribute which allows migrate
--fake-initial to more easily detect initial migrations.

• Added support for serialization of functools.partial and LazyObject instances.

• When supplying None as a value in MIGRATION_MODULES, Django will consider the app an app without
migrations.

• When applying migrations, the “Rendering model states” step that’s displayed when running migrate with ver-
bosity 2 or higher now computes only the states for the migrations that have already been applied. The model
states for migrations being applied are generated on demand, drastically reducing the amount of required mem-
ory.

However, this improvement is not available when unapplying migrations and therefore still requires the precom-
putation and storage of the intermediate migration states.

This improvement also requires that Django no longer supports mixed migration plans. Mixed plans consist
of a list of migrations where some are being applied and others are being unapplied. This was never officially
supported and never had a public API that supports this behavior.

• The squashmigrations command now supports specifying the starting migration from which migrations
will be squashed.

1434 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Models

• QuerySet.bulk_create() now works on proxy models.

• Database configuration gained a TIME_ZONE option for interacting with databases that store datetimes in local
time and don’t support time zones when USE_TZ is True.

• Added the RelatedManager.set() method to the related managers created by ForeignKey,
GenericForeignKey, and ManyToManyField.

• The add() method on a reverse foreign key now has a bulk parameter to allow executing one query regardless
of the number of objects being added rather than one query per object.

• Added the keep_parents parameter to Model.delete() to allow deleting only a child’s data in a model
that uses multi-table inheritance.

• Model.delete() and QuerySet.delete() return the number of objects deleted.

• Added a system check to prevent defining both Meta.ordering and order_with_respect_to on the
same model.

• Date and time lookups can be chained with other lookups (such as exact, gt, lt, etc.). For example:
Entry.objects.filter(pub_date__month__gt=6).

• Time lookups (hour, minute, second) are now supported by TimeField for all database backends. Support for
backends other than SQLite was added but undocumented in Django 1.7.

• You can specify the output_field parameter of the Avg aggregate in order to aggregate over non-numeric
columns, such as DurationField.

• Added the date lookup to DateTimeField to allow querying the field by only the date portion.

• Added the Greatest and Least database functions.

• Added the Now database function, which returns the current date and time.

• Transform is now a subclass of Func() which allows Transforms to be used on the right hand side of an
expression, just like regular Funcs. This allows registering some database functions like Length, Lower, and
Upper as transforms.

• SlugField now accepts an allow_unicode argument to allow Unicode characters in slugs.

• Added support for referencing annotations in QuerySet.distinct().

• connection.queries shows queries with substituted parameters on SQLite.

• Query expressions can now be used when creating new model instances using save(), create(), and
bulk_create().

Requests and Responses

• Unless HttpResponse.reason_phrase is explicitly set, it now is determined by the current value of
HttpResponse.status_code. Modifying the value of status_code outside of the constructor will
also modify the value of reason_phrase.

• The debug view now shows details of chained exceptions on Python 3.

• The default 40x error views now accept a second positional parameter, the exception that triggered the view.

• View error handlers now support TemplateResponse, commonly used with class-based views.

• Exceptions raised by the render()method are now passed to the process_exception()method of each
middleware.

9.1. Final releases 1435

Django Documentation, Release 1.10.9.dev20171123183751

• Request middleware can now set HttpRequest.urlconf to None to revert any changes made by previous
middleware and return to using the ROOT_URLCONF.

• The DISALLOWED_USER_AGENTS check in CommonMiddleware now raises a PermissionDenied
exception as opposed to returning an HttpResponseForbidden so that handler403 is invoked.

• Added HttpRequest.get_port() to fetch the originating port of the request.

• Added the json_dumps_params parameter to JsonResponse to allow passing keyword arguments to the
json.dumps() call used to generate the response.

• The BrokenLinkEmailsMiddleware now ignores 404s when the referer is equal to the requested URL.
To circumvent the empty referer check already implemented, some Web bots set the referer to the requested
URL.

Templates

• Template tags created with the simple_tag() helper can now store results in a template variable by using
the as argument.

• Added a Context.setdefault() method.

• The django.template logger was added and includes the following messages:

– A DEBUG level message for missing context variables.

– A WARNING level message for uncaught exceptions raised during the rendering of an {% include %}
when debug mode is off (helpful since {% include %} silences the exception and returns an empty
string).

• The firstof template tag supports storing the output in a variable using ‘as’.

• Context.update() can now be used as a context manager.

• Django template loaders can now extend templates recursively.

• The debug page template postmortem now include output from each engine that is installed.

• Debug page integration for custom template engines was added.

• The DjangoTemplates backend gained the ability to register libraries and builtins explicitly through the
template OPTIONS.

• The timesince and timeuntil filters were improved to deal with leap years when given large time spans.

• The include tag now caches parsed templates objects during template rendering, speeding up reuse in places
such as for loops.

Tests

• Added the json() method to test client responses to give access to the response body as JSON.

• Added the force_login() method to the test client. Use this method to simulate the effect of a user logging
into the site while skipping the authentication and verification steps of login().

URLs

• Regular expression lookaround assertions are now allowed in URL patterns.

1436 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

• The application namespace can now be set using an app_name attribute on the included module or object. It
can also be set by passing a 2-tuple of (<list of patterns>, <application namespace>) as the first argument to
include().

• System checks have been added for common URL pattern mistakes.

Validators

• Added django.core.validators.int_list_validator() to generate validators of strings con-
taining integers separated with a custom character.

• EmailValidator now limits the length of domain name labels to 63 characters per RFC 1034.

• Added validate_unicode_slug() to validate slugs that may contain Unicode characters.

Backwards incompatible changes in 1.9

Warning: In addition to the changes outlined in this section, be sure to review the Features removed in 1.9 for the
features that have reached the end of their deprecation cycle and therefore been removed. If you haven’t updated
your code within the deprecation timeline for a given feature, its removal may appear as a backwards incompatible
change.

Database backend API

• A couple of new tests rely on the ability of the backend to introspect column defaults (returning the result
as Field.default). You can set the can_introspect_default database feature to False if your
backend doesn’t implement this. You may want to review the implementation on the backends that Django
includes for reference (#24245).

• Registering a global adapter or converter at the level of the DB-API module to handle time zone information of
datetime values passed as query parameters or returned as query results on databases that don’t support time
zones is discouraged. It can conflict with other libraries.

The recommended way to add a time zone to datetime values fetched from the database is to register a
converter for DateTimeField in DatabaseOperations.get_db_converters().

The needs_datetime_string_cast database feature was removed. Database backends that set it must
register a converter instead, as explained above.

• The DatabaseOperations.value_to_db_<type>() methods were renamed to
adapt_<type>field_value() to mirror the convert_<type>field_value() methods.

• To use the new date lookup, third-party database backends may need to implement the
DatabaseOperations.datetime_cast_date_sql() method.

• The DatabaseOperations.time_extract_sql() method was added. It calls the existing
date_extract_sql() method. This method is overridden by the SQLite backend to add time lookups
(hour, minute, second) to TimeField, and may be needed by third-party database backends.

• The DatabaseOperations.datetime_cast_sql() method (not to be confused with
DatabaseOperations.datetime_cast_date_sql() mentioned above) has been removed.
This method served to format dates on Oracle long before 1.0, but hasn’t been overridden by any core backend
in years and hasn’t been called anywhere in Django’s code or tests.

9.1. Final releases 1437

https://tools.ietf.org/html/rfc1034.html
https://code.djangoproject.com/ticket/24245
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

Django Documentation, Release 1.10.9.dev20171123183751

• In order to support test parallelization, you must implement the DatabaseCreation.
_clone_test_db() method and set DatabaseFeatures.can_clone_databases = True.
You may have to adjust DatabaseCreation.get_test_db_clone_settings().

Default settings that were tuples are now lists

The default settings in django.conf.global_settings were a combination of lists and tuples. All settings
that were formerly tuples are now lists.

is_usable attribute on template loaders is removed

Django template loaders previously required an is_usable attribute to be defined. If a loader was configured in the
template settings and this attribute was False, the loader would be silently ignored. In practice, this was only used
by the egg loader to detect if setuptools was installed. The is_usable attribute is now removed and the egg loader
instead fails at runtime if setuptools is not installed.

Related set direct assignment

Direct assignment of related objects in the ORM used to perform a clear() followed by a call to add(). This
caused needlessly large data changes and prevented using the m2m_changed signal to track individual changes in
many-to-many relations.

Direct assignment now relies on the the new set() method on related managers which by default only processes
changes between the existing related set and the one that’s newly assigned. The previous behavior can be restored by
replacing direct assignment by a call to set() with the keyword argument clear=True.

ModelForm, and therefore ModelAdmin, internally rely on direct assignment for many-to-many relations and as a
consequence now use the new behavior.

Filesystem-based template loaders catch more specific exceptions

When using the filesystem.Loader or app_directories.Loader template loaders, earlier versions of
Django raised a TemplateDoesNotExist error if a template source existed but was unreadable. This could
happen under many circumstances, such as if Django didn’t have permissions to open the file, or if the template source
was a directory. Now, Django only silences the exception if the template source does not exist. All other situations
result in the original IOError being raised.

HTTP redirects no longer forced to absolute URIs

Relative redirects are no longer converted to absolute URIs. RFC 2616 required the Location header in redirect
responses to be an absolute URI, but it has been superseded by RFC 7231 which allows relative URIs in Location,
recognizing the actual practice of user agents, almost all of which support them.

Consequently, the expected URLs passed to assertRedirects should generally no longer include the scheme and
domain part of the URLs. For example, self.assertRedirects(response, 'http://testserver/
some-url/') should be replaced by self.assertRedirects(response, '/some-url/') (unless the
redirection specifically contained an absolute URL, of course).

In the rare case that you need the old behavior (discovered with an ancient version of Apache with mod_scgi that
interprets a relative redirect as an “internal redirect”), you can restore it by writing a custom middleware:

1438 Chapter 9. Release notes

https://tools.ietf.org/html/rfc2616.html
https://tools.ietf.org/html/rfc7231.html

Django Documentation, Release 1.10.9.dev20171123183751

class LocationHeaderFix(object):
def process_response(self, request, response):

if 'Location' in response:
response['Location'] = request.build_absolute_uri(response['Location'])

return response

Dropped support for PostgreSQL 9.0

Upstream support for PostgreSQL 9.0 ended in September 2015. As a consequence, Django 1.9 sets 9.1 as the
minimum PostgreSQL version it officially supports.

Dropped support for Oracle 11.1

Upstream support for Oracle 11.1 ended in August 2015. As a consequence, Django 1.9 sets 11.2 as the minimum
Oracle version it officially supports.

Bulk behavior of add() method of related managers

To improve performance, the add() methods of the related managers created by ForeignKey and
GenericForeignKey changed from a series of Model.save() calls to a single QuerySet.update() call.
The change means that pre_save and post_save signals aren’t sent anymore. You can use the bulk=False
keyword argument to revert to the previous behavior.

Template LoaderOrigin and StringOrigin are removed

In previous versions of Django, when a template engine was initialized with debug as True, an instance of django.
template.loader.LoaderOrigin or django.template.base.StringOrigin was set as the origin
attribute on the template object. These classes have been combined into Origin and is now always set regardless of
the engine debug setting. For a minimal level of backwards compatibility, the old class names will be kept as aliases
to the new Origin class until Django 2.0.

Changes to the default logging configuration

To make it easier to write custom logging configurations, Django’s default logging configuration no longer defines
django.request and django.security loggers. Instead, it defines a single django logger, filtered at the
INFO level, with two handlers:

• console: filtered at the INFO level and only active if DEBUG=True.

• mail_admins: filtered at the ERROR level and only active if DEBUG=False.

If you aren’t overriding Django’s default logging, you should see minimal changes in behavior, but you might see
some new logging to the runserver console, for example.

If you are overriding Django’s default logging, you should check to see how your configuration merges with the new
defaults.

9.1. Final releases 1439

Django Documentation, Release 1.10.9.dev20171123183751

HttpRequest details in error reporting

It was redundant to display the full details of the HttpRequest each time it appeared as a stack frame vari-
able in the HTML version of the debug page and error email. Thus, the HTTP request will now display the same
standard representation as other variables (repr(request)). As a result, the ExceptionReporterFilter.
get_request_repr() method and the undocumented django.http.build_request_repr() function
were removed.

The contents of the text version of the email were modified to provide a traceback of the same structure as in the case
of AJAX requests. The traceback details are rendered by the ExceptionReporter.get_traceback_text()
method.

Removal of time zone aware global adapters and converters for datetimes

Django no longer registers global adapters and converters for managing time zone information on datetime values
sent to the database as query parameters or read from the database in query results. This change affects projects that
meet all the following conditions:

• The USE_TZ setting is True.

• The database is SQLite, MySQL, Oracle, or a third-party database that doesn’t support time zones. In doubt,
you can check the value of connection.features.supports_timezones.

• The code queries the database outside of the ORM, typically with cursor.execute(sql, params).

If you’re passing aware datetime parameters to such queries, you should turn them into naive datetimes in UTC:

from django.utils import timezone
param = timezone.make_naive(param, timezone.utc)

If you fail to do so, the conversion will be performed as in earlier versions (with a deprecation warning) up until
Django 1.11. Django 2.0 won’t perform any conversion, which may result in data corruption.

If you’re reading datetime values from the results, they will be naive instead of aware. You can compensate as
follows:

from django.utils import timezone
value = timezone.make_aware(value, timezone.utc)

You don’t need any of this if you’re querying the database through the ORM, even if you’re using raw() queries. The
ORM takes care of managing time zone information.

Template tag modules are imported when templates are configured

The DjangoTemplates backend now performs discovery on installed template tag modules when instantiated.
This update enables libraries to be provided explicitly via the 'libraries' key of OPTIONS when defining a
DjangoTemplates backend. Import or syntax errors in template tag modules now fail early at instantiation time
rather than when a template with a {% load %} tag is first compiled.

django.template.base.add_to_builtins() is removed

Although it was a private API, projects commonly used add_to_builtins() to make template tags and filters
available without using the {% load %} tag. This API has been formalized. Projects should now define built-in
libraries via the 'builtins' key of OPTIONS when defining a DjangoTemplates backend.

1440 Chapter 9. Release notes

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

Django Documentation, Release 1.10.9.dev20171123183751

simple_tag now wraps tag output in conditional_escape

In general, template tags do not autoescape their contents, and this behavior is documented. For tags like
inclusion_tag, this is not a problem because the included template will perform autoescaping. For
assignment_tag, the output will be escaped when it is used as a variable in the template.

For the intended use cases of simple_tag, however, it is very easy to end up with incorrect HTML and possibly an
XSS exploit. For example:

@register.simple_tag(takes_context=True)
def greeting(context):

return "Hello {0}!".format(context['request'].user.first_name)

In older versions of Django, this will be an XSS issue because user.first_name is not escaped.

In Django 1.9, this is fixed: if the template context has autoescape=True set (the default), then simple_tag
will wrap the output of the tag function with conditional_escape().

To fix your simple_tags, it is best to apply the following practices:

• Any code that generates HTML should use either the template system or format_html().

• If the output of a simple_tag needs escaping, use escape() or conditional_escape().

• If you are absolutely certain that you are outputting HTML from a trusted source (e.g. a CMS field that stores
HTML entered by admins), you can mark it as such using mark_safe().

Tags that follow these rules will be correct and safe whether they are run on Django 1.9+ or earlier.

Paginator.page_range

Paginator.page_range is now an iterator instead of a list.

In versions of Django previous to 1.8, Paginator.page_range returned a list in Python 2 and a range in
Python 3. Django 1.8 consistently returned a list, but an iterator is more efficient.

Existing code that depends on list specific features, such as indexing, can be ported by converting the iterator into
a list using list().

Implicit QuerySet __in lookup removed

In earlier versions, queries such as:

Model.objects.filter(related_id=RelatedModel.objects.all())

would implicitly convert to:

Model.objects.filter(related_id__in=RelatedModel.objects.all())

resulting in SQL like "related_id IN (SELECT id FROM ...)".

This implicit __in no longer happens so the “IN” SQL is now “=”, and if the subquery returns multiple results, at
least some databases will throw an error.

9.1. Final releases 1441

Django Documentation, Release 1.10.9.dev20171123183751

contrib.admin browser support

The admin no longer supports Internet Explorer 8 and below, as these browsers have reached end-of-life.

CSS and images to support Internet Explorer 6 and 7 have been removed. PNG and GIF icons have been replaced with
SVG icons, which are not supported by Internet Explorer 8 and earlier.

The jQuery library embedded in the admin has been upgraded from version 1.11.2 to 2.1.4. jQuery 2.x has the same
API as jQuery 1.x, but does not support Internet Explorer 6, 7, or 8, allowing for better performance and a smaller file
size. If you need to support IE8 and must also use the latest version of Django, you can override the admin’s copy of
jQuery with your own by creating a Django application with this structure:

app/static/admin/js/vendor/
jquery.js
jquery.min.js

SyntaxError when installing Django setuptools 5.5.x

When installing Django 1.9 or 1.9.1 with setuptools 5.5.x, you’ll see:

Compiling django/conf/app_template/apps.py ...
File "django/conf/app_template/apps.py", line 4
class {{ camel_case_app_name }}Config(AppConfig):

^
SyntaxError: invalid syntax

Compiling django/conf/app_template/models.py ...
File "django/conf/app_template/models.py", line 1
{{ unicode_literals }}from django.db import models

^
SyntaxError: invalid syntax

It’s safe to ignore these errors (Django will still install just fine), but you can avoid them by upgrading setuptools
to a more recent version. If you’re using pip, you can upgrade pip using pip install -U pip which will also
upgrade setuptools. This is resolved in later versions of Django as described in the Django 1.9.2 release notes.

Miscellaneous

• The jQuery static files in contrib.admin have been moved into a vendor/jquery subdirectory.

• The text displayed for null columns in the admin changelist list_display cells has changed from (None)
(or its translated equivalent) to - (a dash).

• django.http.responses.REASON_PHRASES and django.core.handlers.wsgi.
STATUS_CODE_TEXT have been removed. Use Python’s stdlib instead: http.client.responses for
Python 3 and httplib.responses for Python 2.

• ValuesQuerySet and ValuesListQuerySet have been removed.

• The admin/base.html template no longer sets window.__admin_media_prefix__ or window.
__admin_utc_offset__. Image references in JavaScript that used that value to construct absolute URLs
have been moved to CSS for easier customization. The UTC offset is stored on a data attribute of the <body>
tag.

• CommaSeparatedIntegerField validation has been refined to forbid values like ',', ',1', and '1,,
2'.

1442 Chapter 9. Release notes

https://docs.python.org/3/library/http.client.html#http.client.responses
https://docs.python.org/2/library/httplib.html#httplib.responses

Django Documentation, Release 1.10.9.dev20171123183751

• Form initialization was moved from the ProcessFormView.get() method to the new FormMixin.
get_context_data() method. This may be backwards incompatible if you have overridden the
get_context_data() method without calling super().

• Support for PostGIS 1.5 has been dropped.

• The django.contrib.sites.models.Site.domain field was changed to be unique.

• In order to enforce test isolation, database queries are not allowed by default in SimpleTestCase tests
anymore. You can disable this behavior by setting the allow_database_queries class attribute to True
on your test class.

• ResolverMatch.app_name was changed to contain the full namespace path in the case of nested names-
paces. For consistency with ResolverMatch.namespace, the empty value is now an empty string instead
of None.

• For security hardening, session keys must be at least 8 characters.

• Private function django.utils.functional.total_ordering() has been removed. It contained a
workaround for a functools.total_ordering() bug in Python versions older than 2.7.3.

• XML serialization (either through dumpdata or the syndication framework) used to output any characters
it received. Now if the content to be serialized contains any control characters not allowed in the XML 1.0
standard, the serialization will fail with a ValueError.

• CharField now strips input of leading and trailing whitespace by default. This can be disabled by setting the
new strip argument to False.

• Template text that is translated and uses two or more consecutive percent signs, e.g. "%%", may have a new
msgid after makemessages is run (most likely the translation will be marked fuzzy). The new msgid will be
marked "#, python-format".

• If neither request.current_app nor Context.current_app are set, the url template tag will now
use the namespace of the current request. Set request.current_app to None if you don’t want to use a
namespace hint.

• The SILENCED_SYSTEM_CHECKS setting now silences messages of all levels. Previously, messages of
ERROR level or higher were printed to the console.

• The FlatPage.enable_comments field is removed from the FlatPageAdmin as it’s unused by the
application. If your project or a third-party app makes use of it, create a custom ModelAdmin to add it back.

• The return value of setup_databases() and the first argument of teardown_databases() changed.
They used to be (old_names, mirrors) tuples. Now they’re just the first item, old_names.

• By default LiveServerTestCase attempts to find an available port in the 8081-8179 range instead of just
trying port 8081.

• The system checks for ModelAdmin now check instances rather than classes.

• The private API to apply mixed migration plans has been dropped for performance reasons. Mixed plans consist
of a list of migrations where some are being applied and others are being unapplied.

• The related model object descriptor classes in django.db.models.fields.related (private API) are
moved from the related module to related_descriptors and renamed as follows:

– ReverseSingleRelatedObjectDescriptor is ForwardManyToOneDescriptor

– SingleRelatedObjectDescriptor is ReverseOneToOneDescriptor

– ForeignRelatedObjectsDescriptor is ReverseManyToOneDescriptor

– ManyRelatedObjectsDescriptor is ManyToManyDescriptor

9.1. Final releases 1443

https://docs.python.org/3/library/exceptions.html#ValueError

Django Documentation, Release 1.10.9.dev20171123183751

• If you implement a custom handler404 view, it must return a response with an HTTP 404 status code. Use
HttpResponseNotFound or pass status=404 to the HttpResponse. Otherwise, APPEND_SLASH
won’t work correctly with DEBUG=False.

Features deprecated in 1.9

assignment_tag()

Django 1.4 added the assignment_tag helper to ease the creation of template tags that store results in a template
variable. The simple_tag() helper has gained this same ability, making the assignment_tag obsolete. Tags
that use assignment_tag should be updated to use simple_tag.

{% cycle %} syntax with comma-separated arguments

The cycle tag supports an inferior old syntax from previous Django versions:

{% cycle row1,row2,row3 %}

Its parsing caused bugs with the current syntax, so support for the old syntax will be removed in Django 1.10 following
an accelerated deprecation.

ForeignKey and OneToOneField on_delete argument

In order to increase awareness about cascading model deletion, the on_delete argument of ForeignKey and
OneToOneField will be required in Django 2.0.

Update models and existing migrations to explicitly set the argument. Since the default is models.CASCADE, add
on_delete=models.CASCADE to all ForeignKey and OneToOneFields that don’t use a different option.
You can also pass it as the second positional argument if you don’t care about compatibility with older versions of
Django.

Field.rel changes

Field.rel and its methods and attributes have changed to match the related fields API. The Field.rel attribute
is renamed to remote_field and many of its methods and attributes are either changed or renamed.

The aim of these changes is to provide a documented API for relation fields.

GeoManager and GeoQuerySet custom methods

All custom GeoQuerySet methods (area(), distance(), gml(), ...) have been replaced by equivalent geo-
graphic expressions in annotations (see in new features). Hence the need to set a custom GeoManager to GIS-enabled
models is now obsolete. As soon as your code doesn’t call any of the deprecated methods, you can simply remove the
objects = GeoManager() lines from your models.

1444 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Template loader APIs have changed

Django template loaders have been updated to allow recursive template extending. This change necessitated a new
template loader API. The old load_template() and load_template_sources() methods are now depre-
cated. Details about the new API can be found in the template loader documentation.

Passing a 3-tuple or an app_name to include()

The instance namespace part of passing a tuple as an argument to include() has been replaced by passing the
namespace argument to include(). For example:

polls_patterns = [
url(...),

]

urlpatterns = [
url(r'^polls/', include((polls_patterns, 'polls', 'author-polls'))),

]

becomes:

polls_patterns = ([
url(...),

], 'polls') # 'polls' is the app_name

urlpatterns = [
url(r'^polls/', include(polls_patterns, namespace='author-polls')),

]

The app_name argument to include() has been replaced by passing a 2-tuple (as above), or passing an object or
module with an app_name attribute (as below). If the app_name is set in this new way, the namespace argument
is no longer required. It will default to the value of app_name. For example, the URL patterns in the tutorial are
changed from:

mysite/urls.py

urlpatterns = [
url(r'^polls/', include('polls.urls', namespace="polls")),
...

]

to:

mysite/urls.py

urlpatterns = [
url(r'^polls/', include('polls.urls')), # 'namespace="polls"' removed
...

]

polls/urls.py

app_name = 'polls' # added
urlpatterns = [...]

This change also means that the old way of including an AdminSite instance is deprecated. Instead, pass admin.
site.urls directly to url():

urls.py

9.1. Final releases 1445

Django Documentation, Release 1.10.9.dev20171123183751

from django.conf.urls import url
from django.contrib import admin

urlpatterns = [
url(r'^admin/', admin.site.urls),

]

URL application namespace required if setting an instance namespace

In the past, an instance namespace without an application namespace would serve the same purpose as the application
namespace, but it was impossible to reverse the patterns if there was an application namespace with the same name.
Includes that specify an instance namespace require that the included URLconf sets an application namespace.

current_app parameter to contrib.auth views

All views in django.contrib.auth.views have the following structure:

def view(request, ..., current_app=None, ...):

...

if current_app is not None:
request.current_app = current_app

return TemplateResponse(request, template_name, context)

As of Django 1.8, current_app is set on the request object. For consistency, these views will require the caller
to set current_app on the request instead of passing it in a separate argument.

django.contrib.gis.geoip

The django.contrib.gis.geoip2 module supersedes django.contrib.gis.geoip. The new module
provides a similar API except that it doesn’t provide the legacy GeoIP-Python API compatibility methods.

Miscellaneous

• The weak argument to django.dispatch.signals.Signal.disconnect() has been deprecated as
it has no effect.

• The check_aggregate_support() method of django.db.backends.base.
BaseDatabaseOperations has been deprecated and will be removed in Django 2.0. The more
general check_expression_support() should be used instead.

• django.forms.extras is deprecated. You can find SelectDateWidget in django.forms.
widgets (or simply django.forms) instead.

• Private API django.db.models.fields.add_lazy_relation() is deprecated.

• The django.contrib.auth.tests.utils.skipIfCustomUser() decorator is deprecated. With
the test discovery changes in Django 1.6, the tests for django.contrib apps are no longer run as part of
the user’s project. Therefore, the @skipIfCustomUser decorator is no longer needed to decorate tests in
django.contrib.auth.

1446 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

• If you customized some error handlers, the view signatures with only one request parameter are deprecated.
The views should now also accept a second exception positional parameter.

• The django.utils.feedgenerator.Atom1Feed.mime_type and django.utils.
feedgenerator.RssFeed.mime_type attributes are deprecated in favor of content_type.

• Signer now issues a warning if an invalid separator is used. This will become an exception in Django 1.10.

• django.db.models.Field._get_val_from_obj() is deprecated in favor of Field.
value_from_object().

• django.template.loaders.eggs.Loader is deprecated as distributing applications as eggs is not rec-
ommended.

• The callable_obj keyword argument to SimpleTestCase.assertRaisesMessage() is depre-
cated. Pass the callable as a positional argument instead.

• The allow_tags attribute on methods of ModelAdmin has been deprecated. Use format_html(),
format_html_join(), or mark_safe() when constructing the method’s return value instead.

• The enclosure keyword argument to SyndicationFeed.add_item() is deprecated. Use the new
enclosures argument which accepts a list of Enclosure objects instead of a single one.

• The django.template.loader.LoaderOrigin and django.template.base.StringOrigin
aliases for django.template.base.Origin are deprecated.

Features removed in 1.9

These features have reached the end of their deprecation cycle and are removed in Django 1.9. See Features deprecated
in 1.7 for details, including how to remove usage of these features.

• django.utils.dictconfig is removed.

• django.utils.importlib is removed.

• django.utils.tzinfo is removed.

• django.utils.unittest is removed.

• The syncdb command is removed.

• django.db.models.signals.pre_syncdb and django.db.models.signals.post_syncdb
is removed.

• Support for allow_syncdb on database routers is removed.

• Automatic syncing of apps without migrations is removed. Migrations are compulsory for all apps unless you
pass the migrate --run-syncdb option.

• The SQL management commands for apps without migrations, sql, sqlall, sqlclear,
sqldropindexes, and sqlindexes, are removed.

• Support for automatic loading of initial_data fixtures and initial SQL data is removed.

• All models need to be defined inside an installed application or declare an explicit app_label. Furthermore,
it isn’t possible to import them before their application is loaded. In particular, it isn’t possible to import models
inside the root package of an application.

• The model and form IPAddressField is removed. A stub field remains for compatibility with historical
migrations.

• AppCommand.handle_app() is no longer supported.

9.1. Final releases 1447

Django Documentation, Release 1.10.9.dev20171123183751

• RequestSite and get_current_site() are no longer importable from django.contrib.sites.
models.

• FastCGI support via the runfcgi management command is removed.

• django.utils.datastructures.SortedDict is removed.

• ModelAdmin.declared_fieldsets is removed.

• The util modules that provided backwards compatibility are removed:

– django.contrib.admin.util

– django.contrib.gis.db.backends.util

– django.db.backends.util

– django.forms.util

• ModelAdmin.get_formsets is removed.

• The backward compatible shims introduced to rename the BaseMemcachedCache.
_get_memcache_timeout() method to get_backend_timeout() is removed.

• The --natural and -n options for dumpdata are removed.

• The use_natural_keys argument for serializers.serialize() is removed.

• Private API django.forms.forms.get_declared_fields() is removed.

• The ability to use a SplitDateTimeWidget with DateTimeField is removed.

• The WSGIRequest.REQUEST property is removed.

• The class django.utils.datastructures.MergeDict is removed.

• The zh-cn and zh-tw language codes are removed.

• The internal django.utils.functional.memoize() is removed.

• django.core.cache.get_cache is removed.

• django.db.models.loading is removed.

• Passing callable arguments to querysets is no longer possible.

• BaseCommand.requires_model_validation is removed in favor of
requires_system_checks. Admin validators is replaced by admin checks.

• The ModelAdmin.validator_class and default_validator_class attributes are removed.

• ModelAdmin.validate() is removed.

• django.db.backends.DatabaseValidation.validate_field is removed in favor of the
check_field method.

• The validate management command is removed.

• django.utils.module_loading.import_by_path is removed in favor of django.utils.
module_loading.import_string.

• ssi and url template tags are removed from the future template tag library.

• django.utils.text.javascript_quote() is removed.

• Database test settings as independent entries in the database settings, prefixed by TEST_, are no longer sup-
ported.

• The cache_choices option to ModelChoiceField and ModelMultipleChoiceField is removed.

1448 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

• The default value of the RedirectView.permanent attribute has changed from True to False.

• django.contrib.sitemaps.FlatPageSitemap is removed in favor of django.contrib.
flatpages.sitemaps.FlatPageSitemap.

• Private API django.test.utils.TestTemplateLoader is removed.

• The django.contrib.contenttypes.generic module is removed.

9.1.3 1.8 release

Django 1.8.18 release notes

April 4, 2017

Django 1.8.18 fixes two security issues in 1.8.17.

CVE-2017-7233: Open redirect and possible XSS attack via user-supplied numeric redirect URLs

Django relies on user input in some cases (e.g. django.contrib.auth.views.login() and i18n) to redi-
rect the user to an “on success” URL. The security check for these redirects (namely django.utils.http.
is_safe_url()) considered some numeric URLs (e.g. http:999999999) “safe” when they shouldn’t be.

Also, if a developer relies on is_safe_url() to provide safe redirect targets and puts such a URL into a link, they
could suffer from an XSS attack.

CVE-2017-7234: Open redirect vulnerability in django.views.static.serve()

A maliciously crafted URL to a Django site using the serve() view could redirect to any other domain. The view
no longer does any redirects as they don’t provide any known, useful functionality.

Note, however, that this view has always carried a warning that it is not hardened for production use and should be
used only as a development aid.

Django 1.8.17 release notes

December 1, 2016

Django 1.8.17 fixes a regression in 1.8.16.

Bugfixes

• Quoted the Oracle test user’s password in queries to fix the “ORA-00922: missing or invalid option” error when
the password starts with a number or special character (#27420).

Django 1.8.16 release notes

November 1, 2016

Django 1.8.16 fixes two security issues in 1.8.15.

9.1. Final releases 1449

https://code.djangoproject.com/ticket/27420

Django Documentation, Release 1.10.9.dev20171123183751

User with hardcoded password created when running tests on Oracle

When running tests with an Oracle database, Django creates a temporary database user. In older versions, if a password
isn’t manually specified in the database settings TEST dictionary, a hardcoded password is used. This could allow an
attacker with network access to the database server to connect.

This user is usually dropped after the test suite completes, but not when using the manage.py test --keepdb
option or if the user has an active session (such as an attacker’s connection).

A randomly generated password is now used for each test run.

DNS rebinding vulnerability when DEBUG=True

Older versions of Django don’t validate the Host header against settings.ALLOWED_HOSTSwhen settings.
DEBUG=True. This makes them vulnerable to a DNS rebinding attack.

While Django doesn’t ship a module that allows remote code execution, this is at least a cross-site scripting vector,
which could be quite serious if developers load a copy of the production database in development or connect to some
production services for which there’s no development instance, for example. If a project uses a package like the
django-debug-toolbar, then the attacker could execute arbitrary SQL, which could be especially bad if the
developers connect to the database with a superuser account.

settings.ALLOWED_HOSTS is now validated regardless of DEBUG. For convenience, if ALLOWED_HOSTS is
empty and DEBUG=True, the following variations of localhost are allowed ['localhost', '127.0.0.1',
'::1']. If your local settings file has your production ALLOWED_HOSTS value, you must now omit it to get those
fallback values.

Django 1.8.15 release notes

September 26, 2016

Django 1.8.15 fixes a security issue in 1.8.14.

CSRF protection bypass on a site with Google Analytics

An interaction between Google Analytics and Django’s cookie parsing could allow an attacker to set arbitrary cookies
leading to a bypass of CSRF protection.

The parser for request.COOKIES is simplified to better match the behavior of browsers and to mitigate this attack.
request.COOKIES may now contain cookies that are invalid according to RFC 6265 but are possible to set via
document.cookie.

Django 1.8.14 release notes

July 18, 2016

Django 1.8.14 fixes a security issue and a bug in 1.8.13.

XSS in admin’s add/change related popup

Unsafe usage of JavaScript’s Element.innerHTML could result in XSS in the admin’s add/change related popup.
Element.textContent is now used to prevent execution of the data.

1450 Chapter 9. Release notes

http://benmmurphy.github.io/blog/2016/07/11/rails-webconsole-dns-rebinding/
https://tools.ietf.org/html/rfc6265.html

Django Documentation, Release 1.10.9.dev20171123183751

The debug view also used innerHTML. Although a security issue wasn’t identified there, out of an abundance of
caution it’s also updated to use textContent.

Bugfixes

• Fixed missing varchar/text_pattern_ops index on CharField and TextField respectively when
using AddField on PostgreSQL (#26889).

Django 1.8.13 release notes

May 2, 2016

Django 1.8.13 fixes several bugs in 1.8.12.

Bugfixes

• Fixed TimeField microseconds round-tripping on MySQL and SQLite (#26498).

• Restored conversion of an empty string to null when saving values of GenericIPAddressField on SQLite
and MySQL (#26557).

Django 1.8.12 release notes

April 1, 2016

Django 1.8.12 fixes several bugs in 1.8.11.

Bugfixes

• Made MultiPartParser ignore filenames that normalize to an empty string to fix crash in
MemoryFileUploadHandler on specially crafted user input (#26325).

• Fixed data loss on SQLite where DurationField values with fractional seconds could be saved as None
(#26324).

• Restored the functionality of the admin’s raw_id_fields in list_editable (#26387).

Django 1.8.11 release notes

March 5, 2016

Django 1.8.11 fixes a regression on Python 2 in the 1.8.10 security release where utils.http.is_safe_url()
crashes on bytestring URLs (#26308).

Django 1.8.10 release notes

March 1, 2016

Django 1.8.10 fixes two security issues and several bugs in 1.8.9.

9.1. Final releases 1451

https://code.djangoproject.com/ticket/26889
https://code.djangoproject.com/ticket/26498
https://code.djangoproject.com/ticket/26557
https://code.djangoproject.com/ticket/26325
https://code.djangoproject.com/ticket/26324
https://code.djangoproject.com/ticket/26387
https://code.djangoproject.com/ticket/26308

Django Documentation, Release 1.10.9.dev20171123183751

CVE-2016-2512: Malicious redirect and possible XSS attack via user-supplied redirect URLs con-
taining basic auth

Django relies on user input in some cases (e.g. django.contrib.auth.views.login() and i18n) to redi-
rect the user to an “on success” URL. The security check for these redirects (namely django.utils.http.
is_safe_url()) considered some URLs with basic authentication credentials “safe” when they shouldn’t be.

For example, a URL like http://mysite.example.com\@attacker.com would be considered safe if the
request’s host is http://mysite.example.com, but redirecting to this URL sends the user to attacker.com.

Also, if a developer relies on is_safe_url() to provide safe redirect targets and puts such a URL into a link, they
could suffer from an XSS attack.

CVE-2016-2513: User enumeration through timing difference on password hasher work factor up-
grade

In each major version of Django since 1.6, the default number of iterations for the PBKDF2PasswordHasher and
its subclasses has increased. This improves the security of the password as the speed of hardware increases, however,
it also creates a timing difference between a login request for a user with a password encoded in an older number of
iterations and login request for a nonexistent user (which runs the default hasher’s default number of iterations since
Django 1.6).

This only affects users who haven’t logged in since the iterations were increased. The first time a user logs in after an
iterations increase, their password is updated with the new iterations and there is no longer a timing difference.

The new BasePasswordHasher.harden_runtime() method allows hashers to bridge the runtime gap be-
tween the work factor (e.g. iterations) supplied in existing encoded passwords and the default work factor of the
hasher. This method is implemented for PBKDF2PasswordHasher and BCryptPasswordHasher. The num-
ber of rounds for the latter hasher hasn’t changed since Django 1.4, but some projects may subclass it and increase the
work factor as needed.

A warning will be emitted for any third-party password hashers that don’t implement a harden_runtime()
method.

If you have different password hashes in your database (such as SHA1 hashes from users who haven’t logged in since
the default hasher switched to PBKDF2 in Django 1.4), the timing difference on a login request for these users may be
even greater and this fix doesn’t remedy that difference (or any difference when changing hashers). You may be able
to upgrade those hashes to prevent a timing attack for that case.

Bugfixes

• Fixed a crash on PostgreSQL that prevented using TIME_ZONE=None and USE_TZ=False (#26177).

• Added system checks for query name clashes of hidden relationships (#26162).

• Made forms.FileField and utils.translation.lazy_number() picklable (#26212).

• Fixed RangeField and ArrayField serialization with None values (#26215).

• Reallowed dashes in top-level domain names of URLs checked by URLValidator to fix a regression in
Django 1.8 (#26204).

• Fixed BoundField to reallow slices of subwidgets (#26267).

• Prevented ContentTypeManager instances from sharing their cache (#26286).

1452 Chapter 9. Release notes

https://code.djangoproject.com/ticket/26177
https://code.djangoproject.com/ticket/26162
https://code.djangoproject.com/ticket/26212
https://code.djangoproject.com/ticket/26215
https://code.djangoproject.com/ticket/26204
https://code.djangoproject.com/ticket/26267
https://code.djangoproject.com/ticket/26286

Django Documentation, Release 1.10.9.dev20171123183751

Django 1.8.9 release notes

February 1, 2016

Django 1.8.9 fixes several bugs in 1.8.8.

Bugfixes

• Fixed a regression that caused the “user-tools” items to display on the admin’s logout page (#26035).

• Fixed a crash in the translations system when the current language has no translations (#26046).

• Fixed a regression that caused the incorrect day to be selected when opening the admin calendar widget for
timezones from GMT+0100 to GMT+1200 (#24980).

• Fixed a regression in 1.8.8 causing incorrect index handling in migrations on PostgreSQL when adding
db_index=True or unique=True to a CharField or TextField that already had the other specified,
or when removing one of them from a field that had both, or when adding unique=True to a field already
listed in unique_together (#26034).

• Fixed a crash when using an __in lookup inside a Case expression (#26071).

• Fixed a crash when using a reverse OneToOneField in ModelAdmin.readonly_fields (#26060).

• Fixed a regression in Django 1.8.5 that broke copying a SimpleLazyObjectwith copy.copy() (#26122).

• Fixed the contrib.gis map widgets when using USE_THOUSAND_SEPARATOR=True (#20415).

Django 1.8.8 release notes

January 2, 2016

Django 1.8.8 fixes several bugs in 1.8.7.

Python 3.2 users, please be advised that we’ve decided to drop support for Python 3.2 in Django 1.8.x at the end of
2016. We won’t break things intentionally after that, but we won’t test subsequent releases against Python 3.2 either.
Upstream support for Python 3.2 ends February 2016 so we don’t find much value in providing security updates for a
version of Python that could be insecure. To read more about the decision and to let us know if this will be problematic
for you, please read the django-developers thread.

Bugfixes

• Fixed incorrect unique_together field name generation by inspectdb (#25274).

• Corrected __len query lookup on ArrayField for empty arrays (#25772).

• Restored the ability to use custom formats from formats.py with django.utils.formats.
get_format() and the date template filter (#25812).

• Fixed a state bug when migrating a SeparateDatabaseAndState operation backwards (#25896).

• Fixed missing varchar/text_pattern_ops index on CharField and TextField respectively when
using AlterField on PostgreSQL (#25412).

• Fixed a state bug when using an AlterModelManagers operation (#25852).

• Fixed a regression which prevented using a language not in Django’s default language list (LANGUAGES)
(#25915).

9.1. Final releases 1453

https://code.djangoproject.com/ticket/26035
https://code.djangoproject.com/ticket/26046
https://code.djangoproject.com/ticket/24980
https://code.djangoproject.com/ticket/26034
https://code.djangoproject.com/ticket/26071
https://code.djangoproject.com/ticket/26060
https://code.djangoproject.com/ticket/26122
https://code.djangoproject.com/ticket/20415
https://groups.google.com/d/topic/django-developers/eMu5UQpUdWs/discussion
https://code.djangoproject.com/ticket/25274
https://code.djangoproject.com/ticket/25772
https://code.djangoproject.com/ticket/25812
https://code.djangoproject.com/ticket/25896
https://code.djangoproject.com/ticket/25412
https://code.djangoproject.com/ticket/25852
https://code.djangoproject.com/ticket/25915

Django Documentation, Release 1.10.9.dev20171123183751

• django.views.decorators.cache.never_cache() now sends more persuasive headers (added
no-cache, no-store, must-revalidate to Cache-Control) to better prevent caching (#13008).
This fixes a problem where a page refresh in Firefox cleared the selected entries in the admin’s
filter_horizontal and filter_vertical widgets, which could result in inadvertent data loss if a
user didn’t notice that and then submitted the form (#22955).

• Fixed a regression in the admin which ignored line breaks in read-only fields instead of converting them to

(#25465).

• Made loaddata skip disabling and enabling database constraints when it doesn’t load any fixtures (#23372).

• Fixed a crash in QuerySet.values()/values_list() after an annotate() and order_by()
when values()/values_list() includes a field not in the order_by() (#25316).

Django 1.8.7 release notes

November 24, 2015

Django 1.8.7 fixes a security issue and several bugs in 1.8.6.

Additionally, Django’s vendored version of six, django.utils.six, has been upgraded to the latest release
(1.10.0).

Fixed settings leak possibility in date template filter

If an application allows users to specify an unvalidated format for dates and passes this format to the date filter,
e.g. {{ last_updated|date:user_date_format }}, then a malicious user could obtain any secret in the
application’s settings by specifying a settings key instead of a date format. e.g. "SECRET_KEY" instead of "j/m/
Y".

To remedy this, the underlying function used by the date template filter, django.utils.formats.
get_format(), now only allows accessing the date/time formatting settings.

Bugfixes

• Fixed a crash of the debug view during the autumn DST change when USE_TZ is False and pytz is installed.

• Fixed a regression in 1.8.6 that caused database routers without an allow_migrate() method to crash
(#25686).

• Fixed a regression in 1.8.6 by restoring the ability to use Manager objects for the queryset argument of
ModelChoiceField (#25683).

• Fixed a regression in 1.8.6 that caused an application with South migrations in the migrations directory to
fail (#25618).

• Fixed a data loss possibility with Prefetch if to_attr is set to a ManyToManyField (#25693).

• Fixed a regression in 1.8 by making gettext() once again return UTF-8 bytestrings on Python 2 if the input
is a bytestring (#25720).

• Fixed serialization of DateRangeField and DateTimeRangeField (#24937).

• Fixed the exact lookup of ArrayField (#25666).

• Fixed Model.refresh_from_db() updating of ForeignKey fields with on_delete=models.
SET_NULL (#25715).

• Fixed a duplicate query regression in 1.8 on proxied model deletion (#25685).

1454 Chapter 9. Release notes

https://code.djangoproject.com/ticket/13008
https://code.djangoproject.com/ticket/22955
https://code.djangoproject.com/ticket/25465
https://code.djangoproject.com/ticket/23372
https://code.djangoproject.com/ticket/25316
https://code.djangoproject.com/ticket/25686
https://code.djangoproject.com/ticket/25683
https://code.djangoproject.com/ticket/25618
https://code.djangoproject.com/ticket/25693
https://code.djangoproject.com/ticket/25720
https://code.djangoproject.com/ticket/24937
https://code.djangoproject.com/ticket/25666
https://code.djangoproject.com/ticket/25715
https://code.djangoproject.com/ticket/25685

Django Documentation, Release 1.10.9.dev20171123183751

• Fixed set_FOO_order() crash when the ForeignKey of a model with order_with_respect_to
references a model with a OneToOneField primary key (#25786).

• Fixed incorrect validation for PositiveIntegerField and PositiveSmallIntegerField on
MySQL resulting in values greater than 4294967295 or 65535, respectively, passing validation and being silently
truncated by the database (#25767).

Django 1.8.6 release notes

November 4, 2015

Django 1.8.6 adds official support for Python 3.5 and fixes several bugs in 1.8.5.

Bugfixes

• Fixed a regression causing ModelChoiceField to ignore prefetch_related() on its queryset
(#25496).

• Allowed “mode=memory” in SQLite test database name if supported (#12118).

• Fixed system check crash on ForeignKey to abstract model (#25503).

• Fixed incorrect queries when you have multiple ManyToManyFields on different models that have the same
field name, point to the same model, and have their reverse relations disabled (#25545).

• Allowed filtering over a RawSQL annotation (#25506).

• Made the Concat database function idempotent on SQLite (#25517).

• Avoided a confusing stack trace when starting runserver with an invalid INSTALLED_APPS setting
(#25510). This regression appeared in 1.8.5 as a side effect of fixing #24704.

• Made deferred models use their proxied model’s _meta.apps for caching and retrieval (#25563). This pre-
vents any models generated in data migrations using QuerySet.defer() from leaking to test and application
code.

• Fixed a typo in the name of the strictly_above PostGIS lookup (#25592).

• Fixed crash with contrib.postgres.forms.SplitArrayField and IntegerField on invalid
value (#25597).

• Added a helpful error message when Django and South migrations exist in the same directory (#25618).

• Fixed a regression in URLValidator that allowed URLs with consecutive dots in the domain section (like
http://example..com/) to pass (#25620).

• Fixed a crash with GenericRelation and BaseModelAdmin.to_field_allowed (#25622).

Django 1.8.5 release notes

October 3, 2015

Django 1.8.5 fixes several bugs in 1.8.4.

Bugfixes

• Made the development server’s autoreload more robust (#24704).

9.1. Final releases 1455

https://code.djangoproject.com/ticket/25786
https://code.djangoproject.com/ticket/25767
https://code.djangoproject.com/ticket/25496
https://code.djangoproject.com/ticket/12118
https://code.djangoproject.com/ticket/25503
https://code.djangoproject.com/ticket/25545
https://code.djangoproject.com/ticket/25506
https://code.djangoproject.com/ticket/25517
https://code.djangoproject.com/ticket/25510
https://code.djangoproject.com/ticket/24704
https://code.djangoproject.com/ticket/25563
https://code.djangoproject.com/ticket/25592
https://code.djangoproject.com/ticket/25597
https://code.djangoproject.com/ticket/25618
https://code.djangoproject.com/ticket/25620
https://code.djangoproject.com/ticket/25622
https://code.djangoproject.com/ticket/24704

Django Documentation, Release 1.10.9.dev20171123183751

• Fixed AssertionError in some delete queries with a model containing a field that is both a foreign and
primary key (#24951).

• Fixed AssertionError in some complex queries (#24525).

• Fixed a migrations crash with GenericForeignKey (#25040).

• Made translation.override() clear the overridden language when a translation isn’t initially active
(#25295).

• Fixed crash when using a value in ModelAdmin.list_display that clashed with a reverse field on the
model (#25299).

• Fixed autocompletion for options of non-argparse management commands (#25372).

• Alphabetized ordering of imports in from django.db import migrations, models statement in
newly created migrations (#25384).

• Fixed migrations crash on MySQL when adding a text or a blob field with an unhashable default (#25393).

• Changed Count queries to execute COUNT(*) instead of COUNT('*') as versions of Django before 1.8 did
(#25377). This may fix a performance regression on some databases.

• Fixed custom queryset chaining with values() and values_list() (#20625).

• Moved the unsaved model instance assignment data loss check on reverse relations to Model.save()
(#25160).

• Readded inline foreign keys to form instances when validating model formsets (#25431).

• Allowed using ORM write methods after disabling autocommit with set_autocommit(False) (#24921).

• Fixed the manage.py test --keepdb option on Oracle (#25421).

• Fixed incorrect queries with multiple many-to-many fields on a model with the same ‘to’ model and with
related_name set to ‘+’ (#24505, #25486).

• Fixed pickling a SimpleLazyObject wrapping a model (#25389).

Django 1.8.4 release notes

August 18, 2015

Django 1.8.4 fixes a security issue and several bugs in 1.8.3.

Denial-of-service possibility in logout() view by filling session store

Previously, a session could be created when anonymously accessing the django.contrib.auth.views.
logout() view (provided it wasn’t decorated with login_required() as done in the admin). This could allow
an attacker to easily create many new session records by sending repeated requests, potentially filling up the session
store or causing other users’ session records to be evicted.

The SessionMiddleware has been modified to no longer create empty session records, including when
SESSION_SAVE_EVERY_REQUEST is active.

Bugfixes

• Added the ability to serialize values from the newly added UUIDField (#25019).

1456 Chapter 9. Release notes

https://code.djangoproject.com/ticket/24951
https://code.djangoproject.com/ticket/24525
https://code.djangoproject.com/ticket/25040
https://code.djangoproject.com/ticket/25295
https://code.djangoproject.com/ticket/25299
https://code.djangoproject.com/ticket/25372
https://code.djangoproject.com/ticket/25384
https://code.djangoproject.com/ticket/25393
https://code.djangoproject.com/ticket/25377
https://code.djangoproject.com/ticket/20625
https://code.djangoproject.com/ticket/25160
https://code.djangoproject.com/ticket/25431
https://code.djangoproject.com/ticket/24921
https://code.djangoproject.com/ticket/25421
https://code.djangoproject.com/ticket/24505
https://code.djangoproject.com/ticket/25486
https://code.djangoproject.com/ticket/25389
https://code.djangoproject.com/ticket/25019

Django Documentation, Release 1.10.9.dev20171123183751

• Added a system check warning if the old TEMPLATE_* settings are defined in addition to the new TEMPLATES
setting.

• Fixed QuerySet.raw() so InvalidQuery is not raised when using the db_column name of a
ForeignKey field with primary_key=True (#12768).

• Prevented an exception in TestCase.setUpTestData() from leaking the transaction (#25176).

• Fixed has_changed() method in contrib.postgres.forms.HStoreField (#25215, #25233).

• Fixed the recording of squashed migrations when running the migrate command (#25231).

• Moved the unsaved model instance assignment data loss check to Model.save() to allow easier usage of
in-memory models (#25160).

• Prevented varchar_patterns_ops and text_patterns_ops indexes for ArrayField (#25180).

Django 1.8.3 release notes

July 8, 2015

Django 1.8.3 fixes several security issues and bugs in 1.8.2.

Also, django.utils.deprecation.RemovedInDjango20Warning was renamed to
RemovedInDjango110Warning as the version roadmap was revised to 1.9, 1.10, 1.11 (LTS), 2.0 (drops
Python 2 support). For backwards compatibility, RemovedInDjango20Warning remains as an importable alias.

Denial-of-service possibility by filling session store

In previous versions of Django, the session backends created a new empty record in the session storage anytime
request.session was accessed and there was a session key provided in the request cookies that didn’t already
have a session record. This could allow an attacker to easily create many new session records simply by sending
repeated requests with unknown session keys, potentially filling up the session store or causing other users’ session
records to be evicted.

The built-in session backends now create a session record only if the session is actually modified; empty session
records are not created. Thus this potential DoS is now only possible if the site chooses to expose a session-modifying
view to anonymous users.

As each built-in session backend was fixed separately (rather than a fix in the core sessions framework), maintainers
of third-party session backends should check whether the same vulnerability is present in their backend and correct it
if so.

Header injection possibility since validators accept newlines in input

Some of Django’s built-in validators (EmailValidator, most seriously) didn’t prohibit newline characters (due to
the usage of $ instead of \Z in the regular expressions). If you use values with newlines in HTTP response or email
headers, you can suffer from header injection attacks. Django itself isn’t vulnerable because HttpResponse and the
mail sending utilities in django.core.mail prohibit newlines in HTTP and SMTP headers, respectively. While
the validators have been fixed in Django, if you’re creating HTTP responses or email messages in other ways, it’s a
good idea to ensure that those methods prohibit newlines as well. You might also want to validate that any existing
data in your application doesn’t contain unexpected newlines.

validate_ipv4_address(), validate_slug(), and URLValidator are also affected, however, as of
Django 1.6 the GenericIPAddresseField, IPAddressField, SlugField, and URLField form fields
which use these validators all strip the input, so the possibility of newlines entering your data only exists if you are
using these validators outside of the form fields.

9.1. Final releases 1457

https://code.djangoproject.com/ticket/12768
https://code.djangoproject.com/ticket/25176
https://code.djangoproject.com/ticket/25215
https://code.djangoproject.com/ticket/25233
https://code.djangoproject.com/ticket/25231
https://code.djangoproject.com/ticket/25160
https://code.djangoproject.com/ticket/25180

Django Documentation, Release 1.10.9.dev20171123183751

The undocumented, internally unused validate_integer() function is now stricter as it validates using a regular
expression instead of simply casting the value using int() and checking if an exception was raised.

Denial-of-service possibility in URL validation

URLValidator included a regular expression that was extremely slow to evaluate against certain invalid inputs.
This regular expression has been simplified and optimized.

Bugfixes

• Fixed BaseRangeField.prepare_value() to use each base_field’s prepare_value() method
(#24841).

• Fixed crash during makemigrations if a migrations module either is missing __init__.py or is a file
(#24848).

• Fixed QuerySet.exists() returning incorrect results after annotation with Count() (#24835).

• Corrected HStoreField.has_changed() (#24844).

• Reverted an optimization to the CSRF template context processor which caused a regression (#24836).

• Fixed a regression which caused template context processors to overwrite variables set on a RequestContext
after it’s created (#24847).

• Prevented the loss of null/not null column properties during field renaming of MySQL databases
(#24817).

• Fixed a crash when using a reverse one-to-one relation in ModelAdmin.list_display (#24851).

• Fixed quoting of SQL when renaming a field to AutoField in PostgreSQL (#24892).

• Fixed lack of unique constraint when changing a field from primary_key=True to unique=True
(#24893).

• Fixed queryset pickling when using prefetch_related() after deleting objects (#24831).

• Allowed using choices longer than 1 day with DurationField (#24897).

• Fixed a crash when loading squashed migrations from two apps with a dependency between them, where the
dependent app’s replaced migrations are partially applied (#24895).

• Fixed recording of applied status for squashed (replacement) migrations (#24628).

• Fixed queryset annotations when using Case expressions with exclude() (#24833).

• Corrected join promotion for multiple Case expressions. Annotating a query with multiple Case expressions
could unexpectedly filter out results (#24924).

• Fixed usage of transforms in subqueries (#24744).

• Fixed SimpleTestCase.assertRaisesMessage() on Python 2.7.10 (#24903).

• Provided better backwards compatibility for the verbosity argument in optparse management commands
by casting it to an integer (#24769).

• Fixed prefetch_related() on databases other than PostgreSQL for models using UUID primary keys
(#24912).

• Fixed removing unique_together constraints on MySQL (#24972).

1458 Chapter 9. Release notes

https://code.djangoproject.com/ticket/24841
https://code.djangoproject.com/ticket/24848
https://code.djangoproject.com/ticket/24835
https://code.djangoproject.com/ticket/24844
https://code.djangoproject.com/ticket/24836
https://code.djangoproject.com/ticket/24847
https://code.djangoproject.com/ticket/24817
https://code.djangoproject.com/ticket/24851
https://code.djangoproject.com/ticket/24892
https://code.djangoproject.com/ticket/24893
https://code.djangoproject.com/ticket/24831
https://code.djangoproject.com/ticket/24897
https://code.djangoproject.com/ticket/24895
https://code.djangoproject.com/ticket/24628
https://code.djangoproject.com/ticket/24833
https://code.djangoproject.com/ticket/24924
https://code.djangoproject.com/ticket/24744
https://code.djangoproject.com/ticket/24903
https://code.djangoproject.com/ticket/24769
https://code.djangoproject.com/ticket/24912
https://code.djangoproject.com/ticket/24972

Django Documentation, Release 1.10.9.dev20171123183751

• Fixed crash when uploading images with MIME types that Pillow doesn’t detect, such as bitmap, in forms.
ImageField (#24948).

• Fixed a regression when deleting a model through the admin that has a GenericRelation with a
related_query_name (#24940).

• Reallowed non-ASCII values for ForeignKey.related_name on Python 3 by fixing the false positive
system check (#25016).

• Fixed inline forms that use a parent object that has a UUIDField primary key and a child object that has an
AutoField primary key (#24958).

• Fixed a regression in the unordered_list template filter on certain inputs (#25031).

• Fixed a regression in URLValidator that invalidated Punycode TLDs (#25059).

• Improved pyinotify runserver polling (#23882).

Django 1.8.2 release notes

May 20, 2015

Django 1.8.2 fixes a security issue and several bugs in 1.8.1.

Fixed session flushing in the cached_db backend

A change to session.flush() in the cached_db session backend in Django 1.8 mistakenly sets the ses-
sion key to an empty string rather than None. An empty string is treated as a valid session key and the ses-
sion cookie is set accordingly. Any users with an empty string in their session cookie will use the same session
store. session.flush() is called by django.contrib.auth.logout() and, more seriously, by django.
contrib.auth.login() when a user switches accounts. If a user is logged in and logs in again to a different
account (without logging out) the session is flushed to avoid reuse. After the session is flushed (and its session key
becomes '') the account details are set on the session and the session is saved. Any users with an empty string in
their session cookie will now be logged into that account.

Bugfixes

• Fixed check for template engine alias uniqueness (#24685).

• Fixed crash when reusing the same Case instance in a query (#24752).

• Corrected join promotion for Case expressions. For example, annotating a query with a Case expression could
unexpectedly filter out results (#24766).

• Fixed negated Q objects in expressions. Cases like Case(When(~Q(friends__age__lte=30))) tried
to generate a subquery which resulted in a crash (#24705).

• Fixed incorrect GROUP BY clause generation on MySQL when the query’s model has a self-referential foreign
key (#24748).

• Implemented ForeignKey.get_db_prep_value() so that ForeignKeys pointing to UUIDField
and inheritance on models with UUIDField primary keys work correctly (#24698, #24712).

• Fixed isnull lookup for HStoreField (#24751).

• Fixed a MySQL crash when a migration removes a combined index (unique_together or index_together) con-
taining a foreign key (#24757).

• Fixed session cookie deletion when using SESSION_COOKIE_DOMAIN (#24799).

9.1. Final releases 1459

https://code.djangoproject.com/ticket/24948
https://code.djangoproject.com/ticket/24940
https://code.djangoproject.com/ticket/25016
https://code.djangoproject.com/ticket/24958
https://code.djangoproject.com/ticket/25031
https://code.djangoproject.com/ticket/25059
https://code.djangoproject.com/ticket/23882
https://code.djangoproject.com/ticket/24685
https://code.djangoproject.com/ticket/24752
https://code.djangoproject.com/ticket/24766
https://code.djangoproject.com/ticket/24705
https://code.djangoproject.com/ticket/24748
https://code.djangoproject.com/ticket/24698
https://code.djangoproject.com/ticket/24712
https://code.djangoproject.com/ticket/24751
https://code.djangoproject.com/ticket/24757
https://code.djangoproject.com/ticket/24799

Django Documentation, Release 1.10.9.dev20171123183751

• On PostgreSQL, when no access is granted for the postgres database, Django now falls back to the default
database when it normally requires a “no database” connection (#24791).

• Fixed display of contrib.admin’s ForeignKey widget when it’s used in a row with other fields (#24784).

Django 1.8.1 release notes

May 1, 2015

Django 1.8.1 fixes several bugs in 1.8 and includes some optimizations in the migrations framework.

Bugfixes

• Added support for serializing timedelta objects in migrations (#24566).

• Restored proper parsing of the testserver command’s positional arguments (fixture names) (#24571).

• Prevented TypeError in translation functions check_for_language() and get_language_bidi()
when translations are deactivated (#24569).

• Fixed squashmigrations command when using SeparateDatabaseAndState (#24278).

• Stripped microseconds from datetime values when using an older version of the MySQLdb DB API driver
as it does not support fractional seconds (#24584).

• Fixed a migration crash when altering ManyToManyFields (#24513).

• Fixed a crash with QuerySet.update() on foreign keys to one-to-one fields (#24578).

• Fixed a regression in the model detail view of admindocs when a model has a reverse foreign key relation
(#24624).

• Prevented arbitrary file inclusions in admindocs (#24625).

• Fixed a crash with QuerySet.update() on foreign keys to instances with uuid primary keys (#24611).

• Fixed database introspection with SQLite 3.8.9 (released April 8, 2015) (#24637).

• Updated urlpatterns examples generated by startproject to remove usage of referencing views by
dotted path in url() which is deprecated in Django 1.8 (#24635).

• Fixed queries where an expression was referenced in order_by(), but wasn’t part of the select clause. An ex-
ample query is qs.annotate(foo=F('field')).values('pk').order_by('foo')) (#24615).

• Fixed a database table name quoting regression (#24605).

• Prevented the loss of null/not null column properties during field alteration of MySQL databases
(#24595).

• Fixed JavaScript path of contrib.admin’s related field widget when using alternate static file storages
(#24655).

• Fixed a migration crash when adding new relations to models (#24573).

• Fixed a migration crash when applying migrations with model managers on Python 3 that were generated on
Python 2 (#24701).

• Restored the ability to use iterators as queryset filter arguments (#24719).

• Fixed a migration crash when renaming the target model of a many-to-many relation (#24725).

• Removed flushing of the test database with test --keepdb, which prevented apps with data migrations from
using the option (#24729).

1460 Chapter 9. Release notes

https://code.djangoproject.com/ticket/24791
https://code.djangoproject.com/ticket/24784
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://code.djangoproject.com/ticket/24566
https://code.djangoproject.com/ticket/24571
https://code.djangoproject.com/ticket/24569
https://code.djangoproject.com/ticket/24278
https://code.djangoproject.com/ticket/24584
https://code.djangoproject.com/ticket/24513
https://code.djangoproject.com/ticket/24578
https://code.djangoproject.com/ticket/24624
https://code.djangoproject.com/ticket/24625
https://code.djangoproject.com/ticket/24611
https://code.djangoproject.com/ticket/24637
https://code.djangoproject.com/ticket/24635
https://code.djangoproject.com/ticket/24615
https://code.djangoproject.com/ticket/24605
https://code.djangoproject.com/ticket/24595
https://code.djangoproject.com/ticket/24655
https://code.djangoproject.com/ticket/24573
https://code.djangoproject.com/ticket/24701
https://code.djangoproject.com/ticket/24719
https://code.djangoproject.com/ticket/24725
https://code.djangoproject.com/ticket/24729

Django Documentation, Release 1.10.9.dev20171123183751

• Fixed makemessages crash in some locales (#23271).

• Fixed help text positioning of contrib.admin fields that use the ModelAdmin.filter_horizontal
and filter_vertical options (#24676).

• Fixed AttributeError: function ‘GDALAllRegister’ not found error when initializing contrib.gis on Win-
dows.

Optimizations

• Changed ModelState to deepcopy fields instead of deconstructing and reconstructing (#24591). This speeds
up the rendering of model states and reduces memory usage when running manage.py migrate (although
other changes in this release may negate any performance benefits).

Django 1.8 release notes

April 1, 2015

Welcome to Django 1.8!

These release notes cover the new features, as well as some backwards incompatible changes you’ll want to be aware
of when upgrading from Django 1.7 or older versions. We’ve also begun the deprecation process for some features,
and some features have reached the end of their deprecation process and have been removed.

See the Upgrading Django to a newer version guide if you’re updating an existing project.

Django 1.8 has been designated as Django’s second long-term support release. It will receive security updates for at
least three years after its release. Support for the previous LTS, Django 1.4, will end 6 months from the release date
of Django 1.8.

Python compatibility

Django 1.8 requires Python 2.7, 3.2, 3.3, 3.4, or 3.5. We highly recommend and only officially support the latest
release of each series.

Django 1.8 is the first release to support Python 3.5.

Due to the end of upstream support for Python 3.2 in February 2016, we won’t test Django 1.8.x on Python 3.2 after
the end of 2016.

What’s new in Django 1.8

Model._meta API

Django now has a formalized API for Model._meta, providing an officially supported way to retrieve fields and filter
fields based on their attributes.

The Model._meta object has been part of Django since the days of pre-0.96 “Magic Removal” – it just wasn’t an
official, stable API. In recognition of this, we’ve endeavored to maintain backwards-compatibility with the old API
endpoint where possible. However, API endpoints that aren’t part of the new official API have been deprecated and
will eventually be removed. A guide to migrating from the old API to the new API has been provided.

9.1. Final releases 1461

https://code.djangoproject.com/ticket/23271
https://code.djangoproject.com/ticket/24676
https://code.djangoproject.com/ticket/24591

Django Documentation, Release 1.10.9.dev20171123183751

Multiple template engines

Django 1.8 defines a stable API for integrating template backends. It includes built-in support for the Django template
language and for Jinja2. It supports rendering templates with multiple engines within the same project. Learn more
about the new features in the topic guide and check the upgrade instructions for details.

Security enhancements

Several features of the django-secure third-party library have been integrated into Django. django.middleware.
security.SecurityMiddleware provides several security enhancements to the request/response cycle. The
new check --deploy option allows you to check your production settings file for ways to increase the security of
your site.

New PostgreSQL specific functionality

Django now has a module with extensions for PostgreSQL specific features, such as ArrayField, HStoreField,
Range Fields, and unaccent lookup. A full breakdown of the features is available in the documentation.

New data types

• Django now has a UUIDField for storing universally unique identifiers. It is stored as the native uuid data
type on PostgreSQL and as a fixed length character field on other backends. There is a corresponding form
field.

• Django now has a DurationField for storing periods of time - modeled in Python by timedelta. It is
stored in the native interval data type on PostgreSQL, as a INTERVAL DAY(9) TO SECOND(6) on
Oracle, and as a bigint of microseconds on other backends. Date and time related arithmetic has also been
improved on all backends. There is a corresponding form field.

Query Expressions, Conditional Expressions, and Database Functions

Query Expressions allow you to create, customize, and compose complex SQL expressions. This has enabled annotate
to accept expressions other than aggregates. Aggregates are now able to reference multiple fields, as well as perform
arithmetic, similar to F() objects. order_by() has also gained the ability to accept expressions.

Conditional Expressions allow you to use if ... elif ... else logic within queries.

A collection of database functions is also included with functionality such as Coalesce, Concat, and Substr.

TestCase data setup

TestCase has been refactored to allow for data initialization at the class level using transactions and savepoints.
Database backends which do not support transactions, like MySQL with the MyISAM storage engine, will still be
able to run these tests but won’t benefit from the improvements. Tests are now run within two nested atomic()
blocks: one for the whole class and one for each test.

• The class method TestCase.setUpTestData() adds the ability to setup test data at the class level. Using
this technique can speed up the tests as compared to using setUp().

• Fixture loading within TestCase is now performed once for the whole TestCase.

1462 Chapter 9. Release notes

https://pypi.python.org/pypi/django-secure
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/reference/compound_stmts.html#if
https://docs.python.org/3/reference/compound_stmts.html#elif
https://docs.python.org/3/reference/compound_stmts.html#else

Django Documentation, Release 1.10.9.dev20171123183751

Minor features

django.contrib.admin

• ModelAdmin now has a has_module_permission() method to allow limiting access to the module on
the admin index page.

• InlineModelAdmin now has an attribute show_change_link that supports showing a link to an inline
object’s change form.

• Use the new django.contrib.admin.RelatedOnlyFieldListFilter in ModelAdmin.
list_filter to limit the list_filter choices to foreign objects which are attached to those from the
ModelAdmin.

• The ModelAdmin.delete_view() displays a summary of objects to be deleted on the deletion confirma-
tion page.

• The jQuery library embedded in the admin has been upgraded to version 1.11.2.

• You can now specify AdminSite.site_url in order to display a link to the front-end site.

• You can now specify ModelAdmin.show_full_result_count to control whether or not the full count
of objects should be displayed on a filtered admin page.

• The AdminSite.password_change() method now has an extra_context parameter.

• You can now control who may login to the admin site by overriding only AdminSite.has_permission()
and AdminSite.login_form. The base.html template has a new block usertools which con-
tains the user-specific header. A new context variable has_permission, which gets its value from
has_permission(), indicates whether the user may access the site.

• Foreign key dropdowns now have buttons for changing or deleting related objects using a popup.

django.contrib.admindocs

• reStructuredText is now parsed in model docstrings.

django.contrib.auth

• Authorization backends can now raise PermissionDenied in has_perm() and
has_module_perms() to short-circuit permission checking.

• PasswordResetForm now has a method send_mail() that can be overridden to customize the mail to be
sent.

• The max_length of Permission.name has been increased from 50 to 255 characters. Please run the
database migration.

• USERNAME_FIELD and REQUIRED_FIELDS now supports ForeignKeys.

• The default iteration count for the PBKDF2 password hasher has been increased by 33%. This back-
wards compatible change will not affect users who have subclassed django.contrib.auth.hashers.
PBKDF2PasswordHasher to change the default value.

9.1. Final releases 1463

Django Documentation, Release 1.10.9.dev20171123183751

django.contrib.gis

• A new GeoJSON serializer is now available.

• It is now allowed to include a subquery as a geographic lookup argument, for example City.
objects.filter(point__within=Country.objects.filter(continent='Africa').
values('mpoly')).

• The SpatiaLite backend now supports Collect and Extent aggregates when the database version is 3.0 or
later.

• The PostGIS 2 CREATE EXTENSION postgis and the SpatiaLite SELECT InitSpatialMetaData
initialization commands are now automatically run by migrate.

• The GDAL interface now supports retrieving properties of raster (image) data file.

• Compatibility shims for SpatialRefSys and GeometryColumns changed in Django 1.2 have been re-
moved.

• All GDAL-related exceptions are now raised with GDALException. The former OGRException has been
kept for backwards compatibility but should not be used any longer.

django.contrib.sessions

• Session cookie is now deleted after flush() is called.

django.contrib.sitemaps

• The new Sitemap.i18n attribute allows you to generate a sitemap based on the LANGUAGES setting.

django.contrib.sites

• get_current_site() will now lookup the current site based on request.get_host() if the
SITE_ID setting is not defined.

• The default Site created when running migrate now respects the SITE_ID setting (instead of always using
pk=1).

Cache

• The incr()method of the django.core.cache.backends.locmem.LocMemCache backend is now
thread-safe.

Cryptography

• The max_age parameter of the django.core.signing.TimestampSigner.unsign() method now
also accepts a datetime.timedelta object.

1464 Chapter 9. Release notes

https://docs.python.org/3/library/datetime.html#datetime.timedelta

Django Documentation, Release 1.10.9.dev20171123183751

Database backends

• The MySQL backend no longer strips microseconds from datetime values as MySQL 5.6.4 and up supports
fractional seconds depending on the declaration of the datetime field (when DATETIME includes fractional
precision greater than 0). New datetime database columns created with Django 1.8 and MySQL 5.6.4 and up
will support microseconds. See the MySQL database notes for more details.

• The MySQL backend no longer creates explicit indexes for foreign keys when using the InnoDB storage engine,
as MySQL already creates them automatically.

• The Oracle backend no longer defines the connection_persists_old_columns feature as True. In-
stead, Oracle will now include a cache busting clause when getting the description of a table.

Email

• Email backends now support the context manager protocol for opening and closing connections.

• The SMTP email backend now supports keyfile and certfile authentication with the
EMAIL_SSL_CERTFILE and EMAIL_SSL_KEYFILE settings.

• The SMTP EmailBackend now supports setting the timeout parameter with the EMAIL_TIMEOUT set-
ting.

• EmailMessage and EmailMultiAlternatives now support the reply_to parameter.

File Storage

• Storage.get_available_name() and Storage.save() now take a max_length argument to im-
plement storage-level maximum filename length constraints. Filenames exceeding this argument will get trun-
cated. This prevents a database error when appending a unique suffix to a long filename that already exists on
the storage. See the deprecation note about adding this argument to your custom storage classes.

Forms

• Form widgets now render attributes with a value of True or False as HTML5 boolean attributes.

• The new has_error() method allows checking if a specific error has happened.

• If required_css_class is defined on a form, then the <label> tags for required fields will have this
class present in its attributes.

• The rendering of non-field errors in unordered lists () now includes nonfield in its list of classes to
distinguish them from field-specific errors.

• Field now accepts a label_suffix argument, which will override the form’s label_suffix. This
enables customizing the suffix on a per-field basis — previously it wasn’t possible to override a form’s
label_suffix while using shortcuts such as {{ form.as_p }} in templates.

• SelectDateWidget now accepts an empty_label argument, which will override the top list choice label
when DateField is not required.

• After an ImageField has been cleaned and validated, the UploadedFile object will have an additional
image attribute containing the Pillow Image instance used to check if the file was a valid image. It will also
update UploadedFile.content_type with the image’s content type as determined by Pillow.

• You can now pass a callable that returns an iterable of choices when instantiating a ChoiceField.

9.1. Final releases 1465

Django Documentation, Release 1.10.9.dev20171123183751

Generic Views

• Generic views that use MultipleObjectMixin may now specify the ordering applied to the queryset
by setting ordering or overriding get_ordering().

• The new SingleObjectMixin.query_pk_and_slug attribute allows changing the behavior of
get_object() so that it’ll perform its lookup using both the primary key and the slug.

• The get_form() method doesn’t require a form_class to be provided anymore. If not provided
form_class defaults to get_form_class().

• Placeholders in ModelFormMixin.success_url now support the Python str.format() syntax. The
legacy %(<foo>)s syntax is still supported but will be removed in Django 1.10.

Internationalization

• FORMAT_MODULE_PATH can now be a list of strings representing module paths. This allows importing several
format modules from different reusable apps. It also allows overriding those custom formats in your main
Django project.

Logging

• The django.utils.log.AdminEmailHandler class now has a send_mail() method to make it
more subclass friendly.

Management Commands

• Database connections are now always closed after a management command called from the command line has
finished doing its job.

• Commands from alternate package formats like eggs are now also discovered.

• The new dumpdata --output option allows specifying a file to which the serialized data is written.

• The new makemessages --exclude and compilemessages --exclude options allow excluding
specific locales from processing.

• compilemessages now has a --use-fuzzy or -f option which includes fuzzy translations into compiled
files.

• The loaddata --ignorenonexistent option now ignores data for models that no longer exist.

• runserver now uses daemon threads for faster reloading.

• inspectdb now outputs Meta.unique_together. It is also able to introspect AutoField for MySQL
and PostgreSQL databases.

• When calling management commands with options using call_command(), the option name can match the
command line option name (without the initial dashes) or the final option destination variable name, but in either
case, the resulting option received by the command is now always the dest name specified in the command
option definition (as long as the command uses the argparse module).

• The dbshell command now supports MySQL’s optional SSL certificate authority setting (--ssl-ca).

• The new makemigrations --name allows giving the migration(s) a custom name instead of a generated
one.

1466 Chapter 9. Release notes

https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/library/argparse.html#module-argparse

Django Documentation, Release 1.10.9.dev20171123183751

• The loaddata command now prevents repeated fixture loading. If FIXTURE_DIRS contains duplicates or a
default fixture directory path (app_name/fixtures), an exception is raised.

• The new makemigrations --exit option allows exiting with an error code if no migrations are created.

• The new showmigrations command allows listing all migrations and their dependencies in a project.

Middleware

• The CommonMiddleware.response_redirect_class attribute allows you to customize the redirects
issued by the middleware.

• A debug message will be logged to the django.request logger when a middleware raises a
MiddlewareNotUsed exception in DEBUG mode.

Migrations

• The RunSQL operation can now handle parameters passed to the SQL statements.

• It is now possible to have migrations (most probably data migrations) for applications without models.

• Migrations can now serialize model managers as part of the model state.

• A generic mechanism to handle the deprecation of model fields was added.

• The RunPython.noop() and RunSQL.noop class method/attribute were added to ease in making
RunPython and RunSQL operations reversible.

• The migration operations RunPython and RunSQL now call the allow_migrate() method of database
routers. The router can use the newly introduced app_label and hints arguments to make a routing deci-
sion. To take advantage of this feature you need to update the router to the new allow_migrate signature,
see the deprecation section for more details.

Models

• Django now logs at most 9000 queries in connections.queries, in order to prevent excessive memory
usage in long-running processes in debug mode.

• There is now a model Meta option to define a default related name for all relational fields of a model.

• Pickling models and querysets across different versions of Django isn’t officially supported (it may work, but
there’s no guarantee). An extra variable that specifies the current Django version is now added to the pickled
state of models and querysets, and Django raises a RuntimeWarning when these objects are unpickled in a
different version than the one in which they were pickled.

• Added Model.from_db() which Django uses whenever objects are loaded using the ORM. The method
allows customizing model loading behavior.

• extra(select={...}) now allows you to escape a literal %s sequence using %%s.

• Custom Lookups can now be registered using a decorator pattern.

• The new Transform.bilateral attribute allows creating bilateral transformations. These transformations
are applied to both lhs and rhs when used in a lookup expression, providing opportunities for more sophisti-
cated lookups.

9.1. Final releases 1467

Django Documentation, Release 1.10.9.dev20171123183751

• SQL special characters (, %, _) are now escaped properly when a pattern lookup (e.g. contains,
startswith, etc.) is used with an F() expression as the right-hand side. In those cases, the escaping is
performed by the database, which can lead to somewhat complex queries involving nested REPLACE function
calls.

• You can now refresh model instances by using Model.refresh_from_db().

• You can now get the set of deferred fields for a model using Model.get_deferred_fields().

• Model field default’s are now used when primary key field’s are set to None.

Signals

• Exceptions from the (receiver, exception) tuples returned by Signal.send_robust() now have
their traceback attached as a __traceback__ attribute.

• The environ argument, which contains the WSGI environment structure from the request, was added to the
request_started signal.

• You can now import the setting_changed() signal from django.core.signals to avoid loading
django.test in non-test situations. Django no longer does so itself.

System Check Framework

• register can now be used as a function.

Templates

• urlize now supports domain-only links that include characters after the top-level domain (e.g.
djangoproject.com/ and djangoproject.com/download/).

• urlize doesn’t treat exclamation marks at the end of a domain or its query string as part of the URL (the URL
in e.g. 'djangoproject.com! is djangoproject.com)

• Added a locmem.Loader class that loads Django templates from a Python dictionary.

• The now tag can now store its output in a context variable with the usual syntax: {% now 'j n Y' as
varname %}.

Requests and Responses

• WSGIRequest now respects paths starting with //.

• The HttpRequest.build_absolute_uri() method now handles paths starting with // correctly.

• If DEBUG is True and a request raises a SuspiciousOperation, the response will be rendered with a
detailed error page.

• The query_string argument of QueryDict is now optional, defaulting to None, so a blank QueryDict
can now be instantiated with QueryDict() instead of QueryDict(None) or QueryDict('').

• The GET and POST attributes of an HttpRequest object are now QueryDicts rather than dictionaries, and
the FILES attribute is now a MultiValueDict. This brings this class into line with the documentation and
with WSGIRequest.

• The HttpResponse.charset attribute was added.

1468 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

• WSGIRequestHandler now follows RFC in converting URI to IRI, using uri_to_iri().

• The HttpRequest.get_full_path() method now escapes unsafe characters from the path portion of a
Uniform Resource Identifier (URI) properly.

• HttpResponse now implements a few additional methods like getvalue() so that instances can be used
as stream objects.

• The new HttpResponse.setdefault() method allows setting a header unless it has already been set.

• You can use the new FileResponse to stream files.

• The condition() decorator for conditional view processing now supports the If-unmodified-since
header.

Tests

• The RequestFactory.trace() and Client.trace() methods were implemented, allowing you to
create TRACE requests in your tests.

• The count argument was added to assertTemplateUsed(). This allows you to assert that a template was
rendered a specific number of times.

• The new assertJSONNotEqual() assertion allows you to test that two JSON fragments are not equal.

• Added options to the test command to preserve the test database (--keepdb), to run the test cases in reverse
order (--reverse), and to enable SQL logging for failing tests (--debug-sql).

• Added the resolver_match attribute to test client responses.

• Added several settings that allow customization of test tablespace parameters for Oracle: DATAFILE,
DATAFILE_TMP, DATAFILE_MAXSIZE and DATAFILE_TMP_MAXSIZE.

• The override_settings() decorator can now affect the master router in DATABASE_ROUTERS.

• Added test client support for file uploads with file-like objects.

• A shared cache is now used when testing with an SQLite in-memory database when using Python 3.4+ and
SQLite 3.7.13+. This allows sharing the database between threads.

Validators

• URLValidator now supports IPv6 addresses, unicode domains, and URLs containing authentication data.

Backwards incompatible changes in 1.8

Warning: In addition to the changes outlined in this section, be sure to review the deprecation plan for any
features that have been removed. If you haven’t updated your code within the deprecation timeline for a given
feature, its removal may appear as a backwards incompatible change.

Related object operations are run in a transaction

Some operations on related objects such as add() or direct assignment ran multiple data modifying queries without
wrapping them in transactions. To reduce the risk of data corruption, all data modifying methods that affect multiple

9.1. Final releases 1469

Django Documentation, Release 1.10.9.dev20171123183751

related objects (i.e. add(), remove(), clear(), and direct assignment) now perform their data modifying queries
from within a transaction, provided your database supports transactions.

This has one backwards incompatible side effect, signal handlers triggered from these methods are now executed
within the method’s transaction and any exception in a signal handler will prevent the whole operation.

Assigning unsaved objects to relations raises an error

Note: To more easily allow in-memory usage of models, this change was reverted in Django 1.8.4 and replaced with
a check during model.save(). For example:

>>> book = Book.objects.create(name="Django")
>>> book.author = Author(name="John")
>>> book.save()
Traceback (most recent call last):
...
ValueError: save() prohibited to prevent data loss due to unsaved related object
→˓'author'.

A similar check on assignment to reverse one-to-one relations was removed in Django 1.8.5.

Assigning unsaved objects to a ForeignKey , GenericForeignKey , and OneToOneField now raises a
ValueError.

Previously, the assignment of an unsaved object would be silently ignored. For example:

>>> book = Book.objects.create(name="Django")
>>> book.author = Author(name="John")
>>> book.author.save()
>>> book.save()

>>> Book.objects.get(name="Django")
>>> book.author
>>>

Now, an error will be raised to prevent data loss:

>>> book.author = Author(name="john")
Traceback (most recent call last):
...
ValueError: Cannot assign "<Author: John>": "Author" instance isn't saved in the
→˓database.

If you require allowing the assignment of unsaved instances (the old behavior) and aren’t concerned about the data loss
possibility (e.g. you never save the objects to the database), you can disable this check by using the ForeignKey.
allow_unsaved_instance_assignment attribute. (This attribute was removed in 1.8.4 as it’s no longer rele-
vant.)

Management commands that only accept positional arguments

If you have written a custom management command that only accepts positional arguments and you didn’t specify
the args command variable, you might get an error like Error: unrecognized arguments: ..., as
variable parsing is now based on argparse which doesn’t implicitly accept positional arguments. You can make
your command backwards compatible by simply setting the args class variable. However, if you don’t have to keep

1470 Chapter 9. Release notes

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/argparse.html#module-argparse

Django Documentation, Release 1.10.9.dev20171123183751

compatibility with older Django versions, it’s better to implement the new add_arguments() method as described
in Writing custom django-admin commands.

Custom test management command arguments through test runner

The method to add custom arguments to the test management command through the test runner has changed. Pre-
viously, you could provide an option_list class variable on the test runner to add more arguments (à la optparse).
Now to implement the same behavior, you have to create an add_arguments(cls, parser) class method on
the test runner and call parser.add_argument to add any custom arguments, as parser is now an argparse.
ArgumentParser instance.

Model check ensures auto-generated column names are within limits specified by database

A field name that’s longer than the column name length supported by a database can create problems. For example,
with MySQL you’ll get an exception trying to create the column, and with PostgreSQL the column name is truncated
by the database (you may see a warning in the PostgreSQL logs).

A model check has been introduced to better alert users to this scenario before the actual creation of database tables.

If you have an existing model where this check seems to be a false positive, for example on PostgreSQL where the
name was already being truncated, simply use db_column to specify the name that’s being used.

The check also applies to the columns generated in an implicit ManyToManyField.through model. If you run
into an issue there, use through to create an explicit model and then specify db_column on its column(s) as
needed.

Query relation lookups now check object types

Querying for model lookups now checks if the object passed is of correct type and raises a ValueError if not.
Previously, Django didn’t care if the object was of correct type; it just used the object’s related field attribute (e.g. id)
for the lookup. Now, an error is raised to prevent incorrect lookups:

>>> book = Book.objects.create(name="Django")
>>> book = Book.objects.filter(author=book)
Traceback (most recent call last):
...
ValueError: Cannot query "<Book: Django>": Must be "Author" instance.

select_related() now checks given fields

select_related() now validates that the given fields actually exist. Previously, nonexistent fields were silently
ignored. Now, an error is raised:

>>> book = Book.objects.select_related('nonexistent_field')
Traceback (most recent call last):
...
FieldError: Invalid field name(s) given in select_related: 'nonexistent_field'

The validation also makes sure that the given field is relational:

9.1. Final releases 1471

https://docs.python.org/3/library/optparse.html#module-optparse
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/exceptions.html#ValueError

Django Documentation, Release 1.10.9.dev20171123183751

>>> book = Book.objects.select_related('name')
Traceback (most recent call last):
...
FieldError: Non-relational field given in select_related: 'name'

Default EmailField.max_length increased to 254

The old default 75 character max_length was not capable of storing all possible RFC3696/5321-compliant email
addresses. In order to store all possible valid email addresses, the max_length has been increased to 254 characters.
You will need to generate and apply database migrations for your affected models (or add max_length=75 if
you wish to keep the length on your current fields). A migration for django.contrib.auth.models.User.
email is included.

Support for PostgreSQL versions older than 9.0

The end of upstream support periods was reached in July 2014 for PostgreSQL 8.4. As a consequence, Django 1.8
sets 9.0 as the minimum PostgreSQL version it officially supports.

This also includes dropping support for PostGIS 1.3 and 1.4 as these versions are not supported on versions of Post-
greSQL later than 8.4.

Django also now requires the use of Psycopg2 version 2.4.5 or higher (or 2.5+ if you want to use django.contrib.
postgres).

Support for MySQL versions older than 5.5

The end of upstream support periods was reached in January 2012 for MySQL 5.0 and December 2013 for MySQL
5.1. As a consequence, Django 1.8 sets 5.5 as the minimum MySQL version it officially supports.

Support for Oracle versions older than 11.1

The end of upstream support periods was reached in July 2010 for Oracle 9.2, January 2012 for Oracle 10.1, and July
2013 for Oracle 10.2. As a consequence, Django 1.8 sets 11.1 as the minimum Oracle version it officially supports.

Specific privileges used instead of roles for tests on Oracle

Earlier versions of Django granted the CONNECT and RESOURCE roles to the test user on Oracle. These roles have
been deprecated, so Django 1.8 uses the specific underlying privileges instead. This changes the privileges required
of the main user for running tests (unless the project is configured to avoid creating a test user). The exact privileges
required now are detailed in Oracle notes.

AbstractUser.last_login allows null values

The AbstractUser.last_login field now allows null values. Previously, it defaulted to the time when the user
was created which was misleading if the user never logged in. If you are using the default user (django.contrib.
auth.models.User), run the database migration included in contrib.auth.

1472 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

If you are using a custom user model that inherits from AbstractUser, you’ll need to run makemigrations and
generate a migration for your app that contains that model. Also, if wish to set last_login to NULL for users who
haven’t logged in, you can run this query:

from django.db import models
from django.contrib.auth import get_user_model
from django.contrib.auth.models import AbstractBaseUser

UserModel = get_user_model()
if issubclass(UserModel, AbstractBaseUser):

UserModel._default_manager.filter(
last_login=models.F('date_joined')

).update(last_login=None)

django.contrib.gis

• Support for GEOS 3.1 and GDAL 1.6 has been dropped.

• Support for SpatiaLite < 2.4 has been dropped.

• GIS-specific lookups have been refactored to use the django.db.models.Lookup API.

• The default str representation of GEOSGeometry objects has been changed from WKT to EWKT format
(including the SRID). As this representation is used in the serialization framework, that means that dumpdata
output will now contain the SRID value of geometry objects.

Priority of context processors for TemplateResponse brought in line with render

The TemplateResponse constructor is designed to be a drop-in replacement for the render() function. How-
ever, it had a slight incompatibility, in that for TemplateResponse, context data from the passed in context dictio-
nary could be shadowed by context data returned from context processors, whereas for render it was the other way
around. This was a bug, and the behavior of render is more appropriate, since it allows the globally defined context
processors to be overridden locally in the view. If you were relying on the fact context data in a TemplateResponse
could be overridden using a context processor, you will need to change your code.

Overriding setUpClass / tearDownClass in test cases

The decorators override_settings() and modify_settings() now act at the class level when used as
class decorators. As a consequence, when overriding setUpClass() or tearDownClass(), the super imple-
mentation should always be called.

Removal of django.contrib.formtools

The formtools contrib app has been moved to a separate package and the relevant documentation pages have been
updated or removed.

The new package is available on GitHub and on PyPI.

9.1. Final releases 1473

https://github.com/django/django-formtools/

Django Documentation, Release 1.10.9.dev20171123183751

Database connection reloading between tests

Django previously closed database connections between each test within a TestCase. This is no longer the case as
Django now wraps the whole TestCase within a transaction. If some of your tests relied on the old behavior, you
should have them inherit from TransactionTestCase instead.

Cleanup of the django.template namespace

If you’ve been relying on private APIs exposed in the django.template module, you may have to import them
from django.template.base instead.

Also private APIs django.template.base.compile_string(), django.template.loader.
find_template(), and django.template.loader.get_template_from_string() were removed.

model attribute on private model relations

In earlier versions of Django, on a model with a reverse foreign key relationship (for example), model.
_meta.get_all_related_objects() returned the relationship as a django.db.models.related.
RelatedObject with the model attribute set to the source of the relationship. Now, this method returns the
relationship as django.db.models.fields.related.ManyToOneRel (private API RelatedObject has
been removed), and the model attribute is set to the target of the relationship instead of the source. The source model
is accessible on the related_model attribute instead.

Consider this example from the tutorial in Django 1.8:

>>> p = Poll.objects.get(pk=1)
>>> p._meta.get_all_related_objects()
[<ManyToOneRel: polls.choice>]
>>> p._meta.get_all_related_objects()[0].model
<class 'polls.models.Poll'>
>>> p._meta.get_all_related_objects()[0].related_model
<class 'polls.models.Choice'>

and compare it to the behavior on older versions:

>>> p._meta.get_all_related_objects()
[<RelatedObject: polls:choice related to poll>]
>>> p._meta.get_all_related_objects()[0].model
<class 'polls.models.Choice'>

To access the source model, you can use a pattern like this to write code that will work with both Django 1.8 and older
versions:

for relation in opts.get_all_related_objects():
to_model = getattr(relation, 'related_model', relation.model)

Also note that get_all_related_objects() is deprecated in 1.8. See the upgrade guide for the new API.

Database backend API

The following changes to the database backend API are documented to assist those writing third-party backends in
updating their code:

1474 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

• BaseDatabaseXXX classes have been moved to django.db.backends.base. Please import them from
the new locations:

from django.db.backends.base.base import BaseDatabaseWrapper
from django.db.backends.base.client import BaseDatabaseClient
from django.db.backends.base.creation import BaseDatabaseCreation
from django.db.backends.base.features import BaseDatabaseFeatures
from django.db.backends.base.introspection import BaseDatabaseIntrospection
from django.db.backends.base.introspection import FieldInfo, TableInfo
from django.db.backends.base.operations import BaseDatabaseOperations
from django.db.backends.base.schema import BaseDatabaseSchemaEditor
from django.db.backends.base.validation import BaseDatabaseValidation

• The data_types, data_types_suffix, and data_type_check_constraints attributes have
moved from the DatabaseCreation class to DatabaseWrapper.

• The SQLCompiler.as_sql() method now takes a subquery parameter (#24164).

• The BaseDatabaseOperations.date_interval_sql() method now only takes a timedelta pa-
rameter.

django.contrib.admin

• AdminSite no longer takes an app_name argument and its app_name attribute has been removed. The
application name is always admin (as opposed to the instance name which you can still customize using
AdminSite(name="...").

• The ModelAdmin.get_object() method (private API) now takes a third argument named from_field
in order to specify which field should match the provided object_id.

• The ModelAdmin.response_delete() method now takes a second argument named obj_id which is
the serialized identifier used to retrieve the object before deletion.

Default autoescaping of functions in django.template.defaultfilters

In order to make built-in template filters that output HTML “safe by default” when calling them in Python code, the
following functions in django.template.defaultfilters have been changed to automatically escape their
input value:

• join

• linebreaksbr

• linebreaks_filter

• linenumbers

• unordered_list

• urlize

• urlizetrunc

You can revert to the old behavior by specifying autoescape=False if you are passing trusted content. This
change doesn’t have any effect when using the corresponding filters in templates.

9.1. Final releases 1475

https://code.djangoproject.com/ticket/24164

Django Documentation, Release 1.10.9.dev20171123183751

Miscellaneous

• connections.queries is now a read-only attribute.

• Database connections are considered equal only if they’re the same object. They aren’t hashable any more.

• GZipMiddleware used to disable compression for some content types when the request is from Internet
Explorer, in order to work around a bug in IE6 and earlier. This behavior could affect performance on IE7 and
later. It was removed.

• URLField.to_python no longer adds a trailing slash to pathless URLs.

• The length template filter now returns 0 for an undefined variable, rather than an empty string.

• ForeignKey.default_error_message['invalid'] has been changed from '%(model)s
instance with pk %(pk)r does not exist.' to '%(model)s instance with
%(field)s %(value)r does not exist.' If you are using this message in your own code,
please update the list of interpolated parameters. Internally, Django will continue to provide the pk parameter
in params for backwards compatibility.

• UserCreationForm.error_messages['duplicate_username'] is no longer used. If you
wish to customize that error message, override it on the form using the 'unique' key in Meta.
error_messages['username'] or, if you have a custom form field for 'username', using the the
'unique' key in its error_messages argument.

• The block usertools in the base.html template of django.contrib.admin now requires the
has_permission context variable to be set. If you have any custom admin views that use this template,
update them to pass AdminSite.has_permission() as this new variable’s value or simply include
AdminSite.each_context(request) in the context.

• Internal changes were made to the ClearableFileInput widget to allow more customization. The undoc-
umented url_markup_template attribute was removed in favor of template_with_initial.

• For consistency with other major vendors, the en_GB locale now has Monday as the first day of the week.

• Seconds have been removed from any locales that had them in TIME_FORMAT, DATETIME_FORMAT, or
SHORT_DATETIME_FORMAT.

• The default max size of the Oracle test tablespace has increased from 300M (or 200M, before 1.7.2) to 500M.

• reverse() and reverse_lazy() now return Unicode strings instead of byte strings.

• The CacheClass shim has been removed from all cache backends. These aliases were provided for backwards
compatibility with Django 1.3. If you are still using them, please update your project to use the real class name
found in the BACKEND key of the CACHES setting.

• By default, call_command() now always skips the check framework (unless you pass it
skip_checks=False).

• When iterating over lines, File now uses universal newlines. The following are recognized as ending a line:
the Unix end-of-line convention '\n', the Windows convention '\r\n', and the old Macintosh convention
'\r'.

• The Memcached cache backends MemcachedCache and PyLibMCCache will delete a key if set() fails.
This is necessary to ensure the cache_db session store always fetches the most current session data.

• Private APIs override_template_loaders and override_with_test_loader in django.
test.utils were removed. Override TEMPLATES with override_settings instead.

• Warnings from the MySQL database backend are no longer converted to exceptions when DEBUG is True.

• HttpRequest now has a simplified repr (e.g. <WSGIRequest: GET '/somepath/'>). This won’t
change the behavior of the SafeExceptionReporterFilter class.

1476 Chapter 9. Release notes

https://www.python.org/dev/peps/pep-0278

Django Documentation, Release 1.10.9.dev20171123183751

• Class-based views that use ModelFormMixin will raise an ImproperlyConfigured exception when
both the fields and form_class attributes are specified. Previously, fields was silently ignored.

• When following redirects, the test client now raises RedirectCycleError if it detects a loop or hits a
maximum redirect limit (rather than passing silently).

• Translatable strings set as the default parameter of the field are cast to concrete strings later, so the return
type of Field.get_default() is different in some cases. There is no change to default values which are
the result of a callable.

• GenericIPAddressField.empty_strings_allowed is now False. Database backends that inter-
pret empty strings as null (only Oracle among the backends that Django includes) will no longer convert null
values back to an empty string. This is consistent with other backends.

• When the leave_locale_alone attribute is False, translations are now deactivated instead of forcing the
“en-us” locale. In the case your models contained non-English strings and you counted on English translations
to be activated in management commands, this will not happen any longer. It might be that new database
migrations are generated (once) after migrating to 1.8.

• django.utils.translation.get_language() now returns None instead of LANGUAGE_CODE
when translations are temporarily deactivated.

• When a translation doesn’t exist for a specific literal, the fallback is now taken from the LANGUAGE_CODE
language (instead of from the untranslated msgid message).

• The name field of django.contrib.contenttypes.models.ContentType has been removed by a
migration and replaced by a property. That means it’s not possible to query or filter a ContentType by this
field any longer.

Be careful if you upgrade to Django 1.8 and skip Django 1.7. If you run manage.py migrate --fake,
this migration will be skipped and you’ll see a RuntimeError: Error creating new content
types. exception because the name column won’t be dropped from the database. Use manage.py
migrate --fake-initial to fake only the initial migration instead.

• The new migrate --fake-initial option allows faking initial migrations. In 1.7, initial migrations were
always automatically faked if all tables created in an initial migration already existed.

• An app without migrations with a ForeignKey to an app with migrations may now result in a foreign key
constraint error when migrating the database or running tests. In Django 1.7, this could fail silently and result
in a missing constraint. To resolve the error, add migrations to the app without them.

Features deprecated in 1.8

Selected methods in django.db.models.options.Options

As part of the formalization of the Model._meta API (from the django.db.models.options.Options
class), a number of methods have been deprecated and will be removed in Django 1.10:

• get_all_field_names()

• get_all_related_objects()

• get_all_related_objects_with_model()

• get_all_related_many_to_many_objects()

• get_all_related_m2m_objects_with_model()

• get_concrete_fields_with_model()

• get_field_by_name()

9.1. Final releases 1477

Django Documentation, Release 1.10.9.dev20171123183751

• get_fields_with_model()

• get_m2m_with_model()

A migration guide has been provided to assist in converting your code from the old API to the new, official API.

Loading cycle and firstof template tags from future library

Django 1.6 introduced {% load cycle from future %} and {% load firstof from future %}
syntax for forward compatibility of the cycle and firstof template tags. This syntax is now deprecated and
will be removed in Django 1.10. You can simply remove the {% load ... from future %} tags.

django.conf.urls.patterns()

In the olden days of Django, it was encouraged to reference views as strings in urlpatterns:

urlpatterns = patterns('',
url('^$', 'myapp.views.myview'),

)

and Django would magically import myapp.views.myview internally and turn the string into a real function ref-
erence. In order to reduce repetition when referencing many views from the same module, the patterns() function
takes a required initial prefix argument which is prepended to all views-as-strings in that set of urlpatterns:

urlpatterns = patterns('myapp.views',
url('^$', 'myview'),
url('^other/$', 'otherview'),

)

In the modern era, we have updated the tutorial to instead recommend importing your views module and referencing
your view functions (or classes) directly. This has a number of advantages, all deriving from the fact that we are using
normal Python in place of “Django String Magic”: the errors when you mistype a view name are less obscure, IDEs
can help with autocompletion of view names, etc.

So these days, the above use of the prefix arg is much more likely to be written (and is better written) as:

from myapp import views

urlpatterns = patterns('',
url('^$', views.myview),
url('^other/$', views.otherview),

)

Thus patterns() serves little purpose and is a burden when teaching new users (answering the newbie’s question
“why do I need this empty string as the first argument to patterns()?”). For these reasons, we are deprecating
it. Updating your code is as simple as ensuring that urlpatterns is a list of django.conf.urls.url()
instances. For example:

from django.conf.urls import url
from myapp import views

urlpatterns = [
url('^$', views.myview),
url('^other/$', views.otherview),

]

1478 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Passing a string as view to url()

Related to the previous item, referencing views as strings in the url() function is deprecated. Pass the callable view
as described in the previous section instead.

Template-related settings

As a consequence of the multiple template engines refactor, several settings are deprecated in favor of TEMPLATES:

• ALLOWED_INCLUDE_ROOTS

• TEMPLATE_CONTEXT_PROCESSORS

• TEMPLATE_DEBUG

• TEMPLATE_DIRS

• TEMPLATE_LOADERS

• TEMPLATE_STRING_IF_INVALID

django.core.context_processors

Built-in template context processors have been moved to django.template.context_processors.

django.test.SimpleTestCase.urls

The attribute SimpleTestCase.urls for specifying URLconf configuration in tests has been deprecated and will
be removed in Django 1.10. Use @override_settings(ROOT_URLCONF=...) instead.

prefix argument to i18n_patterns()

Related to the previous item, the prefix argument to django.conf.urls.i18n.i18n_patterns() has
been deprecated. Simply pass a list of django.conf.urls.url() instances instead.

Using an incorrect count of unpacked values in the for template tag

Using an incorrect count of unpacked values in for tag will raise an exception rather than fail silently in Django 1.10.

Passing a dotted path to reverse() and url

Reversing URLs by Python path is an expensive operation as it causes the path being reversed to be imported. This
behavior has also resulted in a security issue. Use named URL patterns for reversing instead.

If you are using django.contrib.sitemaps, add the name argument to the url that references django.
contrib.sitemaps.views.sitemap():

from django.contrib.sitemaps.views import sitemap

url(r'^sitemap\.xml$', sitemap, {'sitemaps': sitemaps},
name='django.contrib.sitemaps.views.sitemap')

9.1. Final releases 1479

https://www.djangoproject.com/weblog/2014/apr/21/security/#s-issue-unexpected-code-execution-using-reverse

Django Documentation, Release 1.10.9.dev20171123183751

to ensure compatibility when reversing by Python path is removed in Django 1.10.

Similarly for GIS sitemaps, add name='django.contrib.gis.sitemaps.views.kml' or
name='django.contrib.gis.sitemaps.views.kmz'.

If you are using a Python path for the LOGIN_URL or LOGIN_REDIRECT_URL setting, use the name of the url()
instead.

Aggregate methods and modules

The django.db.models.sql.aggregates and django.contrib.gis.db.models.sql.
aggregates modules (both private API), have been deprecated as django.db.models.aggregates
and django.contrib.gis.db.models.aggregates are now also responsible for SQL generation. The old
modules will be removed in Django 1.10.

If you were using the old modules, see Query Expressions for instructions on rewriting custom aggregates using the
new stable API.

The following methods and properties of django.db.models.sql.query.Query have also been deprecated
and the backwards compatibility shims will be removed in Django 1.10:

• Query.aggregates, replaced by annotations.

• Query.aggregate_select, replaced by annotation_select.

• Query.add_aggregate(), replaced by add_annotation().

• Query.set_aggregate_mask(), replaced by set_annotation_mask().

• Query.append_aggregate_mask(), replaced by append_annotation_mask().

Extending management command arguments through Command.option_list

Management commands now use argparse instead of optparse to parse command-line arguments passed to
commands. This also means that the way to add custom arguments to commands has changed: instead of extending
the option_list class list, you should now override the add_arguments() method and add arguments through
argparse.add_argument(). See this example for more details.

django.core.management.NoArgsCommand

The class NoArgsCommand is now deprecated and will be removed in Django 1.10. Use BaseCommand instead,
which takes no arguments by default.

Listing all migrations in a project

The --list option of the migrate management command is deprecated and will be removed in Django 1.10. Use
showmigrations instead.

cache_choices option of ModelChoiceField and ModelMultipleChoiceField

ModelChoiceField and ModelMultipleChoiceField took an undocumented, untested option
cache_choices. This cached querysets between multiple renderings of the same Form object. This option
is subject to an accelerated deprecation and will be removed in Django 1.9.

1480 Chapter 9. Release notes

https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/optparse.html#module-optparse

Django Documentation, Release 1.10.9.dev20171123183751

django.template.resolve_variable()

The function has been informally marked as “Deprecated” for some time. Replace resolve_variable(path,
context) with django.template.Variable(path).resolve(context).

django.contrib.webdesign

It provided the lorem template tag which is now included in the built-in tags. Simply remove 'django.contrib.
webdesign' from INSTALLED_APPS and {% load webdesign %} from your templates.

error_message argument to django.forms.RegexField

It provided backwards compatibility for pre-1.0 code, but its functionality is redundant. Use Field.
error_messages['invalid'] instead.

Old unordered_list syntax

An older (pre-1.0), more restrictive and verbose input format for the unordered_list template filter has been
deprecated:

['States', [['Kansas', [['Lawrence', []], ['Topeka', []]]], ['Illinois', []]]]

Using the new syntax, this becomes:

['States', ['Kansas', ['Lawrence', 'Topeka'], 'Illinois']]

django.forms.Field._has_changed()

Rename this method to has_changed() by removing the leading underscore. The old name will still work until
Django 1.10.

django.utils.html.remove_tags() and removetags template filter

django.utils.html.remove_tags() as well as the template filter removetags have been deprecated as
they cannot guarantee safe output. Their existence is likely to lead to their use in security-sensitive contexts where
they are not actually safe.

The unused and undocumented django.utils.html.strip_entities() function has also been deprecated.

is_admin_site argument to django.contrib.auth.views.password_reset()

It’s a legacy option that should no longer be necessary.

9.1. Final releases 1481

Django Documentation, Release 1.10.9.dev20171123183751

SubfieldBase

django.db.models.fields.subclassing.SubfieldBase has been deprecated and will be removed in
Django 1.10. Historically, it was used to handle fields where type conversion was needed when loading from the
database, but it was not used in .values() calls or in aggregates. It has been replaced with from_db_value().

The new approach doesn’t call the to_python() method on assignment as was the case with SubfieldBase. If
you need that behavior, reimplement the Creator class from Django’s source code in your project.

django.utils.checksums

The django.utils.checksums module has been deprecated and will be removed in Django 1.10. The func-
tionality it provided (validating checksum using the Luhn algorithm) was undocumented and not used in Django. The
module has been moved to the django-localflavor package (version 1.1+).

InlineAdminForm.original_content_type_id

The original_content_type_id attribute on InlineAdminForm has been deprecated and will be removed
in Django 1.10. Historically, it was used to construct the “view on site” URL. This URL is now accessible using the
absolute_url attribute of the form.

django.views.generic.edit.FormMixin.get_form()’s form_class argument

FormMixin subclasses that override the get_form() method should make sure to provide a default value for the
form_class argument since it’s now optional.

Rendering templates loaded by get_template() with a Context

The return type of get_template() has changed in Django 1.8: instead of a django.template.Template,
it returns a Template instance whose exact type depends on which backend loaded it.

Both classes provide a render() method, however, the former takes a django.template.Context as an
argument while the latter expects a dict. This change is enforced through a deprecation path for Django templates.

Since it’s easier to understand with examples, the upgrade guide shows how to adapt affected code.

All this also applies to select_template().

Template and Context classes in template responses

Some methods of SimpleTemplateResponse and TemplateResponse accepted django.template.
Context and django.template.Template objects as arguments. They should now receive dict and
backend-dependent template objects respectively.

This also applies to the return types if you have subclassed either template response class.

Check the template response API documentation for details.

1482 Chapter 9. Release notes

https://github.com/django/django/blob/stable/1.8.x/django/db/models/fields/subclassing.py#L31-L44
https://pypi.python.org/pypi/django-localflavor
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Django Documentation, Release 1.10.9.dev20171123183751

current_app argument of template-related APIs

The following functions and classes will no longer accept a current_app parameter to set an URL namespace in
Django 1.10:

• django.shortcuts.render()

• django.template.Context()

• django.template.RequestContext()

• django.template.response.TemplateResponse()

Set request.current_app instead, where request is the first argument to these functions or classes. If you’re
using a plain Context, use a RequestContext instead.

dictionary and context_instance arguments of rendering functions

The following functions will no longer accept the dictionary and context_instance parameters in Django
1.10:

• django.shortcuts.render()

• django.shortcuts.render_to_response()

• django.template.loader.render_to_string()

Use the context parameter instead. When dictionary is passed as a positional argument, which is the most
common idiom, no changes are needed.

If you’re passing a Context in context_instance, pass a dict in the context parameter instead. If you’re
passing a RequestContext, pass the request separately in the request parameter.

dirs argument of template-finding functions

The following functions will no longer accept a dirs parameter to override TEMPLATE_DIRS in Django 1.10:

• django.template.loader.get_template()

• django.template.loader.select_template()

• django.shortcuts.render()

• django.shortcuts.render_to_response()

The parameter didn’t work consistently across different template loaders and didn’t work for included templates.

django.template.loader.BaseLoader

django.template.loader.BaseLoader was renamed to django.template.loaders.base.
Loader. If you’ve written a custom template loader that inherits BaseLoader, you must inherit Loader
instead.

django.test.utils.TestTemplateLoader

Private API django.test.utils.TestTemplateLoader is deprecated in favor of django.template.
loaders.locmem.Loader and will be removed in Django 1.9.

9.1. Final releases 1483

https://docs.python.org/3/library/stdtypes.html#dict

Django Documentation, Release 1.10.9.dev20171123183751

Support for the max_length argument on custom Storage classes

Storage subclasses should add max_length=None as a parameter to get_available_name() and/or
save() if they override either method. Support for storages that do not accept this argument will be removed in
Django 1.10.

qn replaced by compiler

In previous Django versions, various internal ORM methods (mostly as_sql methods) accepted a qn (for “quote
name”) argument, which was a reference to a function that quoted identifiers for sending to the database. In Django
1.8, that argument has been renamed to compiler and is now a full SQLCompiler instance. For backwards-
compatibility, calling a SQLCompiler instance performs the same name-quoting that the qn function used to.
However, this backwards-compatibility shim is immediately deprecated: you should rename your qn arguments to
compiler, and call compiler.quote_name_unless_alias(...) where you previously called qn(...).

Default value of RedirectView.permanent

The default value of the RedirectView.permanent attribute will change from True to False in Django 1.9.

Using AuthenticationMiddleware without SessionAuthenticationMiddleware

django.contrib.auth.middleware.SessionAuthenticationMiddleware was added in Django
1.7. In Django 1.7.2, its functionality was moved to auth.get_user() and, for backwards compatibility, en-
abled only if 'django.contrib.auth.middleware.SessionAuthenticationMiddleware' appears
in MIDDLEWARE_CLASSES.

In Django 1.10, session verification will be enabled regardless of whether
or not SessionAuthenticationMiddleware is enabled (at which point
SessionAuthenticationMiddleware will have no significance). You can add it to your
MIDDLEWARE_CLASSES sometime before then to opt-in. Please read the upgrade considerations first.

django.contrib.sitemaps.FlatPageSitemap

django.contrib.sitemaps.FlatPageSitemap has moved to django.contrib.flatpages.
sitemaps.FlatPageSitemap. The old import location is deprecated and will be removed in Django 1.9.

Model Field.related

Private attribute django.db.models.Field.related is deprecated in favor of Field.rel. The latter is
an instance of django.db.models.fields.related.ForeignObjectRel which replaces django.db.
models.related.RelatedObject. The django.db.models.related module has been removed and
the Field.related attribute will be removed in Django 1.10.

ssi template tag

The ssi template tag allows files to be included in a template by absolute path. This is of limited use in most
deployment situations, and the include tag often makes more sense. This tag is now deprecated and will be removed
in Django 1.10.

1484 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

= as comparison operator in if template tag

Using a single equals sign with the {% if %} template tag for equality testing was undocumented and untested. It’s
now deprecated in favor of ==.

%(<foo>)s syntax in ModelFormMixin.success_url

The legacy %(<foo>)s syntax in ModelFormMixin.success_url is deprecated and will be removed in
Django 1.10.

GeoQuerySet aggregate methods

The collect(), extent(), extent3d(), make_line(), and unionagg() aggregate methods are dep-
recated and should be replaced by their function-based aggregate equivalents (Collect, Extent, Extent3D,
MakeLine, and Union).

Signature of the allow_migrate router method

The signature of the allow_migrate() method of database routers has changed from allow_migrate(db,
model) to allow_migrate(db, app_label, model_name=None, **hints).

When model_name is set, the value that was previously given through the model positional argument may now be
found inside the hints dictionary under the key 'model'.

After switching to the new signature the router will also be called by the RunPython and RunSQL operations.

Features removed in 1.8

These features have reached the end of their deprecation cycle and are removed in Django 1.8. See Features deprecated
in 1.6 for details, including how to remove usage of these features.

• django.contrib.comments is removed.

• The following transaction management APIs are removed:

– TransactionMiddleware

– the decorators and context managers autocommit, commit_on_success, and
commit_manually, defined in django.db.transaction

– the functions commit_unless_managed and rollback_unless_managed, also defined in
django.db.transaction

– the TRANSACTIONS_MANAGED setting

• The cycle and firstof template tags auto-escape their arguments.

• The SEND_BROKEN_LINK_EMAILS setting is removed.

• django.middleware.doc.XViewMiddleware is removed.

• The Model._meta.module_name alias is removed.

• The backward compatible shims introduced to rename get_query_set and similar queryset
methods are removed. This affects the following classes: BaseModelAdmin, ChangeList,

9.1. Final releases 1485

Django Documentation, Release 1.10.9.dev20171123183751

BaseCommentNode, GenericForeignKey, Manager, SingleRelatedObjectDescriptor and
ReverseSingleRelatedObjectDescriptor.

• The backward compatible shims introduced to rename the attributes ChangeList.root_query_set and
ChangeList.query_set are removed.

• django.views.defaults.shortcut and django.conf.urls.shortcut are removed.

• Support for the Python Imaging Library (PIL) module is removed.

• The following private APIs are removed:

– django.db.backend

– django.db.close_connection()

– django.db.backends.creation.BaseDatabaseCreation.set_autocommit()

– django.db.transaction.is_managed()

– django.db.transaction.managed()

• django.forms.widgets.RadioInput is removed.

• The module django.test.simple and the class django.test.simple.
DjangoTestSuiteRunner are removed.

• The module django.test._doctest is removed.

• The CACHE_MIDDLEWARE_ANONYMOUS_ONLY setting is removed. This change affects both
django.middleware.cache.CacheMiddleware and django.middleware.cache.
UpdateCacheMiddleware despite the lack of a deprecation warning in the latter class.

• Usage of the hard-coded Hold down “Control”, or “Command” on a Mac, to select more than one. string to
override or append to user-provided help_text in forms for ManyToMany model fields is not performed by
Django anymore either at the model or forms layer.

• The Model._meta.get_(add|change|delete)_permission methods are removed.

• The session key django_language is no longer read for backwards compatibility.

• Geographic Sitemaps are removed (django.contrib.gis.sitemaps.views.index and django.
contrib.gis.sitemaps.views.sitemap).

• django.utils.html.fix_ampersands, the fix_ampersands template filter, and django.
utils.html.clean_html are removed.

9.1.4 1.7 release

Django 1.7.11 release notes

November 24, 2015

Django 1.7.11 fixes a security issue and a data loss bug in 1.7.10.

Fixed settings leak possibility in date template filter

If an application allows users to specify an unvalidated format for dates and passes this format to the date filter,
e.g. {{ last_updated|date:user_date_format }}, then a malicious user could obtain any secret in the
application’s settings by specifying a settings key instead of a date format. e.g. "SECRET_KEY" instead of "j/m/
Y".

1486 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

To remedy this, the underlying function used by the date template filter, django.utils.formats.
get_format(), now only allows accessing the date/time formatting settings.

Bugfixes

• Fixed a data loss possibility with Prefetch if to_attr is set to a ManyToManyField (#25693).

Django 1.7.10 release notes

August 18, 2015

Django 1.7.10 fixes a security issue in 1.7.9.

Denial-of-service possibility in logout() view by filling session store

Previously, a session could be created when anonymously accessing the django.contrib.auth.views.
logout() view (provided it wasn’t decorated with login_required() as done in the admin). This could allow
an attacker to easily create many new session records by sending repeated requests, potentially filling up the session
store or causing other users’ session records to be evicted.

The SessionMiddleware has been modified to no longer create empty session records, including when
SESSION_SAVE_EVERY_REQUEST is active.

Additionally, the contrib.sessions.backends.base.SessionBase.flush() and cache_db.
SessionStore.flush() methods have been modified to avoid creating a new empty session. Maintainers of
third-party session backends should check if the same vulnerability is present in their backend and correct it if so.

Django 1.7.9 release notes

July 8, 2015

Django 1.7.9 fixes several security issues and bugs in 1.7.8.

Denial-of-service possibility by filling session store

In previous versions of Django, the session backends created a new empty record in the session storage anytime
request.session was accessed and there was a session key provided in the request cookies that didn’t already
have a session record. This could allow an attacker to easily create many new session records simply by sending
repeated requests with unknown session keys, potentially filling up the session store or causing other users’ session
records to be evicted.

The built-in session backends now create a session record only if the session is actually modified; empty session
records are not created. Thus this potential DoS is now only possible if the site chooses to expose a session-modifying
view to anonymous users.

As each built-in session backend was fixed separately (rather than a fix in the core sessions framework), maintainers
of third-party session backends should check whether the same vulnerability is present in their backend and correct it
if so.

9.1. Final releases 1487

https://code.djangoproject.com/ticket/25693

Django Documentation, Release 1.10.9.dev20171123183751

Header injection possibility since validators accept newlines in input

Some of Django’s built-in validators (EmailValidator, most seriously) didn’t prohibit newline characters (due to
the usage of $ instead of \Z in the regular expressions). If you use values with newlines in HTTP response or email
headers, you can suffer from header injection attacks. Django itself isn’t vulnerable because HttpResponse and the
mail sending utilities in django.core.mail prohibit newlines in HTTP and SMTP headers, respectively. While
the validators have been fixed in Django, if you’re creating HTTP responses or email messages in other ways, it’s a
good idea to ensure that those methods prohibit newlines as well. You might also want to validate that any existing
data in your application doesn’t contain unexpected newlines.

validate_ipv4_address(), validate_slug(), and URLValidator are also affected, however, as of
Django 1.6 the GenericIPAddresseField, IPAddressField, SlugField, and URLField form fields
which use these validators all strip the input, so the possibility of newlines entering your data only exists if you are
using these validators outside of the form fields.

The undocumented, internally unused validate_integer() function is now stricter as it validates using a regular
expression instead of simply casting the value using int() and checking if an exception was raised.

Bugfixes

• Prevented the loss of null/not null column properties during field renaming of MySQL databases
(#24817).

• Fixed SimpleTestCase.assertRaisesMessage() on Python 2.7.10 (#24903).

Django 1.7.8 release notes

May 1, 2015

Django 1.7.8 fixes:

• Database introspection with SQLite 3.8.9 (released April 8, 2015) (#24637).

• A database table name quoting regression in 1.7.2 (#24605).

• The loss of null/not null column properties during field alteration of MySQL databases (#24595).

Django 1.7.7 release notes

March 18, 2015

Django 1.7.7 fixes several bugs and security issues in 1.7.6.

Denial-of-service possibility with strip_tags()

Last year strip_tags() was changed to work iteratively. The problem is that the size of the input it’s processing
can increase on each iteration which results in an infinite loop in strip_tags(). This issue only affects versions
of Python that haven’t received a bugfix in HTMLParser; namely Python < 2.7.7 and 3.3.5. Some operating system
vendors have also backported the fix for the Python bug into their packages of earlier versions.

To remedy this issue, strip_tags() will now return the original input if it detects the length of the string it’s
processing increases. Remember that absolutely NO guarantee is provided about the results of strip_tags()
being HTML safe. So NEVER mark safe the result of a strip_tags() call without escaping it first, for example
with escape().

1488 Chapter 9. Release notes

https://code.djangoproject.com/ticket/24817
https://code.djangoproject.com/ticket/24903
https://code.djangoproject.com/ticket/24637
https://code.djangoproject.com/ticket/24605
https://code.djangoproject.com/ticket/24595
https://bugs.python.org/issue20288

Django Documentation, Release 1.10.9.dev20171123183751

Mitigated possible XSS attack via user-supplied redirect URLs

Django relies on user input in some cases (e.g. django.contrib.auth.views.login() and i18n)
to redirect the user to an “on success” URL. The security checks for these redirects (namely django.
utils.http.is_safe_url()) accepted URLs with leading control characters and so considered URLs like
\x08javascript:... safe. This issue doesn’t affect Django currently, since we only put this URL into the
Location response header and browsers seem to ignore JavaScript there. Browsers we tested also treat URLs pre-
fixed with control characters such as %08//example.com as relative paths so redirection to an unsafe target isn’t a
problem either.

However, if a developer relies on is_safe_url() to provide safe redirect targets and puts such a URL into a link,
they could suffer from an XSS attack as some browsers such as Google Chrome ignore control characters at the start
of a URL in an anchor href.

Bugfixes

• Fixed renaming of classes in migrations where renaming a subclass would cause incorrect state to be recorded
for objects that referenced the superclass (#24354).

• Stopped writing migration files in dry run mode when merging migration conflicts. When makemigrations
--merge is called with verbosity=3 the migration file is written to stdout (#24427).

Django 1.7.6 release notes

March 9, 2015

Django 1.7.6 fixes a security issue and several bugs in 1.7.5.

Mitigated an XSS attack via properties in ModelAdmin.readonly_fields

The ModelAdmin.readonly_fields attribute in the Django admin allows displaying model fields and model
attributes. While the former were correctly escaped, the latter were not. Thus untrusted content could be injected into
the admin, presenting an exploitation vector for XSS attacks.

In this vulnerability, every model attribute used in readonly_fields that is not an actual model field (e.g. a
property) will fail to be escaped even if that attribute is not marked as safe. In this release, autoescaping is now
correctly applied.

Bugfixes

• Fixed crash when coercing ManyRelatedManager to a string (#24352).

• Fixed a bug that prevented migrations from adding a foreign key constraint when converting an existing field to
a foreign key (#24447).

Django 1.7.5 release notes

February 25, 2015

Django 1.7.5 fixes several bugs in 1.7.4.

9.1. Final releases 1489

https://code.djangoproject.com/ticket/24354
https://code.djangoproject.com/ticket/24427
https://docs.python.org/3/library/functions.html#property
https://code.djangoproject.com/ticket/24352
https://code.djangoproject.com/ticket/24447

Django Documentation, Release 1.10.9.dev20171123183751

Bugfixes

• Reverted a fix that prevented a migration crash when unapplying contrib.contenttypes’s or contrib.
auth’s first migration (#24075) due to severe impact on the test performance (#24251) and problems in multi-
database setups (#24298).

• Fixed a regression that prevented custom fields inheriting from ManyToManyField from being recognized in
migrations (#24236).

• Fixed crash in contrib.sites migrations when a default database isn’t used (#24332).

• Added the ability to set the isolation level on PostgreSQL with psycopg2 ≥ 2.4.2 (#24318). It was advertised as
a new feature in Django 1.6 but it didn’t work in practice.

• Formats for the Azerbaijani locale (az) have been added.

Django 1.7.4 release notes

January 27, 2015

Django 1.7.4 fixes several bugs in 1.7.3.

Bugfixes

• Fixed a migration crash when unapplying contrib.contenttypes’s or contrib.auth’s first migration
(#24075).

• Made the migration’s RenameModel operation rename ManyToManyField tables (#24135).

• Fixed a migration crash on MySQL when migrating from a OneToOneField to a ForeignKey (#24163).

• Prevented the static.serve view from producing ResourceWarnings in certain circumstances (security
fix regression, #24193).

• Fixed schema check for ManyToManyField to look for internal type instead of checking class instance, so you
can write custom m2m-like fields with the same behavior. (#24104).

Django 1.7.3 release notes

January 13, 2015

Django 1.7.3 fixes several security issues and bugs in 1.7.2.

WSGI header spoofing via underscore/dash conflation

When HTTP headers are placed into the WSGI environ, they are normalized by converting to uppercase, con-
verting all dashes to underscores, and prepending HTTP_. For instance, a header X-Auth-User would become
HTTP_X_AUTH_USER in the WSGI environ (and thus also in Django’s request.META dictionary).

Unfortunately, this means that the WSGI environ cannot distinguish between headers containing dashes and headers
containing underscores: X-Auth-User and X-Auth_User both become HTTP_X_AUTH_USER. This means that
if a header is used in a security-sensitive way (for instance, passing authentication information along from a front-end
proxy), even if the proxy carefully strips any incoming value for X-Auth-User, an attacker may be able to provide
an X-Auth_User header (with underscore) and bypass this protection.

1490 Chapter 9. Release notes

https://code.djangoproject.com/ticket/24075
https://code.djangoproject.com/ticket/24251
https://code.djangoproject.com/ticket/24298
https://code.djangoproject.com/ticket/24236
https://code.djangoproject.com/ticket/24332
https://code.djangoproject.com/ticket/24318
https://code.djangoproject.com/ticket/24075
https://code.djangoproject.com/ticket/24135
https://code.djangoproject.com/ticket/24163
https://code.djangoproject.com/ticket/24193
https://code.djangoproject.com/ticket/24104

Django Documentation, Release 1.10.9.dev20171123183751

In order to prevent such attacks, both Nginx and Apache 2.4+ strip all headers containing underscores from incoming
requests by default. Django’s built-in development server now does the same. Django’s development server is not
recommended for production use, but matching the behavior of common production servers reduces the surface area
for behavior changes during deployment.

Mitigated possible XSS attack via user-supplied redirect URLs

Django relies on user input in some cases (e.g. django.contrib.auth.views.login() and i18n) to
redirect the user to an “on success” URL. The security checks for these redirects (namely django.utils.
http.is_safe_url()) didn’t strip leading whitespace on the tested URL and as such considered URLs like
\njavascript:... safe. If a developer relied on is_safe_url() to provide safe redirect targets and put such
a URL into a link, they could suffer from a XSS attack. This bug doesn’t affect Django currently, since we only put
this URL into the Location response header and browsers seem to ignore JavaScript there.

Denial-of-service attack against django.views.static.serve

In older versions of Django, the django.views.static.serve() view read the files it served one line at a
time. Therefore, a big file with no newlines would result in memory usage equal to the size of that file. An attacker
could exploit this and launch a denial-of-service attack by simultaneously requesting many large files. This view now
reads the file in chunks to prevent large memory usage.

Note, however, that this view has always carried a warning that it is not hardened for production use and should be
used only as a development aid. Now may be a good time to audit your project and serve your files in production using
a real front-end web server if you are not doing so.

Database denial-of-service with ModelMultipleChoiceField

Given a form that uses ModelMultipleChoiceField and show_hidden_initial=True (not a docu-
mented API), it was possible for a user to cause an unreasonable number of SQL queries by submitting duplicate
values for the field’s data. The validation logic in ModelMultipleChoiceField now deduplicates submitted
values to address this issue.

Bugfixes

• The default iteration count for the PBKDF2 password hasher has been increased by 25%. This part of the normal
major release process was inadvertently omitted in 1.7. This backwards compatible change will not affect
users who have subclassed django.contrib.auth.hashers.PBKDF2PasswordHasher to change
the default value.

• Fixed a crash in the CSRF middleware when handling non-ASCII referer header (#23815).

• Fixed a crash in the django.contrib.auth.redirect_to_login view when passing a
reverse_lazy() result on Python 3 (#24097).

• Added correct formats for Greek (el) (#23967).

• Fixed a migration crash when unapplying a migration where multiple operations interact with the same model
(#24110).

9.1. Final releases 1491

https://code.djangoproject.com/ticket/23815
https://code.djangoproject.com/ticket/24097
https://code.djangoproject.com/ticket/23967
https://code.djangoproject.com/ticket/24110

Django Documentation, Release 1.10.9.dev20171123183751

Django 1.7.2 release notes

January 2, 2015

Django 1.7.2 fixes several bugs in 1.7.1.

Additionally, Django’s vendored version of six, django.utils.six, has been upgraded to the latest release
(1.9.0).

Bugfixes

• Fixed migration’s renaming of auto-created many-to-many tables when changing Meta.db_table (#23630).

• Fixed a migration crash when adding an explicit id field to a model on SQLite (#23702).

• Added a warning for duplicate models when a module is reloaded. Previously a RuntimeError was raised
every time two models clashed in the app registry. (#23621).

• Prevented flush from loading initial data for migrated apps (#23699).

• Fixed a makemessages regression in 1.7.1 when STATIC_ROOT has the default None value (#23717).

• Added GeoDjango compatibility with mysqlclient database driver.

• Fixed MySQL 5.6+ crash with GeometryFields in migrations (#23719).

• Fixed a migration crash when removing a field that is referenced in AlterIndexTogether or
AlterUniqueTogether (#23614).

• Updated the first day of the week in the Ukrainian locale to Monday.

• Added support for transactional spatial metadata initialization on SpatiaLite 4.1+ (#23152).

• Fixed a migration crash that prevented changing a nullable field with a default to non-nullable with the same
default (#23738).

• Fixed a migration crash when adding GeometryFields with blank=True on PostGIS (#23731).

• Allowed usage of DateTimeField() as Transform.output_field (#23420).

• Fixed a migration serializing bug involving float("nan") and float("inf") (#23770).

• Fixed a regression where custom form fields having a queryset attribute but no limit_choices_to could
not be used in a ModelForm (#23795).

• Fixed a custom field type validation error with MySQL backend when db_type returned None (#23761).

• Fixed a migration crash when a field is renamed that is part of an index_together (#23859).

• Fixed squashmigrations to respect the --no-optimize parameter (#23799).

• Made RenameModel reversible (#22248)

• Avoided unnecessary rollbacks of migrations from other apps when migrating backwards (#23410).

• Fixed a rare query error when using deeply nested subqueries (#23605).

• Fixed a crash in migrations when deleting a field that is part of a index/unique_together constraint
(#23794).

• Fixed django.core.files.File.__repr__() when the file’s name contains Unicode characters
(#23888).

• Added missing context to the admin’s delete_selected view that prevented custom site header, etc. from
appearing (#23898).

1492 Chapter 9. Release notes

https://code.djangoproject.com/ticket/23630
https://code.djangoproject.com/ticket/23702
https://code.djangoproject.com/ticket/23621
https://code.djangoproject.com/ticket/23699
https://code.djangoproject.com/ticket/23717
https://code.djangoproject.com/ticket/23719
https://code.djangoproject.com/ticket/23614
https://code.djangoproject.com/ticket/23152
https://code.djangoproject.com/ticket/23738
https://code.djangoproject.com/ticket/23731
https://code.djangoproject.com/ticket/23420
https://code.djangoproject.com/ticket/23770
https://code.djangoproject.com/ticket/23795
https://code.djangoproject.com/ticket/23761
https://code.djangoproject.com/ticket/23859
https://code.djangoproject.com/ticket/23799
https://code.djangoproject.com/ticket/22248
https://code.djangoproject.com/ticket/23410
https://code.djangoproject.com/ticket/23605
https://code.djangoproject.com/ticket/23794
https://code.djangoproject.com/ticket/23888
https://code.djangoproject.com/ticket/23898

Django Documentation, Release 1.10.9.dev20171123183751

• Fixed a regression with dynamically generated inlines and allowed field references in the admin (#23754).

• Fixed an infinite loop bug for certain cyclic migration dependencies, and made the error message for cyclic
dependencies much more helpful.

• Added missing index_together handling for SQLite (#23880).

• Fixed a crash when RunSQL SQL content was collected by the schema editor, typically when using
sqlmigrate (#23909).

• Fixed a regression in contrib.admin add/change views which caused some ModelAdmin methods to
receive the incorrect obj value (#23934).

• Fixed runserver crash when socket error message contained Unicode characters (#23946).

• Fixed serialization of type when adding a deconstruct() method (#23950).

• Prevented the django.contrib.auth.middleware.SessionAuthenticationMiddleware
from setting a "Vary: Cookie" header on all responses (#23939).

• Fixed a crash when adding blank=True to TextField() on MySQL (#23920).

• Fixed index creation by the migration infrastructure, particularly when dealing with PostgreSQL specific
{text|varchar}_pattern_ops indexes (#23954).

• Fixed bug in makemigrations that created broken migration files when dealing with multiple table inheri-
tance and inheriting from more than one model (#23956).

• Fixed a crash when a MultiValueField has invalid data (#23674).

• Fixed a crash in the admin when using “Save as new” and also deleting a related inline (#23857).

• Always converted related_name to text (unicode), since that is required on Python 3 for interpolation.
Removed conversion of related_name to text in migration deconstruction (#23455 and #23982).

• Enlarged the sizes of tablespaces which are created by default for testing on Oracle (the main tablespace was
increased from 200M to 300M and the temporary tablespace from 100M to 150M). This was required to accom-
modate growth in Django’s own test suite (#23969).

• Fixed timesince filter translations in Korean (#23989).

• Fixed the SQLite SchemaEditor to properly add defaults in the absence of a user specified default. For
example, a CharField with blank=True didn’t set existing rows to an empty string which resulted in a
crash when adding the NOT NULL constraint (#23987).

• makemigrations no longer prompts for a default value when adding TextField() or CharField()
without a default (#23405).

• Fixed a migration crash when adding order_with_respect_to to a table with existing rows (#23983).

• Restored the pre_migrate signal if all apps have migrations (#23975).

• Made admin system checks run for custom AdminSites (#23497).

• Ensured the app registry is fully populated when unpickling models. When an external script (like a queueing
infrastructure) reloads pickled models, it could crash with an AppRegistryNotReady exception (#24007).

• Added quoting to field indexes in the SQL generated by migrations to prevent a crash when the index name
requires it (##24015).

• Added datetime.time support to migrations questioner (#23998).

• Fixed admindocs crash on apps installed as eggs (#23525).

9.1. Final releases 1493

https://code.djangoproject.com/ticket/23754
https://code.djangoproject.com/ticket/23880
https://code.djangoproject.com/ticket/23909
https://code.djangoproject.com/ticket/23934
https://code.djangoproject.com/ticket/23946
https://code.djangoproject.com/ticket/23950
https://code.djangoproject.com/ticket/23939
https://code.djangoproject.com/ticket/23920
https://code.djangoproject.com/ticket/23954
https://code.djangoproject.com/ticket/23956
https://code.djangoproject.com/ticket/23674
https://code.djangoproject.com/ticket/23857
https://code.djangoproject.com/ticket/23455
https://code.djangoproject.com/ticket/23982
https://code.djangoproject.com/ticket/23969
https://code.djangoproject.com/ticket/23989
https://code.djangoproject.com/ticket/23987
https://code.djangoproject.com/ticket/23405
https://code.djangoproject.com/ticket/23983
https://code.djangoproject.com/ticket/23975
https://code.djangoproject.com/ticket/23497
https://code.djangoproject.com/ticket/24007
https://code.djangoproject.com/ticket/24015
https://code.djangoproject.com/ticket/23998
https://code.djangoproject.com/ticket/23525

Django Documentation, Release 1.10.9.dev20171123183751

• Changed migrations autodetector to generate an AlterModelOptions operation instead of DeleteModel
and CreateModel operations when changing Meta.managed. This prevents data loss when changing
managed from False to True and vice versa (#24037).

• Enabled the sqlsequencereset command on apps with migrations (#24054).

• Added tablespace SQL to apps with migrations (#24051).

• Corrected contrib.sites default site creation in a multiple database setup (#24000).

• Restored support for objects that aren’t str or bytes in django.utils.safestring.
mark_for_escaping() on Python 3.

• Supported strings escaped by third-party libraries with the __html__ convention in the template engine
(#23831).

• Prevented extraneous DROP DEFAULT SQL in migrations (#23581).

• Restored the ability to use more than five levels of subqueries (#23758).

• Fixed crash when ValidationError is initialized with a ValidationError that is initialized with a
dictionary (#24008).

• Prevented a crash on apps without migrations when running migrate --list (#23366).

Django 1.7.1 release notes

October 22, 2014

Django 1.7.1 fixes several bugs in 1.7.

Bugfixes

• Allowed related many-to-many fields to be referenced in the admin (#23604).

• Added a more helpful error message if you try to migrate an app without first creating the contenttypes
table (#22411).

• Modified migrations dependency algorithm to avoid possible infinite recursion.

• Fixed a UnicodeDecodeError when the flush error message contained Unicode characters (#22882).

• Reinstated missing CHECK SQL clauses which were omitted on some backends when not using migrations
(#23416).

• Fixed serialization of type objects in migrations (#22951).

• Allowed inline and hidden references to admin fields (#23431).

• The @deconstructible decorator now fails with a ValueError if the decorated object cannot automati-
cally be imported (#23418).

• Fixed a typo in an inlineformset_factory() error message that caused a crash (#23451).

• Restored the ability to use ABSOLUTE_URL_OVERRIDES with the 'auth.User' model (#11775). As
a side effect, the setting now adds a get_absolute_url() method to any model that appears in
ABSOLUTE_URL_OVERRIDES but doesn’t define get_absolute_url().

• Avoided masking some ImportError exceptions during application loading (#22920).

• Empty index_together or unique_together model options no longer results in infinite migrations
(#23452).

1494 Chapter 9. Release notes

https://code.djangoproject.com/ticket/24037
https://code.djangoproject.com/ticket/24054
https://code.djangoproject.com/ticket/24051
https://code.djangoproject.com/ticket/24000
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://code.djangoproject.com/ticket/23831
https://code.djangoproject.com/ticket/23581
https://code.djangoproject.com/ticket/23758
https://code.djangoproject.com/ticket/24008
https://code.djangoproject.com/ticket/23366
https://code.djangoproject.com/ticket/23604
https://code.djangoproject.com/ticket/22411
https://code.djangoproject.com/ticket/22882
https://code.djangoproject.com/ticket/23416
https://code.djangoproject.com/ticket/22951
https://code.djangoproject.com/ticket/23431
https://code.djangoproject.com/ticket/23418
https://code.djangoproject.com/ticket/23451
https://code.djangoproject.com/ticket/11775
https://code.djangoproject.com/ticket/22920
https://code.djangoproject.com/ticket/23452

Django Documentation, Release 1.10.9.dev20171123183751

• Fixed crash in contrib.sitemaps if lastmod returned a date rather than a datetime (#23403).

• Allowed migrations to work with app_labels that have the same last part (e.g. django.contrib.auth
and vendor.auth) (#23483).

• Restored the ability to deepcopy F objects (#23492).

• Formats for Welsh (cy) and several Chinese locales (zh_CN, zh_Hans, zh_Hant and zh_TW) have been
added. Formats for Macedonian have been fixed (trailing dot removed, #23532).

• Added quoting of constraint names in the SQL generated by migrations to prevent crash with uppercase charac-
ters in the name (#23065).

• Fixed renaming of models with a self-referential many-to-many field (ManyToManyField('self'))
(#23503).

• Added the get_extra(), get_max_num(), and get_min_num() hooks to
GenericInlineModelAdmin (#23539).

• Made migrations.RunSQL no longer require percent sign escaping. This is now consistent with cursor.
execute() (#23426).

• Made the SERIALIZE entry in the TEST dictionary usable (#23421).

• Fixed bug in migrations that prevented foreign key constraints to unmanaged models with a custom primary key
(#23415).

• Added SchemaEditor for MySQL GIS backend so that spatial indexes will be created for apps with migra-
tions (#23538).

• Added SchemaEditor for Oracle GIS backend so that spatial metadata and indexes will be created for apps
with migrations (#23537).

• Coerced the related_name model field option to unicode during migration generation to generate migrations
that work with both Python 2 and 3 (#23455).

• Fixed MigrationWriter to handle builtin types without imports (#23560).

• Fixed deepcopy on ErrorList (#23594).

• Made the admindocs view to browse view details check if the view specified in the URL exists in the URL-
conf. Previously it was possible to import arbitrary packages from the Python path. This was not considered a
security issue because admindocs is only accessible to staff users (#23601).

• Fixed UnicodeDecodeError crash in AdminEmailHandler with non-ASCII characters in the request
(#23593).

• Fixed missing get_or_create and update_or_create on related managers causing
IntegrityError (#23611).

• Made urlsafe_base64_decode() return the proper type (byte string) on Python 3 (#23333).

• makemigrations can now serialize timezone-aware values (#23365).

• Added a prompt to the migrations questioner when removing the null constraint from a field to prevent an
IntegrityError on existing NULL rows (#23609).

• Fixed generic relations in ModelAdmin.list_filter (#23616).

• Restored RFC compliance for the SMTP backend on Python 3 (#23063).

• Fixed a crash while parsing cookies containing invalid content (#23638).

• The system check framework now raises error models.E020 when the class method Model.check() is un-
reachable (#23615).

9.1. Final releases 1495

https://code.djangoproject.com/ticket/23403
https://code.djangoproject.com/ticket/23483
https://code.djangoproject.com/ticket/23492
https://code.djangoproject.com/ticket/23532
https://code.djangoproject.com/ticket/23065
https://code.djangoproject.com/ticket/23503
https://code.djangoproject.com/ticket/23539
https://code.djangoproject.com/ticket/23426
https://code.djangoproject.com/ticket/23421
https://code.djangoproject.com/ticket/23415
https://code.djangoproject.com/ticket/23538
https://code.djangoproject.com/ticket/23537
https://code.djangoproject.com/ticket/23455
https://code.djangoproject.com/ticket/23560
https://code.djangoproject.com/ticket/23594
https://code.djangoproject.com/ticket/23601
https://code.djangoproject.com/ticket/23593
https://code.djangoproject.com/ticket/23611
https://code.djangoproject.com/ticket/23333
https://code.djangoproject.com/ticket/23365
https://code.djangoproject.com/ticket/23609
https://code.djangoproject.com/ticket/23616
https://code.djangoproject.com/ticket/23063
https://code.djangoproject.com/ticket/23638
https://code.djangoproject.com/ticket/23615

Django Documentation, Release 1.10.9.dev20171123183751

• Made the Oracle test database creation drop the test user in the event of an unclean exit of a previous test run
(#23649).

• Fixed makemigrations to detect changes to Meta.db_table (#23629).

• Fixed a regression when feeding the Django test client with an empty data string (#21740).

• Fixed a regression in makemessages where static files were unexpectedly ignored (#23583).

Django 1.7 release notes

September 2, 2014

Welcome to Django 1.7!

These release notes cover the new features, as well as some backwards incompatible changes you’ll want to be aware
of when upgrading from Django 1.6 or older versions. We’ve begun the deprecation process for some features, and
some features have reached the end of their deprecation process and have been removed.

Python compatibility

Django 1.7 requires Python 2.7, 3.2, 3.3, or 3.4. We highly recommend and only officially support the latest release
of each series.

The Django 1.6 series is the last to support Python 2.6. Django 1.7 is the first release to support Python 3.4.

This change should affect only a small number of Django users, as most operating-system vendors today are shipping
Python 2.7 or newer as their default version. If you’re still using Python 2.6, however, you’ll need to stick to Django
1.6 until you can upgrade your Python version. Per our support policy, Django 1.6 will continue to receive security
support until the release of Django 1.8.

What’s new in Django 1.7

Schema migrations

Django now has built-in support for schema migrations. It allows models to be updated, changed, and deleted by cre-
ating migration files that represent the model changes and which can be run on any development, staging or production
database.

Migrations are covered in their own documentation, but a few of the key features are:

• syncdb has been deprecated and replaced by migrate. Don’t worry - calls to syncdb will still work as
before.

• A new makemigrations command provides an easy way to autodetect changes to your models and make
migrations for them.

django.db.models.signals.pre_syncdb and django.db.models.signals.post_syncdb
have been deprecated, to be replaced by pre_migrate and post_migrate respectively. These new signals
have slightly different arguments. Check the documentation for details.

• The allow_syncdb method on database routers is now called allow_migrate, but still performs the same
function. Routers with allow_syncdb methods will still work, but that method name is deprecated and you
should change it as soon as possible (nothing more than renaming is required).

• initial_data fixtures are no longer loaded for apps with migrations; if you want to load initial data for an
app, we suggest you create a migration for your application and define a RunPython or RunSQL operation in
the operations section of the migration.

1496 Chapter 9. Release notes

https://code.djangoproject.com/ticket/23649
https://code.djangoproject.com/ticket/23629
https://code.djangoproject.com/ticket/21740
https://code.djangoproject.com/ticket/23583

Django Documentation, Release 1.10.9.dev20171123183751

• Test rollback behavior is different for apps with migrations; in particular, Django will no longer emulate roll-
backs on non-transactional databases or inside TransactionTestCase unless specifically requested.

• It is not advised to have apps without migrations depend on (have a ForeignKey or ManyToManyField
to) apps with migrations.

App-loading refactor

Historically, Django applications were tightly linked to models. A singleton known as the “app cache” dealt with both
installed applications and models. The models module was used as an identifier for applications in many APIs.

As the concept of Django applications matured, this code showed some shortcomings. It has been refactored into an
“app registry” where models modules no longer have a central role and where it’s possible to attach configuration data
to applications.

Improvements thus far include:

• Applications can run code at startup, before Django does anything else, with the ready() method of their
configuration.

• Application labels are assigned correctly to models even when they’re defined outside of models.py. You
don’t have to set app_label explicitly any more.

• It is possible to omit models.py entirely if an application doesn’t have any models.

• Applications can be relabeled with the label attribute of application configurations, to work around label
conflicts.

• The name of applications can be customized in the admin with the verbose_name of application configura-
tions.

• The admin automatically calls autodiscover() when Django starts. You can consequently remove this line
from your URLconf.

• Django imports all application configurations and models as soon as it starts, through a deterministic and
straightforward process. This should make it easier to diagnose import issues such as import loops.

New method on Field subclasses

To help power both schema migrations and to enable easier addition of composite keys in future releases of Django,
the Field API now has a new required method: deconstruct().

This method takes no arguments, and returns a tuple of four items:

• name: The field’s attribute name on its parent model, or None if it is not part of a model

• path: A dotted, Python path to the class of this field, including the class name.

• args: Positional arguments, as a list

• kwargs: Keyword arguments, as a dict

These four values allow any field to be serialized into a file, as well as allowing the field to be copied safely, both
essential parts of these new features.

This change should not affect you unless you write custom Field subclasses; if you do, you may need to reimplement
the deconstruct() method if your subclass changes the method signature of __init__ in any way. If your field
just inherits from a built-in Django field and doesn’t override __init__, no changes are necessary.

9.1. Final releases 1497

Django Documentation, Release 1.10.9.dev20171123183751

If you do need to override deconstruct(), a good place to start is the built-in Django fields (django/db/
models/fields/__init__.py) as several fields, including DecimalField and DateField, override it and
show how to call the method on the superclass and simply add or remove extra arguments.

This also means that all arguments to fields must themselves be serializable; to see what we consider serializable, and
to find out how to make your own classes serializable, read the migration serialization documentation.

Calling custom QuerySet methods from the Manager

Historically, the recommended way to make reusable model queries was to create methods on a custom Manager
class. The problem with this approach was that after the first method call, you’d get back a QuerySet instance and
couldn’t call additional custom manager methods.

Though not documented, it was common to work around this issue by creating a custom QuerySet so that custom
methods could be chained; but the solution had a number of drawbacks:

• The custom QuerySet and its custom methods were lost after the first call to values() or
values_list().

• Writing a custom Manager was still necessary to return the custom QuerySet class and all methods that
were desired on the Manager had to be proxied to the QuerySet. The whole process went against the DRY
principle.

The QuerySet.as_manager() class method can now directly create Manager with QuerySet methods:

class FoodQuerySet(models.QuerySet):
def pizzas(self):

return self.filter(kind='pizza')

def vegetarian(self):
return self.filter(vegetarian=True)

class Food(models.Model):
kind = models.CharField(max_length=50)
vegetarian = models.BooleanField(default=False)
objects = FoodQuerySet.as_manager()

Food.objects.pizzas().vegetarian()

Using a custom manager when traversing reverse relations

It is now possible to specify a custom manager when traversing a reverse relationship:

class Blog(models.Model):
pass

class Entry(models.Model):
blog = models.ForeignKey(Blog)

objects = models.Manager() # Default Manager
entries = EntryManager() # Custom Manager

b = Blog.objects.get(id=1)
b.entry_set(manager='entries').all()

1498 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

New system check framework

We’ve added a new System check framework for detecting common problems (like invalid models) and providing hints
for resolving those problems. The framework is extensible so you can add your own checks for your own apps and
libraries.

To perform system checks, you use the check management command. This command replaces the older validate
management command.

New Prefetch object for advanced prefetch_related operations.

The new Prefetch object allows customizing prefetch operations.

You can specify the QuerySet used to traverse a given relation or customize the storage location of prefetch results.

This enables things like filtering prefetched relations, calling select_related() from a prefetched relation, or
prefetching the same relation multiple times with different querysets. See prefetch_related() for more details.

Admin shortcuts support time zones

The “today” and “now” shortcuts next to date and time input widgets in the admin are now operating in the current
time zone. Previously, they used the browser time zone, which could result in saving the wrong value when it didn’t
match the current time zone on the server.

In addition, the widgets now display a help message when the browser and server time zone are different, to clarify
how the value inserted in the field will be interpreted.

Using database cursors as context managers

Prior to Python 2.7, database cursors could be used as a context manager. The specific backend’s cursor defined the
behavior of the context manager. The behavior of magic method lookups was changed with Python 2.7 and cursors
were no longer usable as context managers.

Django 1.7 allows a cursor to be used as a context manager. That is, the following can be used:

with connection.cursor() as c:
c.execute(...)

instead of:

c = connection.cursor()
try:

c.execute(...)
finally:

c.close()

Custom lookups

It is now possible to write custom lookups and transforms for the ORM. Custom lookups work just like Django’s
built-in lookups (e.g. lte, icontains) while transforms are a new concept.

The django.db.models.Lookup class provides a way to add lookup operators for model fields. As an example
it is possible to add day_lte operator for DateFields.

9.1. Final releases 1499

Django Documentation, Release 1.10.9.dev20171123183751

The django.db.models.Transform class allows transformations of database values prior to the final lookup.
For example it is possible to write a year transform that extracts year from the field’s value. Transforms allow for
chaining. After the year transform has been added to DateField it is possible to filter on the transformed value,
for example qs.filter(author__birthdate__year__lte=1981).

For more information about both custom lookups and transforms refer to the custom lookups documentation.

Improvements to Form error handling

Form.add_error()

Previously there were two main patterns for handling errors in forms:

• Raising a ValidationError from within certain functions (e.g. Field.clean(), Form.
clean_<fieldname>(), or Form.clean() for non-field errors.)

• Fiddling with Form._errors when targeting a specific field in Form.clean() or adding errors from out-
side of a “clean” method (e.g. directly from a view).

Using the former pattern was straightforward since the form can guess from the context (i.e. which method raised the
exception) where the errors belong and automatically process them. This remains the canonical way of adding errors
when possible. However the latter was fiddly and error-prone, since the burden of handling edge cases fell on the user.

The new add_error() method allows adding errors to specific form fields from anywhere without having to
worry about the details such as creating instances of django.forms.utils.ErrorList or dealing with Form.
cleaned_data. This new API replaces manipulating Form._errors which now becomes a private API.

See Cleaning and validating fields that depend on each other for an example using Form.add_error().

Error metadata

The ValidationError constructor accepts metadata such as error code or params which are then available for
interpolating into the error message (see Raising ValidationError for more details); however, before Django 1.7 those
metadata were discarded as soon as the errors were added to Form.errors.

Form.errors and django.forms.utils.ErrorList now store the ValidationError instances so
these metadata can be retrieved at any time through the new Form.errors.as_data method.

The retrieved ValidationError instances can then be identified thanks to their error code which enables things
like rewriting the error’s message or writing custom logic in a view when a given error is present. It can also be used
to serialize the errors in a custom format such as XML.

The new Form.errors.as_json() method is a convenience method which returns error messages along with
error codes serialized as JSON. as_json() uses as_data() and gives an idea of how the new system could be
extended.

Error containers and backward compatibility

Heavy changes to the various error containers were necessary in order to support the features above, specifi-
cally Form.errors, django.forms.utils.ErrorList, and the internal storages of ValidationError.
These containers which used to store error strings now store ValidationError instances and public APIs have
been adapted to make this as transparent as possible, but if you’ve been using private APIs, some of the changes are
backwards incompatible; see ValidationError constructor and internal storage for more details.

1500 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Minor features

django.contrib.admin

• You can now implement site_header, site_title, and index_title attributes on a custom
AdminSite in order to easily change the admin site’s page title and header text. No more needing to override
templates!

• Buttons in django.contrib.admin now use the border-radius CSS property for rounded corners
rather than GIF background images.

• Some admin templates now have app-<app_name> and model-<model_name> classes in their <body>
tag to allow customizing the CSS per app or per model.

• The admin changelist cells now have a field-<field_name> class in the HTML to enable style customiza-
tions.

• The admin’s search fields can now be customized per-request thanks to the new django.contrib.admin.
ModelAdmin.get_search_fields() method.

• The ModelAdmin.get_fields() method may be overridden to customize the value of ModelAdmin.
fields.

• In addition to the existing admin.site.register syntax, you can use the new register() decorator to
register a ModelAdmin.

• You may specify ModelAdmin.list_display_links = None to disable links on the change list page
grid.

• You may now specify ModelAdmin.view_on_site to control whether or not to display the “View on site”
link.

• You can specify a descending ordering for a ModelAdmin.list_display value by prefixing the
admin_order_field value with a hyphen.

• The ModelAdmin.get_changeform_initial_data() method may be overridden to define custom
behavior for setting initial change form data.

django.contrib.auth

• Any **kwargs passed to email_user() are passed to the underlying send_mail() call.

• The permission_required() decorator can take a list of permissions as well as a single permission.

• You can override the new AuthenticationForm.confirm_login_allowed() method to more easily
customize the login policy.

• django.contrib.auth.views.password_reset() takes an optional
html_email_template_name parameter used to send a multipart HTML email for password resets.

• The AbstractBaseUser.get_session_auth_hash() method was added and if your
AUTH_USER_MODEL inherits from AbstractBaseUser, changing a user’s password now invalidates
old sessions if the django.contrib.auth.middleware.SessionAuthenticationMiddleware
is enabled. See Session invalidation on password change for more details.

9.1. Final releases 1501

Django Documentation, Release 1.10.9.dev20171123183751

django.contrib.formtools

• Calls to WizardView.done() now include a form_dict to allow easier access to forms by their step
name.

django.contrib.gis

• The default OpenLayers library version included in widgets has been updated from 2.11 to 2.13.

• Prepared geometries now also support the crosses, disjoint, overlaps, touches and within pred-
icates, if GEOS 3.3 or later is installed.

django.contrib.messages

• The backends for django.contrib.messages that use cookies, will now follow the
SESSION_COOKIE_SECURE and SESSION_COOKIE_HTTPONLY settings.

• The messages context processor now adds a dictionary of default levels under the name
DEFAULT_MESSAGE_LEVELS.

• Message objects now have a level_tag attribute that contains the string representation of the message level.

django.contrib.redirects

• RedirectFallbackMiddleware has two new attributes (response_gone_class and
response_redirect_class) that specify the types of HttpResponse instances the middleware
returns.

django.contrib.sessions

• The "django.contrib.sessions.backends.cached_db" session backend now respects
SESSION_CACHE_ALIAS. In previous versions, it always used the default cache.

django.contrib.sitemaps

• The sitemap framework now makes use of lastmod to set a Last-Modified header in the re-
sponse. This makes it possible for the ConditionalGetMiddleware to handle conditional GET requests
for sitemaps which set lastmod.

django.contrib.sites

• The new django.contrib.sites.middleware.CurrentSiteMiddleware allows setting the cur-
rent site on each request.

1502 Chapter 9. Release notes

https://django-formtools.readthedocs.io/en/latest/wizard.html#formtools.wizard.views.WizardView.done

Django Documentation, Release 1.10.9.dev20171123183751

django.contrib.staticfiles

• The static files storage classes may be subclassed to override the permissions that collected static files and di-
rectories receive by setting the file_permissions_mode and directory_permissions_mode pa-
rameters. See collectstatic for example usage.

• The CachedStaticFilesStorage backend gets a sibling class called
ManifestStaticFilesStorage that doesn’t use the cache system at all but instead a JSON file
called staticfiles.json for storing the mapping between the original file name (e.g. css/styles.
css) and the hashed file name (e.g. css/styles.55e7cbb9ba48.css). The staticfiles.json
file is created when running the collectstatic management command and should be a less expensive
alternative for remote storages such as Amazon S3.

See the ManifestStaticFilesStorage docs for more information.

• findstatic now accepts verbosity flag level 2, meaning it will show the relative paths of the directories it
searched. See findstatic for example output.

django.contrib.syndication

• The Atom1Feed syndication feed’s updated element now utilizes updateddate instead of pubdate,
allowing the published element to be included in the feed (which relies on pubdate).

Cache

• Access to caches configured in CACHES is now available via django.core.cache.caches. This dict-like
object provides a different instance per thread. It supersedes django.core.cache.get_cache() which
is now deprecated.

• If you instantiate cache backends directly, be aware that they aren’t thread-safe any more, as django.core.
cache.caches now yields different instances per thread.

• Defining the TIMEOUT argument of the CACHES setting as None will set the cache keys as “non-expiring” by
default. Previously, it was only possible to pass timeout=None to the cache backend’s set() method.

Cross Site Request Forgery

• The CSRF_COOKIE_AGE setting facilitates the use of session-based CSRF cookies.

Email

• send_mail() now accepts an html_message parameter for sending a multipart text/plain and
text/html email.

• The SMTP EmailBackend now accepts a timeout parameter.

File Storage

• File locking on Windows previously depended on the PyWin32 package; if it wasn’t installed, file locking failed
silently. That dependency has been removed, and file locking is now implemented natively on both Windows
and Unix.

9.1. Final releases 1503

Django Documentation, Release 1.10.9.dev20171123183751

File Uploads

• The new UploadedFile.content_type_extra attribute contains extra parameters passed to the
content-type header on a file upload.

• The new FILE_UPLOAD_DIRECTORY_PERMISSIONS setting controls the file system permissions of direc-
tories created during file upload, like FILE_UPLOAD_PERMISSIONS does for the files themselves.

• The FileField.upload_to attribute is now optional. If it is omitted or given None or an empty string, a
subdirectory won’t be used for storing the uploaded files.

• Uploaded files are now explicitly closed before the response is delivered to the client. Partially uploaded files
are also closed as long as they are named file in the upload handler.

• Storage.get_available_name() now appends an underscore plus a random 7 character alphanumeric
string (e.g. "_x3a1gho"), rather than iterating through an underscore followed by a number (e.g. "_1",
"_2", etc.) to prevent a denial-of-service attack. This change was also made in the 1.6.6, 1.5.9, and 1.4.14
security releases.

Forms

• The <label> and <input> tags rendered by RadioSelect and CheckboxSelectMultiple when
looping over the radio buttons or checkboxes now include for and id attributes, respectively. Each radio
button or checkbox includes an id_for_label attribute to output the element’s ID.

• The <textarea> tags rendered by Textarea now include a maxlength attribute if the TextField
model field has a max_length.

• Field.choices now allows you to customize the “empty choice” label by including a tuple with an empty
string or None for the key and the custom label as the value. The default blank option "----------" will
be omitted in this case.

• MultiValueField allows optional subfields by setting the require_all_fields argument to False.
The required attribute for each individual field will be respected, and a new incomplete validation error
will be raised when any required fields are empty.

• The clean()method on a form no longer needs to return self.cleaned_data. If it does return a changed
dictionary then that will still be used.

• After a temporary regression in Django 1.6, it’s now possible again to make TypedChoiceField coerce
method return an arbitrary value.

• SelectDateWidget.months can be used to customize the wording of the months displayed in the select
widget.

• The min_num and validate_min parameters were added to formset_factory() to allow validating a
minimum number of submitted forms.

• The metaclasses used by Form and ModelForm have been reworked to support more inheritance scenarios.
The previous limitation that prevented inheriting from both Form and ModelForm simultaneously have been
removed as long as ModelForm appears first in the MRO.

• It’s now possible to remove a field from a Form when subclassing by setting the name to None.

• It’s now possible to customize the error messages for ModelForm’s unique, unique_for_date,
and unique_together constraints. In order to support unique_together or any other
NON_FIELD_ERROR, ModelForm now looks for the NON_FIELD_ERROR key in the error_messages
dictionary of the ModelForm’s inner Meta class. See considerations regarding model’s error_messages for
more details.

1504 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Internationalization

• The django.middleware.locale.LocaleMiddleware.response_redirect_class attribute
allows you to customize the redirects issued by the middleware.

• The LocaleMiddleware now stores the user’s selected language with the session key _language. This
should only be accessed using the LANGUAGE_SESSION_KEY constant. Previously it was stored with the
key django_language and the LANGUAGE_SESSION_KEY constant did not exist, but keys reserved for
Django should start with an underscore. For backwards compatibility django_language is still read from
in 1.7. Sessions will be migrated to the new key as they are written.

• The blocktrans tag now supports a trimmed option. This option will remove newline characters from the
beginning and the end of the content of the {% blocktrans %} tag, replace any whitespace at the beginning
and end of a line and merge all lines into one using a space character to separate them. This is quite useful for
indenting the content of a {% blocktrans %} tag without having the indentation characters end up in the
corresponding entry in the PO file, which makes the translation process easier.

• When you run makemessages from the root directory of your project, any extracted strings will now be
automatically distributed to the proper app or project message file. See Localization: how to create language
files for details.

• The makemessages command now always adds the --previous command line flag to the msgmerge
command, keeping previously translated strings in po files for fuzzy strings.

• The following settings to adjust the language cookie options were introduced: LANGUAGE_COOKIE_AGE,
LANGUAGE_COOKIE_DOMAIN and LANGUAGE_COOKIE_PATH .

• Added Format localization for Esperanto.

Management Commands

• The new --no-color option for django-admin disables the colorization of management command output.

• The new dumpdata --natural-foreign and dumpdata --natural-primary options,
and the new use_natural_foreign_keys and use_natural_primary_keys arguments for
serializers.serialize(), allow the use of natural primary keys when serializing.

• It is no longer necessary to provide the cache table name or the --database option for the
createcachetable command. Django takes this information from your settings file. If you have con-
figured multiple caches or multiple databases, all cache tables are created.

• The runserver command received several improvements:

– On Linux systems, if pyinotify is installed, the development server will reload immediately when a file is
changed. Previously, it polled the filesystem for changes every second. That caused a small delay before
reloads and reduced battery life on laptops.

– In addition, the development server automatically reloads when a translation file is updated, i.e. after
running compilemessages.

– All HTTP requests are logged to the console, including requests for static files or favicon.ico that
used to be filtered out.

• Management commands can now produce syntax colored output under Windows if the ANSICON third-party
tool is installed and active.

• collectstatic command with symlink option is now supported on Windows NT 6 (Windows Vista and
newer).

9.1. Final releases 1505

https://pypi.python.org/pypi/pyinotify

Django Documentation, Release 1.10.9.dev20171123183751

• Initial SQL data now works better if the sqlparse Python library is installed.

Note that it’s deprecated in favor of the RunSQL operation of migrations, which benefits from the improved
behavior.

Models

• The QuerySet.update_or_create() method was added.

• The new default_permissions model Meta option allows you to customize (or disable) creation of the
default add, change, and delete permissions.

• Explicit OneToOneField for Multi-table inheritance are now discovered in abstract classes.

• It is now possible to avoid creating a backward relation for OneToOneField by setting its related_name
to '+' or ending it with '+'.

• F expressions support the power operator (**).

• The remove() and clear() methods of the related managers created by ForeignKey and
GenericForeignKey now accept the bulk keyword argument to control whether or not to perform op-
erations in bulk (i.e. using QuerySet.update()). Defaults to True.

• It is now possible to use None as a query value for the iexact lookup.

• It is now possible to pass a callable as value for the attribute limit_choices_to when defining a
ForeignKey or ManyToManyField.

• Calling only() and defer() on the result of QuerySet.values() now raises an error (before that, it
would either result in a database error or incorrect data).

• You can use a single list for index_together (rather than a list of lists) when specifying a single set of
fields.

• Custom intermediate models having more than one foreign key to any of the models participating in a many-
to-many relationship are now permitted, provided you explicitly specify which foreign keys should be used by
setting the new ManyToManyField.through_fields argument.

• Assigning a model instance to a non-relation field will now throw an error. Previously this used to work if the
field accepted integers as input as it took the primary key.

• Integer fields are now validated against database backend specific min and max values based on their
internal_type. Previously model field validation didn’t prevent values out of their associated column
data type range from being saved resulting in an integrity error.

• It is now possible to explicitly order_by() a relation _id field by using its attribute name.

Signals

• The enter argument was added to the setting_changed signal.

• The model signals can be now be connected to using a str of the 'app_label.ModelName' form – just
like related fields – to lazily reference their senders.

Templates

• The Context.push()method now returns a context manager which automatically calls pop() upon exiting
the with statement. Additionally, push() now accepts parameters that are passed to the dict constructor
used to build the new context level.

1506 Chapter 9. Release notes

https://pypi.python.org/pypi/sqlparse

Django Documentation, Release 1.10.9.dev20171123183751

• The new Context.flatten() method returns a Context‘s stack as one flat dictionary.

• Context objects can now be compared for equality (internally, this uses Context.flatten() so the in-
ternal structure of each Context‘s stack doesn’t matter as long as their flattened version is identical).

• The widthratio template tag now accepts an "as" parameter to capture the result in a variable.

• The include template tag will now also accept anything with a render() method (such as a Template)
as an argument. String arguments will be looked up using get_template() as always.

• It is now possible to include templates recursively.

• Template objects now have an origin attribute set when TEMPLATE_DEBUG is True. This allows template
origins to be inspected and logged outside of the django.template infrastructure.

• TypeError exceptions are no longer silenced when raised during the rendering of a template.

• The following functions now accept a dirs parameter which is a list or tuple to override TEMPLATE_DIRS:

– django.template.loader.get_template()

– django.template.loader.select_template()

– django.shortcuts.render()

– django.shortcuts.render_to_response()

• The time filter now accepts timezone-related format specifiers 'e', 'O' , 'T' and 'Z' and is able to digest
time-zone-aware datetime instances performing the expected rendering.

• The cache tag will now try to use the cache called “template_fragments” if it exists and fall back to using the
default cache otherwise. It also now accepts an optional using keyword argument to control which cache it
uses.

• The new truncatechars_html filter truncates a string to be no longer than the specified number of char-
acters, taking HTML into account.

Requests and Responses

• The new HttpRequest.scheme attribute specifies the scheme of the request (http or https normally).

• The shortcut redirect() now supports relative URLs.

• The new JsonResponse subclass of HttpResponse helps easily create JSON-encoded responses.

Tests

• DiscoverRunner has two new attributes, test_suite and test_runner, which facilitate overriding
the way tests are collected and run.

• The fetch_redirect_response argument was added to assertRedirects(). Since the test client
can’t fetch externals URLs, this allows you to use assertRedirects with redirects that aren’t part of your
Django app.

• Correct handling of scheme when making comparisons in assertRedirects().

• The secure argument was added to all the request methods of Client. If True, the request will be made
through HTTPS.

• assertNumQueries() now prints out the list of executed queries if the assertion fails.

9.1. Final releases 1507

Django Documentation, Release 1.10.9.dev20171123183751

• The WSGIRequest instance generated by the test handler is now attached to the django.test.
Response.wsgi_request attribute.

• The database settings for testing have been collected into a dictionary named TEST.

Utilities

• Improved strip_tags() accuracy (but it still cannot guarantee an HTML-safe result, as stated in the docu-
mentation).

Validators

• RegexValidator now accepts the optional flags and Boolean inverse_match arguments. The
inverse_match attribute determines if the ValidationError should be raised when the regular ex-
pression pattern matches (True) or does not match (False, by default) the provided value. The flags
attribute sets the flags used when compiling a regular expression string.

• URLValidator now accepts an optional schemes argument which allows customization of the accepted
URI schemes (instead of the defaults http(s) and ftp(s)).

• validate_email() now accepts addresses with IPv6 literals, like example@[2001:db8::1], as spec-
ified in RFC 5321.

Backwards incompatible changes in 1.7

Warning: In addition to the changes outlined in this section, be sure to review the deprecation plan for any
features that have been removed. If you haven’t updated your code within the deprecation timeline for a given
feature, its removal may appear as a backwards incompatible change.

allow_syncdb / allow_migrate

While Django will still look at allow_syncdb methods even though they should be renamed to allow_migrate,
there is a subtle difference in which models get passed to these methods.

For apps with migrations, allow_migratewill now get passed historical models, which are special versioned mod-
els without custom attributes, methods or managers. Make sure your allow_migrate methods are only referring
to fields or other items in model._meta.

initial_data

Apps with migrations will not load initial_data fixtures when they have finished migrating. Apps without mi-
grations will continue to load these fixtures during the phase of migrate which emulates the old syncdb behavior,
but any new apps will not have this support.

Instead, you are encouraged to load initial data in migrations if you need it (using the RunPython operation and your
model classes); this has the added advantage that your initial data will not need updating every time you change the
schema.

Additionally, like the rest of Django’s old syncdb code, initial_data has been started down the deprecation
path and will be removed in Django 1.9.

1508 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

deconstruct() and serializability

Django now requires all Field classes and all of their constructor arguments to be serializable. If you modify the
constructor signature in your custom Field in any way, you’ll need to implement a deconstruct() method; we’ve
expanded the custom field documentation with instructions on implementing this method.

The requirement for all field arguments to be serializable means that any custom class instances being passed into
Field constructors - things like custom Storage subclasses, for instance - need to have a deconstruct method defined on
them as well, though Django provides a handy class decorator that will work for most applications.

App-loading changes

Start-up sequence

Django 1.7 loads application configurations and models as soon as it starts. While this behavior is more straightforward
and is believed to be more robust, regressions cannot be ruled out. See Troubleshooting for solutions to some problems
you may encounter.

Standalone scripts

If you’re using Django in a plain Python script — rather than a management command — and you rely on the
DJANGO_SETTINGS_MODULE environment variable, you must now explicitly initialize Django at the beginning
of your script with:

>>> import django
>>> django.setup()

Otherwise, you will hit an AppRegistryNotReady exception.

WSGI scripts

Until Django 1.3, the recommended way to create a WSGI application was:

import django.core.handlers.wsgi
application = django.core.handlers.wsgi.WSGIHandler()

In Django 1.4, support for WSGI was improved and the API changed to:

from django.core.wsgi import get_wsgi_application
application = get_wsgi_application()

If you’re still using the former style in your WSGI script, you need to upgrade to the latter, or you will hit an
AppRegistryNotReady exception.

App registry consistency

It is no longer possible to have multiple installed applications with the same label. In previous versions of Django, this
didn’t always work correctly, but didn’t crash outright either.

If you have two apps with the same label, you should create an AppConfig for one of them and override its label
there. You should then adjust your code wherever it references this application or its models with the old label.

9.1. Final releases 1509

Django Documentation, Release 1.10.9.dev20171123183751

It isn’t possible to import the same model twice through different paths any more. As of Django 1.6, this may happen
only if you’re manually putting a directory and a subdirectory on PYTHONPATH. Refer to the section on the new
project layout in the 1.4 release notes for migration instructions.

You should make sure that:

• All models are defined in applications that are listed in INSTALLED_APPS or have an explicit app_label.

• Models aren’t imported as a side-effect of loading their application. Specifically, you shouldn’t import models
in the root module of an application nor in the module that define its configuration class.

Django will enforce these requirements as of version 1.9, after a deprecation period.

Subclassing AppCommand

Subclasses of AppCommand must now implement a handle_app_config() method instead of
handle_app(). This method receives an AppConfig instance instead of a models module.

Introspecting applications

Since INSTALLED_APPS now supports application configuration classes in addition to application modules, you
should review code that accesses this setting directly and use the app registry (django.apps.apps) instead.

The app registry has preserved some features of the old app cache. Even though the app cache was a private API,
obsolete methods and arguments will be removed through a standard deprecation path, with the exception of the
following changes that take effect immediately:

• get_model raises LookupError instead of returning None when no model is found.

• The only_installed argument of get_model and get_models no longer exists, nor does the
seed_cache argument of get_model.

Management commands and order of INSTALLED_APPS

When several applications provide management commands with the same name, Django loads the command from the
application that comes first in INSTALLED_APPS. Previous versions loaded the command from the application that
came last.

This brings discovery of management commands in line with other parts of Django that rely on the order of
INSTALLED_APPS, such as static files, templates, and translations.

ValidationError constructor and internal storage

The behavior of the ValidationError constructor has changed when it receives a container of errors as an argu-
ment (e.g. a list or an ErrorList):

• It converts any strings it finds to instances of ValidationError before adding them to its internal storage.

• It doesn’t store the given container but rather copies its content to its own internal storage; previously the
container itself was added to the ValidationError instance and used as internal storage.

This means that if you access the ValidationError internal storages, such as error_list; error_dict; or
the return value of update_error_dict() you may find instances of ValidationError where you would
have previously found strings.

1510 Chapter 9. Release notes

https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://docs.python.org/3/library/exceptions.html#LookupError

Django Documentation, Release 1.10.9.dev20171123183751

Also if you directly assigned the return value of update_error_dict() to Form._errors you may inadver-
tently add list instances where ErrorList instances are expected. This is a problem because unlike a simple list, an
ErrorList knows how to handle instances of ValidationError.

Most use-cases that warranted using these private APIs are now covered by the newly introduced Form.
add_error() method:

Old pattern:
try:

...
except ValidationError as e:

self._errors = e.update_error_dict(self._errors)

New pattern:
try:

...
except ValidationError as e:

self.add_error(None, e)

If you need both Django <= 1.6 and 1.7 compatibility you can’t use Form.add_error() since it wasn’t available
before Django 1.7, but you can use the following workaround to convert any list into ErrorList:

try:
...

except ValidationError as e:
self._errors = e.update_error_dict(self._errors)

Additional code to ensure ``ErrorDict`` is exclusively
composed of ``ErrorList`` instances.
for field, error_list in self._errors.items():

if not isinstance(error_list, self.error_class):
self._errors[field] = self.error_class(error_list)

Behavior of LocMemCache regarding pickle errors

An inconsistency existed in previous versions of Django regarding how pickle errors are handled by different cache
backends. django.core.cache.backends.locmem.LocMemCache used to fail silently when such an error
occurs, which is inconsistent with other backends and leads to cache-specific errors. This has been fixed in Django
1.7, see #21200 for more details.

Cache keys are now generated from the request’s absolute URL

Previous versions of Django generated cache keys using a request’s path and query string but not the scheme or host.
If a Django application was serving multiple subdomains or domains, cache keys could collide. In Django 1.7, cache
keys vary by the absolute URL of the request including scheme, host, path, and query string. For example, the URL
portion of a cache key is now generated from https://www.example.com/path/to/?key=val rather than
/path/to/?key=val. The cache keys generated by Django 1.7 will be different from the keys generated by older
versions of Django. After upgrading to Django 1.7, the first request to any previously cached URL will be a cache
miss.

9.1. Final releases 1511

https://code.djangoproject.com/ticket/21200

Django Documentation, Release 1.10.9.dev20171123183751

Passing None to Manager.db_manager()

In previous versions of Django, it was possible to use db_manager(using=None) on a model manager instance
to obtain a manager instance using default routing behavior, overriding any manually specified database routing. In
Django 1.7, a value of None passed to db_manager will produce a router that retains any manually assigned database
routing – the manager will not be reset. This was necessary to resolve an inconsistency in the way routing information
cascaded over joins. See #13724 for more details.

pytz may be required

If your project handles datetimes before 1970 or after 2037 and Django raises a ValueError when encountering
them, you will have to install pytz. You may be affected by this problem if you use Django’s time zone-related date
formats or django.contrib.syndication.

remove() and clear() methods of related managers

The remove() and clear()methods of the related managers created by ForeignKey, GenericForeignKey,
and ManyToManyField suffered from a number of issues. Some operations ran multiple data modifying queries
without wrapping them in a transaction, and some operations didn’t respect default filtering when it was present (i.e.
when the default manager on the related model implemented a custom get_queryset()).

Fixing the issues introduced some backward incompatible changes:

• The default implementation of remove() for ForeignKey related managers changed from a series of
Model.save() calls to a single QuerySet.update() call. The change means that pre_save and
post_save signals aren’t sent anymore. You can use the bulk=False keyword argument to revert to the
previous behavior.

• The remove() and clear() methods for GenericForeignKey related managers now perform bulk
delete. The Model.delete() method isn’t called on each instance anymore. You can use the bulk=False
keyword argument to revert to the previous behavior.

• The remove() and clear() methods for ManyToManyField related managers perform nested queries
when filtering is involved, which may or may not be an issue depending on your database and your data itself.
See this note for more details.

Admin login redirection strategy

Historically, the Django admin site passed the request from an unauthorized or unauthenticated user directly to the
login view, without HTTP redirection. In Django 1.7, this behavior changed to conform to a more traditional workflow
where any unauthorized request to an admin page will be redirected (by HTTP status code 302) to the login page, with
the next parameter set to the referring path. The user will be redirected there after a successful login.

Note also that the admin login form has been updated to not contain the this_is_the_login_form field (now
unused) and the ValidationError code has been set to the more regular invalid_login key.

select_for_update() requires a transaction

Historically, queries that use select_for_update() could be executed in autocommit mode, outside of a trans-
action. Before Django 1.6, Django’s automatic transactions mode allowed this to be used to lock records until the next
write operation. Django 1.6 introduced database-level autocommit; since then, execution in such a context voids the
effect of select_for_update(). It is, therefore, assumed now to be an error and raises an exception.

1512 Chapter 9. Release notes

https://code.djangoproject.com/ticket/13724
https://docs.python.org/3/library/exceptions.html#ValueError
https://pypi.python.org/pypi/pytz/

Django Documentation, Release 1.10.9.dev20171123183751

This change was made because such errors can be caused by including an app which expects global transactions (e.g.
ATOMIC_REQUESTS set to True), or Django’s old autocommit behavior, in a project which runs without them; and
further, such errors may manifest as data-corruption bugs. It was also made in Django 1.6.3.

This change may cause test failures if you use select_for_update() in a test class which is a subclass of
TransactionTestCase rather than TestCase.

Contrib middleware removed from default MIDDLEWARE_CLASSES

The app-loading refactor deprecated using models from apps which are not part of the INSTALLED_APPS set-
ting. This exposed an incompatibility between the default INSTALLED_APPS and MIDDLEWARE_CLASSES
in the global defaults (django.conf.global_settings). To bring these settings in sync and prevent dep-
recation warnings when doing things like testing reusable apps with minimal settings, SessionMiddleware,
AuthenticationMiddleware, and MessageMiddleware were removed from the defaults. These classes
will still be included in the default settings generated by startproject. Most projects will not be affected by this
change but if you were not previously declaring the MIDDLEWARE_CLASSES in your project settings and relying on
the global default you should ensure that the new defaults are in line with your project’s needs. You should also check
for any code that accesses django.conf.global_settings.MIDDLEWARE_CLASSES directly.

Miscellaneous

• The django.core.files.uploadhandler.FileUploadHandler.new_file() method is now
passed an additional content_type_extra parameter. If you have a custom FileUploadHandler that
implements new_file(), be sure it accepts this new parameter.

• ModelFormSets no longer delete instances when save(commit=False) is called. See can_delete
for instructions on how to manually delete objects from deleted forms.

• Loading empty fixtures emits a RuntimeWarning rather than raising CommandError.

• django.contrib.staticfiles.views.serve() will now raise an Http404 exception instead of
ImproperlyConfigured when DEBUG is False. This change removes the need to conditionally add the
view to your root URLconf, which in turn makes it safe to reverse by name. It also removes the ability for
visitors to generate spurious HTTP 500 errors by requesting static files that don’t exist or haven’t been collected
yet.

• The django.db.models.Model.__eq__() method is now defined in a way where instances of a proxy
model and its base model are considered equal when primary keys match. Previously only instances of exact
same class were considered equal on primary key match.

• The django.db.models.Model.__eq__()method has changed such that two Model instances without
primary key values won’t be considered equal (unless they are the same instance).

• The django.db.models.Model.__hash__() method will now raise TypeError when called on an
instance without a primary key value. This is done to avoid mutable __hash__ values in containers.

• AutoField columns in SQLite databases will now be created using the AUTOINCREMENT option, which
guarantees monotonic increments. This will cause primary key numbering behavior to change on SQLite, be-
coming consistent with most other SQL databases. This will only apply to newly created tables. If you have a
database created with an older version of Django, you will need to migrate it to take advantage of this feature.
For example, you could do the following:

1. Use dumpdata to save your data.

2. Rename the existing database file (keep it as a backup).

3. Run migrate to create the updated schema.

9.1. Final releases 1513

Django Documentation, Release 1.10.9.dev20171123183751

4. Use loaddata to import the fixtures you exported in (1).

• django.contrib.auth.models.AbstractUser no longer defines a get_absolute_url()
method. The old definition returned "/users/%s/" % urlquote(self.username) which was
arbitrary since applications may or may not define such a url in urlpatterns. Define a
get_absolute_url() method on your own custom user object or use ABSOLUTE_URL_OVERRIDES
if you want a URL for your user.

• The static asset-serving functionality of the django.test.LiveServerTestCase class has been simpli-
fied: Now it’s only able to serve content already present in STATIC_ROOT when tests are run. The ability
to transparently serve all the static assets (similarly to what one gets with DEBUG = True at development-
time) has been moved to a new class that lives in the staticfiles application (the one actually in charge
of such feature): django.contrib.staticfiles.testing.StaticLiveServerTestCase. In
other words, LiveServerTestCase itself is less powerful but at the same time has less magic.

Rationale behind this is removal of dependency of non-contrib code on contrib applications.

• The old cache URI syntax (e.g. "locmem://") is no longer supported. It still worked, even though it was not
documented or officially supported. If you’re still using it, please update to the current CACHES syntax.

• The default ordering of Form fields in case of inheritance has changed to follow normal Python MRO. Fields
are now discovered by iterating through the MRO in reverse with the topmost class coming last. This only
affects you if you relied on the default field ordering while having fields defined on both the current class and
on a parent Form.

• The required argument of SelectDateWidget has been removed. This widget now respects the form
field’s is_required attribute like other widgets.

• Widget.is_hidden is now a read-only property, getting its value by introspecting the presence of
input_type == 'hidden'.

• select_related() now chains in the same way as other similar calls like prefetch_related.
That is, select_related('foo', 'bar') is equivalent to select_related('foo').
select_related('bar'). Previously the latter would have been equivalent to
select_related('bar').

• GeoDjango dropped support for GEOS < 3.1.

• The init_connection_state method of database backends now executes in autocommit mode (unless
you set AUTOCOMMIT to False). If you maintain a custom database backend, you should check that method.

• The django.db.backends.BaseDatabaseFeatures.allows_primary_key_0 attribute has
been renamed to allows_auto_pk_0 to better describe it. It’s True for all database backends included
with Django except MySQL which does allow primary keys with value 0. It only forbids autoincrement primary
keys with value 0.

• Shadowing model fields defined in a parent model has been forbidden as this creates ambiguity in the expected
model behavior. In addition, clashing fields in the model inheritance hierarchy result in a system check error. For
example, if you use multi-inheritance, you need to define custom primary key fields on parent models, otherwise
the default id fields will clash. See Multiple inheritance for details.

• django.utils.translation.parse_accept_lang_header() now returns lowercase locales, in-
stead of the case as it was provided. As locales should be treated case-insensitive this allows us to speed up
locale detection.

• django.utils.translation.get_language_from_path() and django.utils.
translation.trans_real.get_supported_language_variant() now no longer have a
supported argument.

• The shortcut view in django.contrib.contenttypes.views now supports protocol-relative URLs
(e.g. //example.com).

1514 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

• GenericRelation now supports an optional related_query_name argument. Setting
related_query_name adds a relation from the related object back to the content type for filtering,
ordering and other query operations.

• When running tests on PostgreSQL, the USER will need read access to the built-in postgres database. This
is in lieu of the previous behavior of connecting to the actual non-test database.

• As part of the System check framework, fields, models, and model managers all implement a check() method
that is registered with the check framework. If you have an existing method called check() on one of these
objects, you will need to rename it.

• As noted above in the “Cache” section of “Minor Features”, defining the TIMEOUT argument of the CACHES
setting as Nonewill set the cache keys as “non-expiring”. Previously, with the memcache backend, a TIMEOUT
of 0 would set non-expiring keys, but this was inconsistent with the set-and-expire (i.e. no caching) behavior of
set("key", "value", timeout=0). If you want non-expiring keys, please update your settings to use
None instead of 0 as the latter now designates set-and-expire in the settings as well.

• The sql* management commands now respect the allow_migrate() method of DATABASE_ROUTERS.
If you have models synced to non-default databases, use the --database flag to get SQL for those models
(previously they would always be included in the output).

• Decoding the query string from URLs now falls back to the ISO-8859-1 encoding when the input is not valid
UTF-8.

• With the addition of the django.contrib.auth.middleware.
SessionAuthenticationMiddleware to the default project template (pre-1.7.2 only), a database
must be created before accessing a page using runserver.

• The addition of the schemes argument to URLValidatorwill appear as a backwards-incompatible change if
you were previously using a custom regular expression to validate schemes. Any scheme not listed in schemes
will fail validation, even if the regular expression matches the given URL.

Features deprecated in 1.7

django.core.cache.get_cache

django.core.cache.get_cache has been supplanted by django.core.cache.caches.

django.utils.dictconfig/django.utils.importlib

django.utils.dictconfig and django.utils.importlib were copies of respectively logging.
config and importlib provided for Python versions prior to 2.7. They have been deprecated.

django.utils.module_loading.import_by_path

The current django.utils.module_loading.import_by_path function catches AttributeError,
ImportError, and ValueError exceptions, and re-raises ImproperlyConfigured. Such exception mask-
ing makes it needlessly hard to diagnose circular import problems, because it makes it look like the problem comes
from inside Django. It has been deprecated in favor of import_string().

9.1. Final releases 1515

https://docs.python.org/3/library/logging.config.html#module-logging.config
https://docs.python.org/3/library/logging.config.html#module-logging.config
https://docs.python.org/3/library/importlib.html#module-importlib

Django Documentation, Release 1.10.9.dev20171123183751

django.utils.tzinfo

django.utils.tzinfo provided two tzinfo subclasses, LocalTimezone and FixedOffset. They’ve
been deprecated in favor of more correct alternatives provided by django.utils.timezone, django.utils.
timezone.get_default_timezone() and django.utils.timezone.get_fixed_timezone().

django.utils.unittest

django.utils.unittest provided uniform access to the unittest2 library on all Python versions. Since
unittest2 became the standard library’s unittest module in Python 2.7, and Django 1.7 drops support for older
Python versions, this module isn’t useful anymore. It has been deprecated. Use unittest instead.

django.utils.datastructures.SortedDict

As OrderedDict was added to the standard library in Python 2.7, SortedDict is no longer needed and has been
deprecated.

The two additional, deprecated methods provided by SortedDict (insert() and value_for_index())
have been removed. If you relied on these methods to alter structures like form fields, you should now treat these
OrderedDicts as immutable objects and override them to change their content.

For example, you might want to override MyFormClass.base_fields (although this attribute isn’t considered
a public API) to change the ordering of fields for all MyFormClass instances; or similarly, you could override
self.fields from inside MyFormClass.__init__(), to change the fields for a particular form instance. For
example (from Django itself):

PasswordChangeForm.base_fields = OrderedDict(
(k, PasswordChangeForm.base_fields[k])
for k in ['old_password', 'new_password1', 'new_password2']

)

Custom SQL location for models package

Previously, if models were organized in a package (myapp/models/) rather than simply myapp/models.py,
Django would look for initial SQL data in myapp/models/sql/. This bug has been fixed so that Django will
search myapp/sql/ as documented. After this issue was fixed, migrations were added which deprecates initial SQL
data. Thus, while this change still exists, the deprecation is irrelevant as the entire feature will be removed in Django
1.9.

Reorganization of django.contrib.sites

django.contrib.sites provides reduced functionality when it isn’t in INSTALLED_APPS. The app-loading
refactor adds some constraints in that situation. As a consequence, two objects were moved, and the old locations are
deprecated:

• RequestSite now lives in django.contrib.sites.requests.

• get_current_site() now lives in django.contrib.sites.shortcuts.

1516 Chapter 9. Release notes

https://docs.python.org/3/library/datetime.html#datetime.tzinfo
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/collections.html#collections.OrderedDict

Django Documentation, Release 1.10.9.dev20171123183751

declared_fieldsets attribute on ModelAdmin

ModelAdmin.declared_fieldsets has been deprecated. Despite being a private API, it will go through a reg-
ular deprecation path. This attribute was mostly used by methods that bypassed ModelAdmin.get_fieldsets()
but this was considered a bug and has been addressed.

Reorganization of django.contrib.contenttypes

Since django.contrib.contenttypes.generic defined both admin and model related objects, an import
of this module could trigger unexpected side effects. As a consequence, its contents were split into contenttypes
submodules and the django.contrib.contenttypes.generic module is deprecated:

• GenericForeignKey and GenericRelation now live in fields.

• BaseGenericInlineFormSet and generic_inlineformset_factory() now live in forms.

• GenericInlineModelAdmin, GenericStackedInline and GenericTabularInline now live
in admin.

syncdb

The syncdb command has been deprecated in favor of the new migrate command. migrate takes the same
arguments as syncdb used to plus a few more, so it’s safe to just change the name you’re calling and nothing else.

util modules renamed to utils

The following instances of util.py in the Django codebase have been renamed to utils.py in an effort to unify
all util and utils references:

• django.contrib.admin.util

• django.contrib.gis.db.backends.util

• django.db.backends.util

• django.forms.util

get_formsets method on ModelAdmin

ModelAdmin.get_formsets has been deprecated in favor of the new get_formsets_with_inlines(),
in order to better handle the case of selectively showing inlines on a ModelAdmin.

IPAddressField

The django.db.models.IPAddressField and django.forms.IPAddressField fields have
been deprecated in favor of django.db.models.GenericIPAddressField and django.forms.
GenericIPAddressField.

9.1. Final releases 1517

Django Documentation, Release 1.10.9.dev20171123183751

BaseMemcachedCache._get_memcache_timeout method

The BaseMemcachedCache._get_memcache_timeout() method has been renamed to
get_backend_timeout(). Despite being a private API, it will go through the normal deprecation.

Natural key serialization options

The --natural and -n options for dumpdata have been deprecated. Use dumpdata --natural-foreign
instead.

Similarly, the use_natural_keys argument for serializers.serialize() has been deprecated. Use
use_natural_foreign_keys instead.

Merging of POST and GET arguments into WSGIRequest.REQUEST

It was already strongly suggested that you use GET and POST instead of REQUEST, because the former are more
explicit. The property REQUEST is deprecated and will be removed in Django 1.9.

django.utils.datastructures.MergeDict class

MergeDict exists primarily to support merging POST and GET arguments into a REQUEST property on
WSGIRequest. To merge dictionaries, use dict.update() instead. The class MergeDict is deprecated and
will be removed in Django 1.9.

Language codes zh-cn, zh-tw and fy-nl

The currently used language codes for Simplified Chinese zh-cn, Traditional Chinese zh-tw and (Western) Frysian
fy-nl are deprecated and should be replaced by the language codes zh-hans, zh-hant and fy respectively.
If you use these language codes, you should rename the locale directories and update your settings to reflect these
changes. The deprecated language codes will be removed in Django 1.9.

django.utils.functional.memoize function

The function memoize is deprecated and should be replaced by the functools.lru_cache decorator (available
from Python 3.2 onwards).

Django ships a backport of this decorator for older Python versions and it’s available at django.utils.
lru_cache.lru_cache. The deprecated function will be removed in Django 1.9.

Geo Sitemaps

Google has retired support for the Geo Sitemaps format. Hence Django support for Geo Sitemaps is deprecated and
will be removed in Django 1.8.

1518 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Passing callable arguments to queryset methods

Callable arguments for querysets were an undocumented feature that was unreliable. It’s been deprecated and will be
removed in Django 1.9.

Callable arguments were evaluated when a queryset was constructed rather than when it was evaluated, thus this feature
didn’t offer any benefit compared to evaluating arguments before passing them to queryset and created confusion that
the arguments may have been evaluated at query time.

ADMIN_FOR setting

The ADMIN_FOR feature, part of the admindocs, has been removed. You can remove the setting from your configura-
tion at your convenience.

SplitDateTimeWidget with DateTimeField

SplitDateTimeWidget support in DateTimeField is deprecated, use SplitDateTimeWidget with
SplitDateTimeField instead.

validate

The validate management command is deprecated in favor of the check command.

django.core.management.BaseCommand

requires_model_validation is deprecated in favor of a new requires_system_checks flag. If the
latter flag is missing, then the value of the former flag is used. Defining both requires_system_checks and
requires_model_validation results in an error.

The check() method has replaced the old validate() method.

ModelAdmin validators

The ModelAdmin.validator_class and default_validator_class attributes are deprecated in favor
of the new checks_class attribute.

The ModelAdmin.validate() method is deprecated in favor of ModelAdmin.check().

The django.contrib.admin.validation module is deprecated.

django.db.backends.DatabaseValidation.validate_field

This method is deprecated in favor of a new check_field method. The functionality required by
check_field() is the same as that provided by validate_field(), but the output format is different. Third-
party database backends needing this functionality should provide an implementation of check_field().

9.1. Final releases 1519

Django Documentation, Release 1.10.9.dev20171123183751

Loading ssi and url template tags from future library

Django 1.3 introduced {% load ssi from future %} and {% load url from future %} syntax for
forward compatibility of the ssi and url template tags. This syntax is now deprecated and will be removed in
Django 1.9. You can simply remove the {% load ... from future %} tags.

django.utils.text.javascript_quote

javascript_quote() was an undocumented function present in django.utils.text. It was used internally
in the javascript_catalog view whose implementation was changed to make use of json.dumps() instead. If you
were relying on this function to provide safe output from untrusted strings, you should use django.utils.html.
escapejs or the escapejs template filter. If all you need is to generate valid JavaScript strings, you can simply
use json.dumps().

fix_ampersands utils method and template filter

The django.utils.html.fix_ampersands method and the fix_ampersands template filter are depre-
cated, as the escaping of ampersands is already taken care of by Django’s standard HTML escaping features. Com-
bining this with fix_ampersands would either result in double escaping, or, if the output is assumed to be safe, a
risk of introducing XSS vulnerabilities. Along with fix_ampersands, django.utils.html.clean_html
is deprecated, an undocumented function that calls fix_ampersands. As this is an accelerated deprecation,
fix_ampersands and clean_html will be removed in Django 1.8.

Reorganization of database test settings

All database settings with a TEST_ prefix have been deprecated in favor of entries in a TEST dictionary in the database
settings. The old settings will be supported until Django 1.9. For backwards compatibility with older versions of
Django, you can define both versions of the settings as long as they match.

FastCGI support

FastCGI support via the runfcgi management command will be removed in Django 1.9. Please deploy your project
using WSGI.

Moved objects in contrib.sites

Following the app-loading refactor, two objects in django.contrib.sites.models needed to be moved
because they must be available without importing django.contrib.sites.models when django.
contrib.sites isn’t installed. Import RequestSite from django.contrib.sites.requests and
get_current_site() from django.contrib.sites.shortcuts. The old import locations will work
until Django 1.9.

django.forms.forms.get_declared_fields()

Django no longer uses this functional internally. Even though it’s a private API, it’ll go through the normal deprecation
cycle.

1520 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Private Query Lookup APIs

Private APIs django.db.models.sql.where.WhereNode.make_atom() and django.db.models.
sql.where.Constraint are deprecated in favor of the new custom lookups API.

Features removed in 1.7

These features have reached the end of their deprecation cycle and are removed in Django 1.7. See Features deprecated
in 1.5 for details, including how to remove usage of these features.

• django.utils.simplejson is removed.

• django.utils.itercompat.product is removed.

• INSTALLED_APPS and TEMPLATE_DIRS are no longer corrected from a plain string into a tuple.

• HttpResponse, SimpleTemplateResponse, TemplateResponse, render_to_response(),
index(), and sitemap() no longer take a mimetype argument

• HttpResponse immediately consumes its content if it’s an iterator.

• The AUTH_PROFILE_MODULE setting, and the get_profile() method on the User model are removed.

• The cleanup management command is removed.

• The daily_cleanup.py script is removed.

• select_related() no longer has a depth keyword argument.

• The get_warnings_state()/restore_warnings_state() functions from django.test.
utils and the save_warnings_state()/ restore_warnings_state() django.test.*TestCase are
removed.

• The check_for_test_cookie method in AuthenticationForm is removed.

• The version of django.contrib.auth.views.password_reset_confirm() that supports base36
encoded user IDs (django.contrib.auth.views.password_reset_confirm_uidb36) is re-
moved.

• The django.utils.encoding.StrAndUnicode mix-in is removed.

9.1.5 1.6 release

Django 1.6.11 release notes

March 18, 2015

Django 1.6.11 fixes two security issues in 1.6.10.

Denial-of-service possibility with strip_tags()

Last year strip_tags() was changed to work iteratively. The problem is that the size of the input it’s processing
can increase on each iteration which results in an infinite loop in strip_tags(). This issue only affects versions
of Python that haven’t received a bugfix in HTMLParser; namely Python < 2.7.7 and 3.3.5. Some operating system
vendors have also backported the fix for the Python bug into their packages of earlier versions.

To remedy this issue, strip_tags() will now return the original input if it detects the length of the string it’s
processing increases. Remember that absolutely NO guarantee is provided about the results of strip_tags()

9.1. Final releases 1521

https://bugs.python.org/issue20288

Django Documentation, Release 1.10.9.dev20171123183751

being HTML safe. So NEVER mark safe the result of a strip_tags() call without escaping it first, for example
with escape().

Mitigated possible XSS attack via user-supplied redirect URLs

Django relies on user input in some cases (e.g. django.contrib.auth.views.login() and i18n)
to redirect the user to an “on success” URL. The security checks for these redirects (namely django.
utils.http.is_safe_url()) accepted URLs with leading control characters and so considered URLs like
\x08javascript:... safe. This issue doesn’t affect Django currently, since we only put this URL into the
Location response header and browsers seem to ignore JavaScript there. Browsers we tested also treat URLs pre-
fixed with control characters such as %08//example.com as relative paths so redirection to an unsafe target isn’t a
problem either.

However, if a developer relies on is_safe_url() to provide safe redirect targets and puts such a URL into a link,
they could suffer from an XSS attack as some browsers such as Google Chrome ignore control characters at the start
of a URL in an anchor href.

Django 1.6.10 release notes

January 13, 2015

Django 1.6.10 fixes several security issues in 1.6.9.

WSGI header spoofing via underscore/dash conflation

When HTTP headers are placed into the WSGI environ, they are normalized by converting to uppercase, con-
verting all dashes to underscores, and prepending HTTP_. For instance, a header X-Auth-User would become
HTTP_X_AUTH_USER in the WSGI environ (and thus also in Django’s request.META dictionary).

Unfortunately, this means that the WSGI environ cannot distinguish between headers containing dashes and headers
containing underscores: X-Auth-User and X-Auth_User both become HTTP_X_AUTH_USER. This means that
if a header is used in a security-sensitive way (for instance, passing authentication information along from a front-end
proxy), even if the proxy carefully strips any incoming value for X-Auth-User, an attacker may be able to provide
an X-Auth_User header (with underscore) and bypass this protection.

In order to prevent such attacks, both Nginx and Apache 2.4+ strip all headers containing underscores from incoming
requests by default. Django’s built-in development server now does the same. Django’s development server is not
recommended for production use, but matching the behavior of common production servers reduces the surface area
for behavior changes during deployment.

Mitigated possible XSS attack via user-supplied redirect URLs

Django relies on user input in some cases (e.g. django.contrib.auth.views.login() and i18n) to
redirect the user to an “on success” URL. The security checks for these redirects (namely django.utils.
http.is_safe_url()) didn’t strip leading whitespace on the tested URL and as such considered URLs like
\njavascript:... safe. If a developer relied on is_safe_url() to provide safe redirect targets and put such
a URL into a link, they could suffer from a XSS attack. This bug doesn’t affect Django currently, since we only put
this URL into the Location response header and browsers seem to ignore JavaScript there.

1522 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Denial-of-service attack against django.views.static.serve

In older versions of Django, the django.views.static.serve() view read the files it served one line at a
time. Therefore, a big file with no newlines would result in memory usage equal to the size of that file. An attacker
could exploit this and launch a denial-of-service attack by simultaneously requesting many large files. This view now
reads the file in chunks to prevent large memory usage.

Note, however, that this view has always carried a warning that it is not hardened for production use and should be
used only as a development aid. Now may be a good time to audit your project and serve your files in production using
a real front-end web server if you are not doing so.

Database denial-of-service with ModelMultipleChoiceField

Given a form that uses ModelMultipleChoiceField and show_hidden_initial=True (not a docu-
mented API), it was possible for a user to cause an unreasonable number of SQL queries by submitting duplicate
values for the field’s data. The validation logic in ModelMultipleChoiceField now deduplicates submitted
values to address this issue.

Django 1.6.9 release notes

January 2, 2015

Django 1.6.9 fixes a regression in the 1.6.6 security release.

Additionally, Django’s vendored version of six, django.utils.six, has been upgraded to the latest release
(1.9.0).

Bugfixes

• Fixed a regression with dynamically generated inlines and allowed field references in the admin (#23754).

Django 1.6.8 release notes

October 22, 2014

Django 1.6.8 fixes a couple regressions in the 1.6.6 security release.

Bugfixes

• Allowed related many-to-many fields to be referenced in the admin (#23604).

• Allowed inline and hidden references to admin fields (#23431).

Django 1.6.7 release notes

September 2, 2014

Django 1.6.7 fixes several bugs in 1.6.6, including a regression related to a security fix in that release.

9.1. Final releases 1523

https://code.djangoproject.com/ticket/23754
https://code.djangoproject.com/ticket/23604
https://code.djangoproject.com/ticket/23431

Django Documentation, Release 1.10.9.dev20171123183751

Bugfixes

• Allowed inherited and m2m fields to be referenced in the admin (#23329).

• Fixed a crash when using QuerySet.defer() with select_related() (#23370).

Django 1.6.6 release notes

August 20, 2014

Django 1.6.6 fixes several security issues and bugs in 1.6.5.

reverse() could generate URLs pointing to other hosts

In certain situations, URL reversing could generate scheme-relative URLs (URLs starting with two slashes), which
could unexpectedly redirect a user to a different host. An attacker could exploit this, for example, by redirecting users
to a phishing site designed to ask for user’s passwords.

To remedy this, URL reversing now ensures that no URL starts with two slashes (//), replacing the second slash with its
URL encoded counterpart (%2F). This approach ensures that semantics stay the same, while making the URL relative
to the domain and not to the scheme.

File upload denial-of-service

Before this release, Django’s file upload handing in its default configuration may degrade to producing a huge number
of os.stat() system calls when a duplicate filename is uploaded. Since stat() may invoke IO, this may produce
a huge data-dependent slowdown that slowly worsens over time. The net result is that given enough time, a user with
the ability to upload files can cause poor performance in the upload handler, eventually causing it to become very slow
simply by uploading 0-byte files. At this point, even a slow network connection and few HTTP requests would be all
that is necessary to make a site unavailable.

We’ve remedied the issue by changing the algorithm for generating file names if a file with the uploaded name already
exists. Storage.get_available_name() now appends an underscore plus a random 7 character alphanumeric
string (e.g. "_x3a1gho"), rather than iterating through an underscore followed by a number (e.g. "_1", "_2",
etc.).

RemoteUserMiddleware session hijacking

When using the RemoteUserMiddleware and the RemoteUserBackend, a change to the REMOTE_USER
header between requests without an intervening logout could result in the prior user’s session being co-opted by the
subsequent user. The middleware now logs the user out on a failed login attempt.

Data leakage via query string manipulation in contrib.admin

In older versions of Django it was possible to reveal any field’s data by modifying the “popup” and “to_field” parame-
ters of the query string on an admin change form page. For example, requesting a URL like /admin/auth/user/
?_popup=1&t=password and viewing the page’s HTML allowed viewing the password hash of each user. While
the admin requires users to have permissions to view the change form pages in the first place, this could leak data if
you rely on users having access to view only certain fields on a model.

To address the issue, an exception will now be raised if a to_field value that isn’t a related field to a model that has
been registered with the admin is specified.

1524 Chapter 9. Release notes

https://code.djangoproject.com/ticket/23329
https://code.djangoproject.com/ticket/23370

Django Documentation, Release 1.10.9.dev20171123183751

Bugfixes

• Corrected email and URL validation to reject a trailing dash (#22579).

• Prevented indexes on PostgreSQL virtual fields (#22514).

• Prevented edge case where values of FK fields could be initialized with a wrong value when an inline model
formset is created for a relationship defined to point to a field other than the PK (#13794).

• Restored pre_delete signals for GenericRelation cascade deletion (#22998).

• Fixed transaction handling when specifying non-default database in createcachetable and flush
(#23089).

• Fixed the “ORA-01843: not a valid month” errors when using Unicode with older versions of Oracle server
(#20292).

• Restored bug fix for sending unicode email with Python 2.6.5 and below (#19107).

• Prevented UnicodeDecodeError in runserver with non-UTF-8 and non-English locale (#23265).

• Fixed JavaScript errors while editing multi-geometry objects in the OpenLayers widget (#23137, #23293).

• Prevented a crash on Python 3 with query strings containing unencoded non-ASCII characters (#22996).

Django 1.6.5 release notes

May 14, 2014

Django 1.6.5 fixes two security issues and several bugs in 1.6.4.

Issue: Caches may incorrectly be allowed to store and serve private data

In certain situations, Django may allow caches to store private data related to a particular session and then serve that
data to requests with a different session, or no session at all. This can lead to information disclosure and can be a
vector for cache poisoning.

When using Django sessions, Django will set a Vary: Cookie header to ensure caches do not serve cached data
to requests from other sessions. However, older versions of Internet Explorer (most likely only Internet Explorer
6, and Internet Explorer 7 if run on Windows XP or Windows Server 2003) are unable to handle the Vary header
in combination with many content types. Therefore, Django would remove the header if the request was made by
Internet Explorer.

To remedy this, the special behavior for these older Internet Explorer versions has been removed, and the Vary header
is no longer stripped from the response. In addition, modifications to the Cache-Control header for all Internet
Explorer requests with a Content-Disposition header have also been removed as they were found to have
similar issues.

Issue: Malformed redirect URLs from user input not correctly validated

The validation for redirects did not correctly validate some malformed URLs, which are accepted by some browsers.
This allows a user to be redirected to an unsafe URL unexpectedly.

Django relies on user input in some cases (e.g. django.contrib.auth.views.login(), django.
contrib.comments, and i18n) to redirect the user to an “on success” URL. The security checks for these redirects
(namely django.utils.http.is_safe_url()) did not correctly validate some malformed URLs, such as
http:\\\djangoproject.com, which are accepted by some browsers with more liberal URL parsing.

9.1. Final releases 1525

https://code.djangoproject.com/ticket/22579
https://code.djangoproject.com/ticket/22514
https://code.djangoproject.com/ticket/13794
https://code.djangoproject.com/ticket/22998
https://code.djangoproject.com/ticket/23089
https://code.djangoproject.com/ticket/20292
https://code.djangoproject.com/ticket/19107
https://code.djangoproject.com/ticket/23265
https://code.djangoproject.com/ticket/23137
https://code.djangoproject.com/ticket/23293
https://code.djangoproject.com/ticket/22996

Django Documentation, Release 1.10.9.dev20171123183751

To remedy this, the validation in is_safe_url() has been tightened to be able to handle and correctly validate
these malformed URLs.

Bugfixes

• Made the year_lookup_bounds_for_datetime_field Oracle backend method Python 3 compatible
(#22551).

• Fixed pgettext_lazy crash when receiving bytestring content on Python 2 (#22565).

• Fixed the SQL generated when filtering by a negated Q object that contains a F object. (#22429).

• Avoided overwriting data fetched by select_related() in certain cases which could cause minor perfor-
mance regressions (#22508).

Django 1.6.4 release notes

April 28, 2014

Django 1.6.4 fixes several bugs in 1.6.3.

Bugfixes

• Added backwards compatibility support for the django.contrib.messages cookie format of Django 1.4
and earlier to facilitate upgrading to 1.6 from 1.4 (#22426).

• Restored the ability to reverse() views created using functools.partial() (#22486).

• Fixed the object_id of the LogEntry that’s created after a user password change in the admin (#22515).

Django 1.6.3 release notes

April 21, 2014

Django 1.6.3 fixes several bugs in 1.6.2, including three security issues, and makes one backwards-incompatible
change:

Unexpected code execution using reverse()

Django’s URL handling is based on a mapping of regex patterns (representing the URLs) to callable views, and
Django’s own processing consists of matching a requested URL against those patterns to determine the appropriate
view to invoke.

Django also provides a convenience function – reverse() – which performs this process in the opposite direction.
The reverse() function takes information about a view and returns a URL which would invoke that view. Use of
reverse() is encouraged for application developers, as the output of reverse() is always based on the current
URL patterns, meaning developers do not need to change other code when making changes to URLs.

One argument signature for reverse() is to pass a dotted Python path to the desired view. In this situation, Django
will import the module indicated by that dotted path as part of generating the resulting URL. If such a module has
import-time side effects, those side effects will occur.

Thus it is possible for an attacker to cause unexpected code execution, given the following conditions:

1526 Chapter 9. Release notes

https://code.djangoproject.com/ticket/22551
https://code.djangoproject.com/ticket/22565
https://code.djangoproject.com/ticket/22429
https://code.djangoproject.com/ticket/22508
https://code.djangoproject.com/ticket/22426
https://docs.python.org/3/library/functools.html#functools.partial
https://code.djangoproject.com/ticket/22486
https://code.djangoproject.com/ticket/22515

Django Documentation, Release 1.10.9.dev20171123183751

1. One or more views are present which construct a URL based on user input (commonly, a “next” parameter in a
querystring indicating where to redirect upon successful completion of an action).

2. One or more modules are known to an attacker to exist on the server’s Python import path, which perform code
execution with side effects on importing.

To remedy this, reverse() will now only accept and import dotted paths based on the view-containing modules
listed in the project’s URL pattern configuration, so as to ensure that only modules the developer intended to be
imported in this fashion can or will be imported.

Caching of anonymous pages could reveal CSRF token

Django includes both a caching framework and a system for preventing cross-site request forgery (CSRF) attacks. The
CSRF-protection system is based on a random nonce sent to the client in a cookie which must be sent by the client on
future requests and, in forms, a hidden value which must be submitted back with the form.

The caching framework includes an option to cache responses to anonymous (i.e., unauthenticated) clients.

When the first anonymous request to a given page is by a client which did not have a CSRF cookie, the cache frame-
work will also cache the CSRF cookie and serve the same nonce to other anonymous clients who do not have a CSRF
cookie. This can allow an attacker to obtain a valid CSRF cookie value and perform attacks which bypass the check
for the cookie.

To remedy this, the caching framework will no longer cache such responses. The heuristic for this will be:

1. If the incoming request did not submit any cookies, and

2. If the response did send one or more cookies, and

3. If the Vary: Cookie header is set on the response, then the response will not be cached.

MySQL typecasting

The MySQL database is known to “typecast” on certain queries; for example, when querying a table which contains
string values, but using a query which filters based on an integer value, MySQL will first silently coerce the strings to
integers and return a result based on that.

If a query is performed without first converting values to the appropriate type, this can produce unexpected results,
similar to what would occur if the query itself had been manipulated.

Django’s model field classes are aware of their own types and most such classes perform explicit conversion of query
arguments to the correct database-level type before querying. However, three model field classes did not correctly
convert their arguments:

• FilePathField

• GenericIPAddressField

• IPAddressField

These three fields have been updated to convert their arguments to the correct types before querying.

Additionally, developers of custom model fields are now warned via documentation to ensure their custom field classes
will perform appropriate type conversions, and users of the raw() and extra() query methods – which allow the
developer to supply raw SQL or SQL fragments – will be advised to ensure they perform appropriate manual type
conversions prior to executing queries.

9.1. Final releases 1527

Django Documentation, Release 1.10.9.dev20171123183751

select_for_update() requires a transaction

Historically, queries that use select_for_update() could be executed in autocommit mode, outside of a trans-
action. Before Django 1.6, Django’s automatic transactions mode allowed this to be used to lock records until the next
write operation. Django 1.6 introduced database-level autocommit; since then, execution in such a context voids the
effect of select_for_update(). It is, therefore, assumed now to be an error and raises an exception.

This change was made because such errors can be caused by including an app which expects global transactions (e.g.
ATOMIC_REQUESTS set to True), or Django’s old autocommit behavior, in a project which runs without them; and
further, such errors may manifest as data-corruption bugs.

This change may cause test failures if you use select_for_update() in a test class which is a subclass of
TransactionTestCase rather than TestCase.

Other bugfixes and changes

• Content retrieved from the GeoIP library is now properly decoded from its default iso-8859-1 encoding
(#21996).

• Fixed AttributeError when using bulk_create() with ForeignObject (#21566).

• Fixed crash of QuerySets that use F() + timedelta() when their query was compiled more once
(#21643).

• Prevented custom widget class attribute of IntegerField subclasses from being overwritten by the code
in their __init__ method (#22245).

• Improved strip_tags() accuracy (but it still cannot guarantee an HTML-safe result, as stated in the docu-
mentation).

• Fixed a regression in the django.contrib.gis SQL compiler for non-concrete fields (#22250).

• Fixed ModelAdmin.preserve_filters when running a site with a URL prefix (#21795).

• Fixed a crash in the find_command management utility when the PATH environment variable wasn’t set
(#22256).

• Fixed changepassword on Windows (#22364).

• Avoided shadowing deadlock exceptions on MySQL (#22291).

• Wrapped database exceptions in _set_autocommit (#22321).

• Fixed atomicity when closing a database connection or when the database server disconnects (#21239 and
#21202)

• Fixed regression in prefetch_related that caused the related objects query to include an unnecessary join
(#21760).

Additionally, Django’s vendored version of six, django.utils.six has been upgraded to the latest release (1.6.1).

Django 1.6.2 release notes

February 6, 2014

This is Django 1.6.2, a bugfix release for Django 1.6. Django 1.6.2 fixes several bugs in 1.6.1:

• Prevented the base geometry object of a prepared geometry to be garbage collected, which could lead to crash
Django (#21662).

1528 Chapter 9. Release notes

https://code.djangoproject.com/ticket/21996
https://code.djangoproject.com/ticket/21566
https://code.djangoproject.com/ticket/21643
https://code.djangoproject.com/ticket/22245
https://code.djangoproject.com/ticket/22250
https://code.djangoproject.com/ticket/21795
https://code.djangoproject.com/ticket/22256
https://code.djangoproject.com/ticket/22364
https://code.djangoproject.com/ticket/22291
https://code.djangoproject.com/ticket/22321
https://code.djangoproject.com/ticket/21239
https://code.djangoproject.com/ticket/21202
https://code.djangoproject.com/ticket/21760
https://code.djangoproject.com/ticket/21662

Django Documentation, Release 1.10.9.dev20171123183751

• Fixed a crash when executing the changepassword command when the user object representation contained
non-ASCII characters (#21627).

• The collectstatic command will raise an error rather than default to using the current working directory
if STATIC_ROOT is not set. Combined with the --clear option, the previous behavior could wipe anything
below the current working directory (#21581).

• Fixed mail encoding on Python 3.3.3+ (#21093).

• Fixed an issue where when settings.DATABASES['default']['AUTOCOMMIT'] = False, the
connection wasn’t in autocommit mode but Django pretended it was.

• Fixed a regression in multiple-table inheritance exclude() queries (#21787).

• Added missing items to django.utils.timezone.__all__ (#21880).

• Fixed a field misalignment issue with select_related() and model inheritance (#21413).

• Fixed join promotion for negated AND conditions (#21748).

• Oracle database introspection now works with boolean and float fields (#19884).

• Fixed an issue where lazy objects weren’t actually marked as safe when passed through mark_safe() and
could end up being double-escaped (#21882).

Additionally, Django’s vendored version of six, django.utils.six has been upgraded to the latest release (1.5.2).

Django 1.6.1 release notes

December 12, 2013

This is Django 1.6.1, a bugfix release for Django 1.6. In addition to the bug fixes listed below, translations submitted
since the 1.6 release are also included.

Bug fixes

• Fixed BCryptSHA256PasswordHasher with py-bcrypt and Python 3 (#21398).

• Fixed a regression that prevented a ForeignKey with a hidden reverse manager (related_name ending
with ‘+’) from being used as a lookup for prefetch_related (#21410).

• Fixed Queryset.datetimes raising AttributeError in some situations (#21432).

• Fixed ModelBackend raising UnboundLocalError if get_user_model() raised an error (#21439).

• Fixed a regression that prevented editable GenericRelation subclasses from working in ModelForms
(#21428).

• Added missing to_python method for ModelMultipleChoiceField which is required in Django 1.6
to properly detect changes from initial values (#21568).

• Fixed django.contrib.humanize translations where the unicode sequence for the non-breaking space
was returned verbatim (#21415).

• Fixed loaddata error when fixture file name contained any dots not related to file extensions (#21457) or
when fixture path was relative but located in a subdirectory (#21551).

• Fixed display of inline instances in formsets when parent has 0 for primary key (#21472).

• Fixed a regression where custom querysets for foreign keys were overwritten if ModelAdmin had ordering set
(#21405).

9.1. Final releases 1529

https://code.djangoproject.com/ticket/21627
https://code.djangoproject.com/ticket/21581
https://code.djangoproject.com/ticket/21093
https://code.djangoproject.com/ticket/21787
https://code.djangoproject.com/ticket/21880
https://code.djangoproject.com/ticket/21413
https://code.djangoproject.com/ticket/21748
https://code.djangoproject.com/ticket/19884
https://code.djangoproject.com/ticket/21882

Django Documentation, Release 1.10.9.dev20171123183751

• Removed mention of a feature in the --locale/-l option of the makemessages and compilemessages
commands that never worked as promised: Support of multiple locale names separated by commas. It’s still
possible to specify multiple locales in one run by using the option multiple times (#21488, #17181).

• Fixed a regression that unnecessarily triggered settings configuration when importing
get_wsgi_application (#21486).

• Fixed test client logout() method when using the cookie-based session backend (#21448).

• Fixed a crash when a GeometryField uses a non-geometric widget (#21496).

• Fixed password hash upgrade when changing the iteration count (#21535).

• Fixed a bug in the debug view when the URLconf only contains one element (#21530).

• Re-added missing search result count and reset link in changelist admin view (#21510).

• The current language is no longer saved to the session by LocaleMiddleware on every response, but rather
only after a logout (#21473).

• Fixed a crash when executing runserver on non-English systems and when the formatted date in its output
contained non-ASCII characters (#21358).

• Fixed a crash in the debug view after an exception occurred on Python ≥ 3.3 (#21443).

• Fixed a crash in ImageField on some platforms (Homebrew and RHEL6 reported) (#21355).

• Fixed a regression when using generic relations in ModelAdmin.list_filter (#21431).

Django 1.6 release notes

Note: Dedicated to Malcolm Tredinnick

On March 17, 2013, the Django project and the free software community lost a very dear friend and developer.

Malcolm was a long-time contributor to Django, a model community member, a brilliant mind, and a friend. His
contributions to Django — and to many other open source projects — are nearly impossible to enumerate. Many on
the core Django team had their first patches reviewed by him; his mentorship enriched us. His consideration, patience,
and dedication will always be an inspiration to us.

This release of Django is for Malcolm.

– The Django Developers

November 6, 2013

Welcome to Django 1.6!

These release notes cover the new features, as well as some backwards incompatible changes you’ll want to be aware
of when upgrading from Django 1.5 or older versions. We’ve also dropped some features, which are detailed in our
deprecation plan, and we’ve begun the deprecation process for some features.

Python compatibility

Django 1.6, like Django 1.5, requires Python 2.6.5 or above. Python 3 is also officially supported. We highly recom-
mend the latest minor release for each supported Python series (2.6.X, 2.7.X, 3.2.X, and 3.3.X).

Django 1.6 will be the final release series to support Python 2.6; beginning with Django 1.7, the minimum supported
Python version will be 2.7.

1530 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Python 3.4 is not supported, but support will be added in Django 1.7.

What’s new in Django 1.6

Simplified default project and app templates

The default templates used by startproject and startapp have been simplified and modernized. The admin is
now enabled by default in new projects; the sites framework no longer is. clickjacking prevention is now on and the
database defaults to SQLite.

If the default templates don’t suit your tastes, you can use custom project and app templates.

Improved transaction management

Django’s transaction management was overhauled. Database-level autocommit is now turned on by default. This
makes transaction handling more explicit and should improve performance. The existing APIs were deprecated, and
new APIs were introduced, as described in the transaction management docs.

Persistent database connections

Django now supports reusing the same database connection for several requests. This avoids the overhead of re-
establishing a connection at the beginning of each request. For backwards compatibility, this feature is disabled by
default. See Persistent connections for details.

Discovery of tests in any test module

Django 1.6 ships with a new test runner that allows more flexibility in the location of tests. The previous runner
(django.test.simple.DjangoTestSuiteRunner) found tests only in the models.py and tests.py
modules of a Python package in INSTALLED_APPS.

The new runner (django.test.runner.DiscoverRunner) uses the test discovery features built into
unittest2 (the version of unittest in the Python 2.7+ standard library, and bundled with Django). With test
discovery, tests can be located in any module whose name matches the pattern test*.py.

In addition, the test labels provided to ./manage.py test to nominate specific tests to run must now be full
Python dotted paths (or directory paths), rather than applabel.TestCase.test_method_name pseudo-paths.
This allows running tests located anywhere in your codebase, rather than only in INSTALLED_APPS. For more
details, see Testing in Django.

This change is backwards-incompatible; see the backwards-incompatibility notes.

Time zone aware aggregation

The support for time zones introduced in Django 1.4 didn’t work well with QuerySet.dates(): aggregation was
always performed in UTC. This limitation was lifted in Django 1.6. Use QuerySet.datetimes() to perform
time zone aware aggregation on a DateTimeField.

Support for savepoints in SQLite

Django 1.6 adds support for savepoints in SQLite, with some limitations.

9.1. Final releases 1531

Django Documentation, Release 1.10.9.dev20171123183751

BinaryField model field

A new django.db.models.BinaryField model field allows storage of raw binary data in the database.

GeoDjango form widgets

GeoDjango now provides form fields and widgets for its geo-specialized fields. They are OpenLayers-based by default,
but they can be customized to use any other JS framework.

check management command added for verifying compatibility

A check management command was added, enabling you to verify if your current configuration (currently oriented
at settings) is compatible with the current version of Django.

Model.save() algorithm changed

The Model.save() method now tries to directly UPDATE the database if the instance has a primary key value.
Previously SELECT was performed to determine if UPDATE or INSERT were needed. The new algorithm needs only
one query for updating an existing row while the old algorithm needed two. See Model.save() for more details.

In some rare cases the database doesn’t report that a matching row was found when doing an UPDATE. An example is
the PostgreSQL ON UPDATE trigger which returns NULL. In such cases it is possible to set django.db.models.
Options.select_on_save flag to force saving to use the old algorithm.

Minor features

• Authentication backends can raise PermissionDenied to immediately fail the authentication chain.

• The HttpOnly flag can be set on the CSRF cookie with CSRF_COOKIE_HTTPONLY .

• The assertQuerysetEqual() now checks for undefined order and raises ValueError if undefined order
is spotted. The order is seen as undefined if the given QuerySet isn’t ordered and there are more than one
ordered values to compare against.

• Added earliest() for symmetry with latest().

• In addition to year, month and day , the ORM now supports hour, minute and second lookups.

• Django now wraps all PEP-249 exceptions.

• The default widgets for EmailField, URLField, IntegerField, FloatField and DecimalField
use the new type attributes available in HTML5 (type='email', type='url', type='number'). Note
that due to erratic support of the number input type with localized numbers in current browsers, Django only
uses it when numeric fields are not localized.

• The number argument for lazy plural translations can be provided at translation time rather than at definition
time.

• For custom management commands: Verification of the presence of valid settings in commands that ask for it
by using the can_import_settings internal option is now performed independently from handling of the
locale that should be active during the execution of the command. The latter can now be influenced by the new
leave_locale_alone internal option. See Management commands and locales for more details.

• The success_url of DeletionMixin is now interpolated with its object’s __dict__.

1532 Chapter 9. Release notes

https://docs.python.org/3/library/exceptions.html#ValueError

Django Documentation, Release 1.10.9.dev20171123183751

• HttpResponseRedirect and HttpResponsePermanentRedirect now provide an url attribute
(equivalent to the URL the response will redirect to).

• The MemcachedCache cache backend now uses the latest pickle protocol available.

• Added SuccessMessageMixin which provides a success_message attribute for FormView based
classes.

• Added the django.db.models.ForeignKey.db_constraint and django.db.models.
ManyToManyField.db_constraint options.

• The jQuery library embedded in the admin has been upgraded to version 1.9.1.

• Syndication feeds (django.contrib.syndication) can now pass extra context through to feed templates
using a new Feed.get_context_data() callback.

• The admin list columns have a column-<field_name> class in the HTML so the columns header can be
styled with CSS, e.g. to set a column width.

• The isolation level can be customized under PostgreSQL.

• The blocktrans template tag now respects TEMPLATE_STRING_IF_INVALID for variables not present
in the context, just like other template constructs.

• SimpleLazyObjects will now present more helpful representations in shell debugging situations.

• Generic GeometryField is now editable with the OpenLayers widget in the admin.

• The documentation contains a deployment checklist.

• The diffsettings command gained a --all option.

• django.forms.fields.Field.__init__ now calls super(), allowing field mixins to implement
__init__() methods that will reliably be called.

• The validate_max parameter was added to BaseFormSet and formset_factory(), and
ModelForm and inline versions of the same. The behavior of validation for formsets with max_num was
clarified. The previously undocumented behavior that hardened formsets against memory exhaustion attacks
was documented, and the undocumented limit of the higher of 1000 or max_num forms was changed so it is
always 1000 more than max_num.

• Added BCryptSHA256PasswordHasher to resolve the password truncation issue with bcrypt.

• Pillow is now the preferred image manipulation library to use with Django. PIL is pending deprecation (support
to be removed in Django 1.8). To upgrade, you should first uninstall PIL, then install Pillow.

• ModelForm accepts several new Meta options.

– Fields included in the localized_fields list will be localized (by setting localize on the form
field).

– The labels, help_texts and error_messages options may be used to customize the default
fields, see Overriding the default fields for details.

• The choices argument to model fields now accepts an iterable of iterables instead of requiring an iterable of
lists or tuples.

• The reason phrase can be customized in HTTP responses using reason_phrase.

• When giving the URL of the next page for logout(), password_reset(),
password_reset_confirm(), and password_change(), you can now pass URL names and
they will be resolved.

• The new dumpdata --pks option specifies the primary keys of objects to dump. This option can only be
used with one model.

9.1. Final releases 1533

https://docs.python.org/3/library/pickle.html#module-pickle
https://pypi.python.org/pypi/Pillow
https://pypi.python.org/pypi/PIL

Django Documentation, Release 1.10.9.dev20171123183751

• Added QuerySet methods first() and last() which are convenience methods returning the first or last
object matching the filters. Returns None if there are no objects matching.

• View and RedirectView now support HTTP PATCH method.

• GenericForeignKey now takes an optional for_concrete_model argument, which when set to
False allows the field to reference proxy models. The default is True to retain the old behavior.

• The LocaleMiddleware now stores the active language in session if it is not present there. This prevents
loss of language settings after session flush, e.g. logout.

• SuspiciousOperation has been differentiated into a number of subclasses, and each will log to a matching
named logger under the django.security logging hierarchy. Along with this change, a handler400
mechanism and default view are used whenever a SuspiciousOperation reaches the WSGI handler to
return an HttpResponseBadRequest.

• The DoesNotExist exception now includes a message indicating the name of the attribute used for the
lookup.

• The get_or_create() method no longer requires at least one keyword argument.

• The SimpleTestCase class includes a new assertion helper for testing formset errors:
assertFormsetError().

• The list of related fields added to a QuerySet by select_related() can be cleared using
select_related(None).

• The get_extra() and get_max_num() methods on InlineModelAdmin may be overridden to cus-
tomize the extra and maximum number of inline forms.

• Formsets now have a total_error_count() method.

• ModelForm fields can now override error messages defined in model fields by using the error_messages
argument of a Field’s constructor. To take advantage of this new feature with your custom fields, see the
updated recommendation for raising a ValidationError.

• ModelAdmin now preserves filters on the list view after creating, editing or deleting an object. It’s possible to
restore the previous behavior of clearing filters by setting the preserve_filters attribute to False.

• Added FormMixin.get_prefix (which returns FormMixin.prefix by default) to allow customizing
the prefix of the form.

• Raw queries (Manager.raw() or cursor.execute()) can now use the “pyformat” parameter style,
where placeholders in the query are given as '%(name)s' and the parameters are passed as a dictionary
rather than a list (except on SQLite). This has long been possible (but not officially supported) on MySQL and
PostgreSQL, and is now also available on Oracle.

• The default iteration count for the PBKDF2 password hasher has been increased by 20%. This backwards com-
patible change will not affect existing passwords or users who have subclassed django.contrib.auth.
hashers.PBKDF2PasswordHasher to change the default value. Passwords will be upgraded to use the
new iteration count as necessary.

Backwards incompatible changes in 1.6

Warning: In addition to the changes outlined in this section, be sure to review the deprecation plan for any
features that have been removed. If you haven’t updated your code within the deprecation timeline for a given
feature, its removal may appear as a backwards incompatible change.

1534 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

New transaction management model

Behavior changes

Database-level autocommit is enabled by default in Django 1.6. While this doesn’t change the general spirit of
Django’s transaction management, there are a few backwards-incompatibilities.

Savepoints and assertNumQueries

The changes in transaction management may result in additional statements to create, release or rollback savepoints.
This is more likely to happen with SQLite, since it didn’t support savepoints until this release.

If tests using assertNumQueries() fail because of a higher number of queries than expected, check that the extra
queries are related to savepoints, and adjust the expected number of queries accordingly.

Autocommit option for PostgreSQL

In previous versions, database-level autocommit was only an option for PostgreSQL, and it was disabled by default.
This option is now ignored and can be removed.

New test runner

In order to maintain greater consistency with Python’s unittest module, the new test runner (django.test.
runner.DiscoverRunner) does not automatically support some types of tests that were supported by the previ-
ous runner:

• Tests in models.py and tests/__init__.py files will no longer be found and run. Move them to a file
whose name begins with test.

• Doctests will no longer be automatically discovered. To integrate doctests in your test suite, follow the recom-
mendations in the Python documentation.

Django bundles a modified version of the doctest module from the Python standard library (in django.test.
_doctest) and includes some additional doctest utilities. These utilities are deprecated and will be removed in
Django 1.8; doctest suites should be updated to work with the standard library’s doctest module (or converted to
unittest-compatible tests).

If you wish to delay updates to your test suite, you can set your TEST_RUNNER setting to django.test.simple.
DjangoTestSuiteRunner to fully restore the old test behavior. DjangoTestSuiteRunner is deprecated but
will not be removed from Django until version 1.8.

Removal of django.contrib.gis.tests.GeoDjangoTestSuiteRunner GeoDjango custom test
runner

This is for developers working on the GeoDjango application itself and related to the item above about changes in the
test runners:

The django.contrib.gis.tests.GeoDjangoTestSuiteRunner test runner has been removed and the
standalone GeoDjango tests execution setup it implemented isn’t supported anymore. To run the GeoDjango tests
simply use the new DiscoverRunner and specify the django.contrib.gis app.

9.1. Final releases 1535

https://docs.python.org/3/library/doctest.html#doctest-unittest-api
https://docs.python.org/3/library/doctest.html#doctest-unittest-api
https://docs.python.org/3/library/doctest.html#module-doctest

Django Documentation, Release 1.10.9.dev20171123183751

Custom user models in tests

The introduction of the new test runner has also slightly changed the way that test models are imported. As
a result, any test that overrides AUTH_USER_MODEL to test behavior with one of Django’s test user models
(django.contrib.auth.tests.custom_user.CustomUser and django.contrib.auth.tests.
custom_user.ExtensionUser) must now explicitly import the User model in your test module:

from django.contrib.auth.tests.custom_user import CustomUser

@override_settings(AUTH_USER_MODEL='auth.CustomUser')
class CustomUserFeatureTests(TestCase):

def test_something(self):
Test code here ...

This import forces the custom user model to be registered. Without this import, the test will be unable to swap in the
custom user model, and you will get an error reporting:

ImproperlyConfigured: AUTH_USER_MODEL refers to model 'auth.CustomUser' that has not
→˓been installed

Time zone-aware day, month, and week_day lookups

Django 1.6 introduces time zone support for day , month, and week_day lookups when USE_TZ is True. These
lookups were previously performed in UTC regardless of the current time zone.

This requires time zone definitions in the database. If you’re using SQLite, you must install pytz. If you’re using
MySQL, you must install pytz and load the time zone tables with mysql_tzinfo_to_sql.

Addition of QuerySet.datetimes()

When the time zone support added in Django 1.4 was active, QuerySet.dates() lookups returned unexpected
results, because the aggregation was performed in UTC. To fix this, Django 1.6 introduces a new API, QuerySet.
datetimes(). This requires a few changes in your code.

QuerySet.dates() returns date objects

QuerySet.dates() now returns a list of date. It used to return a list of datetime.

QuerySet.datetimes() returns a list of datetime.

QuerySet.dates() no longer usable on DateTimeField

QuerySet.dates() raises an error if it’s used on DateTimeField when time zone support is active. Use
QuerySet.datetimes() instead.

date_hierarchy requires time zone definitions

The date_hierarchy feature of the admin now relies on QuerySet.datetimes() when it’s used on a
DateTimeField.

This requires time zone definitions in the database when USE_TZ is True. Learn more.

1536 Chapter 9. Release notes

http://pytz.sourceforge.net/
http://pytz.sourceforge.net/
https://dev.mysql.com/doc/refman/en/mysql-tzinfo-to-sql.html
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

Django Documentation, Release 1.10.9.dev20171123183751

date_list in generic views requires time zone definitions

For the same reason, accessing date_list in the context of a date-based generic view requires time zone definitions
in the database when the view is based on a DateTimeField and USE_TZ is True. Learn more.

New lookups may clash with model fields

Django 1.6 introduces hour, minute, and second lookups on DateTimeField. If you had model fields called
hour, minute, or second, the new lookups will clash with you field names. Append an explicit exact lookup if
this is an issue.

BooleanField no longer defaults to False

When a BooleanField doesn’t have an explicit default, the implicit default value is None. In previous version
of Django, it was False, but that didn’t represent accurately the lack of a value.

Code that relies on the default value being False may raise an exception when saving new model instances
to the database, because None isn’t an acceptable value for a BooleanField. You should either specify
default=False in the field definition, or ensure the field is set to True or False before saving the object.

Translations and comments in templates

Extraction of translations after comments

Extraction of translatable literals from templates with the makemessages command now correctly detects i18n
constructs when they are located after a {# / #}-type comment on the same line. E.g.:

{# A comment #}{% trans "This literal was incorrectly ignored. Not anymore" %}

Location of translator comments

Comments for translators in templates specified using {# / #} need to be at the end of a line. If they are not, the
comments are ignored and makemessages will generate a warning. For example:

{# Translators: This is ignored #}{% trans "Translate me" %}
{{ title }}{# Translators: Extracted and associated with 'Welcome' below #}
<h1>{% trans "Welcome" %}</h1>

Quoting in reverse()

When reversing URLs, Django didn’t apply urlquote() to arguments before interpolating them in URL patterns.
This bug is fixed in Django 1.6. If you worked around this bug by applying URL quoting before passing arguments
to reverse(), this may result in double-quoting. If this happens, simply remove the URL quoting from your code.
You will also have to replace special characters in URLs used in assertRedirects()with their encoded versions.

9.1. Final releases 1537

Django Documentation, Release 1.10.9.dev20171123183751

Storage of IP addresses in the comments app

The comments app now uses a GenericIPAddressField for storing commenters’ IP addresses, to support com-
ments submitted from IPv6 addresses. Until now, it stored them in an IPAddressField, which is only meant to
support IPv4. When saving a comment made from an IPv6 address, the address would be silently truncated on MySQL
databases, and raise an exception on Oracle. You will need to change the column type in your database to benefit from
this change.

For MySQL, execute this query on your project’s database:

ALTER TABLE django_comments MODIFY ip_address VARCHAR(39);

For Oracle, execute this query:

ALTER TABLE DJANGO_COMMENTS MODIFY (ip_address VARCHAR2(39));

If you do not apply this change, the behavior is unchanged: on MySQL, IPv6 addresses are silently truncated; on
Oracle, an exception is generated. No database change is needed for SQLite or PostgreSQL databases.

Percent literals in cursor.execute queries

When you are running raw SQL queries through the cursor.execute method, the rule about doubling percent literals
(%) inside the query has been unified. Past behavior depended on the database backend. Now, across all backends, you
only need to double literal percent characters if you are also providing replacement parameters. For example:

No parameters, no percent doubling
cursor.execute("SELECT foo FROM bar WHERE baz = '30%'")

Parameters passed, non-placeholders have to be doubled
cursor.execute("SELECT foo FROM bar WHERE baz = '30%%' and id = %s", [self.id])

SQLite users need to check and update such queries.

Help text of model form fields for ManyToManyField fields

HTML rendering of model form fields corresponding to ManyToManyField model fields used to get the hard-coded
sentence:

Hold down “Control”, or “Command” on a Mac, to select more than one.

(or its translation to the active locale) imposed as the help legend shown along them if neither model nor form
help_text attributes were specified by the user (or this string was appended to any help_text that was provided).

Since this happened at the model layer, there was no way to prevent the text from appearing in cases where it wasn’t
applicable such as form fields that implement user interactions that don’t involve a keyboard and/or a mouse.

Starting with Django 1.6, as an ad-hoc temporary backward-compatibility provision, the logic to add the “Hold
down...” sentence has been moved to the model form field layer and modified to add the text only when the asso-
ciated widget is SelectMultiple or selected subclasses.

The change can affect you in a backward incompatible way if you employ custom model form fields and/or widgets
for ManyToManyField model fields whose UIs do rely on the automatic provision of the mentioned hard-coded
sentence. These form field implementations need to adapt to the new scenario by providing their own handling of the
help_text attribute.

1538 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Applications that use Django model form facilities together with Django built-in form fields and widgets aren’t affected
but need to be aware of what’s described in Munging of help text of model form fields for ManyToManyField fields
below.

QuerySet iteration

The QuerySet iteration was changed to immediately convert all fetched rows to Model objects. In Django 1.5 and
earlier the fetched rows were converted to Model objects in chunks of 100.

Existing code will work, but the amount of rows converted to objects might change in certain use cases. Such usages
include partially looping over a queryset or any usage which ends up doing __bool__ or __contains__.

Notably most database backends did fetch all the rows in one go already in 1.5.

It is still possible to convert the fetched rows to Model objects lazily by using the iterator() method.

BoundField.label_tag now includes the form’s label_suffix

This is consistent with how methods like Form.as_p and Form.as_ul render labels.

If you manually render label_tag in your templates:

{{ form.my_field.label_tag }}: {{ form.my_field }}

you’ll want to remove the colon (or whatever other separator you may be using) to avoid duplicating it when upgrading
to Django 1.6. The following template in Django 1.6 will render identically to the above template in Django 1.5, except
that the colon will appear inside the <label> element.

{{ form.my_field.label_tag }} {{ form.my_field }}

will render something like:

<label for="id_my_field">My Field:</label> <input id="id_my_field" type="text" name=
→˓"my_field" />

If you want to keep the current behavior of rendering label_tag without the label_suffix, instantiate the
form label_suffix=''. You can also customize the label_suffix on a per-field basis using the new
label_suffix parameter on label_tag().

Admin views _changelist_filters GET parameter

To achieve preserving and restoring list view filters, admin views now pass around the _changelist_filters GET pa-
rameter. It’s important that you account for that change if you have custom admin templates or if your tests rely on
the previous URLs. If you want to revert to the original behavior you can set the preserve_filters attribute to
False.

django.contrib.auth password reset uses base 64 encoding of User PK

Past versions of Django used base 36 encoding of the User primary key in the password reset views and URLs
(django.contrib.auth.views.password_reset_confirm()). Base 36 encoding is sufficient if the
user primary key is an integer, however, with the introduction of custom user models in Django 1.5, that assump-
tion may no longer be true.

9.1. Final releases 1539

Django Documentation, Release 1.10.9.dev20171123183751

django.contrib.auth.views.password_reset_confirm() has been modified to take a uidb64 pa-
rameter instead of uidb36. If you are reversing this view, for example in a custom password_reset_email.
html template, be sure to update your code.

A temporary shim for django.contrib.auth.views.password_reset_confirm() that will allow pass-
word reset links generated prior to Django 1.6 to continue to work has been added to provide backwards compatibil-
ity; this will be removed in Django 1.7. Thus, as long as your site has been running Django 1.6 for more than
PASSWORD_RESET_TIMEOUT_DAYS, this change will have no effect. If not (for example, if you upgrade directly
from Django 1.5 to Django 1.7), then any password reset links generated before you upgrade to Django 1.7 or later
won’t work after the upgrade.

In addition, if you have any custom password reset URLs, you will need to update them by replacing uidb36 with
uidb64 and the dash that follows that pattern with a slash. Also add _\- to the list of characters that may match the
uidb64 pattern.

For example:

url(r'^reset/(?P<uidb36>[0-9A-Za-z]+)-(?P<token>.+)/$',
'django.contrib.auth.views.password_reset_confirm',
name='password_reset_confirm'),

becomes:

url(r'^reset/(?P<uidb64>[0-9A-Za-z_\-]+)/(?P<token>.+)/$',
'django.contrib.auth.views.password_reset_confirm',
name='password_reset_confirm'),

You may also want to add the shim to support the old style reset links. Using the example above, you would modify
the existing url by replacing django.contrib.auth.views.password_reset_confirm with django.
contrib.auth.views.password_reset_confirm_uidb36 and also remove the name argument so it
doesn’t conflict with the new url:

url(r'^reset/(?P<uidb36>[0-9A-Za-z]+)-(?P<token>.+)/$',
'django.contrib.auth.views.password_reset_confirm_uidb36'),

You can remove this URL pattern after your app has been deployed with Django 1.6 for
PASSWORD_RESET_TIMEOUT_DAYS.

Default session serialization switched to JSON

Historically, django.contrib.sessions used pickle to serialize session data before storing it in the backend.
If you’re using the signed cookie session backend and SECRET_KEY is known by an attacker (there isn’t an inherent
vulnerability in Django that would cause it to leak), the attacker could insert a string into his session which, when
unpickled, executes arbitrary code on the server. The technique for doing so is simple and easily available on the
internet. Although the cookie session storage signs the cookie-stored data to prevent tampering, a SECRET_KEY leak
immediately escalates to a remote code execution vulnerability.

This attack can be mitigated by serializing session data using JSON rather than pickle. To facilitate this, Django
1.5.3 introduced a new setting, SESSION_SERIALIZER, to customize the session serialization format. For back-
wards compatibility, this setting defaulted to using pickle in Django 1.5.3, but we’ve changed the default to JSON
in 1.6. If you upgrade and switch from pickle to JSON, sessions created before the upgrade will be lost. While JSON
serialization does not support all Python objects like pickle does, we highly recommend using JSON-serialized
sessions. Be aware of the following when checking your code to determine if JSON serialization will work for your
application:

• JSON requires string keys, so you will likely run into problems if you are using non-string keys in request.
session.

1540 Chapter 9. Release notes

https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/pickle.html#module-pickle

Django Documentation, Release 1.10.9.dev20171123183751

• Setting session expiration by passing datetime values to set_expiry() will not work as datetime
values are not serializable in JSON. You can use integer values instead.

See the Session serialization documentation for more details.

Object Relational Mapper changes

Django 1.6 contains many changes to the ORM. These changes fall mostly in three categories:

1. Bug fixes (e.g. proper join clauses for generic relations, query combining, join promotion, and join trimming
fixes)

2. Preparation for new features. For example the ORM is now internally ready for multicolumn foreign keys.

3. General cleanup.

These changes can result in some compatibility problems. For example, some queries will now generate different
table aliases. This can affect QuerySet.extra(). In addition some queries will now produce different results.
An example is exclude(condition) where the condition is a complex one (referencing multijoins inside Q
objects). In many cases the affected queries didn’t produce correct results in Django 1.5 but do now. Unfortunately
there are also cases that produce different results, but neither Django 1.5 nor 1.6 produce correct results.

Finally, there have been many changes to the ORM internal APIs.

Miscellaneous

• The django.db.models.query.EmptyQuerySet can’t be instantiated any more - it is only usable as a
marker class for checking if none() has been called: isinstance(qs.none(), EmptyQuerySet)

• If your CSS/JavaScript code used to access HTML input widgets by type, you should review it as
type='text' widgets might be now output as type='email', type='url' or type='number' de-
pending on their corresponding field type.

• Form field’s error_messages that contain a placeholder should now always use a named placeholder
("Value '%(value)s' is too big" instead of "Value '%s' is too big"). See the corre-
sponding field documentation for details about the names of the placeholders. The changes in 1.6 particularly
affect DecimalField and ModelMultipleChoiceField.

• Some error_messages for IntegerField, EmailField, IPAddressField,
GenericIPAddressField, and SlugField have been suppressed because they duplicated error
messages already provided by validators tied to the fields.

• Due to a change in the form validation workflow, TypedChoiceField coercemethod should always return
a value present in the choices field attribute. That limitation should be lift again in Django 1.7.

• There have been changes in the way timeouts are handled in cache backends. Explicitly passing in
timeout=None no longer results in using the default timeout. It will now set a non-expiring timeout. Passing
0 into the memcache backend no longer uses the default timeout, and now will set-and-expire-immediately the
value.

• The django.contrib.flatpages app used to set custom HTTP headers for debugging purposes. This
functionality was not documented and made caching ineffective so it has been removed, along with its generic
implementation, previously available in django.core.xheaders.

• The XViewMiddleware has been moved from django.middleware.doc to django.contrib.
admindocs.middleware because it is an implementation detail of admindocs, proven not to be reusable in
general.

9.1. Final releases 1541

Django Documentation, Release 1.10.9.dev20171123183751

• GenericIPAddressField will now only allow blank values if null values are also allowed. Creating a
GenericIPAddressField where blank is allowed but null is not will trigger a model validation error
because blank values are always stored as null. Previously, storing a blank value in a field which did not
allow null would cause a database exception at runtime.

• If a NoReverseMatch exception is raised from a method when rendering a template, it is not silenced.
For example, {{ obj.view_href }} will cause template rendering to fail if view_href() raises
NoReverseMatch. There is no change to the {% url %} tag, it causes template rendering to fail like
always when NoReverseMatch is raised.

• django.test.Client.logout() now calls django.contrib.auth.logout() which will send
the user_logged_out() signal.

• Authentication views are now reversed by name, not their locations in django.contrib.auth.views. If
you are using the views without a name, you should update your urlpatterns to use url() with the name
parameter. For example:

(r'^reset/done/$', 'django.contrib.auth.views.password_reset_complete')

becomes:

url(r'^reset/done/$', 'django.contrib.auth.views.password_reset_complete', name=
→˓'password_reset_complete')

• RedirectView now has a pattern_name attribute which allows it to choose the target by reversing the URL.

• In Django 1.4 and 1.5, a blank string was unintentionally not considered to be a valid pass-
word. This meant set_password() would save a blank password as an unusable password like
set_unusable_password() does, and thus check_password() always returned False for blank
passwords. This has been corrected in this release: blank passwords are now valid.

• The admin changelist_view previously accepted a pop GET parameter to signify it was to be displayed
in a popup. This parameter has been renamed to _popup to be consistent with the rest of the admin views. You
should update your custom templates if they use the previous parameter name.

• validate_email() now accepts email addresses with localhost as the domain.

• The new makemessages --keep-pot option prevents deleting the temporary .pot file generated before
creating the .po file.

• The undocumented django.core.servers.basehttp.WSGIServerException has been removed.
Use socket.error provided by the standard library instead. This change was also released in Django 1.5.5.

• The signature of django.views.generic.base.RedirectView.get_redirect_url() has
changed and now accepts positional arguments as well (*args, **kwargs). Any unnamed captured group
will now be passed to get_redirect_url() which may result in a TypeError if you don’t update the
signature of your custom method.

Features deprecated in 1.6

Transaction management APIs

Transaction management was completely overhauled in Django 1.6, and the current APIs are deprecated:

• django.middleware.transaction.TransactionMiddleware

• django.db.transaction.autocommit

• django.db.transaction.commit_on_success

1542 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

• django.db.transaction.commit_manually

• the TRANSACTIONS_MANAGED setting

django.contrib.comments

Django’s comment framework has been deprecated and is no longer supported. It will be available in Django 1.6 and
1.7, and removed in Django 1.8. Most users will be better served with a custom solution, or a hosted product like
Disqus.

The code formerly known as django.contrib.comments is still available in an external repository.

Support for PostgreSQL versions older than 8.4

The end of upstream support periods was reached in December 2011 for PostgreSQL 8.2 and in February 2013 for
8.3. As a consequence, Django 1.6 sets 8.4 as the minimum PostgreSQL version it officially supports.

You’re strongly encouraged to use the most recent version of PostgreSQL available, because of performance improve-
ments and to take advantage of the native streaming replication available in PostgreSQL 9.x.

Changes to cycle and firstof

The template system generally escapes all variables to avoid XSS attacks. However, due to an accident of history, the
cycle and firstof tags render their arguments as-is.

Django 1.6 starts a process to correct this inconsistency. The future template library provides alternate implemen-
tations of cycle and firstof that autoescape their inputs. If you’re using these tags, you’re encouraged to include
the following line at the top of your templates to enable the new behavior:

{% load cycle from future %}

or:

{% load firstof from future %}

The tags implementing the old behavior have been deprecated, and in Django 1.8, the old behavior will be replaced
with the new behavior. To ensure compatibility with future versions of Django, existing templates should be modified
to use the future versions.

If necessary, you can temporarily disable auto-escaping with mark_safe() or {% autoescape off %}.

CACHE_MIDDLEWARE_ANONYMOUS_ONLY setting

CacheMiddleware and UpdateCacheMiddleware used to provide a way to cache requests only if they weren’t
made by a logged-in user. This mechanism was largely ineffective because the middleware correctly takes into account
the Vary: Cookie HTTP header, and this header is being set on a variety of occasions, such as:

• accessing the session, or

• using CSRF protection, which is turned on by default, or

• using a client-side library which sets cookies, like Google Analytics.

This makes the cache effectively work on a per-session basis regardless of the
CACHE_MIDDLEWARE_ANONYMOUS_ONLY setting.

9.1. Final releases 1543

https://disqus.com/
https://github.com/django/django-contrib-comments
https://www.google.com/analytics/

Django Documentation, Release 1.10.9.dev20171123183751

SEND_BROKEN_LINK_EMAILS setting

CommonMiddleware used to provide basic reporting of broken links by email when
SEND_BROKEN_LINK_EMAILS is set to True.

Because of intractable ordering problems between CommonMiddleware and LocaleMiddleware, this feature
was split out into a new middleware: BrokenLinkEmailsMiddleware.

If you’re relying on this feature, you should add 'django.middleware.common.
BrokenLinkEmailsMiddleware' to your MIDDLEWARE_CLASSES setting and remove
SEND_BROKEN_LINK_EMAILS from your settings.

_has_changed method on widgets

If you defined your own form widgets and defined the _has_changed method on a widget, you should now define
this method on the form field itself.

module_name model _meta attribute

Model._meta.module_name was renamed to model_name. Despite being a private API, it will go through a
regular deprecation path.

get_(add|change|delete)_permission model _meta methods

Model._meta.get_(add|change|delete)_permission methods were deprecated. Even if they
were not part of the public API they’ll also go through a regular deprecation path. You can replace
them with django.contrib.auth.get_permission_codename('action', Model._meta) where
'action' is 'add', 'change', or 'delete'.

get_query_set and similar methods renamed to get_queryset

Methods that return a QuerySet such as Manager.get_query_set or ModelAdmin.queryset have been
renamed to get_queryset.

If you are writing a library that implements, for example, a Manager.get_query_set method, and you need to
support old Django versions, you should rename the method and conditionally add an alias with the old name:

class CustomManager(models.Manager):
def get_queryset(self):

pass # ...

if django.VERSION < (1, 6):
get_query_set = get_queryset

For Django >= 1.6, models.Manager provides a get_query_set fallback
that emits a warning when used.

If you are writing a library that needs to call the get_queryset method and must support old Django versions, you
should write:

1544 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

get_queryset = (some_manager.get_query_set
if hasattr(some_manager, 'get_query_set')
else some_manager.get_queryset)

return get_queryset() # etc

In the general case of a custom manager that both implements its own get_queryset method and calls that method,
and needs to work with older Django versions, and libraries that have not been updated yet, it is useful to define a
get_queryset_compat method as below and use it internally to your manager:

class YourCustomManager(models.Manager):
def get_queryset(self):

return YourCustomQuerySet() # for example

if django.VERSION < (1, 6):
get_query_set = get_queryset

def active(self): # for example
return self.get_queryset_compat().filter(active=True)

def get_queryset_compat(self):
get_queryset = (self.get_query_set

if hasattr(self, 'get_query_set')
else self.get_queryset)

return get_queryset()

This helps to minimize the changes that are needed, but also works correctly in the case of subclasses (such as
RelatedManagers from Django 1.5) which might override either get_query_set or get_queryset.

shortcut view and URLconf

The shortcut view was moved from django.views.defaults to django.contrib.contenttypes.
views shortly after the 1.0 release, but the old location was never deprecated. This oversight was corrected in Django
1.6 and you should now use the new location.

The URLconf django.conf.urls.shortcut was also deprecated. If you’re including it in an URLconf, simply
replace:

(r'^prefix/', include('django.conf.urls.shortcut')),

with:

(r'^prefix/(?P<content_type_id>\d+)/(?P<object_id>.*)/$', 'django.contrib.
→˓contenttypes.views.shortcut'),

ModelForm without fields or exclude

Previously, if you wanted a ModelForm to use all fields on the model, you could simply omit the Meta.fields
attribute, and all fields would be used.

This can lead to security problems where fields are added to the model and, unintentionally, automatically become
editable by end users. In some cases, particular with boolean fields, it is possible for this problem to be completely
invisible. This is a form of Mass assignment vulnerability.

For this reason, this behavior is deprecated, and using the Meta.exclude option is strongly discouraged. Instead,
all fields that are intended for inclusion in the form should be listed explicitly in the fields attribute.

9.1. Final releases 1545

https://en.wikipedia.org/wiki/Mass_assignment_vulnerability

Django Documentation, Release 1.10.9.dev20171123183751

If this security concern really does not apply in your case, there is a shortcut to explicitly indicate that all fields should
be used - use the special value "__all__" for the fields attribute:

class MyModelForm(ModelForm):
class Meta:

fields = "__all__"
model = MyModel

If you have custom ModelForms that only need to be used in the admin, there is another option. The admin has
its own methods for defining fields (fieldsets etc.), and so adding a list of fields to the ModelForm is redun-
dant. Instead, simply omit the Meta inner class of the ModelForm, or omit the Meta.model attribute. Since
the ModelAdmin subclass knows which model it is for, it can add the necessary attributes to derive a functioning
ModelForm. This behavior also works for earlier Django versions.

UpdateView and CreateView without explicit fields

The generic views CreateView and UpdateView , and anything else derived from ModelFormMixin, are vul-
nerable to the security problem described in the section above, because they can automatically create a ModelForm
that uses all fields for a model.

For this reason, if you use these views for editing models, you must also supply the fields attribute (new in Django
1.6), which is a list of model fields and works in the same way as the ModelForm Meta.fields attribute. Al-
ternatively, you can set the form_class attribute to a ModelForm that explicitly defines the fields to be used.
Defining an UpdateView or CreateView subclass to be used with a model but without an explicit list of fields is
deprecated.

Munging of help text of model form fields for ManyToManyField fields

All special handling of the help_text attribute of ManyToManyField model fields performed by standard model
or model form fields as described in Help text of model form fields for ManyToManyField fields above is deprecated
and will be removed in Django 1.8.

Help text of these fields will need to be handled either by applications, custom form fields or widgets, just like happens
with the rest of the model field types.

9.1.6 1.5 release

Django 1.5.12 release notes

January 2, 2015

Django 1.5.12 fixes a regression in the 1.5.9 security release.

Bugfixes

• Fixed a regression with dynamically generated inlines and allowed field references in the admin (#23754).

Django 1.5.11 release notes

October 22, 2014

Django 1.5.11 fixes a couple regressions in the 1.5.9 security release.

1546 Chapter 9. Release notes

https://code.djangoproject.com/ticket/23754

Django Documentation, Release 1.10.9.dev20171123183751

Bugfixes

• Allowed related many-to-many fields to be referenced in the admin (#23604).

• Allowed inline and hidden references to admin fields (#23431).

Django 1.5.10 release notes

September 2, 2014

Django 1.5.10 fixes a regression in the 1.5.9 security release.

Bugfixes

• Allowed inherited and m2m fields to be referenced in the admin (#22486)

Django 1.5.9 release notes

August 20, 2014

Django 1.5.9 fixes several security issues in 1.5.8.

reverse() could generate URLs pointing to other hosts

In certain situations, URL reversing could generate scheme-relative URLs (URLs starting with two slashes), which
could unexpectedly redirect a user to a different host. An attacker could exploit this, for example, by redirecting users
to a phishing site designed to ask for user’s passwords.

To remedy this, URL reversing now ensures that no URL starts with two slashes (//), replacing the second slash with its
URL encoded counterpart (%2F). This approach ensures that semantics stay the same, while making the URL relative
to the domain and not to the scheme.

File upload denial-of-service

Before this release, Django’s file upload handing in its default configuration may degrade to producing a huge number
of os.stat() system calls when a duplicate filename is uploaded. Since stat() may invoke IO, this may produce
a huge data-dependent slowdown that slowly worsens over time. The net result is that given enough time, a user with
the ability to upload files can cause poor performance in the upload handler, eventually causing it to become very slow
simply by uploading 0-byte files. At this point, even a slow network connection and few HTTP requests would be all
that is necessary to make a site unavailable.

We’ve remedied the issue by changing the algorithm for generating file names if a file with the uploaded name already
exists. Storage.get_available_name() now appends an underscore plus a random 7 character alphanumeric
string (e.g. "_x3a1gho"), rather than iterating through an underscore followed by a number (e.g. "_1", "_2",
etc.).

RemoteUserMiddleware session hijacking

When using the RemoteUserMiddleware and the RemoteUserBackend, a change to the REMOTE_USER
header between requests without an intervening logout could result in the prior user’s session being co-opted by the
subsequent user. The middleware now logs the user out on a failed login attempt.

9.1. Final releases 1547

https://code.djangoproject.com/ticket/23604
https://code.djangoproject.com/ticket/23431
https://code.djangoproject.com/ticket/22486

Django Documentation, Release 1.10.9.dev20171123183751

Data leakage via query string manipulation in contrib.admin

In older versions of Django it was possible to reveal any field’s data by modifying the “popup” and “to_field” parame-
ters of the query string on an admin change form page. For example, requesting a URL like /admin/auth/user/
?pop=1&t=password and viewing the page’s HTML allowed viewing the password hash of each user. While the
admin requires users to have permissions to view the change form pages in the first place, this could leak data if you
rely on users having access to view only certain fields on a model.

To address the issue, an exception will now be raised if a to_field value that isn’t a related field to a model that has
been registered with the admin is specified.

Django 1.5.8 release notes

May 14, 2014

Django 1.5.8 fixes two security issues in 1.5.8.

Caches may incorrectly be allowed to store and serve private data

In certain situations, Django may allow caches to store private data related to a particular session and then serve that
data to requests with a different session, or no session at all. This can lead to information disclosure and can be a
vector for cache poisoning.

When using Django sessions, Django will set a Vary: Cookie header to ensure caches do not serve cached data
to requests from other sessions. However, older versions of Internet Explorer (most likely only Internet Explorer
6, and Internet Explorer 7 if run on Windows XP or Windows Server 2003) are unable to handle the Vary header
in combination with many content types. Therefore, Django would remove the header if the request was made by
Internet Explorer.

To remedy this, the special behavior for these older Internet Explorer versions has been removed, and the Vary header
is no longer stripped from the response. In addition, modifications to the Cache-Control header for all Internet
Explorer requests with a Content-Disposition header have also been removed as they were found to have
similar issues.

Malformed redirect URLs from user input not correctly validated

The validation for redirects did not correctly validate some malformed URLs, which are accepted by some browsers.
This allows a user to be redirected to an unsafe URL unexpectedly.

Django relies on user input in some cases (e.g. django.contrib.auth.views.login(), django.
contrib.comments, and i18n) to redirect the user to an “on success” URL. The security checks for these redirects
(namely django.utils.http.is_safe_url()) did not correctly validate some malformed URLs, such as
http:\\\djangoproject.com, which are accepted by some browsers with more liberal URL parsing.

To remedy this, the validation in is_safe_url() has been tightened to be able to handle and correctly validate
these malformed URLs.

Django 1.5.7 release notes

April 28, 2014

Django 1.5.7 fixes a regression in the 1.5.6 security release.

1548 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Bugfixes

• Restored the ability to reverse() views created using functools.partial() (#22486).

Django 1.5.6 release notes

April 21, 2014

Django 1.5.6 fixes several bugs in 1.5.5, including three security issues.

Unexpected code execution using reverse()

Django’s URL handling is based on a mapping of regex patterns (representing the URLs) to callable views, and
Django’s own processing consists of matching a requested URL against those patterns to determine the appropriate
view to invoke.

Django also provides a convenience function – reverse() – which performs this process in the opposite direction.
The reverse() function takes information about a view and returns a URL which would invoke that view. Use of
reverse() is encouraged for application developers, as the output of reverse() is always based on the current
URL patterns, meaning developers do not need to change other code when making changes to URLs.

One argument signature for reverse() is to pass a dotted Python path to the desired view. In this situation, Django
will import the module indicated by that dotted path as part of generating the resulting URL. If such a module has
import-time side effects, those side effects will occur.

Thus it is possible for an attacker to cause unexpected code execution, given the following conditions:

1. One or more views are present which construct a URL based on user input (commonly, a “next” parameter in a
querystring indicating where to redirect upon successful completion of an action).

2. One or more modules are known to an attacker to exist on the server’s Python import path, which perform code
execution with side effects on importing.

To remedy this, reverse() will now only accept and import dotted paths based on the view-containing modules
listed in the project’s URL pattern configuration, so as to ensure that only modules the developer intended to be
imported in this fashion can or will be imported.

Caching of anonymous pages could reveal CSRF token

Django includes both a caching framework and a system for preventing cross-site request forgery (CSRF) attacks. The
CSRF-protection system is based on a random nonce sent to the client in a cookie which must be sent by the client on
future requests and, in forms, a hidden value which must be submitted back with the form.

The caching framework includes an option to cache responses to anonymous (i.e., unauthenticated) clients.

When the first anonymous request to a given page is by a client which did not have a CSRF cookie, the cache frame-
work will also cache the CSRF cookie and serve the same nonce to other anonymous clients who do not have a CSRF
cookie. This can allow an attacker to obtain a valid CSRF cookie value and perform attacks which bypass the check
for the cookie.

To remedy this, the caching framework will no longer cache such responses. The heuristic for this will be:

1. If the incoming request did not submit any cookies, and

2. If the response did send one or more cookies, and

3. If the Vary: Cookie header is set on the response, then the response will not be cached.

9.1. Final releases 1549

https://docs.python.org/3/library/functools.html#functools.partial
https://code.djangoproject.com/ticket/22486

Django Documentation, Release 1.10.9.dev20171123183751

MySQL typecasting

The MySQL database is known to “typecast” on certain queries; for example, when querying a table which contains
string values, but using a query which filters based on an integer value, MySQL will first silently coerce the strings to
integers and return a result based on that.

If a query is performed without first converting values to the appropriate type, this can produce unexpected results,
similar to what would occur if the query itself had been manipulated.

Django’s model field classes are aware of their own types and most such classes perform explicit conversion of query
arguments to the correct database-level type before querying. However, three model field classes did not correctly
convert their arguments:

• FilePathField

• GenericIPAddressField

• IPAddressField

These three fields have been updated to convert their arguments to the correct types before querying.

Additionally, developers of custom model fields are now warned via documentation to ensure their custom field classes
will perform appropriate type conversions, and users of the raw() and extra() query methods – which allow the
developer to supply raw SQL or SQL fragments – will be advised to ensure they perform appropriate manual type
conversions prior to executing queries.

Bugfixes

• Fixed ModelBackend raising UnboundLocalError if get_user_model() raised an error (#21439).

Additionally, Django’s vendored version of six, django.utils.six, has been upgraded to the latest release
(1.6.1).

Django 1.5.5 release notes

October 23, 2013

Django 1.5.5 fixes a couple security-related bugs and several other bugs in the 1.5 series.

Readdressed denial-of-service via password hashers

Django 1.5.4 imposes a 4096-byte limit on passwords in order to mitigate a denial-of-service attack through submission
of bogus but extremely large passwords. In Django 1.5.5, we’ve reverted this change and instead improved the speed
of our PBKDF2 algorithm by not rehashing the key on every iteration.

Properly rotate CSRF token on login

This behavior introduced as a security hardening measure in Django 1.5.2 did not work properly and is now fixed.

Bugfixes

• Fixed a data corruption bug with datetime_safe.datetime.combine (#21256).

• Fixed a Python 3 incompatibility in django.utils.text.unescape_entities() (#21185).

1550 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

• Fixed a couple data corruption issues with QuerySet edge cases under Oracle and MySQL (#21203, #21126).

• Fixed crashes when using combinations of annotate(), select_related(), and only() (#16436).

Backwards incompatible changes

• The undocumented django.core.servers.basehttp.WSGIServerException has been removed.
Use socket.error provided by the standard library instead.

Django 1.5.4 release notes

September 14, 2013

This is Django 1.5.4, the fourth release in the Django 1.5 series. It addresses two security issues and one bug.

Denial-of-service via password hashers

In previous versions of Django, no limit was imposed on the plaintext length of a password. This allowed a denial-of-
service attack through submission of bogus but extremely large passwords, tying up server resources performing the
(expensive, and increasingly expensive with the length of the password) calculation of the corresponding hash.

As of 1.5.4, Django’s authentication framework imposes a 4096-byte limit on passwords, and will fail authentication
with any submitted password of greater length.

Corrected usage of sensitive_post_parameters() in django.contrib.auth’s admin

The decoration of the add_view and user_change_password user admin views with
sensitive_post_parameters() did not include method_decorator() (required since the
views are methods) resulting in the decorator not being properly applied. This usage has been fixed and
sensitive_post_parameters() will now throw an exception if it’s improperly used.

Bugfixes

• Fixed a bug that prevented a QuerySet that uses prefetch_related() from being pickled and unpickled
more than once (the second pickling attempt raised an exception) (#21102).

Django 1.5.3 release notes

September 10, 2013

This is Django 1.5.3, the third release in the Django 1.5 series. It addresses one security issue and also contains an
opt-in feature to enhance the security of django.contrib.sessions.

Directory traversal vulnerability in ssi template tag

In previous versions of Django it was possible to bypass the ALLOWED_INCLUDE_ROOTS setting used for security
with the ssi template tag by specifying a relative path that starts with one of the allowed roots. For example, if
ALLOWED_INCLUDE_ROOTS = ("/var/www",) the following would be possible:

9.1. Final releases 1551

Django Documentation, Release 1.10.9.dev20171123183751

{% ssi "/var/www/../../etc/passwd" %}

In practice this is not a very common problem, as it would require the template author to put the ssi file in a user-
controlled variable, but it’s possible in principle.

Mitigating a remote-code execution vulnerability in django.contrib.sessions

django.contrib.sessions currently uses pickle to serialize session data before storing it in the backend. If
you’re using the signed cookie session backend and SECRET_KEY is known by an attacker (there isn’t an inherent
vulnerability in Django that would cause it to leak), the attacker could insert a string into his session which, when
unpickled, executes arbitrary code on the server. The technique for doing so is simple and easily available on the
internet. Although the cookie session storage signs the cookie-stored data to prevent tampering, a SECRET_KEY leak
immediately escalates to a remote code execution vulnerability.

This attack can be mitigated by serializing session data using JSON rather than pickle. To facilitate this, Django
1.5.3 introduces a new setting, SESSION_SERIALIZER, to customize the session serialization format. For back-
wards compatibility, this setting defaults to using pickle. While JSON serialization does not support all Python
objects like pickle does, we highly recommend switching to JSON-serialized values. Also, as JSON requires string
keys, you will likely run into problems if you are using non-string keys in request.session. See the Session
serialization documentation for more details.

Django 1.5.2 release notes

August 13, 2013

This is Django 1.5.2, a bugfix and security release for Django 1.5.

Mitigated possible XSS attack via user-supplied redirect URLs

Django relies on user input in some cases (e.g. django.contrib.auth.views.login(), django.
contrib.comments, and i18n) to redirect the user to an “on success” URL. The security checks for these redirects
(namely django.utils.http.is_safe_url()) didn’t check if the scheme is http(s) and as such allowed
javascript:... URLs to be entered. If a developer relied on is_safe_url() to provide safe redirect targets
and put such a URL into a link, they could suffer from a XSS attack. This bug doesn’t affect Django currently, since
we only put this URL into the Location response header and browsers seem to ignore JavaScript there.

XSS vulnerability in django.contrib.admin

If a URLField is used in Django 1.5, it displays the current value of the field and a link to the target on the admin
change page. The display routine of this widget was flawed and allowed for XSS.

Bugfixes

• Fixed a crash with prefetch_related() (#19607) as well as some pickle regressions with
prefetch_related (#20157 and #20257).

• Fixed a regression in django.contrib.gis in the Google Map output on Python 3 (#20773).

• Made DjangoTestSuiteRunner.setup_databases properly handle aliases for the default database
(#19940) and prevented teardown_databases from attempting to tear down aliases (#20681).

1552 Chapter 9. Release notes

https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/pickle.html#module-pickle

Django Documentation, Release 1.10.9.dev20171123183751

• Fixed the django.core.cache.backends.memcached.MemcachedCache backend’s
get_many() method on Python 3 (#20722).

• Fixed django.contrib.humanize translation syntax errors. Affected languages: Mexican Spanish, Mon-
golian, Romanian, Turkish (#20695).

• Added support for wheel packages (#19252).

• The CSRF token now rotates when a user logs in.

• Some Python 3 compatibility fixes including #20212 and #20025.

• Fixed some rare cases where get() exceptions recursed infinitely (#20278).

• makemessages no longer crashes with UnicodeDecodeError (#20354).

• Fixed geojson detection with SpatiaLite.

• assertContains() once again works with binary content (#20237).

• Fixed ManyToManyField if it has a unicode name parameter (#20207).

• Ensured that the WSGI request’s path is correctly based on the SCRIPT_NAME environment variable or the
FORCE_SCRIPT_NAME setting, regardless of whether or not either has a trailing slash (#20169).

• Fixed an obscure bug with the override_settings() decorator. If you hit an AttributeError:
'Settings' object has no attribute '_original_allowed_hosts' exception, it’s prob-
ably fixed (#20636).

Django 1.5.1 release notes

March 28, 2013

This is Django 1.5.1, a bugfix release for Django 1.5. It’s completely backwards compatible with Django 1.5, but
includes a handful of fixes.

The biggest fix is for a memory leak introduced in Django 1.5. Under certain circumstances, repeated iteration over
querysets could leak memory - sometimes quite a bit of it. If you’d like more information, the details are in our ticket
tracker (and in a related issue in Python itself).

If you’ve noticed memory problems under Django 1.5, upgrading to 1.5.1 should fix those issues.

Django 1.5.1 also includes a couple smaller fixes:

• Module-level warnings emitted during tests are no longer silently hidden (#18985).

• Prevented filtering on password hashes in the user admin (#20078).

Django 1.5 release notes

February 26, 2013

Welcome to Django 1.5!

These release notes cover the new features, as well as some backwards incompatible changes you’ll want to be aware
of when upgrading from Django 1.4 or older versions. We’ve also dropped some features, which are detailed in our
deprecation plan, and we’ve begun the deprecation process for some features.

9.1. Final releases 1553

https://code.djangoproject.com/ticket/19895
https://code.djangoproject.com/ticket/19895
https://bugs.python.org/issue17468
https://code.djangoproject.com/ticket/18985
https://code.djangoproject.com/ticket/20078

Django Documentation, Release 1.10.9.dev20171123183751

Overview

The biggest new feature in Django 1.5 is the configurable User model. Before Django 1.5, applications that wanted
to use Django’s auth framework (django.contrib.auth) were forced to use Django’s definition of a “user”. In
Django 1.5, you can now swap out the User model for one that you write yourself. This could be a simple extension
to the existing User model – for example, you could add a Twitter or Facebook ID field – or you could completely
replace the User with one totally customized for your site.

Django 1.5 is also the first release with Python 3 support! We’re labeling this support “experimental” because we
don’t yet consider it production-ready, but everything’s in place for you to start porting your apps to Python 3. Our
next release, Django 1.6, will support Python 3 without reservations.

Other notable new features in Django 1.5 include:

• Support for saving a subset of model’s fields - Model.save() now accepts an update_fields argument,
letting you specify which fields are written back to the database when you call save(). This can help in
high-concurrency operations, and can improve performance.

• Better support for streaming responses via the new StreamingHttpResponse response class.

• GeoDjango now supports PostGIS 2.0.

• ... and more; see below.

Wherever possible we try to introduce new features in a backwards-compatible manner per our API stability policy.
However, as with previous releases, Django 1.5 ships with some minor backwards incompatible changes; people
upgrading from previous versions of Django should read that list carefully.

One deprecated feature worth noting is the shift to “new-style” url tag. Prior to Django 1.3, syntax like {% url
myview %} was interpreted incorrectly (Django considered "myview" to be a literal name of a view, not a template
variable named myview). Django 1.3 and above introduced the {% load url from future %} syntax to
bring in the corrected behavior where myview was seen as a variable.

The upshot of this is that if you are not using {% load url from future %} in your templates, you’ll need
to change tags like {% url myview %} to {% url "myview" %}. If you were using {% load url from
future %} you can simply remove that line under Django 1.5

Python compatibility

Django 1.5 requires Python 2.6.5 or above, though we highly recommend Python 2.7.3 or above. Support for Python
2.5 and below has been dropped.

This change should affect only a small number of Django users, as most operating-system vendors today are shipping
Python 2.6 or newer as their default version. If you’re still using Python 2.5, however, you’ll need to stick to Django
1.4 until you can upgrade your Python version. Per our support policy, Django 1.4 will continue to receive security
support until the release of Django 1.6.

Django 1.5 does not run on a Jython final release, because Jython’s latest release doesn’t currently support Python
2.6. However, Jython currently does offer an alpha release featuring 2.7 support, and Django 1.5 supports that alpha
release.

Python 3 support

Django 1.5 introduces support for Python 3 - specifically, Python 3.2 and above. This comes in the form of a sin-
gle codebase; you don’t need to install a different version of Django on Python 3. This means that you can write
applications targeted for just Python 2, just Python 3, or single applications that support both platforms.

1554 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

However, we’re labeling this support “experimental” for now: although it’s received extensive testing via our auto-
mated test suite, it’s received very little real-world testing. We’ve done our best to eliminate bugs, but we can’t be sure
we covered all possible uses of Django.

Some features of Django aren’t available because they depend on third-party software that hasn’t been ported to Python
3 yet, including:

• the MySQL database backend (depends on MySQLdb)

• ImageField (depends on PIL)

• LiveServerTestCase (depends on Selenium WebDriver)

Further, Django’s more than a web framework; it’s an ecosystem of pluggable components. At this point, very few
third-party applications have been ported to Python 3, so it’s unlikely that a real-world application will have all its
dependencies satisfied under Python 3.

Thus, we’re recommending that Django 1.5 not be used in production under Python 3. Instead, use this opportunity
to begin porting applications to Python 3. If you’re an author of a pluggable component, we encourage you to start
porting now.

We plan to offer first-class, production-ready support for Python 3 in our next release, Django 1.6.

What’s new in Django 1.5

Configurable User model

In Django 1.5, you can now use your own model as the store for user-related data. If your project needs a username
with more than 30 characters, or if you want to store user’s names in a format other than first name/last name, or you
want to put custom profile information onto your User object, you can now do so.

If you have a third-party reusable application that references the User model, you may need to make some changes to
the way you reference User instances. You should also document any specific features of the User model that your
application relies upon.

See the documentation on custom user models for more details.

Support for saving a subset of model’s fields

The method Model.save() has a new keyword argument update_fields. By using this argument it is possible
to save only a select list of model’s fields. This can be useful for performance reasons or when trying to avoid
overwriting concurrent changes.

Deferred instances (those loaded by .only() or .defer()) will automatically save just the loaded fields. If any
field is set manually after load, that field will also get updated on save.

See the Model.save() documentation for more details.

Caching of related model instances

When traversing relations, the ORM will avoid re-fetching objects that were previously loaded. For example, with the
tutorial’s models:

>>> first_poll = Poll.objects.all()[0]
>>> first_choice = first_poll.choice_set.all()[0]
>>> first_choice.poll is first_poll
True

9.1. Final releases 1555

Django Documentation, Release 1.10.9.dev20171123183751

In Django 1.5, the third line no longer triggers a new SQL query to fetch first_choice.poll; it was set by the
second line.

For one-to-one relationships, both sides can be cached. For many-to-one relationships, only the single side of the
relationship can be cached. This is particularly helpful in combination with prefetch_related.

Explicit support for streaming responses

Before Django 1.5, it was possible to create a streaming response by passing an iterator to HttpResponse. But this
was unreliable: any middleware that accessed the content attribute would consume the iterator prematurely.

You can now explicitly generate a streaming response with the new StreamingHttpResponse class. This class
exposes a streaming_content attribute which is an iterator.

Since StreamingHttpResponse does not have a content attribute, middleware that needs access to the re-
sponse content must test for streaming responses and behave accordingly.

{% verbatim %} template tag

To make it easier to deal with JavaScript templates which collide with Django’s syntax, you can now use the
verbatim block tag to avoid parsing the tag’s content.

Retrieval of ContentType instances associated with proxy models

The methods ContentTypeManager.get_for_model() and ContentTypeManager.
get_for_models() have a new keyword argument – respectively for_concrete_model and
for_concrete_models. By passing False using this argument it is now possible to retrieve the ContentType
associated with proxy models.

New view variable in class-based views context

In all generic class-based views (or any class-based view inheriting from ContextMixin), the context dictionary
contains a view variable that points to the View instance.

GeoDjango

• LineString and MultiLineString GEOS objects now support the interpolate() and project()
methods (so-called linear referencing).

• The wkb and hex properties of GEOSGeometry objects preserve the Z dimension.

• Support for PostGIS 2.0 has been added and support for GDAL < 1.5 has been dropped.

New tutorials

Additions to the docs include a revamped Tutorial 3 and a new tutorial on testing. A new section, “Advanced Tutori-
als”, offers How to write reusable apps as well as a step-by-step guide for new contributors in Writing your first patch
for Django.

1556 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Minor features

Django 1.5 also includes several smaller improvements worth noting:

• The template engine now interprets True, False and None as the corresponding Python objects.

• django.utils.timezone provides a helper for converting aware datetimes between time zones. See
localtime().

• The generic views support OPTIONS requests.

• Management commands do not raise SystemExit any more when called by code from call_command().
Any exception raised by the command (mostly CommandError) is propagated.

Moreover, when you output errors or messages in your custom commands, you should now use self.
stdout.write('message') and self.stderr.write('error') (see the note on management
commands output).

• The dumpdata management command outputs one row at a time, preventing out-of-memory errors when dump-
ing large datasets.

• In the localflavor for Canada, “pq” was added to the acceptable codes for Quebec. It’s an old abbreviation.

• The receiver decorator is now able to connect to more than one signal by supplying a list of signals.

• In the admin, you can now filter users by groups which they are members of.

• QuerySet.bulk_create() now has a batch_size argument. By default the batch_size is unlimited except
for SQLite where single batch is limited so that 999 parameters per query isn’t exceeded.

• The LOGIN_URL and LOGIN_REDIRECT_URL settings now also accept view function names and named
URL patterns. This allows you to reduce configuration duplication. More information can be found in the
login_required() documentation.

• Django now provides a mod_wsgi auth handler.

• The QuerySet.delete() and Model.delete() can now take fast-path in some cases. The fast-path
allows for less queries and less objects fetched into memory. See QuerySet.delete() for details.

• An instance of ResolverMatch is stored on the request as resolver_match.

• By default, all logging messages reaching the django logger when DEBUG is True are sent to the console
(unless you redefine the logger in your LOGGING setting).

• When using RequestContext, it is now possible to look up permissions by using {% if 'someapp.
someperm' in perms %} in templates.

• It’s not required any more to have 404.html and 500.html templates in the root templates directory. Django
will output some basic error messages for both situations when those templates are not found. Of course, it’s
still recommended as good practice to provide those templates in order to present pretty error pages to the user.

• django.contrib.auth provides a new signal that is emitted whenever a user fails to login successfully.
See user_login_failed

• The new loaddata --ignorenonexistent option ignore data for fields that no longer exist.

• assertXMLEqual() and assertXMLNotEqual() new assertions allow you to test equality for XML
content at a semantic level, without caring for syntax differences (spaces, attribute order, etc.).

• RemoteUserMiddleware now forces logout when the REMOTE_USER header disappears during the same
browser session.

• The cache-based session backend can store session data in a non-default cache.

9.1. Final releases 1557

Django Documentation, Release 1.10.9.dev20171123183751

• Multi-column indexes can now be created on models. Read the index_together documentation for more
information.

• During Django’s logging configuration verbose Deprecation warnings are enabled and warnings are captured
into the logging system. Logged warnings are routed through the console logging handler, which by default
requires DEBUG to be True for output to be generated. The result is that DeprecationWarnings should be printed
to the console in development environments the way they have been in Python versions < 2.7.

• The API for django.contrib.admin.ModelAdmin.message_user() method has been mod-
ified to accept additional arguments adding capabilities similar to django.contrib.messages.
add_message(). This is useful for generating error messages from admin actions.

• The admin’s list filters can now be customized per-request thanks to the new django.contrib.admin.
ModelAdmin.get_list_filter() method.

Backwards incompatible changes in 1.5

Warning: In addition to the changes outlined in this section, be sure to review the deprecation plan for any
features that have been removed. If you haven’t updated your code within the deprecation timeline for a given
feature, its removal may appear as a backwards incompatible change.

ALLOWED_HOSTS required in production

The new ALLOWED_HOSTS setting validates the request’s Host header and protects against host-poisoning attacks.
This setting is now required whenever DEBUG is False, or else django.http.HttpRequest.get_host()
will raise SuspiciousOperation. For more details see the full documentation for the new setting.

Managers on abstract models

Abstract models are able to define a custom manager, and that manager will be inherited by any concrete models
extending the abstract model. However, if you try to use the abstract model to call a method on the manager, an
exception will now be raised. Previously, the call would have been permitted, but would have failed as soon as any
database operation was attempted (usually with a “table does not exist” error from the database).

If you have functionality on a manager that you have been invoking using the abstract class, you should migrate that
logic to a Python staticmethod or classmethod on the abstract class.

Context in year archive class-based views

For consistency with the other date-based generic views, YearArchiveView now passes year in the context as a
datetime.date rather than a string. If you are using {{ year }} in your templates, you must replace it with
{{ year|date:"Y" }}.

next_year and previous_year were also added in the context. They are calculated according to
allow_empty and allow_future.

Context in year and month archive class-based views

YearArchiveView and MonthArchiveView were documented to provide a date_list sorted in ascending
order in the context, like their function-based predecessors, but it actually was in descending order. In 1.5, the doc-

1558 Chapter 9. Release notes

https://docs.python.org/3/library/datetime.html#datetime.date

Django Documentation, Release 1.10.9.dev20171123183751

umented order was restored. You may want to add (or remove) the reversed keyword when you’re iterating on
date_list in a template:

{% for date in date_list reversed %}

ArchiveIndexView still provides a date_list in descending order.

Context in TemplateView

For consistency with the design of the other generic views, TemplateView no longer passes a params dictionary
into the context, instead passing the variables from the URLconf directly into the context.

Non-form data in HTTP requests

request.POST will no longer include data posted via HTTP requests with non form-specific content-types in the
header. In prior versions, data posted with content-types other than multipart/form-data or application/
x-www-form-urlencoded would still end up represented in the request.POST attribute. Developers wishing
to access the raw POST data for these cases, should use the request.body attribute instead.

request_finished signal

Django used to send the request_finished signal as soon as the view function returned a response. This inter-
acted badly with streaming responses that delay content generation.

This signal is now sent after the content is fully consumed by the WSGI gateway. This might be backwards incom-
patible if you rely on the signal being fired before sending the response content to the client. If you do, you should
consider using middleware instead.

Note: Some WSGI servers and middleware do not always call close on the response object after handling a
request, most notably uWSGI prior to 1.2.6 and Sentry’s error reporting middleware up to 2.0.7. In those cases the
request_finished signal isn’t sent at all. This can result in idle connections to database and memcache servers.

OPTIONS, PUT and DELETE requests in the test client

Unlike GET and POST, these HTTP methods aren’t implemented by web browsers. Rather, they’re used in APIs,
which transfer data in various formats such as JSON or XML. Since such requests may contain arbitrary data, Django
doesn’t attempt to decode their body.

However, the test client used to build a query string for OPTIONS and DELETE requests like for GET, and a request
body for PUT requests like for POST. This encoding was arbitrary and inconsistent with Django’s behavior when it
receives the requests, so it was removed in Django 1.5.

If you were using the data parameter in an OPTIONS or a DELETE request, you must convert it to a query string
and append it to the path parameter.

If you were using the data parameter in a PUT request without a content_type, you must encode your data
before passing it to the test client and set the content_type argument.

9.1. Final releases 1559

Django Documentation, Release 1.10.9.dev20171123183751

System version of simplejson no longer used

As explained below, Django 1.5 deprecates django.utils.simplejson in favor of Python 2.6’s built-in json
module. In theory, this change is harmless. Unfortunately, because of incompatibilities between versions of
simplejson, it may trigger errors in some circumstances.

JSON-related features in Django 1.4 always used django.utils.simplejson. This module was actually:

• A system version of simplejson, if one was available (ie. import simplejson works), if it was more
recent than Django’s built-in copy or it had the C speedups, or

• The json module from the standard library, if it was available (ie. Python 2.6 or greater), or

• A built-in copy of version 2.0.7 of simplejson.

In Django 1.5, those features use Python’s json module, which is based on version 2.0.9 of simplejson.

There are no known incompatibilities between Django’s copy of version 2.0.7 and Python’s copy of version 2.0.9.
However, there are some incompatibilities between other versions of simplejson:

• While the simplejsonAPI is documented as always returning unicode strings, the optional C implementation
can return a byte string. This was fixed in Python 2.7.

• simplejson.JSONEncoder gained a namedtuple_as_object keyword argument in version 2.2.

More information on these incompatibilities is available in ticket #18023.

The net result is that, if you have installed simplejson and your code uses Django’s serialization internals directly –
for instance django.core.serializers.json.DjangoJSONEncoder, the switch from simplejson to
json could break your code. (In general, changes to internals aren’t documented; we’re making an exception here.)

At this point, the maintainers of Django believe that using json from the standard library offers the strongest guaran-
tee of backwards-compatibility. They recommend to use it from now on.

String types of hasher method parameters

If you have written a custom password hasher, your encode(), verify() or safe_summary() methods should
accept Unicode parameters (password, salt or encoded). If any of the hashing methods need byte strings, you
can use the force_bytes() utility to encode the strings.

Validation of previous_page_number and next_page_number

When using object pagination, the previous_page_number() and next_page_number() methods of the
Page object did not check if the returned number was inside the existing page range. It does check it now and raises
an InvalidPage exception when the number is either too low or too high.

Behavior of autocommit database option on PostgreSQL changed

PostgreSQL’s autocommit option didn’t work as advertised previously. It did work for single transaction block, but
after the first block was left the autocommit behavior was never restored. This bug is now fixed in 1.5. While this
is only a bug fix, it is worth checking your applications behavior if you are using PostgreSQL together with the
autocommit option.

1560 Chapter 9. Release notes

https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/json.html#module-json
https://code.djangoproject.com/ticket/18023#comment:10
https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/json.html#module-json

Django Documentation, Release 1.10.9.dev20171123183751

Session not saved on 500 responses

Django’s session middleware will skip saving the session data if the response’s status code is 500.

Email checks on failed admin login

Prior to Django 1.5, if you attempted to log into the admin interface and mistakenly used your email address instead of
your username, the admin interface would provide a warning advising that your email address was not your username.
In Django 1.5, the introduction of custom user models has required the removal of this warning. This doesn’t change
the login behavior of the admin site; it only affects the warning message that is displayed under one particular mode
of login failure.

Changes in tests execution

Some changes have been introduced in the execution of tests that might be backward-incompatible for some testing
setups:

Database flushing in django.test.TransactionTestCase

Previously, the test database was truncated before each test run in a TransactionTestCase.

In order to be able to run unit tests in any order and to make sure they are always isolated from each other,
TransactionTestCase will now reset the database after each test run instead.

No more implicit DB sequences reset

TransactionTestCase tests used to reset primary key sequences automatically together with the database flush-
ing actions described above.

This has been changed so no sequences are implicitly reset. This can cause TransactionTestCase tests that
depend on hard-coded primary key values to break.

The new reset_sequences attribute can be used to force the old behavior for TransactionTestCase that
might need it.

Ordering of tests

In order to make sure all TestCase code starts with a clean database, tests are now executed in the following order:

• First, all unittests (including unittest.TestCase, SimpleTestCase, TestCase and
TransactionTestCase) are run with no particular ordering guaranteed nor enforced among them.

• Then any other tests (e.g. doctests) that may alter the database without restoring it to its original state are run.

This should not cause any problems unless you have existing doctests which assume a TransactionTestCase
executed earlier left some database state behind or unit tests that rely on some form of state being preserved after the
execution of other tests. Such tests are already very fragile, and must now be changed to be able to run independently.

9.1. Final releases 1561

https://docs.python.org/3/library/unittest.html#unittest.TestCase

Django Documentation, Release 1.10.9.dev20171123183751

cleaned_data dictionary kept for invalid forms

The cleaned_data dictionary is now always present after form validation. When the form doesn’t validate, it
contains only the fields that passed validation. You should test the success of the validation with the is_valid()
method and not with the presence or absence of the cleaned_data attribute on the form.

Behavior of syncdb with multiple databases

syncdb now queries the database routers to determine if content types (when contenttypes is enabled) and
permissions (when auth is enabled) should be created in the target database. Previously, it created them in the default
database, even when another database was specified with the --database option.

If you use syncdb on multiple databases, you should ensure that your routers allow synchronizing content types
and permissions to only one of them. See the docs on the behavior of contrib apps with multiple databases for more
information.

XML deserializer will not parse documents with a DTD

In order to prevent exposure to denial-of-service attacks related to external entity references and entity expansion, the
XML model deserializer now refuses to parse XML documents containing a DTD (DOCTYPE definition). Since the
XML serializer does not output a DTD, this will not impact typical usage, only cases where custom-created XML
documents are passed to Django’s model deserializer.

Formsets default max_num

A (default) value of None for the max_num argument to a formset factory no longer defaults to allowing any number
of forms in the formset. Instead, in order to prevent memory-exhaustion attacks, it now defaults to a limit of 1000
forms. This limit can be raised by explicitly setting a higher value for max_num.

Miscellaneous

• django.forms.ModelMultipleChoiceField now returns an empty QuerySet as the empty value
instead of an empty list.

• int_to_base36() properly raises a TypeError instead of ValueError for non-integer inputs.

• The slugify template filter is now available as a standard python function at django.utils.text.
slugify(). Similarly, remove_tags is available at django.utils.html.remove_tags().

• Uploaded files are no longer created as executable by default. If you need them to be executable change
FILE_UPLOAD_PERMISSIONS to your needs. The new default value is 0o666 (octal) and the current umask
value is first masked out.

• The F expressions supported bitwise operators by & and |. These operators are now available using .
bitand() and .bitor() instead. The removal of & and | was done to be consistent with Q() expressions
and QuerySet combining where the operators are used as boolean AND and OR operators.

• In a filter() call, when F expressions contained lookups spanning multi-valued relations, they didn’t
always reuse the same relations as other lookups along the same chain. This was changed, and now F() expres-
sions will always use the same relations as other lookups within the same filter() call.

• The csrf_token template tag is no longer enclosed in a div. If you need HTML validation against pre-
HTML5 Strict DTDs, you should add a div around it in your pages.

1562 Chapter 9. Release notes

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

Django Documentation, Release 1.10.9.dev20171123183751

• The template tags library adminmedia, which only contained the deprecated template tag {%
admin_media_prefix %}, was removed. Attempting to load it with {% load adminmedia %} will
fail. If your templates still contain that line you must remove it.

• Because of an implementation oversight, it was possible to use django.contrib.redirects without enabling
django.contrib.sites. This isn’t allowed any longer. If you’re using django.contrib.redirects, make
sure INSTALLED_APPS contains django.contrib.sites.

• BoundField.label_tag now escapes its contents argument. To avoid the HTML escaping, use
django.utils.safestring.mark_safe() on the argument before passing it.

• Accessing reverse one-to-one relations fetched via select_related() now raises DoesNotExist instead
of returning None.

Features deprecated in 1.5

django.contrib.localflavor

The localflavor contrib app has been split into separate packages. django.contrib.localflavor itself will be
removed in Django 1.6, after an accelerated deprecation.

The new packages are available on GitHub. The core team cannot efficiently maintain these packages in the long term
— it spans just a dozen countries at this time; similar to translations, maintenance will be handed over to interested
members of the community.

django.contrib.markup

The markup contrib module has been deprecated and will follow an accelerated deprecation schedule. Direct use of
Python markup libraries or 3rd party tag libraries is preferred to Django maintaining this functionality in the frame-
work.

AUTH_PROFILE_MODULE

With the introduction of custom user models, there is no longer any need for a built-in mechanism to store user profile
data.

You can still define user profiles models that have a one-to-one relation with the User model - in fact, for many appli-
cations needing to associate data with a User account, this will be an appropriate design pattern to follow. However,
the AUTH_PROFILE_MODULE setting, and the django.contrib.auth.models.User.get_profile()
method for accessing the user profile model, should not be used any longer.

Streaming behavior of HttpResponse

Django 1.5 deprecates the ability to stream a response by passing an iterator to HttpResponse. If you rely on this
behavior, switch to StreamingHttpResponse. See Explicit support for streaming responses above.

In Django 1.7 and above, the iterator will be consumed immediately by HttpResponse.

9.1. Final releases 1563

Django Documentation, Release 1.10.9.dev20171123183751

django.utils.simplejson

Since Django 1.5 drops support for Python 2.5, we can now rely on the json module being available in Python’s stan-
dard library, so we’ve removed our own copy of simplejson. You should now import json instead of django.
utils.simplejson.

Unfortunately, this change might have unwanted side-effects, because of incompatibilities between versions of
simplejson – see the backwards-incompatible changes section. If you rely on features added to simplejson
after it became Python’s json, you should import simplejson explicitly.

django.utils.encoding.StrAndUnicode

The django.utils.encoding.StrAndUnicodemix-in has been deprecated. Define a __str__method and
apply the python_2_unicode_compatible() decorator instead.

django.utils.itercompat.product

The django.utils.itercompat.product function has been deprecated. Use the built-in itertools.
product() instead.

cleanup management command

The cleanup management command has been deprecated and replaced by clearsessions.

daily_cleanup.py script

The undocumented daily_cleanup.py script has been deprecated. Use the clearsessions management
command instead.

depth keyword argument in select_related

The depth keyword argument in select_related() has been deprecated. You should use field names instead.

9.1.7 1.4 release

Django 1.4.22 release notes

August 18, 2015

Django 1.4.22 fixes a security issue in 1.4.21.

It also fixes support with pip 7+ by disabling wheel support. Older versions of 1.4 would silently build a broken wheel
when installed with those versions of pip.

1564 Chapter 9. Release notes

https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/itertools.html#itertools.product
https://docs.python.org/3/library/itertools.html#itertools.product

Django Documentation, Release 1.10.9.dev20171123183751

Denial-of-service possibility in logout() view by filling session store

Previously, a session could be created when anonymously accessing the django.contrib.auth.views.
logout() view (provided it wasn’t decorated with login_required() as done in the admin). This could allow
an attacker to easily create many new session records by sending repeated requests, potentially filling up the session
store or causing other users’ session records to be evicted.

The SessionMiddleware has been modified to no longer create empty session records, including when
SESSION_SAVE_EVERY_REQUEST is active.

Additionally, the contrib.sessions.backends.base.SessionBase.flush() and cache_db.
SessionStore.flush() methods have been modified to avoid creating a new empty session. Maintainers of
third-party session backends should check if the same vulnerability is present in their backend and correct it if so.

Django 1.4.21 release notes

July 8, 2015

Django 1.4.21 fixes several security issues in 1.4.20.

Denial-of-service possibility by filling session store

In previous versions of Django, the session backends created a new empty record in the session storage anytime
request.session was accessed and there was a session key provided in the request cookies that didn’t already
have a session record. This could allow an attacker to easily create many new session records simply by sending
repeated requests with unknown session keys, potentially filling up the session store or causing other users’ session
records to be evicted.

The built-in session backends now create a session record only if the session is actually modified; empty session
records are not created. Thus this potential DoS is now only possible if the site chooses to expose a session-modifying
view to anonymous users.

As each built-in session backend was fixed separately (rather than a fix in the core sessions framework), maintainers
of third-party session backends should check whether the same vulnerability is present in their backend and correct it
if so.

Header injection possibility since validators accept newlines in input

Some of Django’s built-in validators (EmailValidator, most seriously) didn’t prohibit newline characters (due to
the usage of $ instead of \Z in the regular expressions). If you use values with newlines in HTTP response or email
headers, you can suffer from header injection attacks. Django itself isn’t vulnerable because HttpResponse and the
mail sending utilities in django.core.mail prohibit newlines in HTTP and SMTP headers, respectively. While
the validators have been fixed in Django, if you’re creating HTTP responses or email messages in other ways, it’s a
good idea to ensure that those methods prohibit newlines as well. You might also want to validate that any existing
data in your application doesn’t contain unexpected newlines.

validate_ipv4_address(), validate_slug(), and URLValidator and their usage in the correspond-
ing form fields GenericIPAddresseField, IPAddressField, SlugField, and URLField are also af-
fected.

The undocumented, internally unused validate_integer() function is now stricter as it validates using a regular
expression instead of simply casting the value using int() and checking if an exception was raised.

9.1. Final releases 1565

Django Documentation, Release 1.10.9.dev20171123183751

Django 1.4.20 release notes

March 18, 2015

Django 1.4.20 fixes one security issue in 1.4.19.

Mitigated possible XSS attack via user-supplied redirect URLs

Django relies on user input in some cases (e.g. django.contrib.auth.views.login() and i18n)
to redirect the user to an “on success” URL. The security checks for these redirects (namely django.
utils.http.is_safe_url()) accepted URLs with leading control characters and so considered URLs like
\x08javascript:... safe. This issue doesn’t affect Django currently, since we only put this URL into the
Location response header and browsers seem to ignore JavaScript there. Browsers we tested also treat URLs pre-
fixed with control characters such as %08//example.com as relative paths so redirection to an unsafe target isn’t a
problem either.

However, if a developer relies on is_safe_url() to provide safe redirect targets and puts such a URL into a link,
they could suffer from an XSS attack as some browsers such as Google Chrome ignore control characters at the start
of a URL in an anchor href.

Django 1.4.19 release notes

January 27, 2015

Django 1.4.19 fixes a regression in the 1.4.18 security release.

Bugfixes

• GZipMiddleware now supports streaming responses. As part of the 1.4.18 security release, the
django.views.static.serve() function was altered to stream the files it serves. Unfortunately,
the GZipMiddleware consumed the stream prematurely and prevented files from being served properly
(#24158).

Django 1.4.18 release notes

January 13, 2015

Django 1.4.18 fixes several security issues in 1.4.17 as well as a regression on Python 2.5 in the 1.4.17 release.

WSGI header spoofing via underscore/dash conflation

When HTTP headers are placed into the WSGI environ, they are normalized by converting to uppercase, con-
verting all dashes to underscores, and prepending HTTP_. For instance, a header X-Auth-User would become
HTTP_X_AUTH_USER in the WSGI environ (and thus also in Django’s request.META dictionary).

Unfortunately, this means that the WSGI environ cannot distinguish between headers containing dashes and headers
containing underscores: X-Auth-User and X-Auth_User both become HTTP_X_AUTH_USER. This means that
if a header is used in a security-sensitive way (for instance, passing authentication information along from a front-end
proxy), even if the proxy carefully strips any incoming value for X-Auth-User, an attacker may be able to provide
an X-Auth_User header (with underscore) and bypass this protection.

In order to prevent such attacks, both Nginx and Apache 2.4+ strip all headers containing underscores from incoming
requests by default. Django’s built-in development server now does the same. Django’s development server is not

1566 Chapter 9. Release notes

https://code.djangoproject.com/ticket/24158

Django Documentation, Release 1.10.9.dev20171123183751

recommended for production use, but matching the behavior of common production servers reduces the surface area
for behavior changes during deployment.

Mitigated possible XSS attack via user-supplied redirect URLs

Django relies on user input in some cases (e.g. django.contrib.auth.views.login() and i18n) to
redirect the user to an “on success” URL. The security checks for these redirects (namely django.utils.
http.is_safe_url()) didn’t strip leading whitespace on the tested URL and as such considered URLs like
\njavascript:... safe. If a developer relied on is_safe_url() to provide safe redirect targets and put such
a URL into a link, they could suffer from a XSS attack. This bug doesn’t affect Django currently, since we only put
this URL into the Location response header and browsers seem to ignore JavaScript there.

Denial-of-service attack against django.views.static.serve

In older versions of Django, the django.views.static.serve() view read the files it served one line at a
time. Therefore, a big file with no newlines would result in memory usage equal to the size of that file. An attacker
could exploit this and launch a denial-of-service attack by simultaneously requesting many large files. This view now
reads the file in chunks to prevent large memory usage.

Note, however, that this view has always carried a warning that it is not hardened for production use and should be
used only as a development aid. Now may be a good time to audit your project and serve your files in production using
a real front-end web server if you are not doing so.

Bugfixes

• To maintain compatibility with Python 2.5, Django’s vendored version of six, django.utils.six, has been
downgraded to 1.8.0 which is the last version to support Python 2.5.

Django 1.4.17 release notes

January 2, 2015

Django 1.4.17 fixes a regression in the 1.4.14 security release.

Additionally, Django’s vendored version of six, django.utils.six, has been upgraded to the latest release
(1.9.0).

Bugfixes

• Fixed a regression with dynamically generated inlines and allowed field references in the admin (#23754).

Django 1.4.16 release notes

October 22, 2014

Django 1.4.16 fixes a couple regressions in the 1.4.14 security release and a bug preventing the use of some GEOS
versions with GeoDjango.

9.1. Final releases 1567

https://code.djangoproject.com/ticket/23754

Django Documentation, Release 1.10.9.dev20171123183751

Bugfixes

• Allowed related many-to-many fields to be referenced in the admin (#23604).

• Allowed inline and hidden references to admin fields (#23431).

• Fixed parsing of the GEOS version string (#20036).

Django 1.4.15 release notes

September 2, 2014

Django 1.4.15 fixes a regression in the 1.4.14 security release.

Bugfixes

• Allowed inherited and m2m fields to be referenced in the admin (#22486)

Django 1.4.14 release notes

August 20, 2014

Django 1.4.14 fixes several security issues in 1.4.13.

reverse() could generate URLs pointing to other hosts

In certain situations, URL reversing could generate scheme-relative URLs (URLs starting with two slashes), which
could unexpectedly redirect a user to a different host. An attacker could exploit this, for example, by redirecting users
to a phishing site designed to ask for user’s passwords.

To remedy this, URL reversing now ensures that no URL starts with two slashes (//), replacing the second slash with its
URL encoded counterpart (%2F). This approach ensures that semantics stay the same, while making the URL relative
to the domain and not to the scheme.

File upload denial-of-service

Before this release, Django’s file upload handing in its default configuration may degrade to producing a huge number
of os.stat() system calls when a duplicate filename is uploaded. Since stat() may invoke IO, this may produce
a huge data-dependent slowdown that slowly worsens over time. The net result is that given enough time, a user with
the ability to upload files can cause poor performance in the upload handler, eventually causing it to become very slow
simply by uploading 0-byte files. At this point, even a slow network connection and few HTTP requests would be all
that is necessary to make a site unavailable.

We’ve remedied the issue by changing the algorithm for generating file names if a file with the uploaded name already
exists. Storage.get_available_name() now appends an underscore plus a random 7 character alphanumeric
string (e.g. "_x3a1gho"), rather than iterating through an underscore followed by a number (e.g. "_1", "_2",
etc.).

1568 Chapter 9. Release notes

https://code.djangoproject.com/ticket/23604
https://code.djangoproject.com/ticket/23431
https://code.djangoproject.com/ticket/20036
https://code.djangoproject.com/ticket/22486

Django Documentation, Release 1.10.9.dev20171123183751

RemoteUserMiddleware session hijacking

When using the RemoteUserMiddleware and the RemoteUserBackend, a change to the REMOTE_USER
header between requests without an intervening logout could result in the prior user’s session being co-opted by the
subsequent user. The middleware now logs the user out on a failed login attempt.

Data leakage via query string manipulation in contrib.admin

In older versions of Django it was possible to reveal any field’s data by modifying the “popup” and “to_field” parame-
ters of the query string on an admin change form page. For example, requesting a URL like /admin/auth/user/
?pop=1&t=password and viewing the page’s HTML allowed viewing the password hash of each user. While the
admin requires users to have permissions to view the change form pages in the first place, this could leak data if you
rely on users having access to view only certain fields on a model.

To address the issue, an exception will now be raised if a to_field value that isn’t a related field to a model that has
been registered with the admin is specified.

Django 1.4.13 release notes

May 14, 2014

Django 1.4.13 fixes two security issues in 1.4.12.

Caches may incorrectly be allowed to store and serve private data

In certain situations, Django may allow caches to store private data related to a particular session and then serve that
data to requests with a different session, or no session at all. This can lead to information disclosure and can be a
vector for cache poisoning.

When using Django sessions, Django will set a Vary: Cookie header to ensure caches do not serve cached data
to requests from other sessions. However, older versions of Internet Explorer (most likely only Internet Explorer
6, and Internet Explorer 7 if run on Windows XP or Windows Server 2003) are unable to handle the Vary header
in combination with many content types. Therefore, Django would remove the header if the request was made by
Internet Explorer.

To remedy this, the special behavior for these older Internet Explorer versions has been removed, and the Vary header
is no longer stripped from the response. In addition, modifications to the Cache-Control header for all Internet
Explorer requests with a Content-Disposition header have also been removed as they were found to have
similar issues.

Malformed redirect URLs from user input not correctly validated

The validation for redirects did not correctly validate some malformed URLs, which are accepted by some browsers.
This allows a user to be redirected to an unsafe URL unexpectedly.

Django relies on user input in some cases (e.g. django.contrib.auth.views.login(), django.
contrib.comments, and i18n) to redirect the user to an “on success” URL. The security checks for these redirects
(namely django.utils.http.is_safe_url()) did not correctly validate some malformed URLs, such as
http:\\\djangoproject.com, which are accepted by some browsers with more liberal URL parsing.

To remedy this, the validation in is_safe_url() has been tightened to be able to handle and correctly validate
these malformed URLs.

9.1. Final releases 1569

Django Documentation, Release 1.10.9.dev20171123183751

Django 1.4.12 release notes

April 28, 2014

Django 1.4.12 fixes a regression in the 1.4.11 security release.

Bugfixes

• Restored the ability to reverse() views created using functools.partial() (#22486).

Django 1.4.11 release notes

April 21, 2014

Django 1.4.11 fixes three security issues in 1.4.10. Additionally, Django’s vendored version of six, django.utils.
six, has been upgraded to the latest release (1.6.1).

Unexpected code execution using reverse()

Django’s URL handling is based on a mapping of regex patterns (representing the URLs) to callable views, and
Django’s own processing consists of matching a requested URL against those patterns to determine the appropriate
view to invoke.

Django also provides a convenience function – reverse() – which performs this process in the opposite direction.
The reverse() function takes information about a view and returns a URL which would invoke that view. Use of
reverse() is encouraged for application developers, as the output of reverse() is always based on the current
URL patterns, meaning developers do not need to change other code when making changes to URLs.

One argument signature for reverse() is to pass a dotted Python path to the desired view. In this situation, Django
will import the module indicated by that dotted path as part of generating the resulting URL. If such a module has
import-time side effects, those side effects will occur.

Thus it is possible for an attacker to cause unexpected code execution, given the following conditions:

1. One or more views are present which construct a URL based on user input (commonly, a “next” parameter in a
querystring indicating where to redirect upon successful completion of an action).

2. One or more modules are known to an attacker to exist on the server’s Python import path, which perform code
execution with side effects on importing.

To remedy this, reverse() will now only accept and import dotted paths based on the view-containing modules
listed in the project’s URL pattern configuration, so as to ensure that only modules the developer intended to be
imported in this fashion can or will be imported.

Caching of anonymous pages could reveal CSRF token

Django includes both a caching framework and a system for preventing cross-site request forgery (CSRF) attacks. The
CSRF-protection system is based on a random nonce sent to the client in a cookie which must be sent by the client on
future requests and, in forms, a hidden value which must be submitted back with the form.

The caching framework includes an option to cache responses to anonymous (i.e., unauthenticated) clients.

When the first anonymous request to a given page is by a client which did not have a CSRF cookie, the cache frame-
work will also cache the CSRF cookie and serve the same nonce to other anonymous clients who do not have a CSRF

1570 Chapter 9. Release notes

https://docs.python.org/3/library/functools.html#functools.partial
https://code.djangoproject.com/ticket/22486

Django Documentation, Release 1.10.9.dev20171123183751

cookie. This can allow an attacker to obtain a valid CSRF cookie value and perform attacks which bypass the check
for the cookie.

To remedy this, the caching framework will no longer cache such responses. The heuristic for this will be:

1. If the incoming request did not submit any cookies, and

2. If the response did send one or more cookies, and

3. If the Vary: Cookie header is set on the response, then the response will not be cached.

MySQL typecasting

The MySQL database is known to “typecast” on certain queries; for example, when querying a table which contains
string values, but using a query which filters based on an integer value, MySQL will first silently coerce the strings to
integers and return a result based on that.

If a query is performed without first converting values to the appropriate type, this can produce unexpected results,
similar to what would occur if the query itself had been manipulated.

Django’s model field classes are aware of their own types and most such classes perform explicit conversion of query
arguments to the correct database-level type before querying. However, three model field classes did not correctly
convert their arguments:

• FilePathField

• GenericIPAddressField

• IPAddressField

These three fields have been updated to convert their arguments to the correct types before querying.

Additionally, developers of custom model fields are now warned via documentation to ensure their custom field classes
will perform appropriate type conversions, and users of the raw() and extra() query methods – which allow the
developer to supply raw SQL or SQL fragments – will be advised to ensure they perform appropriate manual type
conversions prior to executing queries.

Django 1.4.10 release notes

November 6, 2013

Django 1.4.10 fixes a Python-compatibility bug in the 1.4 series.

Python compatibility

Django 1.4.9 inadvertently introduced issues with Python 2.5 compatibility. Django 1.4.10 restores Python 2.5 com-
patibility. This was issue #21362 in Django’s Trac.

Django 1.4.9 release notes

October 23, 2013

Django 1.4.9 fixes a security-related bug in the 1.4 series and one other data corruption bug.

9.1. Final releases 1571

Django Documentation, Release 1.10.9.dev20171123183751

Readdressed denial-of-service via password hashers

Django 1.4.8 imposes a 4096-byte limit on passwords in order to mitigate a denial-of-service attack through submission
of bogus but extremely large passwords. In Django 1.4.9, we’ve reverted this change and instead improved the speed
of our PBKDF2 algorithm by not rehashing the key on every iteration.

Bugfixes

• Fixed a data corruption bug with datetime_safe.datetime.combine (#21256).

Django 1.4.8 release notes

September 14, 2013

Django 1.4.8 fixes two security issues present in previous Django releases in the 1.4 series.

Denial-of-service via password hashers

In previous versions of Django, no limit was imposed on the plaintext length of a password. This allowed a denial-of-
service attack through submission of bogus but extremely large passwords, tying up server resources performing the
(expensive, and increasingly expensive with the length of the password) calculation of the corresponding hash.

As of 1.4.8, Django’s authentication framework imposes a 4096-byte limit on passwords and will fail authentication
with any submitted password of greater length.

Corrected usage of sensitive_post_parameters() in django.contrib.auth’s admin

The decoration of the add_view and user_change_password user admin views with
sensitive_post_parameters() did not include method_decorator() (required since the
views are methods) resulting in the decorator not being properly applied. This usage has been fixed and
sensitive_post_parameters() will now throw an exception if it’s improperly used.

Django 1.4.7 release notes

September 10, 2013

Django 1.4.7 fixes one security issue present in previous Django releases in the 1.4 series.

Directory traversal vulnerability in ssi template tag

In previous versions of Django it was possible to bypass the ALLOWED_INCLUDE_ROOTS setting used for security
with the ssi template tag by specifying a relative path that starts with one of the allowed roots. For example, if
ALLOWED_INCLUDE_ROOTS = ("/var/www",) the following would be possible:

{% ssi "/var/www/../../etc/passwd" %}

In practice this is not a very common problem, as it would require the template author to put the ssi file in a user-
controlled variable, but it’s possible in principle.

1572 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Django 1.4.6 release notes

August 13, 2013

Django 1.4.6 fixes one security issue present in previous Django releases in the 1.4 series, as well as one other bug.

This is the sixth bugfix/security release in the Django 1.4 series.

Mitigated possible XSS attack via user-supplied redirect URLs

Django relies on user input in some cases (e.g. django.contrib.auth.views.login(), django.
contrib.comments, and i18n) to redirect the user to an “on success” URL. The security checks for these redirects
(namely django.utils.http.is_safe_url()) didn’t check if the scheme is http(s) and as such allowed
javascript:... URLs to be entered. If a developer relied on is_safe_url() to provide safe redirect targets
and put such a URL into a link, they could suffer from a XSS attack. This bug doesn’t affect Django currently, since
we only put this URL into the Location response header and browsers seem to ignore JavaScript there.

Bugfixes

• Fixed an obscure bug with the override_settings() decorator. If you hit an AttributeError:
'Settings' object has no attribute '_original_allowed_hosts' exception, it’s prob-
ably fixed (#20636).

Django 1.4.5 release notes

February 20, 2013

Django 1.4.5 corrects a packaging problem with yesterday’s 1.4.4 release.

The release contained stray .pyc files that caused “bad magic number” errors when running with some versions of
Python. This releases corrects this, and also fixes a bad documentation link in the project template settings.py
file generated by manage.py startproject.

Django 1.4.4 release notes

February 19, 2013

Django 1.4.4 fixes four security issues present in previous Django releases in the 1.4 series, as well as several other
bugs and numerous documentation improvements.

This is the fourth bugfix/security release in the Django 1.4 series.

Host header poisoning

Some parts of Django – independent of end-user-written applications – make use of full URLs, including domain
name, which are generated from the HTTP Host header. Django’s documentation has for some time contained notes
advising users on how to configure Web servers to ensure that only valid Host headers can reach the Django appli-
cation. However, it has been reported to us that even with the recommended Web server configurations there are
still techniques available for tricking many common Web servers into supplying the application with an incorrect and
possibly malicious Host header.

For this reason, Django 1.4.4 adds a new setting, ALLOWED_HOSTS, containing an explicit list of valid
host/domain names for this site. A request with a Host header not matching an entry in this list will raise

9.1. Final releases 1573

Django Documentation, Release 1.10.9.dev20171123183751

SuspiciousOperation if request.get_host() is called. For full details see the documentation for the
ALLOWED_HOSTS setting.

The default value for this setting in Django 1.4.4 is ['*'] (matching any host), for backwards-compatibility, but we
strongly encourage all sites to set a more restrictive value.

This host validation is disabled when DEBUG is True or when running tests.

XML deserialization

The XML parser in the Python standard library is vulnerable to a number of attacks via external entities and entity
expansion. Django uses this parser for deserializing XML-formatted database fixtures. This deserializer is not intended
for use with untrusted data, but in order to err on the side of safety in Django 1.4.4 the XML deserializer refuses to
parse an XML document with a DTD (DOCTYPE definition), which closes off these attack avenues.

These issues in the Python standard library are CVE-2013-1664 and CVE-2013-1665. More information available
from the Python security team.

Django’s XML serializer does not create documents with a DTD, so this should not cause any issues with the typical
round-trip from dumpdata to loaddata, but if you feed your own XML documents to the loaddatamanagement
command, you will need to ensure they do not contain a DTD.

Formset memory exhaustion

Previous versions of Django did not validate or limit the form-count data provided by the client in a formset’s man-
agement form, making it possible to exhaust a server’s available memory by forcing it to create very large numbers of
forms.

In Django 1.4.4, all formsets have a strictly-enforced maximum number of forms (1000 by default, though it can be
set higher via the max_num formset factory argument).

Admin history view information leakage

In previous versions of Django, an admin user without change permission on a model could still view the unicode
representation of instances via their admin history log. Django 1.4.4 now limits the admin history log view for an
object to users with change permission for that model.

Other bugfixes and changes

• Prevented transaction state from leaking from one request to the next (#19707).

• Changed an SQL command syntax to be MySQL 4 compatible (#19702).

• Added backwards-compatibility with old unsalted MD5 passwords (#18144).

• Numerous documentation improvements and fixes.

Django 1.4.3 release notes

December 10, 2012

Django 1.4.3 addresses two security issues present in previous Django releases in the 1.4 series.

1574 Chapter 9. Release notes

http://blog.python.org/2013/02/announcing-defusedxml-fixes-for-xml.html

Django Documentation, Release 1.10.9.dev20171123183751

Please be aware that this security release is slightly different from previous ones. Both issues addressed here have
been dealt with in prior security updates to Django. In one case, we have received ongoing reports of problems, and
in the other we’ve chosen to take further steps to tighten up Django’s code in response to independent discovery of
potential problems from multiple sources.

Host header poisoning

Several earlier Django security releases focused on the issue of poisoning the HTTP Host header, causing Django to
generate URLs pointing to arbitrary, potentially-malicious domains.

In response to further input received and reports of continuing issues following the previous release, we’re taking
additional steps to tighten Host header validation. Rather than attempt to accommodate all features HTTP supports
here, Django’s Host header validation attempts to support a smaller, but far more common, subset:

• Hostnames must consist of characters [A-Za-z0-9] plus hyphen (‘-‘) or dot (‘.’).

• IP addresses – both IPv4 and IPv6 – are permitted.

• Port, if specified, is numeric.

Any deviation from this will now be rejected, raising the exception django.core.exceptions.
SuspiciousOperation.

Redirect poisoning

Also following up on a previous issue: in July of this year, we made changes to Django’s HTTP redirect classes,
performing additional validation of the scheme of the URL to redirect to (since, both within Django’s own supplied
applications and many third-party applications, accepting a user-supplied redirect target is a common pattern).

Since then, two independent audits of the code turned up further potential problems. So, similar to the Host-header
issue, we are taking steps to provide tighter validation in response to reported problems (primarily with third-party
applications, but to a certain extent also within Django itself). This comes in two parts:

1. A new utility function, django.utils.http.is_safe_url, is added; this function takes a URL and a
hostname, and checks that the URL is either relative, or if absolute matches the supplied hostname. This function
is intended for use whenever user-supplied redirect targets are accepted, to ensure that such redirects cannot lead to
arbitrary third-party sites.

2. All of Django’s own built-in views – primarily in the authentication system – which allow user-supplied redirect
targets now use is_safe_url to validate the supplied URL.

Django 1.4.2 release notes

October 17, 2012

This is the second security release in the Django 1.4 series.

Host header poisoning

Some parts of Django – independent of end-user-written applications – make use of full URLs, including domain
name, which are generated from the HTTP Host header. Some attacks against this are beyond Django’s ability to
control, and require the web server to be properly configured; Django’s documentation has for some time contained
notes advising users on such configuration.

9.1. Final releases 1575

Django Documentation, Release 1.10.9.dev20171123183751

Django’s own built-in parsing of the Host header is, however, still vulnerable, as was reported to us recently. The Host
header parsing in Django 1.3.3 and Django 1.4.1 – specifically, django.http.HttpRequest.get_host() –
was incorrectly handling username/password information in the header. Thus, for example, the following Host header
would be accepted by Django when running on “validsite.com”:

Host: validsite.com:random@evilsite.com

Using this, an attacker can cause parts of Django – particularly the password-reset mechanism – to generate and display
arbitrary URLs to users.

To remedy this, the parsing in HttpRequest.get_host() is being modified; Host headers which contain poten-
tially dangerous content (such as username/password pairs) now raise the exception django.core.exceptions.
SuspiciousOperation.

Details of this issue were initially posted online as a security advisory.

Backwards incompatible changes

• The newly introduced GenericIPAddressField constructor arguments have been adapted to match those
of all other model fields. The first two keyword arguments are now verbose_name and name.

Other bugfixes and changes

• Subclass HTMLParser only for appropriate Python versions (#18239).

• Added batch_size argument to qs.bulk_create() (#17788).

• Fixed a small regression in the admin filters where wrongly formatted dates passed as url parameters caused an
unhandled ValidationError (#18530).

• Fixed an endless loop bug when accessing permissions in templates (#18979)

• Fixed some Python 2.5 compatibility issues

• Fixed an issue with quoted filenames in Content-Disposition header (#19006)

• Made the context option in trans and blocktrans tags accept literals wrapped in single quotes (#18881).

• Numerous documentation improvements and fixes.

Django 1.4.1 release notes

July 30, 2012

This is the first security release in the Django 1.4 series, fixing several security issues in Django 1.4. Django 1.4.1 is a
recommended upgrade for all users of Django 1.4.

For a full list of issues addressed in this release, see the security advisory.

Django 1.4 release notes

March 23, 2012

Welcome to Django 1.4!

These release notes cover the new features, as well as some backwards incompatible changes you’ll want to be aware
of when upgrading from Django 1.3 or older versions. We’ve also dropped some features, which are detailed in our
deprecation plan, and we’ve begun the deprecation process for some features.

1576 Chapter 9. Release notes

https://www.djangoproject.com/weblog/2012/oct/17/security/
https://www.djangoproject.com/weblog/2012/jul/30/security-releases-issued/

Django Documentation, Release 1.10.9.dev20171123183751

Overview

The biggest new feature in Django 1.4 is support for time zones when handling date/times. When enabled, this Django
will store date/times in UTC, use timezone-aware objects internally, and translate them to users’ local timezones for
display.

If you’re upgrading an existing project to Django 1.4, switching to the timezone aware mode may take some care: the
new mode disallows some rather sloppy behavior that used to be accepted. We encourage anyone who’s upgrading to
check out the timezone migration guide and the timezone FAQ for useful pointers.

Other notable new features in Django 1.4 include:

• A number of ORM improvements, including SELECT FOR UPDATE support, the ability to bulk insert large
datasets for improved performance, and QuerySet.prefetch_related, a method to batch-load related objects in
areas where select_related() doesn’t work.

• Some nice security additions, including improved password hashing (featuring PBKDF2 and bcrypt support),
new tools for cryptographic signing, several CSRF improvements, and simple clickjacking protection.

• An updated default project layout and manage.py that removes the “magic” from prior versions. And for those
who don’t like the new layout, you can use custom project and app templates instead!

• Support for in-browser testing frameworks (like Selenium).

• ... and a whole lot more; see below!

Wherever possible we try to introduce new features in a backwards-compatible manner per our API stability policy
policy. However, as with previous releases, Django 1.4 ships with some minor backwards incompatible changes;
people upgrading from previous versions of Django should read that list carefully.

Python compatibility

Django 1.4 has dropped support for Python 2.4. Python 2.5 is now the minimum required Python version. Django is
tested and supported on Python 2.5, 2.6 and 2.7.

This change should affect only a small number of Django users, as most operating-system vendors today are shipping
Python 2.5 or newer as their default version. If you’re still using Python 2.4, however, you’ll need to stick to Django
1.3 until you can upgrade. Per our support policy, Django 1.3 will continue to receive security support until the release
of Django 1.5.

Django does not support Python 3.x at this time. At some point before the release of Django 1.4, we plan to publish a
document outlining our full timeline for deprecating Python 2.x and moving to Python 3.x.

What’s new in Django 1.4

Support for time zones

In previous versions, Django used “naive” date/times (that is, date/times without an associated time zone), leaving it up
to each developer to interpret what a given date/time “really means”. This can cause all sorts of subtle timezone-related
bugs.

In Django 1.4, you can now switch Django into a more correct, time-zone aware mode. In this mode, Django stores
date and time information in UTC in the database, uses time-zone-aware datetime objects internally and translates
them to the end user’s time zone in templates and forms. Reasons for using this feature include:

• Customizing date and time display for users around the world.

9.1. Final releases 1577

https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Bcrypt
http://seleniumhq.org/

Django Documentation, Release 1.10.9.dev20171123183751

• Storing datetimes in UTC for database portability and interoperability. (This argument doesn’t apply to Post-
greSQL, because it already stores timestamps with time zone information in Django 1.3.)

• Avoiding data corruption problems around DST transitions.

Time zone support is enabled by default in new projects created with startproject. If you want to use this feature
in an existing project, read the migration guide. If you encounter problems, there’s a helpful FAQ.

Support for in-browser testing frameworks

Django 1.4 supports integration with in-browser testing frameworks like Selenium. The new django.test.
LiveServerTestCase base class lets you test the interactions between your site’s front and back ends more
comprehensively. See the documentation for more details and concrete examples.

Updated default project layout and manage.py

Django 1.4 ships with an updated default project layout and manage.py file for the startproject management
command. These fix some issues with the previous manage.py handling of Python import paths that caused double
imports, trouble moving from development to deployment, and other difficult-to-debug path issues.

The previous manage.py called functions that are now deprecated, and thus projects upgrading to Django 1.4 should
update their manage.py. (The old-style manage.py will continue to work as before until Django 1.6. In 1.5 it will
raise DeprecationWarning).

The new recommended manage.py file should look like this:

#!/usr/bin/env python
import os, sys

if __name__ == "__main__":
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "{{ project_name }}.settings")

from django.core.management import execute_from_command_line

execute_from_command_line(sys.argv)

{{ project_name }} should be replaced with the Python package name of the actual project.

If settings, URLconfs and apps within the project are imported or referenced using the project name prefix (e.g.
myproject.settings, ROOT_URLCONF = "myproject.urls", etc.), the new manage.py will need to
be moved one directory up, so it is outside the project package rather than adjacent to settings.py and urls.py.

For instance, with the following layout:

manage.py
mysite/

__init__.py
settings.py
urls.py
myapp/

__init__.py
models.py

You could import mysite.settings, mysite.urls, and mysite.myapp, but not settings, urls, or
myapp as top-level modules.

1578 Chapter 9. Release notes

http://seleniumhq.org/

Django Documentation, Release 1.10.9.dev20171123183751

Anything imported as a top-level module can be placed adjacent to the new manage.py. For instance, to decouple
“myapp” from the project module and import it as just myapp, place it outside the mysite/ directory:

manage.py
myapp/

__init__.py
models.py

mysite/
__init__.py
settings.py
urls.py

If the same code is imported inconsistently (some places with the project prefix, some places without it), the imports
will need to be cleaned up when switching to the new manage.py.

Custom project and app templates

The startapp and startproject management commands now have a --template option for specifying a
path or URL to a custom app or project template.

For example, Django will use the /path/to/my_project_template directory when you run the following
command:

django-admin.py startproject --template=/path/to/my_project_template myproject

You can also now provide a destination directory as the second argument to both startapp and startproject:

django-admin.py startapp myapp /path/to/new/app
django-admin.py startproject myproject /path/to/new/project

For more information, see the startapp and startproject documentation.

Improved WSGI support

The startproject management command now adds a wsgi.py module to the initial project layout, containing
a simple WSGI application that can be used for deploying with WSGI app servers.

The built-in development server now supports using an externally-defined WSGI callable, which
makes it possible to run runserver with the same WSGI configuration that is used for deployment. The new
WSGI_APPLICATION setting lets you configure which WSGI callable runserver uses.

(The runfcgi management command also internally wraps the WSGI callable configured via
WSGI_APPLICATION .)

SELECT FOR UPDATE support

Django 1.4 includes a QuerySet.select_for_update() method, which generates a SELECT ... FOR
UPDATE SQL query. This will lock rows until the end of the transaction, meaning other transactions cannot mod-
ify or delete rows matched by a FOR UPDATE query.

For more details, see the documentation for select_for_update().

9.1. Final releases 1579

Django Documentation, Release 1.10.9.dev20171123183751

Model.objects.bulk_create in the ORM

This method lets you create multiple objects more efficiently. It can result in significant performance increases if you
have many objects.

Django makes use of this internally, meaning some operations (such as database setup for test suites) have seen a
performance benefit as a result.

See the bulk_create() docs for more information.

QuerySet.prefetch_related

Similar to select_related() but with a different strategy and broader scope, prefetch_related() has
been added to QuerySet. This method returns a new QuerySet that will prefetch each of the specified related
lookups in a single batch as soon as the query begins to be evaluated. Unlike select_related, it does the joins
in Python, not in the database, and supports many-to-many relationships, GenericForeignKey and more. This
allows you to fix a very common performance problem in which your code ends up doing O(n) database queries (or
worse) if objects on your primary QuerySet each have many related objects that you also need to fetch.

Improved password hashing

Django’s auth system (django.contrib.auth) stores passwords using a one-way algorithm. Django 1.3 uses
the SHA1 algorithm, but increasing processor speeds and theoretical attacks have revealed that SHA1 isn’t as secure
as we’d like. Thus, Django 1.4 introduces a new password storage system: by default Django now uses the PBKDF2
algorithm (as recommended by NIST). You can also easily choose a different algorithm (including the popular bcrypt
algorithm). For more details, see How Django stores passwords.

HTML5 doctype

We’ve switched the admin and other bundled templates to use the HTML5 doctype. While Django will be careful
to maintain compatibility with older browsers, this change means that you can use any HTML5 features you need in
admin pages without having to lose HTML validity or override the provided templates to change the doctype.

List filters in admin interface

Prior to Django 1.4, the admin app let you specify change list filters by specifying a field lookup, but it didn’t allow
you to create custom filters. This has been rectified with a simple API (previously used internally and known as
“FilterSpec”). For more details, see the documentation for list_filter.

Multiple sort in admin interface

The admin change list now supports sorting on multiple columns. It respects all elements of the ordering attribute,
and sorting on multiple columns by clicking on headers is designed to mimic the behavior of desktop GUIs. We also
added a get_ordering() method for specifying the ordering dynamically (i.e., depending on the request).

New ModelAdmin methods

We added a save_related() method to ModelAdmin to ease customization of how related objects are saved in
the admin.

1580 Chapter 9. Release notes

https://en.wikipedia.org/wiki/SHA1
https://en.wikipedia.org/wiki/PBKDF2
http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
https://en.wikipedia.org/wiki/Bcrypt

Django Documentation, Release 1.10.9.dev20171123183751

Two other new ModelAdmin methods, get_list_display() and get_list_display_links() enable
dynamic customization of fields and links displayed on the admin change list.

Admin inlines respect user permissions

Admin inlines now only allow those actions for which the user has permission. For ManyToMany relationships with
an auto-created intermediate model (which does not have its own permissions), the change permission for the related
model determines if the user has the permission to add, change or delete relationships.

Tools for cryptographic signing

Django 1.4 adds both a low-level API for signing values and a high-level API for setting and reading signed cookies,
one of the most common uses of signing in Web applications.

See the cryptographic signing docs for more information.

Cookie-based session backend

Django 1.4 introduces a cookie-based session backend that uses the tools for cryptographic signing to store the session
data in the client’s browser.

Warning: Session data is signed and validated by the server, but it’s not encrypted. This means a user can view
any data stored in the session but cannot change it. Please read the documentation for further clarification before
using this backend.

See the cookie-based session backend docs for more information.

New form wizard

The previous FormWizard from django.contrib.formtools has been replaced with a new implementation
based on the class-based views introduced in Django 1.3. It features a pluggable storage API and doesn’t require the
wizard to pass around hidden fields for every previous step.

Django 1.4 ships with a session-based storage backend and a cookie-based storage backend. The latter uses the tools
for cryptographic signing also introduced in Django 1.4 to store the wizard’s state in the user’s cookies.

reverse_lazy

A lazily evaluated version of reverse() was added to allow using URL reversals before the project’s URLconf gets
loaded.

Translating URL patterns

Django can now look for a language prefix in the URLpattern when using the new i18n_patterns() helper func-
tion. It’s also now possible to define translatable URL patterns using ugettext_lazy(). See Internationalization:
in URL patterns for more information about the language prefix and how to internationalize URL patterns.

9.1. Final releases 1581

Django Documentation, Release 1.10.9.dev20171123183751

Contextual translation support for {% trans %} and {% blocktrans %}

The contextual translation support introduced in Django 1.3 via the pgettext function has been extended to the
trans and blocktrans template tags using the new context keyword.

Customizable SingleObjectMixin URLConf kwargs

Two new attributes, pk_url_kwarg and slug_url_kwarg, have been added to SingleObjectMixin to
enable the customization of URLconf keyword arguments used for single object generic views.

Assignment template tags

A new assignment_tag helper function was added to template.Library to ease the creation of template tags
that store data in a specified context variable.

*args and **kwargs support for template tag helper functions

The simple_tag, inclusion_tag and newly introduced assignment_tag template helper functions may now accept
any number of positional or keyword arguments. For example:

@register.simple_tag
def my_tag(a, b, *args, **kwargs):

warning = kwargs['warning']
profile = kwargs['profile']
...
return ...

Then, in the template, any number of arguments may be passed to the template tag. For example:

{% my_tag 123 "abcd" book.title warning=message|lower profile=user.profile %}

No wrapping of exceptions in TEMPLATE_DEBUG mode

In previous versions of Django, whenever the TEMPLATE_DEBUG setting was True, any exception raised during
template rendering (even exceptions unrelated to template syntax) were wrapped in TemplateSyntaxError and
re-raised. This was done in order to provide detailed template source location information in the debug 500 page.

In Django 1.4, exceptions are no longer wrapped. Instead, the original exception is annotated with the source infor-
mation. This means that catching exceptions from template rendering is now consistent regardless of the value of
TEMPLATE_DEBUG, and there’s no need to catch and unwrap TemplateSyntaxError in order to catch other
errors.

truncatechars template filter

This new filter truncates a string to be no longer than the specified number of characters. Truncated strings end with a
translatable ellipsis sequence (”...”). See the documentation for truncatechars for more details.

1582 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

static template tag

The staticfiles contrib app has a new static template tag to refer to files saved with the
STATICFILES_STORAGE storage backend. It uses the storage backend’s url method and therefore supports ad-
vanced features such as serving files from a cloud service.

CachedStaticFilesStorage storage backend

The staticfiles contrib app now has a CachedStaticFilesStorage backend that caches the files it saves
(when running the collectstatic management command) by appending the MD5 hash of the file’s content to the
filename. For example, the file css/styles.css would also be saved as css/styles.55e7cbb9ba48.css

See the CachedStaticFilesStorage docs for more information.

Simple clickjacking protection

We’ve added a middleware to provide easy protection against clickjacking using the X-Frame-Options header.
It’s not enabled by default for backwards compatibility reasons, but you’ll almost certainly want to enable it to help
plug that security hole for browsers that support the header.

CSRF improvements

We’ve made various improvements to our CSRF features, including the ensure_csrf_cookie() decorator,
which can help with AJAX-heavy sites; protection for PUT and DELETE requests; and the CSRF_COOKIE_SECURE
and CSRF_COOKIE_PATH settings, which can improve the security and usefulness of CSRF protection. See the
CSRF docs for more information.

Error report filtering

We added two function decorators, sensitive_variables() and sensitive_post_parameters(), to
allow designating the local variables and POST parameters that may contain sensitive information and should be
filtered out of error reports.

All POST parameters are now systematically filtered out of error reports for certain views (login,
password_reset_confirm, password_change and add_view in django.contrib.auth.views, as
well as user_change_password in the admin app) to prevent the leaking of sensitive information such as user
passwords.

You can override or customize the default filtering by writing a custom filter. For more information see the docs on
Filtering error reports.

Extended IPv6 support

Django 1.4 can now better handle IPv6 addresses with the new GenericIPAddressField model
field, GenericIPAddressField form field and the validators validate_ipv46_address and
validate_ipv6_address.

9.1. Final releases 1583

https://en.wikipedia.org/wiki/Clickjacking

Django Documentation, Release 1.10.9.dev20171123183751

HTML comparisons in tests

The base classes in django.test now have some helpers to compare HTML without tripping over irrelevant dif-
ferences in whitespace, argument quoting/ordering and closing of self-closing tags. You can either compare HTML
directly with the new assertHTMLEqual() and assertHTMLNotEqual() assertions, or use the html=True
flag with assertContains() and assertNotContains() to test whether the client’s response contains a
given HTML fragment. See the assertions documentation for more.

Two new date format strings

Two new date formats were added for use in template filters, template tags and Format localization:

• e – the name of the timezone of the given datetime object

• o – the ISO 8601 year number

Please make sure to update your custom format files if they contain either e or o in a format string. For example a
Spanish localization format previously only escaped the d format character:

DATE_FORMAT = r'j \de F \de Y'

But now it needs to also escape e and o:

DATE_FORMAT = r'j \d\e F \d\e Y'

For more information, see the date documentation.

Minor features

Django 1.4 also includes several smaller improvements worth noting:

• A more usable stacktrace in the technical 500 page. Frames in the stack trace that reference Django’s framework
code are dimmed out, while frames in application code are slightly emphasized. This change makes it easier to
scan a stacktrace for issues in application code.

• Tablespace support in PostgreSQL.

• Customizable names for simple_tag().

• In the documentation, a helpful security overview page.

• The django.contrib.auth.models.check_password function has been moved to the django.
contrib.auth.hashers module. Importing it from the old location will still work, but you should update
your imports.

• The collectstatic management command now has a --clear option to delete all files at the destination
before copying or linking the static files.

• It’s now possible to load fixtures containing forward references when using MySQL with the InnoDB database
engine.

• A new 403 response handler has been added as 'django.views.defaults.permission_denied'.
You can set your own handler by setting the value of django.conf.urls.handler403. See the docu-
mentation about the 403 (HTTP Forbidden) view for more information.

• The makemessages command uses a new and more accurate lexer, JsLex, for extracting translatable strings
from JavaScript files.

1584 Chapter 9. Release notes

https://bitbucket.org/ned/jslex

Django Documentation, Release 1.10.9.dev20171123183751

• The trans template tag now takes an optional as argument to be able to retrieve a translation string without
displaying it but setting a template context variable instead.

• The if template tag now supports {% elif %} clauses.

• If your Django app is behind a proxy, you might find the new SECURE_PROXY_SSL_HEADER setting useful.
It solves the problem of your proxy “eating” the fact that a request came in via HTTPS. But only use this setting
if you know what you’re doing.

• A new, plain-text, version of the HTTP 500 status code internal error page served when DEBUG is True is now
sent to the client when Django detects that the request has originated in JavaScript code. (is_ajax() is used
for this.)

Like its HTML counterpart, it contains a collection of different pieces of information about the state of the
application.

This should make it easier to read when debugging interaction with client-side JavaScript.

• Added the makemessages --no-location option.

• Changed the locmem cache backend to use pickle.HIGHEST_PROTOCOL for better compatibility with the
other cache backends.

• Added support in the ORM for generating SELECT queries containing DISTINCT ON.

The distinct() QuerySet method now accepts an optional list of model field names. If specified, then the
DISTINCT statement is limited to these fields. This is only supported in PostgreSQL.

For more details, see the documentation for distinct().

• The admin login page will add a password reset link if you include a URL with the name ‘ad-
min_password_reset’ in your urls.py, so plugging in the built-in password reset mechanism and making it avail-
able is now much easier. For details, see Adding a password-reset feature.

• The MySQL database backend can now make use of the savepoint feature implemented by MySQL version
5.0.3 or newer with the InnoDB storage engine.

• It’s now possible to pass initial values to the model forms that are part of both model formsets and inline model
formsets as returned from factory functions modelformset_factory and inlineformset_factory
respectively just like with regular formsets. However, initial values only apply to extra forms, i.e. those which
are not bound to an existing model instance.

• The sitemaps framework can now handle HTTPS links using the new Sitemap.protocol class attribute.

• A new django.test.SimpleTestCase subclass of unittest.TestCase that’s lighter than
django.test.TestCase and company. It can be useful in tests that don’t need to hit a database. See
Hierarchy of Django unit testing classes.

Backwards incompatible changes in 1.4

SECRET_KEY setting is required

Running Django with an empty or known SECRET_KEY disables many of Django’s security protections and can lead
to remote-code-execution vulnerabilities. No Django site should ever be run without a SECRET_KEY .

In Django 1.4, starting Django with an empty SECRET_KEY will raise a DeprecationWarning. In Django 1.5, it will
raise an exception and Django will refuse to start. This is slightly accelerated from the usual deprecation path due to
the severity of the consequences of running Django with no SECRET_KEY .

9.1. Final releases 1585

https://docs.python.org/3/library/unittest.html#unittest.TestCase

Django Documentation, Release 1.10.9.dev20171123183751

django.contrib.admin

The included administration app django.contrib.admin has for a long time shipped with a default set of
static files such as JavaScript, images and stylesheets. Django 1.3 added a new contrib app django.contrib.
staticfiles to handle such files in a generic way and defined conventions for static files included in apps.

Starting in Django 1.4, the admin’s static files also follow this convention, to make the files easier to deploy. In previous
versions of Django, it was also common to define an ADMIN_MEDIA_PREFIX setting to point to the URL where the
admin’s static files live on a Web server. This setting has now been deprecated and replaced by the more general setting
STATIC_URL. Django will now expect to find the admin static files under the URL <STATIC_URL>/admin/.

If you’ve previously used a URL path for ADMIN_MEDIA_PREFIX (e.g. /media/) simply make sure
STATIC_URL and STATIC_ROOT are configured and your Web server serves those files correctly. The develop-
ment server continues to serve the admin files just like before. Read the static files howto for more details.

If your ADMIN_MEDIA_PREFIX is set to an specific domain (e.g. http://media.example.com/admin/),
make sure to also set your STATIC_URL setting to the correct URL – for example, http://media.example.
com/.

Warning: If you’re implicitly relying on the path of the admin static files within Django’s source code, you’ll need
to update that path. The files were moved from django/contrib/admin/media/ to django/contrib/
admin/static/admin/.

Supported browsers for the admin

Django hasn’t had a clear policy on which browsers are supported by the admin app. Our new policy formalizes
existing practices: YUI’s A-grade browsers should provide a fully-functional admin experience, with the notable
exception of Internet Explorer 6, which is no longer supported.

Released over 10 years ago, IE6 imposes many limitations on modern Web development. The practical implications
of this policy are that contributors are free to improve the admin without consideration for these limitations.

Obviously, this new policy has no impact on sites you develop using Django. It only applies to the Django admin.
Feel free to develop apps compatible with any range of browsers.

Removed admin icons

As part of an effort to improve the performance and usability of the admin’s change-list sorting interface and
horizontal and vertical “filter” widgets, some icon files were removed and grouped into two sprite files.

Specifically: selector-add.gif, selector-addall.gif, selector-remove.gif,
selector-removeall.gif, selector_stacked-add.gif and selector_stacked-remove.
gif were combined into selector-icons.gif; and arrow-up.gif and arrow-down.gif were combined
into sorting-icons.gif.

If you used those icons to customize the admin, then you’ll need to replace them with your own icons or get the files
from a previous release.

CSS class names in admin forms

To avoid conflicts with other common CSS class names (e.g. “button”), we added a prefix (“field-”) to all CSS class
names automatically generated from the form field names in the main admin forms, stacked inline forms and tabular

1586 Chapter 9. Release notes

http://yuilibrary.com/yui/docs/tutorials/gbs/

Django Documentation, Release 1.10.9.dev20171123183751

inline cells. You’ll need to take that prefix into account in your custom style sheets or JavaScript files if you previously
used plain field names as selectors for custom styles or JavaScript transformations.

Compatibility with old signed data

Django 1.3 changed the cryptographic signing mechanisms used in a number of places in Django. While Django 1.3
kept fallbacks that would accept hashes produced by the previous methods, these fallbacks are removed in Django 1.4.

So, if you upgrade to Django 1.4 directly from 1.2 or earlier, you may lose/invalidate certain pieces of data that have
been cryptographically signed using an old method. To avoid this, use Django 1.3 first for a period of time to allow the
signed data to expire naturally. The affected parts are detailed below, with 1) the consequences of ignoring this advice
and 2) the amount of time you need to run Django 1.3 for the data to expire or become irrelevant.

• contrib.sessions data integrity check

– Consequences: The user will be logged out, and session data will be lost.

– Time period: Defined by SESSION_COOKIE_AGE.

• contrib.auth password reset hash

– Consequences: Password reset links from before the upgrade will not work.

– Time period: Defined by PASSWORD_RESET_TIMEOUT_DAYS.

Form-related hashes: these have a are much shorter lifetime and are relevant only for the short window where a user
might fill in a form generated by the pre-upgrade Django instance and try to submit it to the upgraded Django instance:

• contrib.comments form security hash

– Consequences: The user will see the validation error “Security hash failed.”

– Time period: The amount of time you expect users to take filling out comment forms.

• FormWizard security hash

– Consequences: The user will see an error about the form having expired and will be sent back to the first
page of the wizard, losing the data entered so far.

– Time period: The amount of time you expect users to take filling out the affected forms.

• CSRF check

– Note: This is actually a Django 1.1 fallback, not Django 1.2, and it applies only if you’re upgrading from
1.1.

– Consequences: The user will see a 403 error with any CSRF-protected POST form.

– Time period: The amount of time you expect user to take filling out such forms.

• contrib.auth user password hash-upgrade sequence

– Consequences: Each user’s password will be updated to a stronger password hash when it’s written to the
database in 1.4. This means that if you upgrade to 1.4 and then need to downgrade to 1.3, version 1.3
won’t be able to read the updated passwords.

– Remedy: Set PASSWORD_HASHERS to use your original password hashing when you initially upgrade to
1.4. After you confirm your app works well with Django 1.4 and you won’t have to roll back to 1.3, enable
the new password hashes.

9.1. Final releases 1587

Django Documentation, Release 1.10.9.dev20171123183751

django.contrib.flatpages

Starting in 1.4, the FlatpageFallbackMiddleware only adds a trailing slash and redirects if the resulting
URL refers to an existing flatpage. For example, requesting /notaflatpageoravalidurl in a previous ver-
sion would redirect to /notaflatpageoravalidurl/, which would subsequently raise a 404. Requesting /
notaflatpageoravalidurl now will immediately raise a 404.

Also, redirects returned by flatpages are now permanent (with 301 status code), to match the behavior of
CommonMiddleware.

Serialization of datetime and time

As a consequence of time-zone support, and according to the ECMA-262 specification, we made changes to the JSON
serializer:

• It includes the time zone for aware datetime objects. It raises an exception for aware time objects.

• It includes milliseconds for datetime and time objects. There is still some precision loss, because Python stores
microseconds (6 digits) and JSON only supports milliseconds (3 digits). However, it’s better than discarding
microseconds entirely.

We changed the XML serializer to use the ISO8601 format for datetimes. The letter T is used to separate the date part
from the time part, instead of a space. Time zone information is included in the [+-]HH:MM format.

Though the serializers now use these new formats when creating fixtures, they can still load fixtures that use the old
format.

supports_timezone changed to False for SQLite

The database feature supports_timezone used to be True for SQLite. Indeed, if you saved an aware datetime
object, SQLite stored a string that included an UTC offset. However, this offset was ignored when loading the value
back from the database, which could corrupt the data.

In the context of time-zone support, this flag was changed to False, and datetimes are now stored without time-zone
information in SQLite. When USE_TZ is False, if you attempt to save an aware datetime object, Django raises an
exception.

MySQLdb-specific exceptions

The MySQL backend historically has raised MySQLdb.OperationalError when a query triggered an exception.
We’ve fixed this bug, and we now raise django.db.DatabaseError instead. If you were testing for MySQLdb.
OperationalError, you’ll need to update your except clauses.

Database connection’s thread-locality

DatabaseWrapper objects (i.e. the connection objects referenced by django.db.connection and django.
db.connections["some_alias"]) used to be thread-local. They are now global objects in order to be po-
tentially shared between multiple threads. While the individual connection objects are now global, the django.
db.connections dictionary referencing those objects is still thread-local. Therefore if you just use the ORM
or DatabaseWrapper.cursor() then the behavior is still the same as before. Note, however, that django.
db.connection does not directly reference the default DatabaseWrapper object anymore and is now a proxy
to access that object’s attributes. If you need to access the actual DatabaseWrapper object, use django.db.
connections[DEFAULT_DB_ALIAS] instead.

1588 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

As part of this change, all underlying SQLite connections are now enabled for potential thread-sharing (by passing
the check_same_thread=False attribute to pysqlite). DatabaseWrapper however preserves the previous
behavior by disabling thread-sharing by default, so this does not affect any existing code that purely relies on the
ORM or on DatabaseWrapper.cursor().

Finally, while it’s now possible to pass connections between threads, Django doesn’t make any effort to synchronize
access to the underlying backend. Concurrency behavior is defined by the underlying backend implementation. Check
their documentation for details.

COMMENTS_BANNED_USERS_GROUP setting

Django’s comments has historically supported excluding the comments of a special user group, but we’ve never docu-
mented the feature properly and didn’t enforce the exclusion in other parts of the app such as the template tags. To fix
this problem, we removed the code from the feed class.

If you rely on the feature and want to restore the old behavior, use a custom comment model manager to exclude the
user group, like this:

from django.conf import settings
from django.contrib.comments.managers import CommentManager

class BanningCommentManager(CommentManager):
def get_query_set(self):

qs = super(BanningCommentManager, self).get_query_set()
if getattr(settings, 'COMMENTS_BANNED_USERS_GROUP', None):

where = ['user_id NOT IN (SELECT user_id FROM auth_user_groups WHERE
→˓group_id = %s)']

params = [settings.COMMENTS_BANNED_USERS_GROUP]
qs = qs.extra(where=where, params=params)

return qs

Save this model manager in your custom comment app (e.g., in my_comments_app/managers.py) and add it
your custom comment app model:

from django.db import models
from django.contrib.comments.models import Comment

from my_comments_app.managers import BanningCommentManager

class CommentWithTitle(Comment):
title = models.CharField(max_length=300)

objects = BanningCommentManager()

IGNORABLE_404_STARTS and IGNORABLE_404_ENDS settings

Until Django 1.3, it was possible to exclude some URLs from Django’s 404 error reporting by adding prefixes to
IGNORABLE_404_STARTS and suffixes to IGNORABLE_404_ENDS.

In Django 1.4, these two settings are superseded by IGNORABLE_404_URLS, which is a list of compiled regular
expressions. Django won’t send an email for 404 errors on URLs that match any of them.

Furthermore, the previous settings had some rather arbitrary default values:

9.1. Final releases 1589

Django Documentation, Release 1.10.9.dev20171123183751

IGNORABLE_404_STARTS = ('/cgi-bin/', '/_vti_bin', '/_vti_inf')
IGNORABLE_404_ENDS = ('mail.pl', 'mailform.pl', 'mail.cgi', 'mailform.cgi',

'favicon.ico', '.php')

It’s not Django’s role to decide if your website has a legacy /cgi-bin/ section or a favicon.
ico. As a consequence, the default values of IGNORABLE_404_URLS, IGNORABLE_404_STARTS, and
IGNORABLE_404_ENDS are all now empty.

If you have customized IGNORABLE_404_STARTS or IGNORABLE_404_ENDS, or if you want to keep the old
default value, you should add the following lines in your settings file:

import re
IGNORABLE_404_URLS = (

for each <prefix> in IGNORABLE_404_STARTS
re.compile(r'^<prefix>'),
for each <suffix> in IGNORABLE_404_ENDS
re.compile(r'<suffix>$'),

)

Don’t forget to escape characters that have a special meaning in a regular expression, such as periods.

CSRF protection extended to PUT and DELETE

Previously, Django’s CSRF protection provided protection only against POST requests. Since use of PUT and
DELETE methods in AJAX applications is becoming more common, we now protect all methods not defined as
safe by RFC 2616 – i.e., we exempt GET, HEAD, OPTIONS and TRACE, and we enforce protection on everything
else.

If you’re using PUT or DELETE methods in AJAX applications, please see the instructions about using AJAX and
CSRF.

Password reset view now accepts subject_template_name

The password_reset view in django.contrib.auth now accepts a subject_template_name param-
eter, which is passed to the password save form as a keyword argument. If you are using this view with a custom
password reset form, then you will need to ensure your form’s save() method accepts this keyword argument.

django.core.template_loaders

This was an alias to django.template.loader since 2005, and we’ve removed it without emitting a warning
due to the length of the deprecation. If your code still referenced this, please use django.template.loader
instead.

django.db.models.fields.URLField.verify_exists

This functionality has been removed due to intractable performance and security issues. Any existing usage of
verify_exists should be removed.

1590 Chapter 9. Release notes

https://tools.ietf.org/html/rfc2616.html

Django Documentation, Release 1.10.9.dev20171123183751

django.core.files.storage.Storage.open

The openmethod of the base Storage class used to take an obscure parameter mixin that allowed you to dynamically
change the base classes of the returned file object. This has been removed. In the rare case you relied on the mixin
parameter, you can easily achieve the same by overriding the open method, like this:

from django.core.files import File
from django.core.files.storage import FileSystemStorage

class Spam(File):
"""
Spam, spam, spam, spam and spam.
"""
def ham(self):

return 'eggs'

class SpamStorage(FileSystemStorage):
"""
A custom file storage backend.
"""
def open(self, name, mode='rb'):

return Spam(open(self.path(name), mode))

YAML deserializer now uses yaml.safe_load

yaml.load is able to construct any Python object, which may trigger arbitrary code execution if you process a
YAML document that comes from an untrusted source. This feature isn’t necessary for Django’s YAML deserializer,
whose primary use is to load fixtures consisting of simple objects. Even though fixtures are trusted data, the YAML
deserializer now uses yaml.safe_load for additional security.

Session cookies now have the httponly flag by default

Session cookies now include the httponly attribute by default to help reduce the impact of potential XSS attacks.
As a consequence of this change, session cookie data, including sessionid, is no longer accessible from JavaScript in
many browsers. For strict backwards compatibility, use SESSION_COOKIE_HTTPONLY = False in your settings
file.

The urlize filter no longer escapes every URL

When a URL contains a %xx sequence, where xx are two hexadecimal digits, urlize now assumes that the URL
is already escaped and doesn’t apply URL escaping again. This is wrong for URLs whose unquoted form contains a
%xx sequence, but such URLs are very unlikely to happen in the wild, because they would confuse browsers too.

assertTemplateUsed and assertTemplateNotUsed as context manager

It’s now possible to check whether a template was used within a block of code with assertTemplateUsed() and
assertTemplateNotUsed(). And they can be used as a context manager:

with self.assertTemplateUsed('index.html'):
render_to_string('index.html')

9.1. Final releases 1591

Django Documentation, Release 1.10.9.dev20171123183751

with self.assertTemplateNotUsed('base.html'):
render_to_string('index.html')

See the assertion documentation for more.

Database connections after running the test suite

The default test runner no longer restores the database connections after tests’ execution. This prevents the production
database from being exposed to potential threads that would still be running and attempting to create new connections.

If your code relied on connections to the production database being created after tests’ execution, then you can re-
store the previous behavior by subclassing DjangoTestRunner and overriding its teardown_databases()
method.

Output of manage.py help

manage.py help now groups available commands by application. If you depended on the output of this command
– if you parsed it, for example – then you’ll need to update your code. To get a list of all available management
commands in a script, use manage.py help --commands instead.

extends template tag

Previously, the extends tag used a buggy method of parsing arguments, which could lead to it erroneously consid-
ering an argument as a string literal when it wasn’t. It now uses parser.compile_filter, like other tags.

The internals of the tag aren’t part of the official stable API, but in the interests of full disclosure, the ExtendsNode.
__init__ definition has changed, which may break any custom tags that use this class.

Loading some incomplete fixtures no longer works

Prior to 1.4, a default value was inserted for fixture objects that were missing a specific date or datetime value when
auto_now or auto_now_add was set for the field. This was something that should not have worked, and in 1.4 loading
such incomplete fixtures will fail. Because fixtures are a raw import, they should explicitly specify all field values,
regardless of field options on the model.

Development Server Multithreading

The development server is now is multithreaded by default. Use the runserver --nothreading option to
disable the use of threading in the development server:

django-admin.py runserver --nothreading

Attributes disabled in markdown when safe mode set

Prior to Django 1.4, attributes were included in any markdown output regardless of safe mode setting of the filter.
With version > 2.1 of the Python-Markdown library, an enable_attributes option was added. When the safe argument
is passed to the markdown filter, both the safe_mode=True and enable_attributes=False options are set.
If using a version of the Python-Markdown library less than 2.1, a warning is issued that the output is insecure.

1592 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

FormMixin get_initial returns an instance-specific dictionary

In Django 1.3, the get_initial method of the django.views.generic.edit.FormMixin class was re-
turning the class initial dictionary. This has been fixed to return a copy of this dictionary, so form instances can
modify their initial data without messing with the class variable.

Features deprecated in 1.4

Old styles of calling cache_page decorator

Some legacy ways of calling cache_page() have been deprecated. Please see the documentation for the correct
way to use this decorator.

Support for PostgreSQL versions older than 8.2

Django 1.3 dropped support for PostgreSQL versions older than 8.0, and we suggested using a more recent version
because of performance improvements and, more importantly, the end of upstream support periods for 8.0 and 8.1 was
near (November 2010).

Django 1.4 takes that policy further and sets 8.2 as the minimum PostgreSQL version it officially supports.

Request exceptions are now always logged

When we added logging support in Django in 1.3, the admin error email support was moved into the django.
utils.log.AdminEmailHandler, attached to the 'django.request' logger. In order to maintain the
established behavior of error emails, the 'django.request' logger was called only when DEBUG was False.

To increase the flexibility of error logging for requests, the 'django.request' logger is now called regardless of
the value of DEBUG, and the default settings file for new projects now includes a separate filter attached to django.
utils.log.AdminEmailHandler to prevent admin error emails in DEBUG mode:

'filters': {
'require_debug_false': {

'()': 'django.utils.log.RequireDebugFalse'
}

},
'handlers': {

'mail_admins': {
'level': 'ERROR',
'filters': ['require_debug_false'],
'class': 'django.utils.log.AdminEmailHandler'

}
},

If your project was created prior to this change, your LOGGING setting will not include this new filter. In order to
maintain backwards-compatibility, Django will detect that your 'mail_admins' handler configuration includes no
'filters' section and will automatically add this filter for you and issue a pending-deprecation warning. This will
become a deprecation warning in Django 1.5, and in Django 1.6 the backwards-compatibility shim will be removed
entirely.

The existence of any 'filters' key under the 'mail_admins' handler will disable this backward-compatibility
shim and deprecation warning.

9.1. Final releases 1593

Django Documentation, Release 1.10.9.dev20171123183751

django.conf.urls.defaults

Until Django 1.3, the functions include(), patterns() and url() plus handler404, handler500 were
located in a django.conf.urls.defaults module.

In Django 1.4, they live in django.conf.urls.

django.contrib.databrowse

Databrowse has not seen active development for some time, and this does not show any sign of changing. There had
been a suggestion for a GSOC project to integrate the functionality of databrowse into the admin, but no progress was
made. While Databrowse has been deprecated, an enhancement of django.contrib.admin providing a similar
feature set is still possible.

The code that powers Databrowse is licensed under the same terms as Django itself, so it’s available to be adopted by
an individual or group as a third-party project.

django.core.management.setup_environ

This function temporarily modified sys.path in order to make the parent “project” directory importable under the
old flat startproject layout. This function is now deprecated, as its path workarounds are no longer needed with
the new manage.py and default project layout.

This function was never documented or part of the public API, but it was widely recommended for use in setting up a
“Django environment” for a user script. These uses should be replaced by setting the DJANGO_SETTINGS_MODULE
environment variable or using django.conf.settings.configure().

django.core.management.execute_manager

This function was previously used by manage.py to execute a management command. It is identical to django.
core.management.execute_from_command_line, except that it first calls setup_environ, which is
now deprecated. As such, execute_manager is also deprecated; execute_from_command_line can be
used instead. Neither of these functions is documented as part of the public API, but a deprecation path is needed due
to use in existing manage.py files.

is_safe and needs_autoescape attributes of template filters

Two flags, is_safe and needs_autoescape, define how each template filter interacts with Django’s auto-
escaping behavior. They used to be attributes of the filter function:

@register.filter
def noop(value):

return value
noop.is_safe = True

However, this technique caused some problems in combination with decorators, especially @stringfilter. Now,
the flags are keyword arguments of @register.filter:

@register.filter(is_safe=True)
def noop(value):

return value

1594 Chapter 9. Release notes

https://code.djangoproject.com/wiki/SummerOfCode2011#Integratedatabrowseintotheadmin

Django Documentation, Release 1.10.9.dev20171123183751

See filters and auto-escaping for more information.

Wildcard expansion of application names in INSTALLED_APPS

Until Django 1.3, INSTALLED_APPS accepted wildcards in application names, like django.contrib.*. The
expansion was performed by a filesystem-based implementation of from <package> import *. Unfortunately,
this can’t be done reliably.

This behavior was never documented. Since it is unpythonic and not obviously useful, it was removed in Django 1.4.
If you relied on it, you must edit your settings file to list all your applications explicitly.

HttpRequest.raw_post_data renamed to HttpRequest.body

This attribute was confusingly named HttpRequest.raw_post_data, but it actually provided the body of the
HTTP request. It’s been renamed to HttpRequest.body, and HttpRequest.raw_post_data has been dep-
recated.

django.contrib.sitemaps bug fix with potential performance implications

In previous versions, Paginator objects used in sitemap classes were cached, which could result in stale site maps.
We’ve removed the caching, so each request to a site map now creates a new Paginator object and calls the items()
method of the Sitemap subclass. Depending on what your items() method is doing, this may have a negative per-
formance impact. To mitigate the performance impact, consider using the caching framework within your Sitemap
subclass.

Versions of Python-Markdown earlier than 2.1

Versions of Python-Markdown earlier than 2.1 do not support the option to disable attributes. As a security issue,
earlier versions of this library will not be supported by the markup contrib app in 1.5 under an accelerated deprecation
timeline.

9.1.8 1.3 release

Django 1.3.7 release notes

February 20, 2013

Django 1.3.7 corrects a packaging problem with yesterday’s 1.3.6 release.

The release contained stray .pyc files that caused “bad magic number” errors when running with some versions of
Python. This releases corrects this, and also fixes a bad documentation link in the project template settings.py
file generated by manage.py startproject.

Django 1.3.6 release notes

February 19, 2013

Django 1.3.6 fixes four security issues present in previous Django releases in the 1.3 series.

This is the sixth bugfix/security release in the Django 1.3 series.

9.1. Final releases 1595

Django Documentation, Release 1.10.9.dev20171123183751

Host header poisoning

Some parts of Django – independent of end-user-written applications – make use of full URLs, including domain
name, which are generated from the HTTP Host header. Django’s documentation has for some time contained notes
advising users on how to configure Web servers to ensure that only valid Host headers can reach the Django appli-
cation. However, it has been reported to us that even with the recommended Web server configurations there are
still techniques available for tricking many common Web servers into supplying the application with an incorrect and
possibly malicious Host header.

For this reason, Django 1.3.6 adds a new setting, ALLOWED_HOSTS, which should contain an explicit list of
valid host/domain names for this site. A request with a Host header not matching an entry in this list will raise
SuspiciousOperation if request.get_host() is called. For full details see the documentation for the
ALLOWED_HOSTS setting.

The default value for this setting in Django 1.3.6 is ['*'] (matching any host), for backwards-compatibility, but we
strongly encourage all sites to set a more restrictive value.

This host validation is disabled when DEBUG is True or when running tests.

XML deserialization

The XML parser in the Python standard library is vulnerable to a number of attacks via external entities and entity
expansion. Django uses this parser for deserializing XML-formatted database fixtures. The fixture deserializer is not
intended for use with untrusted data, but in order to err on the side of safety in Django 1.3.6 the XML deserializer
refuses to parse an XML document with a DTD (DOCTYPE definition), which closes off these attack avenues.

These issues in the Python standard library are CVE-2013-1664 and CVE-2013-1665. More information available
from the Python security team.

Django’s XML serializer does not create documents with a DTD, so this should not cause any issues with the typical
round-trip from dumpdata to loaddata, but if you feed your own XML documents to the loaddatamanagement
command, you will need to ensure they do not contain a DTD.

Formset memory exhaustion

Previous versions of Django did not validate or limit the form-count data provided by the client in a formset’s man-
agement form, making it possible to exhaust a server’s available memory by forcing it to create very large numbers of
forms.

In Django 1.3.6, all formsets have a strictly-enforced maximum number of forms (1000 by default, though it can be
set higher via the max_num formset factory argument).

Admin history view information leakage

In previous versions of Django, an admin user without change permission on a model could still view the unicode
representation of instances via their admin history log. Django 1.3.6 now limits the admin history log view for an
object to users with change permission for that model.

Django 1.3.5 release notes

December 10, 2012

Django 1.3.5 addresses two security issues present in previous Django releases in the 1.3 series.

1596 Chapter 9. Release notes

http://blog.python.org/2013/02/announcing-defusedxml-fixes-for-xml.html

Django Documentation, Release 1.10.9.dev20171123183751

Please be aware that this security release is slightly different from previous ones. Both issues addressed here have
been dealt with in prior security updates to Django. In one case, we have received ongoing reports of problems, and
in the other we’ve chosen to take further steps to tighten up Django’s code in response to independent discovery of
potential problems from multiple sources.

Host header poisoning

Several earlier Django security releases focused on the issue of poisoning the HTTP Host header, causing Django to
generate URLs pointing to arbitrary, potentially-malicious domains.

In response to further input received and reports of continuing issues following the previous release, we’re taking
additional steps to tighten Host header validation. Rather than attempt to accommodate all features HTTP supports
here, Django’s Host header validation attempts to support a smaller, but far more common, subset:

• Hostnames must consist of characters [A-Za-z0-9] plus hyphen (‘-‘) or dot (‘.’).

• IP addresses – both IPv4 and IPv6 – are permitted.

• Port, if specified, is numeric.

Any deviation from this will now be rejected, raising the exception django.core.exceptions.
SuspiciousOperation.

Redirect poisoning

Also following up on a previous issue: in July of this year, we made changes to Django’s HTTP redirect classes,
performing additional validation of the scheme of the URL to redirect to (since, both within Django’s own supplied
applications and many third-party applications, accepting a user-supplied redirect target is a common pattern).

Since then, two independent audits of the code turned up further potential problems. So, similar to the Host-header
issue, we are taking steps to provide tighter validation in response to reported problems (primarily with third-party
applications, but to a certain extent also within Django itself). This comes in two parts:

1. A new utility function, django.utils.http.is_safe_url, is added; this function takes a URL and a
hostname, and checks that the URL is either relative, or if absolute matches the supplied hostname. This function
is intended for use whenever user-supplied redirect targets are accepted, to ensure that such redirects cannot lead to
arbitrary third-party sites.

2. All of Django’s own built-in views – primarily in the authentication system – which allow user-supplied redirect
targets now use is_safe_url to validate the supplied URL.

Django 1.3.4 release notes

October 17, 2012

This is the fourth release in the Django 1.3 series.

Host header poisoning

Some parts of Django – independent of end-user-written applications – make use of full URLs, including domain
name, which are generated from the HTTP Host header. Some attacks against this are beyond Django’s ability to
control, and require the web server to be properly configured; Django’s documentation has for some time contained
notes advising users on such configuration.

9.1. Final releases 1597

Django Documentation, Release 1.10.9.dev20171123183751

Django’s own built-in parsing of the Host header is, however, still vulnerable, as was reported to us recently. The Host
header parsing in Django 1.3.3 and Django 1.4.1 – specifically, django.http.HttpRequest.get_host() –
was incorrectly handling username/password information in the header. Thus, for example, the following Host header
would be accepted by Django when running on “validsite.com”:

Host: validsite.com:random@evilsite.com

Using this, an attacker can cause parts of Django – particularly the password-reset mechanism – to generate and display
arbitrary URLs to users.

To remedy this, the parsing in HttpRequest.get_host() is being modified; Host headers which contain poten-
tially dangerous content (such as username/password pairs) now raise the exception django.core.exceptions.
SuspiciousOperation.

Details of this issue were initially posted online as a security advisory.

Django 1.3.3 release notes

August 1, 2012

Following Monday’s security release of Django 1.3.2, we began receiving reports that one of the fixes applied was
breaking Python 2.4 compatibility for Django 1.3. Since Python 2.4 is a supported Python version for that release
series, this release fixes compatibility with Python 2.4.

Django 1.3.2 release notes

July 30, 2012

This is the second security release in the Django 1.3 series, fixing several security issues in Django 1.3. Django 1.3.2
is a recommended upgrade for all users of Django 1.3.

For a full list of issues addressed in this release, see the security advisory.

Django 1.3.1 release notes

September 9, 2011

Welcome to Django 1.3.1!

This is the first security release in the Django 1.3 series, fixing several security issues in Django 1.3. Django 1.3.1 is a
recommended upgrade for all users of Django 1.3.

For a full list of issues addressed in this release, see the security advisory.

Django 1.3 release notes

March 23, 2011

Welcome to Django 1.3!

Nearly a year in the making, Django 1.3 includes quite a few new features and plenty of bug fixes and improvements to
existing features. These release notes cover the new features in 1.3, as well as some backwards-incompatible changes
you’ll want to be aware of when upgrading from Django 1.2 or older versions.

1598 Chapter 9. Release notes

https://www.djangoproject.com/weblog/2012/oct/17/security/
https://www.djangoproject.com/weblog/2012/jul/30/security-releases-issued/
https://www.djangoproject.com/weblog/2011/sep/09/security-releases-issued/

Django Documentation, Release 1.10.9.dev20171123183751

Overview

Django 1.3’s focus has mostly been on resolving smaller, long-standing feature requests, but that hasn’t prevented a
few fairly significant new features from landing, including:

• A framework for writing class-based views.

• Built-in support for using Python’s logging facilities.

• Contrib support for easy handling of static files.

• Django’s testing framework now supports (and ships with a copy of) the unittest2 library.

Wherever possible, of course, new features are introduced in a backwards-compatible manner per our API stability
policy policy. As a result of this policy, Django 1.3 begins the deprecation process for some features.

Python compatibility

The release of Django 1.2 was notable for having the first shift in Django’s Python compatibility policy; prior to
Django 1.2, Django supported any 2.x version of Python from 2.3 up. As of Django 1.2, the minimum requirement
was raised to Python 2.4.

Django 1.3 continues to support Python 2.4, but will be the final Django release series to do so; beginning with Django
1.4, the minimum supported Python version will be 2.5. A document outlining our full timeline for deprecating Python
2.x and moving to Python 3.x will be published shortly after the release of Django 1.3.

What’s new in Django 1.3

Class-based views

Django 1.3 adds a framework that allows you to use a class as a view. This means you can compose a view out of a
collection of methods that can be subclassed and overridden to provide common views of data without having to write
too much code.

Analogs of all the old function-based generic views have been provided, along with a completely generic view base
class that can be used as the basis for reusable applications that can be easily extended.

See the documentation on class-based generic views for more details. There is also a document to help you convert
your function-based generic views to class-based views.

Logging

Django 1.3 adds framework-level support for Python’s logging module. This means you can now easily configure
and control logging as part of your Django project. A number of logging handlers and logging calls have been added
to Django’s own code as well – most notably, the error emails sent on a HTTP 500 server error are now handled as a
logging activity. See the documentation on Django’s logging interface for more details.

Extended static files handling

Django 1.3 ships with a new contrib app – django.contrib.staticfiles – to help developers handle the
static media files (images, CSS, JavaScript, etc.) that are needed to render a complete web page.

In previous versions of Django, it was common to place static assets in MEDIA_ROOT along with user-uploaded files,
and serve them both at MEDIA_URL. Part of the purpose of introducing the staticfiles app is to make it easier

9.1. Final releases 1599

https://docs.djangoproject.com/en/1.4/topics/generic-views-migration/
https://docs.djangoproject.com/en/1.4/topics/generic-views-migration/

Django Documentation, Release 1.10.9.dev20171123183751

to keep static files separate from user-uploaded files. Static assets should now go in static/ subdirectories of your
apps or in other static assets directories listed in STATICFILES_DIRS, and will be served at STATIC_URL.

See the reference documentation of the app for more details or learn how to manage static files.

unittest2 support

Python 2.7 introduced some major changes to the unittest library, adding some extremely useful features. To
ensure that every Django project can benefit from these new features, Django ships with a copy of unittest2, a copy of
the Python 2.7 unittest library, backported for Python 2.4 compatibility.

To access this library, Django provides the django.utils.unittest module alias. If you are using Python 2.7,
or you have installed unittest2 locally, Django will map the alias to the installed version of the unittest library.
Otherwise, Django will use its own bundled version of unittest2.

To take advantage of this alias, simply use:

from django.utils import unittest

wherever you would have historically used:

import unittest

If you want to continue to use the base unittest library, you can – you just won’t get any of the nice new unittest2
features.

Transaction context managers

Users of Python 2.5 and above may now use transaction management functions as context managers. For example:

with transaction.autocommit():
...

Configurable delete-cascade

ForeignKey and OneToOneField now accept an on_delete argument to customize behavior when the ref-
erenced object is deleted. Previously, deletes were always cascaded; available alternatives now include set null, set
default, set to any value, protect, or do nothing.

For more information, see the on_delete documentation.

Contextual markers and comments for translatable strings

For translation strings with ambiguous meaning, you can now use the pgettext function to specify the context of
the string.

And if you just want to add some information for translators, you can also add special translator comments in the
source.

For more information, see Contextual markers and Comments for translators.

1600 Chapter 9. Release notes

https://pypi.python.org/pypi/unittest2

Django Documentation, Release 1.10.9.dev20171123183751

Improvements to built-in template tags

A number of improvements have been made to Django’s built-in template tags:

• The include tag now accepts a with option, allowing you to specify context variables to the included tem-
plate

• The include tag now accepts an only option, allowing you to exclude the current context from the included
context

• The with tag now allows you to define multiple context variables in a single with block.

• The load tag now accepts a from argument, allowing you to load a single tag or filter from a library.

TemplateResponse

It can sometimes be beneficial to allow decorators or middleware to modify a response after it has been constructed
by the view. For example, you may want to change the template that is used, or put additional data into the context.

However, you can’t (easily) modify the content of a basic HttpResponse after it has been constructed. To over-
come this limitation, Django 1.3 adds a new TemplateResponse class. Unlike basic HttpResponse objects,
TemplateResponse objects retain the details of the template and context that was provided by the view to compute
the response. The final output of the response is not computed until it is needed, later in the response process.

For more details, see the documentation on the TemplateResponse class.

Caching changes

Django 1.3 sees the introduction of several improvements to the Django’s caching infrastructure.

Firstly, Django now supports multiple named caches. In the same way that Django 1.2 introduced support for mul-
tiple database connections, Django 1.3 allows you to use the new CACHES setting to define multiple named cache
connections.

Secondly, versioning, site-wide prefixing and transformation have been added to the cache API.

Thirdly, cache key creation has been updated to take the request query string into account on GET requests.

Finally, support for pylibmc has been added to the memcached cache backend.

For more details, see the documentation on caching in Django.

Permissions for inactive users

If you provide a custom auth backend with supports_inactive_user set to True, an inactive User instance
will check the backend for permissions. This is useful for further centralizing the permission handling. See the
authentication docs for more details.

GeoDjango

The GeoDjango test suite is now included when running the Django test suite with runtests.pywhen using spatial
database backends.

9.1. Final releases 1601

http://sendapatch.se/projects/pylibmc/

Django Documentation, Release 1.10.9.dev20171123183751

MEDIA_URL and STATIC_URL must end in a slash

Previously, the MEDIA_URL setting only required a trailing slash if it contained a suffix beyond the domain name.

A trailing slash is now required for MEDIA_URL and the new STATIC_URL setting as long as it is not blank. This
ensures there is a consistent way to combine paths in templates.

Project settings which provide either of both settings without a trailing slash will now raise a
PendingDeprecationWarning.

In Django 1.4 this same condition will raise DeprecationWarning, and in Django 1.5 will raise an
ImproperlyConfigured exception.

Everything else

Django 1.1 and 1.2 added lots of big ticket items to Django, like multiple-database support, model validation, and a
session-based messages framework. However, this focus on big features came at the cost of lots of smaller features.

To compensate for this, the focus of the Django 1.3 development process has been on adding lots of smaller, long
standing feature requests. These include:

• Improved tools for accessing and manipulating the current Site object in the sites framework.

• A RequestFactory for mocking requests in tests.

• A new test assertion – assertNumQueries() – making it easier to test the database activity associated with
a view.

• Support for lookups spanning relations in admin’s list_filter.

• Support for HTTPOnly cookies.

• mail_admins() and mail_managers() now support easily attaching HTML content to messages.

• EmailMessage now supports CC’s.

• Error emails now include more of the detail and formatting of the debug server error page.

• simple_tag() now accepts a takes_context argument, making it easier to write simple template tags
that require access to template context.

• A new render() shortcut – an alternative to django.shortcuts.render_to_response() provid-
ing a RequestContext by default.

• Support for combining F expressions with timedelta values when retrieving or updating database values.

Backwards-incompatible changes in 1.3

CSRF validation now applies to AJAX requests

Prior to Django 1.2.5, Django’s CSRF-prevention system exempted AJAX requests from CSRF verification; due to
security issues reported to us, however, all requests are now subjected to CSRF verification. Consult the Django CSRF
documentation for details on how to handle CSRF verification in AJAX requests.

1602 Chapter 9. Release notes

https://www.owasp.org/index.php/HTTPOnly
https://www.djangoproject.com/weblog/2011/feb/08/security/

Django Documentation, Release 1.10.9.dev20171123183751

Restricted filters in admin interface

Prior to Django 1.2.5, the Django administrative interface allowed filtering on any model field or relation – not just
those specified in list_filter – via query string manipulation. Due to security issues reported to us, how-
ever, query string lookup arguments in the admin must be for fields or relations specified in list_filter or
date_hierarchy.

Deleting a model doesn’t delete associated files

In earlier Django versions, when a model instance containing a FileField was deleted, FileField took it upon
itself to also delete the file from the backend storage. This opened the door to several data-loss scenarios, including
rolled-back transactions and fields on different models referencing the same file. In Django 1.3, when a model is
deleted the FileField’s delete() method won’t be called. If you need cleanup of orphaned files, you’ll need to
handle it yourself (for instance, with a custom management command that can be run manually or scheduled to run
periodically via e.g. cron).

PasswordInput default rendering behavior

The PasswordInput form widget, intended for use with form fields which represent passwords, accepts a boolean
keyword argument render_value indicating whether to send its data back to the browser when displaying a
submitted form with errors. Prior to Django 1.3, this argument defaulted to True, meaning that the submitted
password would be sent back to the browser as part of the form. Developers who wished to add a bit of addi-
tional security by excluding that value from the redisplayed form could instantiate a PasswordInput passing
render_value=False .

Due to the sensitive nature of passwords, however, Django 1.3 takes this step automatically; the default value of
render_value is now False, and developers who want the password value returned to the browser on a submis-
sion with errors (the previous behavior) must now explicitly indicate this. For example:

class LoginForm(forms.Form):
username = forms.CharField(max_length=100)
password = forms.CharField(widget=forms.PasswordInput(render_value=True))

Clearable default widget for FileField

Django 1.3 now includes a ClearableFileInput form widget in addition to FileInput.
ClearableFileInput renders with a checkbox to clear the field’s value (if the field has a value and is not
required); FileInput provided no means for clearing an existing file from a FileField.

ClearableFileInput is now the default widget for a FileField, so existing forms including FileField
without assigning a custom widget will need to account for the possible extra checkbox in the rendered form output.

To return to the previous rendering (without the ability to clear the FileField), use the FileInput widget in
place of ClearableFileInput. For instance, in a ModelForm for a hypothetical Document model with a
FileField named document:

from django import forms
from myapp.models import Document

class DocumentForm(forms.ModelForm):
class Meta:

model = Document
widgets = {'document': forms.FileInput}

9.1. Final releases 1603

Django Documentation, Release 1.10.9.dev20171123183751

New index on database session table

Prior to Django 1.3, the database table used by the database backend for the sessions app had no index on the
expire_date column. As a result, date-based queries on the session table – such as the query that is needed to
purge old sessions – would be very slow if there were lots of sessions.

If you have an existing project that is using the database session backend, you don’t have to do anything to accom-
modate this change. However, you may get a significant performance boost if you manually add the new index to the
session table. The SQL that will add the index can be found by running the sqlindexes admin command:

python manage.py sqlindexes sessions

No more naughty words

Django has historically provided (and enforced) a list of profanities. The comments app has enforced this list of
profanities, preventing people from submitting comments that contained one of those profanities.

Unfortunately, the technique used to implement this profanities list was woefully naive, and prone to the Scunthorpe
problem. Improving the built-in filter to fix this problem would require significant effort, and since natural language
processing isn’t the normal domain of a web framework, we have “fixed” the problem by making the list of prohibited
words an empty list.

If you want to restore the old behavior, simply put a PROFANITIES_LIST setting in your settings file that includes
the words that you want to prohibit (see the commit that implemented this change if you want to see the list of words
that was historically prohibited). However, if avoiding profanities is important to you, you would be well advised to
seek out a better, less naive approach to the problem.

Localflavor changes

Django 1.3 introduces the following backwards-incompatible changes to local flavors:

• Canada (ca) – The province “Newfoundland and Labrador” has had its province code updated to “NL”, rather
than the older “NF”. In addition, the Yukon Territory has had its province code corrected to “YT”, instead of
“YK”.

• Indonesia (id) – The province “Nanggroe Aceh Darussalam (NAD)” has been removed from the province list in
favor of the new official designation “Aceh (ACE)”.

• United States of America (us) – The list of “states” used by USStateField has expanded to include Armed
Forces postal codes. This is backwards-incompatible if you were relying on USStateField not including
them.

FormSet updates

In Django 1.3 FormSet creation behavior is modified slightly. Historically the class didn’t make a distinction between
not being passed data and being passed empty dictionary. This was inconsistent with behavior in other parts of the
framework. Starting with 1.3 if you pass in empty dictionary the FormSet will raise a ValidationError.

For example with a FormSet:

>>> class ArticleForm(Form):
... title = CharField()
... pub_date = DateField()
>>> ArticleFormSet = formset_factory(ArticleForm)

1604 Chapter 9. Release notes

https://en.wikipedia.org/wiki/Scunthorpe_problem
https://en.wikipedia.org/wiki/Scunthorpe_problem
https://code.djangoproject.com/changeset/13996

Django Documentation, Release 1.10.9.dev20171123183751

the following code will raise a ValidationError:

>>> ArticleFormSet({})
Traceback (most recent call last):
...
ValidationError: [u'ManagementForm data is missing or has been tampered with']

if you need to instantiate an empty FormSet, don’t pass in the data or use None:

>>> formset = ArticleFormSet()
>>> formset = ArticleFormSet(data=None)

Callables in templates

Previously, a callable in a template would only be called automatically as part of the variable resolution process if it
was retrieved via attribute lookup. This was an inconsistency that could result in confusing and unhelpful behavior:

>>> Template("{{ user.get_full_name }}").render(Context({'user': user}))
u'Joe Bloggs'
>>> Template("{{ full_name }}").render(Context({'full_name': user.get_full_name}))
u'<bound method User.get_full_name of <...

This has been resolved in Django 1.3 - the result in both cases will be u'Joe Bloggs'. Although the previous
behavior was not useful for a template language designed for web designers, and was never deliberately supported, it
is possible that some templates may be broken by this change.

Use of custom SQL to load initial data in tests

Django provides a custom SQL hooks as a way to inject hand-crafted SQL into the database synchronization process.
One of the possible uses for this custom SQL is to insert data into your database. If your custom SQL contains
INSERT statements, those insertions will be performed every time your database is synchronized. This includes the
synchronization of any test databases that are created when you run a test suite.

However, in the process of testing the Django 1.3, it was discovered that this feature has never completely worked as
advertised. When using database backends that don’t support transactions, or when using a TransactionTestCase, data
that has been inserted using custom SQL will not be visible during the testing process.

Unfortunately, there was no way to rectify this problem without introducing a backwards incompatibility. Rather than
leave SQL-inserted initial data in an uncertain state, Django now enforces the policy that data inserted by custom SQL
will not be visible during testing.

This change only affects the testing process. You can still use custom SQL to load data into your production database
as part of the syncdb process. If you require data to exist during test conditions, you should either insert it using test
fixtures, or using the setUp() method of your test case.

Changed priority of translation loading

Work has been done to simplify, rationalize and properly document the algorithm used by Django at runtime to build
translations from the different translations found on disk, namely:

For translatable literals found in Python code and templates ('django' gettext domain):

• Priorities of translations included with applications listed in the INSTALLED_APPS setting were changed. To
provide a behavior consistent with other parts of Django that also use such setting (templates, etc.) now, when

9.1. Final releases 1605

Django Documentation, Release 1.10.9.dev20171123183751

building the translation that will be made available, the apps listed first have higher precedence than the ones
listed later.

• Now it is possible to override the translations shipped with applications by using the LOCALE_PATHS setting
whose translations have now higher precedence than the translations of INSTALLED_APPS applications. The
relative priority among the values listed in this setting has also been modified so the paths listed first have higher
precedence than the ones listed later.

• The locale subdirectory of the directory containing the settings, that usually coincides with and is known
as the project directory is being deprecated in this release as a source of translations. (the precedence of these
translations is intermediate between applications and LOCALE_PATHS translations). See the corresponding
deprecated features section of this document.

For translatable literals found in JavaScript code ('djangojs' gettext domain):

• Similarly to the 'django' domain translations: Overriding of translations shipped with applications by using
the LOCALE_PATHS setting is now possible for this domain too. These translations have higher precedence
than the translations of Python packages passed to the javascript_catalog view. Paths listed first have higher
precedence than the ones listed later.

• Translations under the locale subdirectory of the project directory have never been taken in account for
JavaScript translations and remain in the same situation considering the deprecation of such location.

Transaction management

When using managed transactions – that is, anything but the default autocommit mode – it is important when a
transaction is marked as “dirty”. Dirty transactions are committed by the commit_on_success decorator or the
django.middleware.transaction.TransactionMiddleware, and commit_manually forces them
to be closed explicitly; clean transactions “get a pass”, which means they are usually rolled back at the end of a request
when the connection is closed.

Until Django 1.3, transactions were only marked dirty when Django was aware of a modifying operation performed
in them; that is, either some model was saved, some bulk update or delete was performed, or the user explicitly
called transaction.set_dirty(). In Django 1.3, a transaction is marked dirty when any database operation is
performed.

As a result of this change, you no longer need to set a transaction dirty explicitly when you execute raw SQL or use a
data-modifying SELECT. However, you do need to explicitly close any read-only transactions that are being managed
using commit_manually(). For example:

@transaction.commit_manually
def my_view(request, name):

obj = get_object_or_404(MyObject, name__iexact=name)
return render_to_response('template', {'object':obj})

Prior to Django 1.3, this would work without error. However, under Django 1.3, this will raise a
TransactionManagementError because the read operation that retrieves the MyObject instance leaves the
transaction in a dirty state.

No password reset for inactive users

Prior to Django 1.3, inactive users were able to request a password reset email and reset their password. In Django 1.3
inactive users will receive the same message as a nonexistent account.

1606 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Password reset view now accepts from_email

The django.contrib.auth.views.password_reset() view now accepts a from_email parameter,
which is passed to the password_reset_form’s save() method as a keyword argument. If you are using
this view with a custom password reset form, then you will need to ensure your form’s save() method accepts this
keyword argument.

Features deprecated in 1.3

Django 1.3 deprecates some features from earlier releases. These features are still supported, but will be gradually
phased out over the next few release cycles.

Code taking advantage of any of the features below will raise a PendingDeprecationWarning in Django 1.3.
This warning will be silent by default, but may be turned on using Python’s warnings module, or by running Python
with a -Wd or -Wall flag.

In Django 1.4, these warnings will become a DeprecationWarning, which is not silent. In Django 1.5 support
for these features will be removed entirely.

See also:

For more details, see the documentation Django’s release process and our deprecation timeline.

mod_python support

The mod_python library has not had a release since 2007 or a commit since 2008. The Apache Foundation board
voted to remove mod_python from the set of active projects in its version control repositories, and its lead developer
has shifted all of his efforts toward the lighter, slimmer, more stable, and more flexible mod_wsgi backend.

If you are currently using the mod_python request handler, you should redeploy your Django projects using another
request handler. mod_wsgi is the request handler recommended by the Django project, but FastCGI is also supported.
Support for mod_python deployment will be removed in Django 1.5.

Function-based generic views

As a result of the introduction of class-based generic views, the function-based generic views provided by Django
have been deprecated. The following modules and the views they contain have been deprecated:

• django.views.generic.create_update

• django.views.generic.date_based

• django.views.generic.list_detail

• django.views.generic.simple

Test client response template attribute

Django’s test client returns Response objects annotated with extra testing information. In Django versions prior
to 1.3, this included a template attribute containing information about templates rendered in generating the re-
sponse: either None, a single Template object, or a list of Template objects. This inconsistency in return values
(sometimes a list, sometimes not) made the attribute difficult to work with.

In Django 1.3 the template attribute is deprecated in favor of a new templates attribute, which is always a list,
even if it has only a single element or no elements.

9.1. Final releases 1607

https://docs.python.org/3/library/warnings.html#module-warnings

Django Documentation, Release 1.10.9.dev20171123183751

DjangoTestRunner

As a result of the introduction of support for unittest2, the features of django.test.simple.
DjangoTestRunner (including fail-fast and Ctrl-C test termination) have been made redundant. In view of this
redundancy, DjangoTestRunner has been turned into an empty placeholder class, and will be removed entirely in
Django 1.5.

Changes to url and ssi

Most template tags will allow you to pass in either constants or variables as arguments – for example:

{% extends "base.html" %}

allows you to specify a base template as a constant, but if you have a context variable templ that contains the value
base.html:

{% extends templ %}

is also legal.

However, due to an accident of history, the url and ssi are different. These tags use the second, quoteless syntax,
but interpret the argument as a constant. This means it isn’t possible to use a context variable as the target of a url
and ssi tag.

Django 1.3 marks the start of the process to correct this historical accident. Django 1.3 adds a new template library –
future – that provides alternate implementations of the url and ssi template tags. This future library imple-
ment behavior that makes the handling of the first argument consistent with the handling of all other variables. So, an
existing template that contains:

{% url sample %}

should be replaced with:

{% load url from future %}
{% url 'sample' %}

The tags implementing the old behavior have been deprecated, and in Django 1.5, the old behavior will be replaced
with the new behavior. To ensure compatibility with future versions of Django, existing templates should be modified
to use the new future libraries and syntax.

Changes to the login methods of the admin

In previous version the admin app defined login methods in multiple locations and ignored the almost identical imple-
mentation in the already used auth app. A side effect of this duplication was the missing adoption of the changes made
in r12634 to support a broader set of characters for usernames.

This release refactors the admin’s login mechanism to use a subclass of the AuthenticationForm instead
of a manual form validation. The previously undocumented method 'django.contrib.admin.sites.
AdminSite.display_login_form' has been removed in favor of a new login_form attribute.

reset and sqlreset management commands

Those commands have been deprecated. The flush and sqlflush commands can be used to delete everything.
You can also use ALTER TABLE or DROP TABLE statements manually.

1608 Chapter 9. Release notes

https://code.djangoproject.com/changeset/12634

Django Documentation, Release 1.10.9.dev20171123183751

GeoDjango

• The function-based TEST_RUNNER previously used to execute the GeoDjango test suite, django.contrib.
gis.tests.run_gis_tests, was deprecated for the class-based runner, django.contrib.gis.
tests.GeoDjangoTestSuiteRunner.

• Previously, calling transform() would silently do nothing when GDAL wasn’t available. Now, a
GEOSException is properly raised to indicate possible faulty application code. A warning is now raised
if transform() is called when the SRID of the geometry is less than 0 or None.

CZBirthNumberField.clean

Previously this field’s clean() method accepted a second, gender, argument which allowed stronger validation
checks to be made, however since this argument could never actually be passed from the Django form machinery it is
now pending deprecation.

CompatCookie

Previously, django.http exposed an undocumented CompatCookie class, which was a bugfix wrapper around
the standard library SimpleCookie. As the fixes are moving upstream, this is now deprecated - you should use
from django.http import SimpleCookie instead.

Loading of project-level translations

This release of Django starts the deprecation process for inclusion of translations located under the so-called project
path in the translation building process performed at runtime. The LOCALE_PATHS setting can be used for the same
task by adding the filesystem path to a locale directory containing project-level translations to the value of that
setting.

Rationale for this decision:

• The project path has always been a loosely defined concept (actually, the directory used for locating project-
level translations is the directory containing the settings module) and there has been a shift in other parts of the
framework to stop using it as a reference for location of assets at runtime.

• Detection of the locale subdirectory tends to fail when the deployment scenario is more complex than the
basic one. e.g. it fails when the settings module is a directory (ticket #10765).

• There are potential strange development- and deployment-time problems like the fact that the project_dir/
locale/ subdir can generate spurious error messages when the project directory is added to the Python path
(manage.py runserver does this) and then it clashes with the equally named standard library module, this
is a typical warning message:

/usr/lib/python2.6/gettext.py:49: ImportWarning: Not importing directory '/path/
→˓to/project/locale': missing __init__.py.
import locale, copy, os, re, struct, sys

• This location wasn’t included in the translation building process for JavaScript literals. This deprecation removes
such inconsistency.

9.1. Final releases 1609

Django Documentation, Release 1.10.9.dev20171123183751

PermWrapper moved to django.contrib.auth.context_processors

In Django 1.2, we began the process of changing the location of the auth context processor from
django.core.context_processors to django.contrib.auth.context_processors. How-
ever, the PermWrapper support class was mistakenly omitted from that migration. In Django 1.3, the
PermWrapper class has also been moved to django.contrib.auth.context_processors, along with
the PermLookupDict support class. The new classes are functionally identical to their old versions; only the
module location has changed.

Removal of XMLField

When Django was first released, Django included an XMLField that performed automatic XML validation for any
field input. However, this validation function hasn’t been performed since the introduction of newforms, prior to
the 1.0 release. As a result, XMLField as currently implemented is functionally indistinguishable from a simple
TextField.

For this reason, Django 1.3 has fast-tracked the deprecation of XMLField – instead of a two-release deprecation,
XMLField will be removed entirely in Django 1.4.

It’s easy to update your code to accommodate this change – just replace all uses of XMLField with TextField,
and remove the schema_path keyword argument (if it is specified).

9.1.9 1.2 release

Django 1.2.7 release notes

September 10, 2011

Welcome to Django 1.2.7!

This is the seventh bugfix/security release in the Django 1.2 series. It replaces Django 1.2.6 due to problems with the
1.2.6 release tarball. Django 1.2.7 is a recommended upgrade for all users of any Django release in the 1.2.X series.

For more information, see the release advisory.

Django 1.2.6 release notes

September 9, 2011

Welcome to Django 1.2.6!

This is the sixth bugfix/security release in the Django 1.2 series, fixing several security issues present in Django 1.2.5.
Django 1.2.6 is a recommended upgrade for all users of any Django release in the 1.2.X series.

For a full list of issues addressed in this release, see the security advisory.

Django 1.2.5 release notes

Welcome to Django 1.2.5!

This is the fifth “bugfix” release in the Django 1.2 series, improving the stability and performance of the Django 1.2
codebase.

1610 Chapter 9. Release notes

https://www.djangoproject.com/weblog/2011/sep/10/127/
https://www.djangoproject.com/weblog/2011/sep/09/security-releases-issued/

Django Documentation, Release 1.10.9.dev20171123183751

With four exceptions, Django 1.2.5 maintains backwards compatibility with Django 1.2.4. It also contains a number of
fixes and other improvements. Django 1.2.5 is a recommended upgrade for any development or deployment currently
using or targeting Django 1.2.

For full details on the new features, backwards incompatibilities, and deprecated features in the 1.2 branch, see the
Django 1.2 release notes.

Backwards incompatible changes

CSRF exception for AJAX requests

Django includes a CSRF-protection mechanism, which makes use of a token inserted into outgoing forms. Middleware
then checks for the token’s presence on form submission, and validates it.

Prior to Django 1.2.5, our CSRF protection made an exception for AJAX requests, on the following basis:

• Many AJAX toolkits add an X-Requested-With header when using XMLHttpRequest.

• Browsers have strict same-origin policies regarding XMLHttpRequest.

• In the context of a browser, the only way that a custom header of this nature can be added is with XMLHttpRe-
quest.

Therefore, for ease of use, we did not apply CSRF checks to requests that appeared to be AJAX on the basis of the
X-Requested-With header. The Ruby on Rails web framework had a similar exemption.

Recently, engineers at Google made members of the Ruby on Rails development team aware of a combination of
browser plugins and redirects which can allow an attacker to provide custom HTTP headers on a request to any
website. This can allow a forged request to appear to be an AJAX request, thereby defeating CSRF protection which
trusts the same-origin nature of AJAX requests.

Michael Koziarski of the Rails team brought this to our attention, and we were able to produce a proof-of-concept
demonstrating the same vulnerability in Django’s CSRF handling.

To remedy this, Django will now apply full CSRF validation to all requests, regardless of apparent AJAX origin. This
is technically backwards-incompatible, but the security risks have been judged to outweigh the compatibility concerns
in this case.

Additionally, Django will now accept the CSRF token in the custom HTTP header X-CSRFTOKEN, as well as in the
form submission itself, for ease of use with popular JavaScript toolkits which allow insertion of custom headers into
all AJAX requests.

Please see the CSRF docs for example jQuery code that demonstrates this technique, ensuring that you are looking
at the documentation for your version of Django, as the exact code necessary is different for some older versions of
Django.

FileField no longer deletes files

In earlier Django versions, when a model instance containing a FileField was deleted, FileField took it upon
itself to also delete the file from the backend storage. This opened the door to several potentially serious data-loss
scenarios, including rolled-back transactions and fields on different models referencing the same file. In Django 1.2.5,
FileField will never delete files from the backend storage. If you need cleanup of orphaned files, you’ll need to
handle it yourself (for instance, with a custom management command that can be run manually or scheduled to run
periodically via e.g. cron).

9.1. Final releases 1611

Django Documentation, Release 1.10.9.dev20171123183751

Use of custom SQL to load initial data in tests

Django provides a custom SQL hooks as a way to inject hand-crafted SQL into the database synchronization process.
One of the possible uses for this custom SQL is to insert data into your database. If your custom SQL contains
INSERT statements, those insertions will be performed every time your database is synchronized. This includes the
synchronization of any test databases that are created when you run a test suite.

However, in the process of testing the Django 1.3, it was discovered that this feature has never completely worked as
advertised. When using database backends that don’t support transactions, or when using a TransactionTestCase, data
that has been inserted using custom SQL will not be visible during the testing process.

Unfortunately, there was no way to rectify this problem without introducing a backwards incompatibility. Rather than
leave SQL-inserted initial data in an uncertain state, Django now enforces the policy that data inserted by custom SQL
will not be visible during testing.

This change only affects the testing process. You can still use custom SQL to load data into your production database
as part of the syncdb process. If you require data to exist during test conditions, you should either insert it using test
fixtures, or using the setUp() method of your test case.

ModelAdmin.lookup_allowed signature changed

Django 1.2.4 introduced a method lookup_allowed on ModelAdmin, to cope with a security issue (changeset
[15033]). Although this method was never documented, it seems some people have overridden lookup_allowed,
especially to cope with regressions introduced by that changeset. While the method is still undocumented and not
marked as stable, it may be helpful to know that the signature of this function has changed.

Django 1.2.4 release notes

Welcome to Django 1.2.4!

This is the fourth “bugfix” release in the Django 1.2 series, improving the stability and performance of the Django 1.2
codebase.

With one exception, Django 1.2.4 maintains backwards compatibility with Django 1.2.3. It also contains a number of
fixes and other improvements. Django 1.2.4 is a recommended upgrade for any development or deployment currently
using or targeting Django 1.2.

For full details on the new features, backwards incompatibilities, and deprecated features in the 1.2 branch, see the
Django 1.2 release notes.

Backwards incompatible changes

Restricted filters in admin interface

The Django administrative interface, django.contrib.admin, supports filtering of displayed lists of objects by
fields on the corresponding models, including across database-level relationships. This is implemented by passing
lookup arguments in the querystring portion of the URL, and options on the ModelAdmin class allow developers to
specify particular fields or relationships which will generate automatic links for filtering.

One historically-undocumented and -unofficially-supported feature has been the ability for a user with sufficient
knowledge of a model’s structure and the format of these lookup arguments to invent useful new filters on the fly
by manipulating the querystring.

However, it has been demonstrated that this can be abused to gain access to information outside of an admin user’s
permissions; for example, an attacker with access to the admin and sufficient knowledge of model structure and

1612 Chapter 9. Release notes

https://code.djangoproject.com/changeset/15033

Django Documentation, Release 1.10.9.dev20171123183751

relations could construct query strings which – with repeated use of regular-expression lookups supported by the
Django database API – expose sensitive information such as users’ password hashes.

To remedy this, django.contrib.admin will now validate that querystring lookup arguments either specify only
fields on the model being viewed, or cross relations which have been explicitly whitelisted by the application developer
using the pre-existing mechanism mentioned above. This is backwards-incompatible for any users relying on the prior
ability to insert arbitrary lookups.

One new feature

Ordinarily, a point release would not include new features, but in the case of Django 1.2.4, we have made an exception
to this rule.

One of the bugs fixed in Django 1.2.4 involves a set of circumstances whereby a running a test suite on a multiple
database configuration could cause the original source database (i.e., the actual production database) to be dropped,
causing catastrophic loss of data. In order to provide a fix for this problem, it was necessary to introduce a new setting
– TEST_DEPENDENCIES – that allows you to define any creation order dependencies in your database configuration.

Most users – even users with multiple-database configurations – need not be concerned about the data loss bug, or the
manual configuration of TEST_DEPENDENCIES. See the original problem report documentation on controlling the
creation order of test databases for details.

GeoDjango

The function-based TEST_RUNNER previously used to execute the GeoDjango test suite, django.contrib.gis.
tests.run_gis_tests, was finally deprecated in favor of a class-based test runner, django.contrib.gis.
tests.GeoDjangoTestSuiteRunner, added in this release.

In addition, the GeoDjango test suite is now included when running the Django test suite with runtests.py and
using spatial database backends.

Django 1.2.3 release notes

Django 1.2.3 fixed a couple of release problems in the 1.2.2 release and was released two days after 1.2.2.

This release corrects the following problems:

• The patch applied for the security issue covered in Django 1.2.2 caused issues with non-ASCII responses using
CSRF tokens.

• The patch also caused issues with some forms, most notably the user-editing forms in the Django administrative
interface.

• The packaging manifest did not contain the full list of required files.

Django 1.2.2 release notes

Welcome to Django 1.2.2!

This is the second “bugfix” release in the Django 1.2 series, improving the stability and performance of the Django
1.2 codebase.

Django 1.2.2 maintains backwards compatibility with Django 1.2.1, but contain a number of fixes and other improve-
ments. Django 1.2.2 is a recommended upgrade for any development or deployment currently using or targeting
Django 1.2.

9.1. Final releases 1613

https://code.djangoproject.com/ticket/14415
https://code.djangoproject.com/changeset/13699

Django Documentation, Release 1.10.9.dev20171123183751

For full details on the new features, backwards incompatibilities, and deprecated features in the 1.2 branch, see the
Django 1.2 release notes.

One new feature

Ordinarily, a point release would not include new features, but in the case of Django 1.2.2, we have made an exception
to this rule.

In order to test a bug fix that forms part of the 1.2.2 release, it was necessary to add a feature – the
enforce_csrf_checks flag – to the test client. This flag forces the test client to perform full CSRF checks
on forms. The default behavior of the test client hasn’t changed, but if you want to do CSRF checks with the test
client, it is now possible to do so.

Django 1.2.1 release notes

Django 1.2.1 was released almost immediately after 1.2.0 to correct two small bugs: one was in the documentation
packaging script, the other was a bug that affected datetime form field widgets when localization was enabled.

Django 1.2 release notes

May 17, 2010.

Welcome to Django 1.2!

Nearly a year in the making, Django 1.2 packs an impressive list of new features and lots of bug fixes. These release
notes cover the new features, as well as important changes you’ll want to be aware of when upgrading from Django
1.1 or older versions.

Overview

Django 1.2 introduces several large, important new features, including:

• Support for multiple database connections in a single Django instance.

• Model validation inspired by Django’s form validation.

• Vastly improved protection against Cross-Site Request Forgery (CSRF).

• A new user “messages” framework with support for cookie- and session-based message for both anonymous
and authenticated users.

• Hooks for object-level permissions, permissions for anonymous users, and more flexible username requirements.

• Customization of email sending via email backends.

• New “smart” if template tag which supports comparison operators.

These are just the highlights; full details and a complete list of features may be found below.

See also:

Django Advent covered the release of Django 1.2 with a series of articles and tutorials that cover some of the new
features in depth.

Wherever possible these features have been introduced in a backwards-compatible manner per our API stability policy
policy.

1614 Chapter 9. Release notes

https://code.djangoproject.com/ticket/13560
https://github.com/djangoadvent/djangoadvent-articles

Django Documentation, Release 1.10.9.dev20171123183751

However, a handful of features have changed in ways that, for some users, will be backwards-incompatible. The big
changes are:

• Support for Python 2.3 has been dropped. See the full notes below.

• The new CSRF protection framework is not backwards-compatible with the old system. Users of the old system
will not be affected until the old system is removed in Django 1.4.

However, upgrading to the new CSRF protection framework requires a few important backwards-incompatible
changes, detailed in CSRF Protection, below.

• Authors of custom Field subclasses should be aware that a number of methods have had a change in prototype,
detailed under get_db_prep_*() methods on Field, below.

• The internals of template tags have changed somewhat; authors of custom template tags that need to store state
(e.g. custom control flow tags) should ensure that their code follows the new rules for stateful template tags

• The user_passes_test(), login_required(), and permission_required(), decorators from
django.contrib.auth only apply to functions and no longer work on methods. There’s a simple one-line
fix detailed below.

Again, these are just the big features that will affect the most users. Users upgrading from previous versions of Django
are heavily encouraged to consult the complete list of backwards-incompatible changes and the list of deprecated
features.

Python compatibility

While not a new feature, it’s important to note that Django 1.2 introduces the first shift in our Python compatibility
policy since Django’s initial public debut. Previous Django releases were tested and supported on 2.x Python versions
from 2.3 up; Django 1.2, however, drops official support for Python 2.3. As such, the minimum Python version
required for Django is now 2.4, and Django is tested and supported on Python 2.4, 2.5 and 2.6, and will be supported
on the as-yet-unreleased Python 2.7.

This change should affect only a small number of Django users, as most operating-system vendors today are shipping
Python 2.4 or newer as their default version. If you’re still using Python 2.3, however, you’ll need to stick to Django
1.1 until you can upgrade; per our support policy, Django 1.1 will continue to receive security support until the release
of Django 1.3.

A roadmap for Django’s overall 2.x Python support, and eventual transition to Python 3.x, is currently being developed,
and will be announced prior to the release of Django 1.3.

What’s new in Django 1.2

Support for multiple databases

Django 1.2 adds the ability to use more than one database in your Django project. Queries can be issued at a specific
database with the using() method on QuerySet objects. Individual objects can be saved to a specific database by
providing a using argument when you call save().

Model validation

Model instances now have support for validating their own data, and both model and form fields now accept config-
urable lists of validators specifying reusable, encapsulated validation behavior. Note, however, that validation must
still be performed explicitly. Simply invoking a model instance’s save() method will not perform any validation of
the instance’s data.

9.1. Final releases 1615

Django Documentation, Release 1.10.9.dev20171123183751

Improved CSRF protection

Django now has much improved protection against Cross-Site Request Forgery (CSRF) attacks. This type of attack
occurs when a malicious website contains a link, a form button or some JavaScript that is intended to perform some
action on your website, using the credentials of a logged-in user who visits the malicious site in their browser. A
related type of attack, “login CSRF,” where an attacking site tricks a user’s browser into logging into a site with
someone else’s credentials, is also covered.

Messages framework

Django now includes a robust and configurable messages framework with built-in support for cookie- and session-
based messaging, for both anonymous and authenticated clients. The messages framework replaces the deprecated
user message API and allows you to temporarily store messages in one request and retrieve them for display in a
subsequent request (usually the next one).

Object-level permissions

A foundation for specifying permissions at the per-object level has been added. Although there is no implementation
of this in core, a custom authentication backend can provide this implementation and it will be used by django.
contrib.auth.models.User. See the authentication docs for more information.

Permissions for anonymous users

If you provide a custom auth backend with supports_anonymous_user set to True, AnonymousUser will
check the backend for permissions, just like User already did. This is useful for centralizing permission handling
- apps can always delegate the question of whether something is allowed or not to the authorization/authentication
backend. See the authentication docs for more details.

Relaxed requirements for usernames

The built-in User model’s username field now allows a wider range of characters, including @, +, . and - charac-
ters.

Email backends

You can now configure the way that Django sends email. Instead of using SMTP to send all email, you can now choose
a configurable email backend to send messages. If your hosting provider uses a sandbox or some other non-SMTP
technique for sending mail, you can now construct an email backend that will allow Django’s standard mail sending
methods to use those facilities.

This also makes it easier to debug mail sending. Django ships with backend implementations that allow you to send
email to a file, to the console, or to memory. You can even configure all email to be thrown away.

“Smart” if tag

The if tag has been upgraded to be much more powerful. First, we’ve added support for comparison operators. No
longer will you have to type:

1616 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

{% ifnotequal a b %}
...

{% endifnotequal %}

You can now do this:

{% if a != b %}
...

{% endif %}

There’s really no reason to use {% ifequal %} or {% ifnotequal %} anymore, unless you’re the nostalgic
type.

The operators supported are ==, !=, <, >, <=, >=, in and not in, all of which work like the Python operators, in
addition to and, or and not, which were already supported.

Also, filters may now be used in the if expression. For example:

<div
{% if user.email|lower == message.recipient|lower %}
class="highlight"

{% endif %}
>{{ message }}</div>

Template caching

In previous versions of Django, every time you rendered a template, it would be reloaded from disk. In Django 1.2, you
can use a cached template loader to load templates once, then cache the result for every subsequent render. This can
lead to a significant performance improvement if your templates are broken into lots of smaller subtemplates (using
the {% extends %} or {% include %} tags).

As a side effect, it is now much easier to support non-Django template languages.

Class-based template loaders

As part of the changes made to introduce Template caching and following a general trend in Django, the template
loaders API has been modified to use template loading mechanisms that are encapsulated in Python classes as opposed
to functions, the only method available until Django 1.1.

All the template loaders shipped with Django have been ported to the new API but they still implement the function-
based API and the template core machinery still accepts function-based loaders (builtin or third party) so there is no
immediate need to modify your TEMPLATE_LOADERS setting in existing projects, things will keep working if you
leave it untouched up to and including the Django 1.3 release.

If you have developed your own custom template loaders we suggest to consider porting them to a class-based imple-
mentation because the code for backwards compatibility with function-based loaders starts its deprecation process in
Django 1.2 and will be removed in Django 1.4. There is a description of the API these loader classes must implement
in the template API reference and you can also examine the source code of the loaders shipped with Django.

Natural keys in fixtures

Fixtures can now refer to remote objects using Natural keys. This lookup scheme is an alternative to the normal
primary-key based object references in a fixture, improving readability and resolving problems referring to objects
whose primary key value may not be predictable or known.

9.1. Final releases 1617

Django Documentation, Release 1.10.9.dev20171123183751

Fast failure for tests

Both the test subcommand of django-admin.py and the runtests.py script used to run Django’s own test
suite now support a --failfast option. When specified, this option causes the test runner to exit after encountering
a failure instead of continuing with the test run. In addition, the handling of Ctrl-C during a test run has been
improved to trigger a graceful exit from the test run that reports details of the tests that were run before the interruption.

BigIntegerField

Models can now use a 64-bit BigIntegerField type.

Improved localization

Django’s internationalization framework has been expanded with locale-aware formatting and form processing. That
means, if enabled, dates and numbers on templates will be displayed using the format specified for the current locale.
Django will also use localized formats when parsing data in forms. See Format localization for more details.

readonly_fields in ModelAdmin

django.contrib.admin.ModelAdmin.readonly_fields has been added to enable non-editable fields in
add/change pages for models and inlines. Field and calculated values can be displayed alongside editable fields.

Customizable syntax highlighting

You can now use a DJANGO_COLORS environment variable to modify or disable the colors used by
django-admin.py to provide syntax highlighting.

Syndication feeds as views

Syndication feeds can now be used directly as views in your URLconf . This means that you can maintain complete
control over the URL structure of your feeds. Like any other view, feeds views are passed a request object, so you
can do anything you would normally do with a view, like user based access control, or making a feed a named URL.

GeoDjango

The most significant new feature for GeoDjango in 1.2 is support for multiple spatial databases. As a result, the
following spatial database backends are now included:

• django.contrib.gis.db.backends.postgis

• django.contrib.gis.db.backends.mysql

• django.contrib.gis.db.backends.oracle

• django.contrib.gis.db.backends.spatialite

GeoDjango now supports the rich capabilities added in the PostGIS 1.5 release. New features include support for the
geography type and enabling of distance queries with non-point geometries on geographic coordinate systems.

1618 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Support for 3D geometry fields was added, and may be enabled by setting the dim keyword to 3 in your
GeometryField. The Extent3D aggregate and extent3d() GeoQuerySet method were added as a part
of this feature.

The following GeoQuerySet methods are new in 1.2:

• force_rhr()

• reverse_geom()

• geohash()

The GEOS interface was updated to use thread-safe C library functions when available on the platform.

The GDAL interface now allows the user to set a spatial_filter on the features returned when iterating over a
Layer.

Finally, GeoDjango’s documentation is now included with Django’s and is no longer hosted separately at geod-
jango.org.

JavaScript-assisted handling of inline related objects in the admin

If a user has JavaScript enabled in their browser, the interface for inline objects in the admin now allows inline objects
to be dynamically added and removed. Users without JavaScript-enabled browsers will see no change in the behavior
of inline objects.

New now template tag format specifier characters: c and u

The argument to the now has gained two new format characters: c to specify that a datetime value should be formatted
in ISO 8601 format, and u that allows output of the microseconds part of a datetime or time value.

These are also available in others parts like the date and time template filters, the humanize template tag library
and the new format localization framework.

Backwards-incompatible changes in 1.2

Wherever possible the new features above have been introduced in a backwards-compatible manner per our API
stability policy policy. This means that practically all existing code which worked with Django 1.1 will continue to
work with Django 1.2; such code will, however, begin issuing warnings (see below for details).

However, a handful of features have changed in ways that, for some users, will be immediately backwards-
incompatible. Those changes are detailed below.

CSRF Protection

We’ve made large changes to the way CSRF protection works, detailed in the CSRF documentation. Here are the
major changes you should be aware of:

• CsrfResponseMiddleware and CsrfMiddleware have been deprecated and will be removed com-
pletely in Django 1.4, in favor of a template tag that should be inserted into forms.

• All contrib apps use a csrf_protect decorator to protect the view. This requires the use of the
csrf_token template tag in the template. If you have used custom templates for contrib views, you MUST
READ THE UPGRADE INSTRUCTIONS to fix those templates.

9.1. Final releases 1619

http://geodjango.org/
http://geodjango.org/

Django Documentation, Release 1.10.9.dev20171123183751

Documentation removed

The upgrade notes have been removed in current Django docs. Please refer to the docs for Django 1.3 or older
to find these instructions.

• CsrfViewMiddleware is included in MIDDLEWARE_CLASSES by default. This turns on CSRF protection
by default, so views that accept POST requests need to be written to work with the middleware. Instructions on
how to do this are found in the CSRF docs.

• All of the CSRF has moved from contrib to core (with backwards compatible imports in the old locations, which
are deprecated and will cease to be supported in Django 1.4).

get_db_prep_*() methods on Field

Prior to Django 1.2, a custom Field had the option of defining several functions to support conversion of Python
values into database-compatible values. A custom field might look something like:

class CustomModelField(models.Field):
...
def db_type(self):

...

def get_db_prep_save(self, value):
...

def get_db_prep_value(self, value):
...

def get_db_prep_lookup(self, lookup_type, value):
...

In 1.2, these three methods have undergone a change in prototype, and two extra methods have been introduced:

class CustomModelField(models.Field):
...

def db_type(self, connection):
...

def get_prep_value(self, value):
...

def get_prep_lookup(self, lookup_type, value):
...

def get_db_prep_save(self, value, connection):
...

def get_db_prep_value(self, value, connection, prepared=False):
...

def get_db_prep_lookup(self, lookup_type, value, connection, prepared=False):
...

These changes are required to support multiple databases – db_type and get_db_prep_* can no longer make
any assumptions regarding the database for which it is preparing. The connection argument now provides the

1620 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

preparation methods with the specific connection for which the value is being prepared.

The two new methods exist to differentiate general data-preparation requirements from requirements that are database-
specific. The prepared argument is used to indicate to the database-preparation methods whether generic
value preparation has been performed. If an unprepared (i.e., prepared=False) value is provided to the
get_db_prep_*() calls, they should invoke the corresponding get_prep_*() calls to perform generic data
preparation.

We’ve provided conversion functions that will transparently convert functions adhering to the old prototype into func-
tions compatible with the new prototype. However, these conversion functions will be removed in Django 1.4, so you
should upgrade your Field definitions to use the new prototype as soon as possible.

If your get_db_prep_*() methods made no use of the database connection, you should be able to up-
grade by renaming get_db_prep_value() to get_prep_value() and get_db_prep_lookup() to
get_prep_lookup(). If you require database specific conversions, then you will need to provide an implementa-
tion get_db_prep_* that uses the connection argument to resolve database-specific values.

Stateful template tags

Template tags that store rendering state on their Node subclass have always been vulnerable to thread-safety and other
issues; as of Django 1.2, however, they may also cause problems when used with the new cached template loader.

All of the built-in Django template tags are safe to use with the cached loader, but if you’re using custom template
tags that come from third party packages, or from your own code, you should ensure that the Node implementation
for each tag is thread-safe. For more information, see template tag thread safety considerations.

You may also need to update your templates if you were relying on the implementation of Django’s template tags not
being thread safe. The cycle tag is the most likely to be affected in this way, especially when used in conjunction
with the include tag. Consider the following template fragment:

{% for object in object_list %}
{% include "subtemplate.html" %}

{% endfor %}

with a subtemplate.html that reads:

{% cycle 'even' 'odd' %}

Using the non-thread-safe, pre-Django 1.2 renderer, this would output:

even odd even odd ...

Using the thread-safe Django 1.2 renderer, you will instead get:

even even even even ...

This is because each rendering of the include tag is an independent rendering. When the cycle tag was not thread
safe, the state of the cycle tag would leak between multiple renderings of the same include. Now that the cycle
tag is thread safe, this leakage no longer occurs.

user_passes_test, login_required and permission_required

django.contrib.auth.decorators provides the decorators login_required,
permission_required and user_passes_test. Previously it was possible to use these decorators
both on functions (where the first argument is ‘request’) and on methods (where the first argument is ‘self’, and the

9.1. Final releases 1621

Django Documentation, Release 1.10.9.dev20171123183751

second argument is ‘request’). Unfortunately, flaws were discovered in the code supporting this: it only works in
limited circumstances, and produces errors that are very difficult to debug when it does not work.

For this reason, the ‘auto adapt’ behavior has been removed, and if you are using these decorators on methods, you
will need to manually apply django.utils.decorators.method_decorator() to convert the decorator
to one that works with methods. For example, you would change code from this:

class MyClass(object):

@login_required
def my_view(self, request):

pass

to this:

from django.utils.decorators import method_decorator

class MyClass(object):

@method_decorator(login_required)
def my_view(self, request):

pass

or:

from django.utils.decorators import method_decorator

login_required_m = method_decorator(login_required)

class MyClass(object):

@login_required_m
def my_view(self, request):

pass

For those of you who’ve been following the development trunk, this change also applies to other dec-
orators introduced since 1.1, including csrf_protect, cache_control and anything created using
decorator_from_middleware.

if tag changes

Due to new features in the if template tag, it no longer accepts ‘and’, ‘or’ and ‘not’ as valid variable names. Previ-
ously, these strings could be used as variable names. Now, the keyword status is always enforced, and template code
such as {% if not %} or {% if and %} will throw a TemplateSyntaxError. Also, in is a new keyword
and so is not a valid variable name in this tag.

LazyObject

LazyObject is an undocumented-but-often-used utility class used for lazily wrapping other objects of unknown
type.

In Django 1.1 and earlier, it handled introspection in a non-standard way, depending on wrapped objects implementing
a public method named get_all_members(). Since this could easily lead to name clashes, it has been changed to
use the standard Python introspection method, involving __members__ and __dir__().

1622 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

If you used LazyObject in your own code and implemented the get_all_members() method for wrapped
objects, you’ll need to make a couple of changes:

First, if your class does not have special requirements for introspection (i.e., you have not implemented
__getattr__() or other methods that allow for attributes not discoverable by normal mechanisms), you can simply
remove the get_all_members() method. The default implementation on LazyObject will do the right thing.

If you have more complex requirements for introspection, first rename the get_all_members() method to
__dir__(). This is the standard introspection method for Python 2.6 and above. If you require support for Python
versions earlier than 2.6, add the following code to the class:

__members__ = property(lambda self: self.__dir__())

__dict__ on model instances

Historically, the __dict__ attribute of a model instance has only contained attributes corresponding to the fields on
a model.

In order to support multiple database configurations, Django 1.2 has added a _state attribute to object instances.
This attribute will appear in __dict__ for a model instance. If your code relies on iterating over __dict__ to
obtain a list of fields, you must now be prepared to handle or filter out the _state attribute.

Test runner exit status code

The exit status code of the test runners (tests/runtests.py and python manage.py test) no longer rep-
resents the number of failed tests, because a failure of 256 or more tests resulted in a wrong exit status code. The exit
status code for the test runner is now 0 for success (no failing tests) and 1 for any number of test failures. If needed,
the number of test failures can be found at the end of the test runner’s output.

Cookie encoding

To fix bugs with cookies in Internet Explorer, Safari, and possibly other browsers, our encoding of cookie values was
changed so that the comma and semicolon are treated as non-safe characters, and are therefore encoded as \054 and
\073 respectively. This could produce backwards incompatibilities, especially if you are storing comma or semi-
colon in cookies and have JavaScript code that parses and manipulates cookie values client-side.

ModelForm.is_valid() and ModelForm.errors

Much of the validation work for ModelForms has been moved down to the model level. As a result, the first time you
call ModelForm.is_valid(), access ModelForm.errors or otherwise trigger form validation, your model
will be cleaned in-place. This conversion used to happen when the model was saved. If you need an unmodified
instance of your model, you should pass a copy to the ModelForm constructor.

BooleanField on MySQL

In previous versions of Django, a model’s BooleanField under MySQL would return its value as either 1 or 0,
instead of True or False; for most people this wasn’t a problem because bool is a subclass of int in Python. In
Django 1.2, however, BooleanField on MySQL correctly returns a real bool. The only time this should ever be
an issue is if you were expecting the repr of a BooleanField to print 1 or 0.

9.1. Final releases 1623

Django Documentation, Release 1.10.9.dev20171123183751

Changes to the interpretation of max_num in FormSets

As part of enhancements made to the handling of FormSets, the default value and interpretation of the max_num
parameter to the django.forms.formsets.formset_factory() and django.forms.models.modelformset_factory() functions
has changed slightly. This change also affects the way the max_num argument is used for inline admin objects.

Previously, the default value for max_num was 0 (zero). FormSets then used the boolean value of max_num to
determine if a limit was to be imposed on the number of generated forms. The default value of 0 meant that there was
no default limit on the number of forms in a FormSet.

Starting with 1.2, the default value for max_num has been changed to None, and FormSets will differentiate between
a value of None and a value of 0. A value of None indicates that no limit on the number of forms is to be imposed; a
value of 0 indicates that a maximum of 0 forms should be imposed. This doesn’t necessarily mean that no forms will
be displayed – see the ModelFormSet documentation for more details.

If you were manually specifying a value of 0 for max_num, you will need to update your FormSet and/or admin
definitions.

See also:

JavaScript-assisted handling of inline related objects in the admin

email_re

An undocumented regular expression for validating email addresses has been moved from django.form.fields
to django.core.validators. You will need to update your imports if you are using it.

Features deprecated in 1.2

Finally, Django 1.2 deprecates some features from earlier releases. These features are still supported, but will be
gradually phased out over the next few release cycles.

Code taking advantage of any of the features below will raise a PendingDeprecationWarning in Django 1.2.
This warning will be silent by default, but may be turned on using Python’s warnings module, or by running Python
with a -Wd or -Wall flag.

In Django 1.3, these warnings will become a DeprecationWarning, which is not silent. In Django 1.4 support
for these features will be removed entirely.

See also:

For more details, see the documentation Django’s release process and our deprecation timeline.‘

Specifying databases

Prior to Django 1.2, Django used a number of settings to control access to a single database. Django 1.2 introduces
support for multiple databases, and as a result the way you define database settings has changed.

Any existing Django settings file will continue to work as expected until Django 1.4. Until then, old-style database
settings will be automatically translated to the new-style format.

In the old-style (pre 1.2) format, you had a number of DATABASE_ settings in your settings file. For example:

DATABASE_NAME = 'test_db'
DATABASE_ENGINE = 'postgresql_psycopg2'
DATABASE_USER = 'myusername'
DATABASE_PASSWORD = 's3krit'

1624 Chapter 9. Release notes

https://docs.python.org/3/library/warnings.html#module-warnings

Django Documentation, Release 1.10.9.dev20171123183751

These settings are now in a dictionary named DATABASES. Each item in the dictionary corresponds to a single
database connection, with the name 'default' describing the default database connection. The setting names have
also been shortened. The previous sample settings would now look like this:

DATABASES = {
'default': {

'NAME': 'test_db',
'ENGINE': 'django.db.backends.postgresql_psycopg2',
'USER': 'myusername',
'PASSWORD': 's3krit',

}
}

This affects the following settings:

Old setting New Setting
DATABASE_ENGINE ENGINE
DATABASE_HOST HOST
DATABASE_NAME NAME
DATABASE_OPTIONS OPTIONS
DATABASE_PASSWORD PASSWORD
DATABASE_PORT PORT
DATABASE_USER USER
TEST_DATABASE_CHARSET TEST_CHARSET
TEST_DATABASE_COLLATION TEST_COLLATION
TEST_DATABASE_NAME TEST_NAME

These changes are also required if you have manually created a database connection using DatabaseWrapper()
from your database backend of choice.

In addition to the change in structure, Django 1.2 removes the special handling for the built-in database backends.
All database backends must now be specified by a fully qualified module name (i.e., django.db.backends.
postgresql_psycopg2, rather than just postgresql_psycopg2).

postgresql database backend

The psycopg1 library has not been updated since October 2005. As a result, the postgresql database backend,
which uses this library, has been deprecated.

If you are currently using the postgresql backend, you should migrate to using the postgresql_psycopg2
backend. To update your code, install the psycopg2 library and change the ENGINE setting to use django.db.
backends.postgresql_psycopg2.

CSRF response-rewriting middleware

CsrfResponseMiddleware, the middleware that automatically inserted CSRF tokens into POST forms in out-
going pages, has been deprecated in favor of a template tag method (see above), and will be removed com-
pletely in Django 1.4. CsrfMiddleware, which includes the functionality of CsrfResponseMiddleware
and CsrfViewMiddleware, has likewise been deprecated.

Also, the CSRF module has moved from contrib to core, and the old imports are deprecated, as described in the
upgrading notes.

9.1. Final releases 1625

Django Documentation, Release 1.10.9.dev20171123183751

Documentation removed

The upgrade notes have been removed in current Django docs. Please refer to the docs for Django 1.3 or older to find
these instructions.

SMTPConnection

The SMTPConnection class has been deprecated in favor of a generic email backend API. Old code that explicitly
instantiated an instance of an SMTPConnection:

from django.core.mail import SMTPConnection
connection = SMTPConnection()
messages = get_notification_email()
connection.send_messages(messages)

...should now call get_connection() to instantiate a generic email connection:

from django.core.mail import get_connection
connection = get_connection()
messages = get_notification_email()
connection.send_messages(messages)

Depending on the value of the EMAIL_BACKEND setting, this may not return an SMTP connection. If you explicitly
require an SMTP connection with which to send email, you can explicitly request an SMTP connection:

from django.core.mail import get_connection
connection = get_connection('django.core.mail.backends.smtp.EmailBackend')
messages = get_notification_email()
connection.send_messages(messages)

If your call to construct an instance of SMTPConnection required additional arguments, those arguments can be
passed to the get_connection() call:

connection = get_connection('django.core.mail.backends.smtp.EmailBackend', hostname=
→˓'localhost', port=1234)

User Messages API

The API for storing messages in the user Message model (via user.message_set.create) is now deprecated
and will be removed in Django 1.4 according to the standard release process.

To upgrade your code, you need to replace any instances of this:

user.message_set.create('a message')

...with the following:

from django.contrib import messages
messages.add_message(request, messages.INFO, 'a message')

Additionally, if you make use of the method, you need to replace the following:

1626 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

for message in user.get_and_delete_messages():
...

...with:

from django.contrib import messages
for message in messages.get_messages(request):

...

For more information, see the full messages documentation. You should begin to update your code to use the new API
immediately.

Date format helper functions

django.utils.translation.get_date_formats() and django.utils.translation.
get_partial_date_formats() have been deprecated in favor of the appropriate calls to django.
utils.formats.get_format(), which is locale-aware when USE_L10N is set to True, and falls back to
default settings if set to False.

To get the different date formats, instead of writing this:

from django.utils.translation import get_date_formats
date_format, datetime_format, time_format = get_date_formats()

...use:

from django.utils import formats
date_format = formats.get_format('DATE_FORMAT')
datetime_format = formats.get_format('DATETIME_FORMAT')
time_format = formats.get_format('TIME_FORMAT')

Or, when directly formatting a date value:

from django.utils import formats
value_formatted = formats.date_format(value, 'DATETIME_FORMAT')

The same applies to the globals found in django.forms.fields:

• DEFAULT_DATE_INPUT_FORMATS

• DEFAULT_TIME_INPUT_FORMATS

• DEFAULT_DATETIME_INPUT_FORMATS

Use django.utils.formats.get_format() to get the appropriate formats.

Function-based test runners

Django 1.2 changes the test runner tools to use a class-based approach. Old style function-based test runners will still
work, but should be updated to use the new class-based runners.

Feed in django.contrib.syndication.feeds

The django.contrib.syndication.feeds.Feed class has been replaced by the django.contrib.
syndication.views.Feed class. The old feeds.Feed class is deprecated, and will be removed in Django

9.1. Final releases 1627

Django Documentation, Release 1.10.9.dev20171123183751

1.4.

The new class has an almost identical API, but allows instances to be used as views. For example, consider the use of
the old framework in the following URLconf :

from django.conf.urls.defaults import *
from myproject.feeds import LatestEntries, LatestEntriesByCategory

feeds = {
'latest': LatestEntries,
'categories': LatestEntriesByCategory,

}

urlpatterns = patterns('',
...
(r'^feeds/(?P<url>.*)/$', 'django.contrib.syndication.views.feed',

{'feed_dict': feeds}),
...

)

Using the new Feed class, these feeds can be deployed directly as views:

from django.conf.urls.defaults import *
from myproject.feeds import LatestEntries, LatestEntriesByCategory

urlpatterns = patterns('',
...
(r'^feeds/latest/$', LatestEntries()),
(r'^feeds/categories/(?P<category_id>\d+)/$', LatestEntriesByCategory()),
...

)

If you currently use the feed() view, the LatestEntries class would often not need to be modified apart from
subclassing the new Feed class. The exception is if Django was automatically working out the name of the tem-
plate to use to render the feed’s description and title elements (if you were not specifying the title_template
and description_template attributes). You should ensure that you always specify title_template and
description_template attributes, or provide item_title() and item_description() methods.

However, LatestEntriesByCategory uses the get_object() method with the bits argument to specify a
specific category to show. In the new Feed class, get_object() method takes a request and arguments from
the URL, so it would look like this:

from django.contrib.syndication.views import Feed
from django.shortcuts import get_object_or_404
from myproject.models import Category

class LatestEntriesByCategory(Feed):
def get_object(self, request, category_id):

return get_object_or_404(Category, id=category_id)

...

Additionally, the get_feed() method on Feed classes now take different arguments, which may impact you if you
use the Feed classes directly. Instead of just taking an optional url argument, it now takes two arguments: the object
returned by its own get_object() method, and the current request object.

To take into account Feed classes not being initialized for each request, the __init__() method now takes no
arguments by default. Previously it would have taken the slug from the URL and the request object.

1628 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

In accordance with RSS best practices, RSS feeds will now include an atom:link element. You may need to update
your tests to take this into account.

For more information, see the full syndication framework documentation.

Technical message IDs

Up to version 1.1 Django used technical message IDs to provide localizers the possibility to translate date and time
formats. They were translatable translation strings that could be recognized because they were all upper case (for
example DATETIME_FORMAT, DATE_FORMAT, TIME_FORMAT). They have been deprecated in favor of the new
Format localization infrastructure that allows localizers to specify that information in a formats.py file in the
corresponding django/conf/locale/<locale name>/ directory.

GeoDjango

To allow support for multiple databases, the GeoDjango database internals were changed substantially. The
largest backwards-incompatible change is that the module django.contrib.gis.db.backend was renamed
to django.contrib.gis.db.backends, where the full-fledged spatial database backends now exist. The
following sections provide information on the most-popular APIs that were affected by these changes.

SpatialBackend

Prior to the creation of the separate spatial backends, the django.contrib.gis.db.backend.
SpatialBackend object was provided as an abstraction to introspect on the capabilities of the spatial database.
All of the attributes and routines provided by SpatialBackend are now a part of the ops attribute of the database
backend.

The old module django.contrib.gis.db.backend is still provided for backwards-compatibility access to a
SpatialBackend object, which is just an alias to the ops module of the default spatial database connection.

Users that were relying on undocumented modules and objects within django.contrib.gis.db.backend,
rather the abstractions provided by SpatialBackend, are required to modify their code. For example, the following
import which would work in 1.1 and below:

from django.contrib.gis.db.backend.postgis import PostGISAdaptor

Would need to be changed:

from django.db import connection
PostGISAdaptor = connection.ops.Adapter

SpatialRefSys and GeometryColumns models

In previous versions of GeoDjango, django.contrib.gis.db.models had SpatialRefSys and
GeometryColumns models for querying the OGC spatial metadata tables spatial_ref_sys and
geometry_columns, respectively.

While these aliases are still provided, they are only for the default database connection and exist only if the default
connection is using a supported spatial database backend.

9.1. Final releases 1629

http://www.rssboard.org/rss-profile

Django Documentation, Release 1.10.9.dev20171123183751

Note: Because the table structure of the OGC spatial metadata tables differs across spatial databases, the
SpatialRefSys and GeometryColumns models can no longer be associated with the gis application name.
Thus, no models will be returned when using the get_models method in the following example:

>>> from django.db.models import get_app, get_models
>>> get_models(get_app('gis'))
[]

To get the correct SpatialRefSys and GeometryColumns for your spatial database use the methods provided
by the spatial backend:

>>> from django.db import connections
>>> SpatialRefSys = connections['my_spatialite'].ops.spatial_ref_sys()
>>> GeometryColumns = connections['my_postgis'].ops.geometry_columns()

Note: When using the models returned from the spatial_ref_sys() and geometry_columns() method,
you’ll still need to use the correct database alias when querying on the non-default connection. In other words, to
ensure that the models in the example above use the correct database:

sr_qs = SpatialRefSys.objects.using('my_spatialite').filter(...)
gc_qs = GeometryColumns.objects.using('my_postgis').filter(...)

Language code no

The currently used language code for Norwegian Bokmål no is being replaced by the more common language code
nb.

Function-based template loaders

Django 1.2 changes the template loading mechanism to use a class-based approach. Old style function-based template
loaders will still work, but should be updated to use the new class-based template loaders.

9.1.10 1.1 release

Django 1.1.4 release notes

Welcome to Django 1.1.4!

This is the fourth “bugfix” release in the Django 1.1 series, improving the stability and performance of the Django 1.1
codebase.

With one exception, Django 1.1.4 maintains backwards compatibility with Django 1.1.3. It also contains a number of
fixes and other improvements. Django 1.1.4 is a recommended upgrade for any development or deployment currently
using or targeting Django 1.1.

For full details on the new features, backwards incompatibilities, and deprecated features in the 1.1 branch, see the
Django 1.1 release notes.

1630 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Backwards incompatible changes

CSRF exception for AJAX requests

Django includes a CSRF-protection mechanism, which makes use of a token inserted into outgoing forms. Middleware
then checks for the token’s presence on form submission, and validates it.

Prior to Django 1.2.5, our CSRF protection made an exception for AJAX requests, on the following basis:

• Many AJAX toolkits add an X-Requested-With header when using XMLHttpRequest.

• Browsers have strict same-origin policies regarding XMLHttpRequest.

• In the context of a browser, the only way that a custom header of this nature can be added is with XMLHttpRe-
quest.

Therefore, for ease of use, we did not apply CSRF checks to requests that appeared to be AJAX on the basis of the
X-Requested-With header. The Ruby on Rails web framework had a similar exemption.

Recently, engineers at Google made members of the Ruby on Rails development team aware of a combination of
browser plugins and redirects which can allow an attacker to provide custom HTTP headers on a request to any
website. This can allow a forged request to appear to be an AJAX request, thereby defeating CSRF protection which
trusts the same-origin nature of AJAX requests.

Michael Koziarski of the Rails team brought this to our attention, and we were able to produce a proof-of-concept
demonstrating the same vulnerability in Django’s CSRF handling.

To remedy this, Django will now apply full CSRF validation to all requests, regardless of apparent AJAX origin. This
is technically backwards-incompatible, but the security risks have been judged to outweigh the compatibility concerns
in this case.

Additionally, Django will now accept the CSRF token in the custom HTTP header X-CSRFTOKEN, as well as in the
form submission itself, for ease of use with popular JavaScript toolkits which allow insertion of custom headers into
all AJAX requests.

Please see the CSRF docs for example jQuery code that demonstrates this technique, ensuring that you are looking
at the documentation for your version of Django, as the exact code necessary is different for some older versions of
Django.

Django 1.1.3 release notes

Welcome to Django 1.1.3!

This is the third “bugfix” release in the Django 1.1 series, improving the stability and performance of the Django 1.1
codebase.

With one exception, Django 1.1.3 maintains backwards compatibility with Django 1.1.2. It also contains a number of
fixes and other improvements. Django 1.1.2 is a recommended upgrade for any development or deployment currently
using or targeting Django 1.1.

For full details on the new features, backwards incompatibilities, and deprecated features in the 1.1 branch, see the
Django 1.1 release notes.

9.1. Final releases 1631

Django Documentation, Release 1.10.9.dev20171123183751

Backwards incompatible changes

Restricted filters in admin interface

The Django administrative interface, django.contrib.admin, supports filtering of displayed lists of objects by
fields on the corresponding models, including across database-level relationships. This is implemented by passing
lookup arguments in the querystring portion of the URL, and options on the ModelAdmin class allow developers to
specify particular fields or relationships which will generate automatic links for filtering.

One historically-undocumented and -unofficially-supported feature has been the ability for a user with sufficient
knowledge of a model’s structure and the format of these lookup arguments to invent useful new filters on the fly
by manipulating the querystring.

However, it has been demonstrated that this can be abused to gain access to information outside of an admin user’s
permissions; for example, an attacker with access to the admin and sufficient knowledge of model structure and
relations could construct query strings which – with repeated use of regular-expression lookups supported by the
Django database API – expose sensitive information such as users’ password hashes.

To remedy this, django.contrib.admin will now validate that querystring lookup arguments either specify only
fields on the model being viewed, or cross relations which have been explicitly whitelisted by the application developer
using the pre-existing mechanism mentioned above. This is backwards-incompatible for any users relying on the prior
ability to insert arbitrary lookups.

Django 1.1.2 release notes

Welcome to Django 1.1.2!

This is the second “bugfix” release in the Django 1.1 series, improving the stability and performance of the Django
1.1 codebase.

Django 1.1.2 maintains backwards compatibility with Django 1.1.0, but contain a number of fixes and other improve-
ments. Django 1.1.2 is a recommended upgrade for any development or deployment currently using or targeting
Django 1.1.

For full details on the new features, backwards incompatibilities, and deprecated features in the 1.1 branch, see the
Django 1.1 release notes.

Backwards-incompatible changes in 1.1.2

Test runner exit status code

The exit status code of the test runners (tests/runtests.py and python manage.py test) no longer rep-
resents the number of failed tests, since a failure of 256 or more tests resulted in a wrong exit status code. The exit
status code for the test runner is now 0 for success (no failing tests) and 1 for any number of test failures. If needed,
the number of test failures can be found at the end of the test runner’s output.

Cookie encoding

To fix bugs with cookies in Internet Explorer, Safari, and possibly other browsers, our encoding of cookie values was
changed so that the characters comma and semi-colon are treated as non-safe characters, and are therefore encoded as
\054 and \073 respectively. This could produce backwards incompatibilities, especially if you are storing comma
or semi-colon in cookies and have JavaScript code that parses and manipulates cookie values client-side.

1632 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

One new feature

Ordinarily, a point release would not include new features, but in the case of Django 1.1.2, we have made an exception
to this rule. Django 1.2 (the next major release of Django) will contain a feature that will improve protection against
Cross-Site Request Forgery (CSRF) attacks. This feature requires the use of a new csrf_token template tag in all
forms that Django renders.

To make it easier to support both 1.1.X and 1.2.X versions of Django with the same templates, we have decided to
introduce the csrf_token template tag to the 1.1.X branch. In the 1.1.X branch, csrf_token does nothing - it
has no effect on templates or form processing. However, it means that the same template will work with Django 1.2.

Django 1.1 release notes

July 29, 2009

Welcome to Django 1.1!

Django 1.1 includes a number of nifty new features, lots of bug fixes, and an easy upgrade path from Django 1.0.

Backwards-incompatible changes in 1.1

Django has a policy of API stability. This means that, in general, code you develop against Django 1.0 should continue
to work against 1.1 unchanged. However, we do sometimes make backwards-incompatible changes if they’re necessary
to resolve bugs, and there are a handful of such (minor) changes between Django 1.0 and Django 1.1.

Before upgrading to Django 1.1 you should double-check that the following changes don’t impact you, and upgrade
your code if they do.

Changes to constraint names

Django 1.1 modifies the method used to generate database constraint names so that names are consistent regardless of
machine word size. This change is backwards incompatible for some users.

If you are using a 32-bit platform, you’re off the hook; you’ll observe no differences as a result of this change.

However, users on 64-bit platforms may experience some problems using the resetmanagement command. Prior
to this change, 64-bit platforms would generate a 64-bit, 16 character digest in the constraint name; for example:

ALTER TABLE myapp_sometable ADD CONSTRAINT object_id_refs_id_5e8f10c132091d1e FOREIGN
→˓KEY ...

Following this change, all platforms, regardless of word size, will generate a 32-bit, 8 character digest in the constraint
name; for example:

ALTER TABLE myapp_sometable ADD CONSTRAINT object_id_refs_id_32091d1e FOREIGN KEY ...

As a result of this change, you will not be able to use the reset management command on any table made by a 64-bit
machine. This is because the new generated name will not match the historically generated name; as a result, the SQL
constructed by the reset command will be invalid.

If you need to reset an application that was created with 64-bit constraints, you will need to manually drop the old
constraint prior to invoking reset.

9.1. Final releases 1633

Django Documentation, Release 1.10.9.dev20171123183751

Test cases are now run in a transaction

Django 1.1 runs tests inside a transaction, allowing better test performance (see test performance improvements for
details).

This change is slightly backwards incompatible if existing tests need to test transactional behavior, if they rely on
invalid assumptions about the test environment, or if they require a specific test case ordering.

For these cases, TransactionTestCase can be used instead. This is a just a quick fix to get around test case
errors revealed by the new rollback approach; in the long-term tests should be rewritten to correct the test case.

Removed SetRemoteAddrFromForwardedFor middleware

For convenience, Django 1.0 included an optional middleware class – django.middleware.http.
SetRemoteAddrFromForwardedFor – which updated the value of REMOTE_ADDR based on the HTTP
X-Forwarded-For header commonly set by some proxy configurations.

It has been demonstrated that this mechanism cannot be made reliable enough for general-purpose use, and that
(despite documentation to the contrary) its inclusion in Django may lead application developers to assume that the
value of REMOTE_ADDR is “safe” or in some way reliable as a source of authentication.

While not directly a security issue, we’ve decided to remove this middleware with the Django 1.1 release. It has been
replaced with a class that does nothing other than raise a DeprecationWarning.

If you’ve been relying on this middleware, the easiest upgrade path is:

• Examine the code as it existed before it was removed.

• Verify that it works correctly with your upstream proxy, modifying it to support your particular proxy (if neces-
sary).

• Introduce your modified version of SetRemoteAddrFromForwardedFor as a piece of middleware in your
own project.

Names of uploaded files are available later

In Django 1.0, files uploaded and stored in a model’s FileField were saved to disk before the model was saved to
the database. This meant that the actual file name assigned to the file was available before saving. For example, it was
available in a model’s pre-save signal handler.

In Django 1.1 the file is saved as part of saving the model in the database, so the actual file name used on disk cannot
be relied on until after the model has been saved.

Changes to how model formsets are saved

In Django 1.1, BaseModelFormSet now calls ModelForm.save().

This is backwards-incompatible if you were modifying self.initial in a model formset’s __init__, or if
you relied on the internal _total_form_count or _initial_form_count attributes of BaseFormSet. Those
attributes are now public methods.

Fixed the join filter’s escaping behavior

The join filter no longer escapes the literal value that is passed in for the connector.

1634 Chapter 9. Release notes

https://github.com/django/django/blob/91f18400cc0fb37659e2dbaab5484ff2081f1f30/django/middleware/http.py#L33

Django Documentation, Release 1.10.9.dev20171123183751

This is backwards incompatible for the special situation of the literal string containing one of the five special HTML
characters. Thus, if you were writing {{ foo|join:"&" }}, you now have to write {{ foo|join:"&"
}}.

The previous behavior was a bug and contrary to what was documented and expected.

Permanent redirects and the redirect_to() generic view

Django 1.1 adds a permanent argument to the django.views.generic.simple.redirect_to() view.
This is technically backwards-incompatible if you were using the redirect_to view with a format-string key called
‘permanent’, which is highly unlikely.

Features deprecated in 1.1

One feature has been marked as deprecated in Django 1.1:

• You should no longer use AdminSite.root() to register that admin views. That is, if your URLconf con-
tains the line:

(r'^admin/(.*)', admin.site.root),

You should change it to read:

(r'^admin/', include(admin.site.urls)),

You should begin to remove use of this feature from your code immediately.

AdminSite.root will raise a PendingDeprecationWarning if used in Django 1.1. This warning is hidden
by default. In Django 1.2, this warning will be upgraded to a DeprecationWarning, which will be displayed
loudly. Django 1.3 will remove AdminSite.root() entirely.

For more details on our deprecation policies and strategy, see Django’s release process.

What’s new in Django 1.1

Quite a bit: since Django 1.0, we’ve made 1,290 code commits, fixed 1,206 bugs, and added roughly 10,000 lines of
documentation.

The major new features in Django 1.1 are:

ORM improvements

Two major enhancements have been added to Django’s object-relational mapper (ORM): aggregate support, and query
expressions.

Aggregate support

It’s now possible to run SQL aggregate queries (i.e. COUNT(), MAX(), MIN(), etc.) from within Django’s ORM.
You can choose to either return the results of the aggregate directly, or else annotate the objects in a QuerySet with
the results of the aggregate query.

This feature is available as new aggregate() and annotate() methods, and is covered in detail in the ORM
aggregation documentation.

9.1. Final releases 1635

Django Documentation, Release 1.10.9.dev20171123183751

Query expressions

Queries can now refer to a another field on the query and can traverse relationships to refer to fields on related
models. This is implemented in the new F object; for full details, including examples, consult the F expressions
documentation.

Model improvements

A number of features have been added to Django’s model layer:

“Unmanaged” models

You can now control whether or not Django manages the life-cycle of the database tables for a model using the
managed model option. This defaults to True, meaning that Django will create the appropriate database tables in
syncdb and remove them as part of the reset command. That is, Django manages the database table’s lifecycle.

If you set this to False, however, no database table creating or deletion will be automatically performed for this
model. This is useful if the model represents an existing table or a database view that has been created by some other
means.

For more details, see the documentation for the managed option.

Proxy models

You can now create proxy models: subclasses of existing models that only add Python-level (rather than database-
level) behavior and aren’t represented by a new table. That is, the new model is a proxy for some underlying model,
which stores all the real data.

All the details can be found in the proxy models documentation. This feature is similar on the surface to unmanaged
models, so the documentation has an explanation of how proxy models differ from unmanaged models.

Deferred fields

In some complex situations, your models might contain fields which could contain a lot of data (for example, large text
fields), or require expensive processing to convert them to Python objects. If you know you don’t need those particular
fields, you can now tell Django not to retrieve them from the database.

You’ll do this with the new queryset methods defer() and only().

Testing improvements

A few notable improvements have been made to the testing framework.

Test performance improvements

Tests written using Django’s testing framework now run dramatically faster (as much as 10 times faster in many cases).

This was accomplished through the introduction of transaction-based tests: when using django.test.TestCase,
your tests will now be run in a transaction which is rolled back when finished, instead of by flushing and re-populating

1636 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

the database. This results in an immense speedup for most types of unit tests. See the documentation for TestCase
and TransactionTestCase for a full description, and some important notes on database support.

Test client improvements

A couple of small – but highly useful – improvements have been made to the test client:

• The test Client now can automatically follow redirects with the follow argument to Client.get() and
Client.post(). This makes testing views that issue redirects simpler.

• It’s now easier to get at the template context in the response returned the test client: you’ll simply access the
context as request.context[key]. The old way, which treats request.context as a list of contexts,
one for each rendered template in the inheritance chain, is still available if you need it.

New admin features

Django 1.1 adds a couple of nifty new features to Django’s admin interface:

Editable fields on the change list

You can now make fields editable on the admin list views via the new list_editable admin option. These fields will
show up as form widgets on the list pages, and can be edited and saved in bulk.

Admin “actions”

You can now define admin actions that can perform some action to a group of models in bulk. Users will be able to
select objects on the change list page and then apply these bulk actions to all selected objects.

Django ships with one pre-defined admin action to delete a group of objects in one fell swoop.

Conditional view processing

Django now has much better support for conditional view processing using the standard ETag and Last-Modified
HTTP headers. This means you can now easily short-circuit view processing by testing less-expensive conditions. For
many views this can lead to a serious improvement in speed and reduction in bandwidth.

URL namespaces

Django 1.1 improves named URL patterns with the introduction of URL “namespaces.”

In short, this feature allows the same group of URLs, from the same application, to be included in a Django URLConf
multiple times, with varying (and potentially nested) named prefixes which will be used when performing reverse
resolution. In other words, reusable applications like Django’s admin interface may be registered multiple times
without URL conflicts.

For full details, see the documentation on defining URL namespaces.

9.1. Final releases 1637

Django Documentation, Release 1.10.9.dev20171123183751

GeoDjango

In Django 1.1, GeoDjango (i.e. django.contrib.gis) has several new features:

• Support for SpatiaLite – a spatial database for SQLite – as a spatial backend.

• Geographic aggregates (Collect, Extent, MakeLine, Union) and F expressions.

• New GeoQuerySet methods: collect, geojson, and snap_to_grid.

• A new list interface methods for GEOSGeometry objects.

For more details, see the GeoDjango documentation.

Other improvements

Other new features and changes introduced since Django 1.0 include:

• The CSRF protection middleware has been split into two classes – CsrfViewMiddleware checks
incoming requests, and CsrfResponseMiddleware processes outgoing responses. The combined
CsrfMiddleware class (which does both) remains for backwards-compatibility, but using the split classes is
now recommended in order to allow fine-grained control of when and where the CSRF processing takes place.

• reverse() and code which uses it (e.g., the {% url %} template tag) now works with URLs in Django’s
administrative site, provided that the admin URLs are set up via include(admin.site.urls) (sending
admin requests to the admin.site.root view still works, but URLs in the admin will not be “reversible”
when configured this way).

• The include() function in Django URLconf modules can now accept sequences of URL patterns (generated
by patterns()) in addition to module names.

• Instances of Django forms (see the forms overview) now have two additional methods, hidden_fields()
and visible_fields(), which return the list of hidden – i.e., <input type="hidden"> – and visible
fields on the form, respectively.

• The redirect_to generic view now accepts an additional keyword argument permanent. If permanent
is True, the view will emit an HTTP permanent redirect (status code 301). If False, the view will emit an
HTTP temporary redirect (status code 302).

• A new database lookup type – week_day – has been added for DateField and DateTimeField. This
type of lookup accepts a number between 1 (Sunday) and 7 (Saturday), and returns objects where the field value
matches that day of the week. See the full list of lookup types for details.

• The {% for %} tag in Django’s template language now accepts an optional {% empty %} clause, to be
displayed when {% for %} is asked to loop over an empty sequence. See the list of built-in template tags for
examples of this.

• The dumpdata management command now accepts individual model names as arguments, allowing you to
export the data just from particular models.

• There’s a new safeseq template filter which works just like safe for lists, marking each item in the list as
safe.

• Cache backends now support incr() and decr() commands to increment and decrement the value of a cache
key. On cache backends that support atomic increment/decrement – most notably, the memcached backend –
these operations will be atomic, and quite fast.

• Django now can easily delegate authentication to the Web server via a new authentication backend that supports
the standard REMOTE_USER environment variable used for this purpose.

1638 Chapter 9. Release notes

http://geodjango.org/
http://www.gaia-gis.it/gaia-sins/

Django Documentation, Release 1.10.9.dev20171123183751

• There’s a new django.shortcuts.redirect() function that makes it easier to issue redirects given an
object, a view name, or a URL.

• The postgresql_psycopg2 backend now supports native PostgreSQL autocommit. This is an advanced,
PostgreSQL-specific feature, that can make certain read-heavy applications a good deal faster.

What’s next?

We’ll take a short break, and then work on Django 1.2 will begin – no rest for the weary! If you’d like to help, dis-
cussion of Django development, including progress toward the 1.2 release, takes place daily on the django-developers
mailing list and in the #django-dev IRC channel on irc.freenode.net. Feel free to join the discussions!

Django’s online documentation also includes pointers on how to contribute to Django:

• How to contribute to Django

Contributions on any level – developing code, writing documentation or simply triaging tickets and helping to test
proposed bugfixes – are always welcome and appreciated.

And that’s the way it is.

9.1.11 1.0 release

Django 1.0.2 release notes

Welcome to Django 1.0.2!

This is the second “bugfix” release in the Django 1.0 series, improving the stability and performance of the Django
1.0 codebase. As such, Django 1.0.2 contains no new features (and, pursuant to our compatibility policy, maintains
backwards compatibility with Django 1.0.0), but does contain a number of fixes and other improvements. Django
1.0.2 is a recommended upgrade for any development or deployment currently using or targeting Django 1.0.

Fixes and improvements in Django 1.0.2

The primary reason behind this release is to remedy an issue in the recently-released Django 1.0.1; the packaging
scripts used for Django 1.0.1 omitted some directories from the final release package, including one directory required
by django.contrib.gis and part of Django’s unit-test suite.

Django 1.0.2 contains updated packaging scripts, and the release package contains the directories omitted from Django
1.0.1. As such, this release contains all of the fixes and improvements from Django 1.0.1; see the Django 1.0.1 release
notes for details.

Additionally, in the period since Django 1.0.1 was released:

• Updated Hebrew and Danish translations have been added.

• The default __repr__ method of Django models has been made more robust in the face of bad Unicode
data coming from the __unicode__ method; rather than raise an exception in such cases, repr() will now
contain the string “[Bad Unicode data]” in place of the invalid Unicode.

• A bug involving the interaction of Django’s SafeUnicode class and the MySQL adapter has been resolved;
SafeUnicode instances (generated, for example, by template rendering) can now be assigned to model at-
tributes and saved to MySQL without requiring an explicit intermediate cast to unicode.

• A bug affecting filtering on a nullable DateField in SQLite has been resolved.

• Several updates and improvements have been made to Django’s documentation.

9.1. Final releases 1639

Django Documentation, Release 1.10.9.dev20171123183751

Django 1.0.1 release notes

Welcome to Django 1.0.1!

This is the first “bugfix” release in the Django 1.0 series, improving the stability and performance of the Django
1.0 codebase. As such, Django 1.0.1 contains no new features (and, pursuant to our compatibility policy, maintains
backwards compatibility with Django 1.0), but does contain a number of fixes and other improvements. Django 1.0.1
is a recommended upgrade for any development or deployment currently using or targeting Django 1.0.

Fixes and improvements in Django 1.0.1

Django 1.0.1 contains over two hundred fixes to the original Django 1.0 codebase; full details of every fix are available
in the history of the 1.0.X branch, but here are some of the highlights:

• Several fixes in django.contrib.comments, pertaining to RSS feeds of comments, default ordering of
comments and the XHTML and internationalization of the default templates for comments.

• Multiple fixes for Django’s support of Oracle databases, including pagination support for GIS QuerySets, more
efficient slicing of results and improved introspection of existing databases.

• Several fixes for query support in the Django object-relational mapper, including repeated setting and resetting
of ordering and fixes for working with INSERT-only queries.

• Multiple fixes for inline forms in formsets.

• Multiple fixes for unique and unique_together model constraints in automatically-generated forms.

• Fixed support for custom callable upload_to declarations when handling file uploads through automatically-
generated forms.

• Fixed support for sorting an admin change list based on a callable attributes in list_display.

• A fix to the application of autoescaping for literal strings passed to the join template filter. Previously, literal
strings passed to join were automatically escaped, contrary to the documented behavior for autoescaping and
literal strings. Literal strings passed to join are no longer automatically escaped, meaning you must now
manually escape them; this is an incompatibility if you were relying on this bug, but not if you were relying on
escaping behaving as documented.

• Improved and expanded translation files for many of the languages Django supports by default.

• And as always, a large number of improvements to Django’s documentation, including both corrections to
existing documents and expanded and new documentation.

Django 1.0 release notes

Welcome to Django 1.0!

We’ve been looking forward to this moment for over three years, and it’s finally here. Django 1.0 represents the largest
milestone in Django’s development to date: a Web framework that a group of perfectionists can truly be proud of.

Django 1.0 represents over three years of community development as an Open Source project. Django’s received
contributions from hundreds of developers, been translated into fifty languages, and today is used by developers on
every continent and in every kind of job.

An interesting historical note: when Django was first released in July 2005, the initial released version of Django came
from an internal repository at revision number 8825. Django 1.0 represents revision 8961 of our public repository. It
seems fitting that our 1.0 release comes at the moment where community contributions overtake those made privately.

1640 Chapter 9. Release notes

https://github.com/django/django/commits/stable/1.0.x

Django Documentation, Release 1.10.9.dev20171123183751

Stability and forwards-compatibility

The release of Django 1.0 comes with a promise of API stability and forwards-compatibility. In a nutshell, this means
that code you develop against Django 1.0 will continue to work against 1.1 unchanged, and you should need to make
only minor changes for any 1.X release.

See the API stability guide for full details.

Backwards-incompatible changes

Django 1.0 has a number of backwards-incompatible changes from Django 0.96. If you have apps written against
Django 0.96 that you need to port, see our detailed porting guide:

Porting your apps from Django 0.96 to 1.0

Django 1.0 breaks compatibility with 0.96 in some areas.

This guide will help you port 0.96 projects and apps to 1.0. The first part of this document includes the common
changes needed to run with 1.0. If after going through the first part your code still breaks, check the section Less-
common Changes for a list of a bunch of less-common compatibility issues.

See also:

The 1.0 release notes. That document explains the new features in 1.0 more deeply; the porting guide is more con-
cerned with helping you quickly update your code.

Common changes

This section describes the changes between 0.96 and 1.0 that most users will need to make.

Use Unicode

Change string literals ('foo') into Unicode literals (u'foo'). Django now uses Unicode strings throughout. In most
places, raw strings will continue to work, but updating to use Unicode literals will prevent some obscure problems.

See Unicode data for full details.

Models

Common changes to your models file:

Rename maxlength to max_length

Rename your maxlength argument to max_length (this was changed to be consistent with form fields):

Replace __str__ with __unicode__

Replace your model’s __str__ function with a __unicode__ method, and make sure you use Unicode (u'foo')
in that method.

9.1. Final releases 1641

Django Documentation, Release 1.10.9.dev20171123183751

Remove prepopulated_from

Remove the prepopulated_from argument on model fields. It’s no longer valid and has been moved to the
ModelAdmin class in admin.py. See the admin, below, for more details about changes to the admin.

Remove core

Remove the core argument from your model fields. It is no longer necessary, since the equivalent functionality (part
of inline editing) is handled differently by the admin interface now. You don’t have to worry about inline editing until
you get to the admin section, below. For now, remove all references to core.

Replace class Admin: with admin.py

Remove all your inner class Admin declarations from your models. They won’t break anything if you leave them,
but they also won’t do anything. To register apps with the admin you’ll move those declarations to an admin.py file;
see the admin below for more details.

See also:

A contributor to djangosnippets has written a script that’ll scan your models.py and generate a corresponding admin.py.

Example

Below is an example models.py file with all the changes you’ll need to make:

Old (0.96) models.py:

class Author(models.Model):
first_name = models.CharField(maxlength=30)
last_name = models.CharField(maxlength=30)
slug = models.CharField(maxlength=60, prepopulate_from=('first_name', 'last_name

→˓'))

class Admin:
list_display = ['first_name', 'last_name']

def __str__(self):
return '%s %s' % (self.first_name, self.last_name)

New (1.0) models.py:

class Author(models.Model):
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=30)
slug = models.CharField(max_length=60)

def __unicode__(self):
return u'%s %s' % (self.first_name, self.last_name)

New (1.0) admin.py:

from django.contrib import admin
from models import Author

1642 Chapter 9. Release notes

https://www.djangosnippets.org/
https://www.djangosnippets.org/snippets/603/

Django Documentation, Release 1.10.9.dev20171123183751

class AuthorAdmin(admin.ModelAdmin):
list_display = ['first_name', 'last_name']
prepopulated_fields = {

'slug': ('first_name', 'last_name')
}

admin.site.register(Author, AuthorAdmin)

The Admin

One of the biggest changes in 1.0 is the new admin. The Django administrative interface (django.contrib.
admin) has been completely refactored; admin definitions are now completely decoupled from model definitions,
the framework has been rewritten to use Django’s new form-handling library and redesigned with extensibility and
customization in mind.

Practically, this means you’ll need to rewrite all of your class Admin declarations. You’ve already seen in models
above how to replace your class Admin with a admin.site.register() call in an admin.py file. Below
are some more details on how to rewrite that Admin declaration into the new syntax.

Use new inline syntax

The new edit_inline options have all been moved to admin.py. Here’s an example:

Old (0.96):

class Parent(models.Model):
...

class Child(models.Model):
parent = models.ForeignKey(Parent, edit_inline=models.STACKED, num_in_admin=3)

New (1.0):

class ChildInline(admin.StackedInline):
model = Child
extra = 3

class ParentAdmin(admin.ModelAdmin):
model = Parent
inlines = [ChildInline]

admin.site.register(Parent, ParentAdmin)

See InlineModelAdmin objects for more details.

Simplify fields, or use fieldsets

The old fields syntax was quite confusing, and has been simplified. The old syntax still works, but you’ll need to
use fieldsets instead.

Old (0.96):

9.1. Final releases 1643

Django Documentation, Release 1.10.9.dev20171123183751

class ModelOne(models.Model):
...

class Admin:
fields = (

(None, {'fields': ('foo','bar')}),
)

class ModelTwo(models.Model):
...

class Admin:
fields = (

('group1', {'fields': ('foo','bar'), 'classes': 'collapse'}),
('group2', {'fields': ('spam','eggs'), 'classes': 'collapse wide'}),

)

New (1.0):

class ModelOneAdmin(admin.ModelAdmin):
fields = ('foo', 'bar')

class ModelTwoAdmin(admin.ModelAdmin):
fieldsets = (

('group1', {'fields': ('foo','bar'), 'classes': 'collapse'}),
('group2', {'fields': ('spam','eggs'), 'classes': 'collapse wide'}),

)

See also:

• More detailed information about the changes and the reasons behind them can be found on the NewformsAd-
minBranch wiki page

• The new admin comes with a ton of new features; you can read about them in the admin documentation.

URLs

Update your root urls.py

If you’re using the admin site, you need to update your root urls.py.

Old (0.96) urls.py:

from django.conf.urls.defaults import *

urlpatterns = patterns('',
(r'^admin/', include('django.contrib.admin.urls')),

... the rest of your URLs here ...
)

New (1.0) urls.py:

from django.conf.urls.defaults import *

The next two lines enable the admin and load each admin.py file:
from django.contrib import admin

1644 Chapter 9. Release notes

https://code.djangoproject.com/wiki/NewformsAdminBranch
https://code.djangoproject.com/wiki/NewformsAdminBranch

Django Documentation, Release 1.10.9.dev20171123183751

admin.autodiscover()

urlpatterns = patterns('',
(r'^admin/(.*)', admin.site.root),

... the rest of your URLs here ...
)

Views

Use django.forms instead of newforms

Replace django.newforms with django.forms – Django 1.0 renamed the newforms module (introduced in
0.96) to plain old forms. The oldforms module was also removed.

If you’re already using the newforms library, and you used our recommended import statement syntax, all you
have to do is change your import statements.

Old:

from django import newforms as forms

New:

from django import forms

If you’re using the old forms system (formerly known as django.forms and django.oldforms), you’ll have
to rewrite your forms. A good place to start is the forms documentation

Handle uploaded files using the new API

Replace use of uploaded files – that is, entries in request.FILES – as simple dictionaries with the new
UploadedFile. The old dictionary syntax no longer works.

Thus, in a view like:

def my_view(request):
f = request.FILES['file_field_name']
...

...you’d need to make the following changes:

Old (0.96) New (1.0)
f['content'] f.read()
f['filename'] f.name
f['content-type'] f.content_type

Work with file fields using the new API

The internal implementation of django.db.models.FileField have changed. A visible result of this is that
the way you access special attributes (URL, filename, image size, etc.) of these model fields has changed. You will
need to make the following changes, assuming your model’s FileField is called myfile:

9.1. Final releases 1645

Django Documentation, Release 1.10.9.dev20171123183751

Old (0.96) New (1.0)
myfile.get_content_filename() myfile.content.path
myfile.get_content_url() myfile.content.url
myfile.get_content_size() myfile.content.size
myfile.save_content_file() myfile.content.save()
myfile.get_content_width() myfile.content.width
myfile.get_content_height() myfile.content.height

Note that the width and height attributes only make sense for ImageField fields. More details can be found in
the model API documentation.

Use Paginator instead of ObjectPaginator

The ObjectPaginator in 0.96 has been removed and replaced with an improved version, django.core.
paginator.Paginator.

Templates

Learn to love autoescaping

By default, the template system now automatically HTML-escapes the output of every variable. To learn more, see
Automatic HTML escaping.

To disable auto-escaping for an individual variable, use the safe filter:

This will be escaped: {{ data }}
This will not be escaped: {{ data|safe }}

To disable auto-escaping for an entire template, wrap the template (or just a particular section of the template) in the
autoescape tag:

{% autoescape off %}
... unescaped template content here ...

{% endautoescape %}

Less-common changes

The following changes are smaller, more localized changes. They should only affect more advanced users, but it’s
probably worth reading through the list and checking your code for these things.

Signals

• Add **kwargs to any registered signal handlers.

• Connect, disconnect, and send signals via methods on the Signal object instead of through module methods
in django.dispatch.dispatcher.

• Remove any use of the Anonymous and Any sender options; they no longer exist. You can still receive signals
sent by any sender by using sender=None

• Make any custom signals you’ve declared into instances of django.dispatch.Signal instead of anony-
mous objects.

1646 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Here’s quick summary of the code changes you’ll need to make:

Old (0.96) New (1.0)
def callback(sender) def callback(sender, **kwargs)
sig = object() sig = django.dispatch.Signal()
dispatcher.connect(callback, sig) sig.connect(callback)
dispatcher.send(sig, sender) sig.send(sender)
dispatcher.connect(callback, sig,
sender=Any)

sig.connect(callback,
sender=None)

Comments

If you were using Django 0.96’s django.contrib.comments app, you’ll need to upgrade to the new comments
app introduced in 1.0. See the upgrade guide for details.

Template tags

spaceless tag

The spaceless template tag now removes all spaces between HTML tags, instead of preserving a single space.

Local flavors

U.S. local flavor

django.contrib.localflavor.usa has been renamed to django.contrib.localflavor.us. This
change was made to match the naming scheme of other local flavors. To migrate your code, all you need to do is
change the imports.

Sessions

Getting a new session key

SessionBase.get_new_session_key() has been renamed to _get_new_session_key().
get_new_session_object() no longer exists.

Fixtures

Loading a row no longer calls save()

Previously, loading a row automatically ran the model’s save() method. This is no longer the case, so any fields (for
example: timestamps) that were auto-populated by a save() now need explicit values in any fixture.

9.1. Final releases 1647

Django Documentation, Release 1.10.9.dev20171123183751

Settings

Better exceptions

The old EnvironmentError has split into an ImportError when Django fails to find the settings module and a
RuntimeError when you try to reconfigure settings after having already used them.

LOGIN_URL has moved

The LOGIN_URL constant moved from django.contrib.auth into the settings module. Instead of using
from django.contrib.auth import LOGIN_URL refer to settings.LOGIN_URL.

APPEND_SLASH behavior has been updated

In 0.96, if a URL didn’t end in a slash or have a period in the final component of its path, and APPEND_SLASH
was True, Django would redirect to the same URL, but with a slash appended to the end. Now, Django checks to
see whether the pattern without the trailing slash would be matched by something in your URL patterns. If so, no
redirection takes place, because it is assumed you deliberately wanted to catch that pattern.

For most people, this won’t require any changes. Some people, though, have URL patterns that look like this:

r'/some_prefix/(.*)$'

Previously, those patterns would have been redirected to have a trailing slash. If you always want a slash on such
URLs, rewrite the pattern as:

r'/some_prefix/(.*/)$'

Smaller model changes

Different exception from get()

Managers now return a MultipleObjectsReturned exception instead of AssertionError:

Old (0.96):

try:
Model.objects.get(...)

except AssertionError:
handle_the_error()

New (1.0):

try:
Model.objects.get(...)

except Model.MultipleObjectsReturned:
handle_the_error()

1648 Chapter 9. Release notes

https://docs.python.org/3/library/exceptions.html#EnvironmentError
https://docs.python.org/3/library/exceptions.html#ImportError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#AssertionError

Django Documentation, Release 1.10.9.dev20171123183751

LazyDate has been fired

The LazyDate helper class no longer exists.

Default field values and query arguments can both be callable objects, so instances of LazyDate can be replaced
with a reference to datetime.datetime.now:

Old (0.96):

class Article(models.Model):
title = models.CharField(maxlength=100)
published = models.DateField(default=LazyDate())

New (1.0):

import datetime

class Article(models.Model):
title = models.CharField(max_length=100)
published = models.DateField(default=datetime.datetime.now)

DecimalField is new, and FloatField is now a proper float

Old (0.96):

class MyModel(models.Model):
field_name = models.FloatField(max_digits=10, decimal_places=3)
...

New (1.0):

class MyModel(models.Model):
field_name = models.DecimalField(max_digits=10, decimal_places=3)
...

If you forget to make this change, you will see errors about FloatField not taking a max_digits attribute in
__init__, because the new FloatField takes no precision-related arguments.

If you’re using MySQL or PostgreSQL, no further changes are needed. The database column types for
DecimalField are the same as for the old FloatField.

If you’re using SQLite, you need to force the database to view the appropriate columns as decimal types, rather than
floats. To do this, you’ll need to reload your data. Do this after you have made the change to using DecimalField
in your code and updated the Django code.

Warning: Back up your database first!

For SQLite, this means making a copy of the single file that stores the database (the name of that file is the
DATABASE_NAME in your settings.py file).

To upgrade each application to use a DecimalField, you can do the following, replacing <app> in the code below
with each app’s name:

$./manage.py dumpdata --format=xml <app> > data-dump.xml
$./manage.py reset <app>
$./manage.py loaddata data-dump.xml

9.1. Final releases 1649

Django Documentation, Release 1.10.9.dev20171123183751

Notes:

1. It’s important that you remember to use XML format in the first step of this process. We are exploiting a feature
of the XML data dumps that makes porting floats to decimals with SQLite possible.

2. In the second step you will be asked to confirm that you are prepared to lose the data for the application(s) in
question. Say yes; we’ll restore this data in the third step, of course.

3. DecimalField is not used in any of the apps shipped with Django prior to this change being made, so you
do not need to worry about performing this procedure for any of the standard Django models.

If something goes wrong in the above process, just copy your backed up database file over the original file and start
again.

Internationalization

django.views.i18n.set_language() now requires a POST request

Previously, a GET request was used. The old behavior meant that state (the locale used to display the site) could be
changed by a GET request, which is against the HTTP specification’s recommendations. Code calling this view must
ensure that a POST request is now made, instead of a GET. This means you can no longer use a link to access the view,
but must use a form submission of some kind (e.g. a button).

_() is no longer in builtins

_() (the callable object whose name is a single underscore) is no longer monkeypatched into builtins – that is, it’s no
longer available magically in every module.

If you were previously relying on _() always being present, you should now explicitly import ugettext or
ugettext_lazy, if appropriate, and alias it to _ yourself:

from django.utils.translation import ugettext as _

HTTP request/response objects

Dictionary access to HttpRequest

HttpRequest objects no longer directly support dictionary-style access; previously, both GET and POST data
were directly available on the HttpRequest object (e.g., you could check for a piece of form data by using if
'some_form_key' in request or by reading request['some_form_key']. This is no longer sup-
ported; if you need access to the combined GET and POST data, use request.REQUEST instead.

It is strongly suggested, however, that you always explicitly look in the appropriate dictionary for the type of re-
quest you expect to receive (request.GET or request.POST); relying on the combined request.REQUEST
dictionary can mask the origin of incoming data.

Accessing HTTPResponse headers

django.http.HttpResponse.headers has been renamed to _headers and HttpResponse now supports
containment checking directly. So use if header in response: instead of if header in response.
headers:.

1650 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Generic relations

Generic relations have been moved out of core

The generic relation classes – GenericForeignKey and GenericRelation – have moved into the django.
contrib.contenttypes module.

Testing

django.test.Client.login() has changed

Old (0.96):

from django.test import Client
c = Client()
c.login('/path/to/login','myuser','mypassword')

New (1.0):

... same as above, but then:
c.login(username='myuser', password='mypassword')

Management commands

Running management commands from your code

django.core.management has been greatly refactored.

Calls to management services in your code now need to use call_command. For example, if you have some test
code that calls flush and load_data:

from django.core import management
management.flush(verbosity=0, interactive=False)
management.load_data(['test_data'], verbosity=0)

...you’ll need to change this code to read:

from django.core import management
management.call_command('flush', verbosity=0, interactive=False)
management.call_command('loaddata', 'test_data', verbosity=0)

Subcommands must now precede options

django-admin.py and manage.py now require subcommands to precede options. So:

$ django-admin.py --settings=foo.bar runserver

...no longer works and should be changed to:

$ django-admin.py runserver --settings=foo.bar

9.1. Final releases 1651

Django Documentation, Release 1.10.9.dev20171123183751

Syndication

Feed.__init__ has changed

The __init__() method of the syndication framework’s Feed class now takes an HttpRequest object as its
second parameter, instead of the feed’s URL. This allows the syndication framework to work without requiring the
sites framework. This only affects code that subclasses Feed and overrides the __init__() method, and code that
calls Feed.__init__() directly.

Data structures

SortedDictFromList is gone

django.newforms.forms.SortedDictFromList was removed. django.utils.datastructures.
SortedDict can now be instantiated with a sequence of tuples.

To update your code:

1. Use django.utils.datastructures.SortedDictwherever you were using django.newforms.
forms.SortedDictFromList.

2. Because django.utils.datastructures.SortedDict.copy doesn’t return a deepcopy as
SortedDictFromList.copy() did, you will need to update your code if you were relying on a deep-
copy. Do this by using copy.deepcopy directly.

Database backend functions

Database backend functions have been renamed

Almost all of the database backend-level functions have been renamed and/or relocated. None of these were docu-
mented, but you’ll need to change your code if you’re using any of these functions, all of which are in django.db:

Old (0.96) New (1.0)
backend.get_autoinc_sql connection.ops.autoinc_sql
backend.get_date_extract_sql connection.ops.date_extract_sql
backend.get_date_trunc_sql connection.ops.date_trunc_sql
backend.get_datetime_cast_sql connection.ops.datetime_cast_sql
backend.get_deferrable_sql connection.ops.deferrable_sql
backend.get_drop_foreignkey_sql connection.ops.drop_foreignkey_sql
backend.get_fulltext_search_sql connection.ops.fulltext_search_sql
backend.get_last_insert_id connection.ops.last_insert_id
backend.get_limit_offset_sql connection.ops.limit_offset_sql
backend.get_max_name_length connection.ops.max_name_length
backend.get_pk_default_value connection.ops.pk_default_value
backend.get_random_function_sql connection.ops.random_function_sql
backend.get_sql_flush connection.ops.sql_flush
backend.get_sql_sequence_reset connection.ops.sequence_reset_sql
backend.get_start_transaction_sql connection.ops.start_transaction_sql
backend.get_tablespace_sql connection.ops.tablespace_sql
backend.quote_name connection.ops.quote_name

Continued on next page

1652 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

Table 9.1 – continued from previous page
Old (0.96) New (1.0)
backend.get_query_set_class connection.ops.query_set_class
backend.get_field_cast_sql connection.ops.field_cast_sql
backend.get_drop_sequence connection.ops.drop_sequence_sql
backend.OPERATOR_MAPPING connection.operators
backend.allows_group_by_ordinal connection.features.allows_group_by_ordinal
backend.allows_unique_and_pk connection.features.allows_unique_and_pk
backend.autoindexes_primary_keys connection.features.autoindexes_primary_keys
backend.needs_datetime_string_cast connection.features.needs_datetime_string_cast
backend.needs_upper_for_iops connection.features.needs_upper_for_iops
backend.supports_constraints connection.features.supports_constraints
backend.supports_tablespaces connection.features.supports_tablespaces
backend.uses_case_insensitive_names connection.features.uses_case_insensitive_names
backend.uses_custom_queryset connection.features.uses_custom_queryset

A complete list of backwards-incompatible changes can be found at https://code.djangoproject.com/wiki/
BackwardsIncompatibleChanges.

What’s new in Django 1.0

A lot!

Since Django 0.96, we’ve made over 4,000 code commits, fixed more than 2,000 bugs, and edited, added, or removed
around 350,000 lines of code. We’ve also added 40,000 lines of new documentation, and greatly improved what was
already there.

In fact, new documentation is one of our favorite features of Django 1.0, so we might as well start there. First, there’s
a new documentation site:

• https://docs.djangoproject.com/

The documentation has been greatly improved, cleaned up, and generally made awesome. There’s now dedicated
search, indexes, and more.

We can’t possibly document everything that’s new in 1.0, but the documentation will be your definitive guide. Any-
where you see something like:

This feature is new in Django 1.0

You’ll know that you’re looking at something new or changed.

The other major highlights of Django 1.0 are:

Re-factored admin application

The Django administrative interface (django.contrib.admin) has been completely refactored; admin definitions
are now completely decoupled from model definitions (no more class Admin declaration in models!), rewritten to
use Django’s new form-handling library (introduced in the 0.96 release as django.newforms, and now available
as simply django.forms) and redesigned with extensibility and customization in mind. Full documentation for the
admin application is available online in the official Django documentation:

See the admin reference for details

9.1. Final releases 1653

https://code.djangoproject.com/wiki/BackwardsIncompatibleChanges
https://code.djangoproject.com/wiki/BackwardsIncompatibleChanges
https://docs.djangoproject.com/

Django Documentation, Release 1.10.9.dev20171123183751

Improved Unicode handling

Django’s internals have been refactored to use Unicode throughout; this drastically simplifies the task of dealing
with non-Western-European content and data in Django. Additionally, utility functions have been provided to ease
interoperability with third-party libraries and systems which may or may not handle Unicode gracefully. Details are
available in Django’s Unicode-handling documentation.

See Unicode data.

An improved ORM

Django’s object-relational mapper – the component which provides the mapping between Django model classes and
your database, and which mediates your database queries – has been dramatically improved by a massive refactoring.
For most users of Django this is backwards-compatible; the public-facing API for database querying underwent a
few minor changes, but most of the updates took place in the ORM’s internals. A guide to the changes, including
backwards-incompatible modifications and mentions of new features opened up by this refactoring, is available on the
Django wiki.

Automatic escaping of template variables

To provide improved security against cross-site scripting (XSS) vulnerabilities, Django’s template system now auto-
matically escapes the output of variables. This behavior is configurable, and allows both variables and larger template
constructs to be marked as safe (requiring no escaping) or unsafe (requiring escaping). A full guide to this feature is
in the documentation for the autoescape tag.

django.contrib.gis (GeoDjango)

A project over a year in the making, this adds world-class GIS (Geographic Information Systems) support to Django,
in the form of a contrib application. Its documentation is currently being maintained externally, and will be merged
into the main Django documentation shortly. Huge thanks go to Justin Bronn, Jeremy Dunck, Brett Hoerner and Travis
Pinney for their efforts in creating and completing this feature.

See http://geodjango.org/ for details.

Pluggable file storage

Django’s built-in FileField and ImageField now can take advantage of pluggable file-storage backends, al-
lowing extensive customization of where and how uploaded files get stored by Django. For details, see the files
documentation; big thanks go to Marty Alchin for putting in the hard work to get this completed.

Jython compatibility

Thanks to a lot of work from Leo Soto during a Google Summer of Code project, Django’s codebase has been refac-
tored to remove incompatibilities with Jython, an implementation of Python written in Java, which runs Python code
on the Java Virtual Machine. Django is now compatible with the forthcoming Jython 2.5 release.

See Running Django on Jython.

1654 Chapter 9. Release notes

https://code.djangoproject.com/wiki/QuerysetRefactorBranch
https://code.djangoproject.com/wiki/QuerysetRefactorBranch
https://en.wikipedia.org/wiki/Geographic_information_system
http://geodjango.org/
http://www.jython.org/

Django Documentation, Release 1.10.9.dev20171123183751

Generic relations in forms and admin

Classes are now included in django.contrib.contenttypes which can be used to support generic relations
in both the admin interface and in end-user forms. See the documentation for generic relations for details.

INSERT/UPDATE distinction

Although Django’s default behavior of having a model’s save()method automatically determine whether to perform
an INSERT or an UPDATE at the SQL level is suitable for the majority of cases, there are occasional situations where
forcing one or the other is useful. As a result, models can now support an additional parameter to save() which can
force a specific operation.

See Forcing an INSERT or UPDATE for details.

Split CacheMiddleware

Django’s CacheMiddleware has been split into three classes: CacheMiddleware itself still exists and retains
all of its previous functionality, but it is now built from two separate middleware classes which handle the two parts
of caching (inserting into and reading from the cache) separately, offering additional flexibility for situations where
combining these functions into a single middleware posed problems.

Full details, including updated notes on appropriate use, are in the caching documentation.

Refactored django.contrib.comments

As part of a Google Summer of Code project, Thejaswi Puthraya carried out a major rewrite and refactoring of
Django’s bundled comment system, greatly increasing its flexibility and customizability.

Removal of deprecated features

A number of features and methods which had previously been marked as deprecated, and which were sched-
uled for removal prior to the 1.0 release, are no longer present in Django. These include imports of the
form library from django.newforms (now located simply at django.forms), the form_for_model and
form_for_instance helper functions (which have been replaced by ModelForm) and a number of deprecated
features which were replaced by the dispatcher, file-uploading and file-storage refactorings introduced in the Django
1.0 alpha releases.

Known issues

We’ve done our best to make Django 1.0 as solid as possible, but unfortunately there are a couple of issues that we
know about in the release.

Multi-table model inheritance with to_field

If you’re using multiple table model inheritance, be aware of this caveat: child models using a custom parent_link
and to_field will cause database integrity errors. A set of models like the following are not valid:

9.1. Final releases 1655

Django Documentation, Release 1.10.9.dev20171123183751

class Parent(models.Model):
name = models.CharField(max_length=10)
other_value = models.IntegerField(unique=True)

class Child(Parent):
father = models.OneToOneField(Parent, primary_key=True, to_field="other_value",

→˓parent_link=True)
value = models.IntegerField()

This bug will be fixed in the next release of Django.

Caveats with support of certain databases

Django attempts to support as many features as possible on all database backends. However, not all database backends
are alike, and in particular many of the supported database differ greatly from version to version. It’s a good idea to
checkout our notes on supported database:

• MySQL notes

• SQLite notes

• Oracle notes

9.1.12 Pre-1.0 releases

Django version 0.96 release notes

Welcome to Django 0.96!

The primary goal for 0.96 is a cleanup and stabilization of the features introduced in 0.95. There have been a few small
backwards-incompatible changes since 0.95, but the upgrade process should be fairly simple and should not require
major changes to existing applications.

However, we’re also releasing 0.96 now because we have a set of backwards-incompatible changes scheduled for the
near future. Once completed, they will involve some code changes for application developers, so we recommend that
you stick with Django 0.96 until the next official release; then you’ll be able to upgrade in one step instead of needing
to make incremental changes to keep up with the development version of Django.

Backwards-incompatible changes

The following changes may require you to update your code when you switch from 0.95 to 0.96:

MySQLdb version requirement

Due to a bug in older versions of the MySQLdb Python module (which Django uses to connect to MySQL databases),
Django’s MySQL backend now requires version 1.2.1p2 or higher of MySQLdb, and will raise exceptions if you
attempt to use an older version.

If you’re currently unable to upgrade your copy of MySQLdb to meet this requirement, a separate, backwards-
compatible backend, called “mysql_old”, has been added to Django. To use this backend, change the
DATABASE_ENGINE setting in your Django settings file from this:

1656 Chapter 9. Release notes

Django Documentation, Release 1.10.9.dev20171123183751

DATABASE_ENGINE = "mysql"

to this:

DATABASE_ENGINE = "mysql_old"

However, we strongly encourage MySQL users to upgrade to a more recent version of MySQLdb as soon as possi-
ble, The “mysql_old” backend is provided only to ease this transition, and is considered deprecated; aside from any
necessary security fixes, it will not be actively maintained, and it will be removed in a future release of Django.

Also, note that some features, like the new DATABASE_OPTIONS setting (see the databases documentation for
details), are only available on the “mysql” backend, and will not be made available for “mysql_old”.

Database constraint names changed

The format of the constraint names Django generates for foreign key references have changed slightly. These names
are generally only used when it is not possible to put the reference directly on the affected column, so they are not
always visible.

The effect of this change is that running manage.py reset and similar commands against an existing database
may generate SQL with the new form of constraint name, while the database itself contains constraints named in the
old form; this will cause the database server to raise an error message about modifying non-existent constraints.

If you need to work around this, there are two methods available:

1. Redirect the output of manage.py to a file, and edit the generated SQL to use the correct constraint names
before executing it.

2. Examine the output of manage.py sqlall to see the new-style constraint names, and use that as a guide to
rename existing constraints in your database.

Name changes in manage.py

A few of the options to manage.py have changed with the addition of fixture support:

• There are new dumpdata and loaddata commands which, as you might expect, will dump and load data
to/from the database. These commands can operate against any of Django’s supported serialization formats.

• The sqlinitialdata command has been renamed to sqlcustom to emphasize that loaddata should
be used for data (and sqlcustom for other custom SQL – views, stored procedures, etc.).

• The vestigial install command has been removed. Use syncdb.

Backslash escaping changed

The Django database API now escapes backslashes given as query parameters. If you have any database API code
that matches backslashes, and it was working before (despite the lack of escaping), you’ll have to change your code to
“unescape” the slashes one level.

For example, this used to work:

Find text containing a single backslash
MyModel.objects.filter(text__contains='\\\\')

The above is now incorrect, and should be rewritten as:

9.1. Final releases 1657

Django Documentation, Release 1.10.9.dev20171123183751

Find text containing a single backslash
MyModel.objects.filter(text__contains='\\')

Removed ENABLE_PSYCO setting

The ENABLE_PSYCO setting no longer exists. If your settings file includes ENABLE_PSYCO it will have no effect;
to use Psyco, we recommend writing a middleware class to activate it.

What’s new in 0.96?

This revision represents over a thousand source commits and over four hundred bug fixes, so we can’t possibly catalog
all the changes. Here, we describe the most notable changes in this release.

New forms library

django.newforms is Django’s new form-handling library. It’s a replacement for django.forms, the old
form/manipulator/validation framework. Both APIs are available in 0.96, but over the next two releases we plan
to switch completely to the new forms system, and deprecate and remove the old system.

There are three elements to this transition:

• We’ve copied the current django.forms to django.oldforms. This allows you to upgrade your code
now rather than waiting for the backwards-incompatible change and rushing to fix your code after the fact. Just
change your import statements like this:

from django import forms # 0.95-style
from django import oldforms as forms # 0.96-style

• The next official release of Django will move the current django.newforms to django.forms. This will
be a backwards-incompatible change, and anyone still using the old version of django.forms at that time
will need to change their import statements as described above.

• The next release after that will completely remove django.oldforms.

Although the newforms library will continue to evolve, it’s ready for use for most common cases. We recommend
that anyone new to form handling skip the old forms system and start with the new.

For more information about django.newforms, read the newforms documentation.

URLconf improvements

You can now use any callable as the callback in URLconfs (previously, only strings that referred to callables were
allowed). This allows a much more natural use of URLconfs. For example, this URLconf:

from django.conf.urls.defaults import *

urlpatterns = patterns('',
('^myview/$', 'mysite.myapp.views.myview')

)

can now be rewritten as:

1658 Chapter 9. Release notes

http://psyco.sourceforge.net/

Django Documentation, Release 1.10.9.dev20171123183751

from django.conf.urls.defaults import *
from mysite.myapp.views import myview

urlpatterns = patterns('',
('^myview/$', myview)

)

One useful application of this can be seen when using decorators; this change allows you to apply decorators to views
in your URLconf. Thus, you can make a generic view require login very easily:

from django.conf.urls.defaults import *
from django.contrib.auth.decorators import login_required
from django.views.generic.list_detail import object_list
from mysite.myapp.models import MyModel

info = {
"queryset" : MyModel.objects.all(),

}

urlpatterns = patterns('',
('^myview/$', login_required(object_list), info)

)

Note that both syntaxes (strings and callables) are valid, and will continue to be valid for the foreseeable future.

The test framework

Django now includes a test framework so you can start transmuting fear into boredom (with apologies to Kent Beck).
You can write tests based on doctest or unittest and test your views with a simple test client.

There is also new support for “fixtures” – initial data, stored in any of the supported serialization formats, that will be
loaded into your database at the start of your tests. This makes testing with real data much easier.

See the testing documentation for the full details.

Improvements to the admin interface

A small change, but a very nice one: dedicated views for adding and updating users have been added to the admin
interface, so you no longer need to worry about working with hashed passwords in the admin.

Thanks

Since 0.95, a number of people have stepped forward and taken a major new role in Django’s development. We’d like
to thank these people for all their hard work:

• Russell Keith-Magee and Malcolm Tredinnick for their major code contributions. This release wouldn’t have
been possible without them.

• Our new release manager, James Bennett, for his work in getting out 0.95.1, 0.96, and (hopefully) future release.

• Our ticket managers Chris Beaven (aka SmileyChris), Simon Greenhill, Michael Radziej, and Gary Wilson.
They agreed to take on the monumental task of wrangling our tickets into nicely cataloged submission. Figuring
out what to work on is now about a million times easier; thanks again, guys.

9.1. Final releases 1659

https://docs.python.org/3/library/doctest.html#module-doctest
https://docs.python.org/3/library/unittest.html#module-unittest

Django Documentation, Release 1.10.9.dev20171123183751

• Everyone who submitted a bug report, patch or ticket comment. We can’t possibly thank everyone by name –
over 200 developers submitted patches that went into 0.96 – but everyone who’s contributed to Django is listed
in AUTHORS.

Django version 0.95 release notes

Welcome to the Django 0.95 release.

This represents a significant advance in Django development since the 0.91 release in January 2006. The details of
every change in this release would be too extensive to list in full, but a summary is presented below.

Suitability and API stability

This release is intended to provide a stable reference point for developers wanting to work on production-level appli-
cations that use Django.

However, it’s not the 1.0 release, and we’ll be introducing further changes before 1.0. For a clear look at which areas of
the framework will change (and which ones will not change) before 1.0, see the api-stability.txt file, which
lives in the docs/ directory of the distribution.

You may have a need to use some of the features that are marked as “subject to API change” in that document, but
that’s OK with us as long as it’s OK with you, and as long as you understand APIs may change in the future.

Fortunately, most of Django’s core APIs won’t be changing before version 1.0. There likely won’t be as big of a
change between 0.95 and 1.0 versions as there was between 0.91 and 0.95.

Changes and new features

The major changes in this release (for developers currently using the 0.91 release) are a result of merging the ‘magic-
removal’ branch of development. This branch removed a number of constraints in the way Django code had to be
written that were a consequence of decisions made in the early days of Django, prior to its open-source release. It’s
now possible to write more natural, Pythonic code that works as expected, and there’s less “black magic” happening
behind the scenes.

Aside from that, another main theme of this release is a dramatic increase in usability. We’ve made countless improve-
ments in error messages, documentation, etc., to improve developers’ quality of life.

The new features and changes introduced in 0.95 include:

• Django now uses a more consistent and natural filtering interface for retrieving objects from the database.

• User-defined models, functions and constants now appear in the module namespace they were defined in. (Pre-
viously everything was magically transferred to the django.models.* namespace.)

• Some optional applications, such as the FlatPage, Sites and Redirects apps, have been decoupled and moved into
django.contrib. If you don’t want to use these applications, you no longer have to install their database
tables.

• Django now has support for managing database transactions.

• We’ve added the ability to write custom authentication and authorization backends for authenticating users
against alternate systems, such as LDAP.

• We’ve made it easier to add custom table-level functions to models, through a new “Manager” API.

• It’s now possible to use Django without a database. This simply means that the framework no longer requires you
to have a working database set up just to serve dynamic pages. In other words, you can just use URLconfs/views

1660 Chapter 9. Release notes

https://code.djangoproject.com/browser/django/trunk/AUTHORS

Django Documentation, Release 1.10.9.dev20171123183751

on their own. Previously, the framework required that a database be configured, regardless of whether you
actually used it.

• It’s now more explicit and natural to override save() and delete() methods on models, rather than needing to
hook into the pre_save() and post_save() method hooks.

• Individual pieces of the framework now can be configured without requiring the setting of an environment
variable. This permits use of, for example, the Django templating system inside other applications.

• More and more parts of the framework have been internationalized, as we’ve expanded internationalization
(i18n) support. The Django codebase, including code and templates, has now been translated, at least in part,
into 31 languages. From Arabic to Chinese to Hungarian to Welsh, it is now possible to use Django’s admin site
in your native language.

The number of changes required to port from 0.91-compatible code to the 0.95 code base are significant in some cases.
However, they are, for the most part, reasonably routine and only need to be done once. A list of the necessary changes
is described in the Removing The Magic wiki page. There is also an easy checklist for reference when undertaking
the porting operation.

Problem reports and getting help

Need help resolving a problem with Django? The documentation in the distribution is also available online at the
Django website. The FAQ document is especially recommended, as it contains a number of issues that come up time
and again.

For more personalized help, the django-users mailing list is a very active list, with more than 2,000 subscribers who
can help you solve any sort of Django problem. We recommend you search the archives first, though, because many
common questions appear with some regularity, and any particular problem may already have been answered.

Finally, for those who prefer the more immediate feedback offered by IRC, there’s a #django channel on
irc.freenode.net that is regularly populated by Django users and developers from around the world. Friendly peo-
ple are usually available at any hour of the day – to help, or just to chat.

Thanks for using Django!

The Django Team July 2006

9.2 Security releases

Whenever a security issue is disclosed via Django’s security policies, appropriate release notes are now added to all
affected release series.

Additionally, an archive of disclosed security issues is maintained.

9.2.1 Archive of security issues

Django’s development team is strongly committed to responsible reporting and disclosure of security-related issues,
as outlined in Django’s security policies.

As part of that commitment, we maintain the following historical list of issues which have been fixed and disclosed.
For each issue, the list below includes the date, a brief description, the CVE identifier if applicable, a list of affected
versions, a link to the full disclosure and links to the appropriate patch(es).

Some important caveats apply to this information:

9.2. Security releases 1661

https://code.djangoproject.com/wiki/RemovingTheMagic
https://code.djangoproject.com/wiki/MagicRemovalCheatSheet
https://www.djangoproject.com/
https://groups.google.com/group/django-users
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures

Django Documentation, Release 1.10.9.dev20171123183751

• Lists of affected versions include only those versions of Django which had stable, security-supported releases
at the time of disclosure. This means older versions (whose security support had expired) and versions which
were in pre-release (alpha/beta/RC) states at the time of disclosure may have been affected, but are not listed.

• The Django project has on occasion issued security advisories, pointing out potential security problems which
can arise from improper configuration or from other issues outside of Django itself. Some of these advisories
have received CVEs; when that is the case, they are listed here, but as they have no accompanying patches or
releases, only the description, disclosure and CVE will be listed.

Issues prior to Django’s security process

Some security issues were handled before Django had a formalized security process in use. For these, new releases
may not have been issued at the time and CVEs may not have been assigned.

August 16, 2006 - CVE-2007-0404

Filename validation issue in translation framework. Full description

Versions affected

• Django 0.90 (patch)

• Django 0.91 (patch)

• Django 0.95 (patch) (released January 21 2007)

January 21, 2007 - CVE-2007-0405

Apparent “caching” of authenticated user. Full description

Versions affected

• Django 0.95 (patch)

Issues under Django’s security process

All other security issues have been handled under versions of Django’s security process. These are listed below.

October 26, 2007 - CVE-2007-5712

Denial-of-service via arbitrarily-large Accept-Language header. Full description

Versions affected

• Django 0.91 (patch)

• Django 0.95 (patch)

• Django 0.96 (patch)

1662 Chapter 9. Release notes

https://www.djangoproject.com/weblog/2006/aug/16/compilemessages/
https://github.com/django/django/commit/518d406e53
https://github.com/django/django/commit/518d406e53
https://github.com/django/django/commit/a132d411c6
https://www.djangoproject.com/weblog/2007/jan/21/0951/
https://github.com/django/django/commit/e89f0a6558
https://www.djangoproject.com/weblog/2007/oct/26/security-fix/
https://github.com/django/django/commit/8bc36e726c9e8c75c681d3ad232df8e882aaac81
https://github.com/django/django/commit/412ed22502e11c50dbfee854627594f0e7e2c234
https://github.com/django/django/commit/7dd2dd08a79e388732ce00e2b5514f15bd6d0f6f

Django Documentation, Release 1.10.9.dev20171123183751

May 14, 2008 - CVE-2008-2302

XSS via admin login redirect. Full description

Versions affected

• Django 0.91 (patch)

• Django 0.95 (patch)

• Django 0.96 (patch)

September 2, 2008 - CVE-2008-3909

CSRF via preservation of POST data during admin login. Full description

Versions affected

• Django 0.91 (patch)

• Django 0.95 (patch)

• Django 0.96 (patch)

July 28, 2009 - CVE-2009-2659

Directory-traversal in development server media handler. Full description

Versions affected

• Django 0.96 (patch)

• Django 1.0 (patch)

October 9, 2009 - CVE-2009-3965

Denial-of-service via pathological regular expression performance. Full description

Versions affected

• Django 1.0 (patch)

• Django 1.1 (patch)

September 8, 2010 - CVE-2010-3082

XSS via trusting unsafe cookie value. Full description

9.2. Security releases 1663

https://www.djangoproject.com/weblog/2008/may/14/security/
https://github.com/django/django/commit/50ce7fb57d
https://github.com/django/django/commit/50ce7fb57d
https://github.com/django/django/commit/7791e5c050
https://www.djangoproject.com/weblog/2008/sep/02/security/
https://github.com/django/django/commit/44debfeaa4473bd28872c735dd3d9afde6886752
https://github.com/django/django/commit/aee48854a164382c655acb9f18b3c06c3d238e81
https://github.com/django/django/commit/7e0972bded362bc4b851c109df2c8a6548481a8e
https://www.djangoproject.com/weblog/2009/jul/28/security/
https://github.com/django/django/commit/da85d76fd6
https://github.com/django/django/commit/df7f917b7f
https://www.djangoproject.com/weblog/2009/oct/09/security/
https://github.com/django/django/commit/594a28a904
https://github.com/django/django/commit/e3e992e18b
https://www.djangoproject.com/weblog/2010/sep/08/security-release/

Django Documentation, Release 1.10.9.dev20171123183751

Versions affected

• Django 1.2 (patch)

December 22, 2010 - CVE-2010-4534

Information leakage in administrative interface. Full description

Versions affected

• Django 1.1 (patch)

• Django 1.2 (patch)

December 22, 2010 - CVE-2010-4535

Denial-of-service in password-reset mechanism. Full description

Versions affected

• Django 1.1 (patch)

• Django 1.2 (patch)

February 8, 2011 - CVE-2011-0696

CSRF via forged HTTP headers. Full description

Versions affected

• Django 1.1 (patch)

• Django 1.2 (patch)

February 8, 2011 - CVE-2011-0697

XSS via unsanitized names of uploaded files. Full description

Versions affected

• Django 1.1 (patch)

• Django 1.2 (patch)

February 8, 2011 - CVE-2011-0698

Directory-traversal on Windows via incorrect path-separator handling. Full description

1664 Chapter 9. Release notes

https://github.com/django/django/commit/7f84657b6b
https://www.djangoproject.com/weblog/2010/dec/22/security/
https://github.com/django/django/commit/17084839fd
https://github.com/django/django/commit/85207a245b
https://www.djangoproject.com/weblog/2010/dec/22/security/
https://github.com/django/django/commit/7f8dd9cbac
https://github.com/django/django/commit/d5d8942a16
https://www.djangoproject.com/weblog/2011/feb/08/security/
https://github.com/django/django/commit/408c5c873c
https://github.com/django/django/commit/818e70344e
https://www.djangoproject.com/weblog/2011/feb/08/security/
https://github.com/django/django/commit/1966786d2d
https://github.com/django/django/commit/1f814a9547
https://www.djangoproject.com/weblog/2011/feb/08/security/

Django Documentation, Release 1.10.9.dev20171123183751

Versions affected

• Django 1.1 (patch)

• Django 1.2 (patch)

September 9, 2011 - CVE-2011-4136

Session manipulation when using memory-cache-backed session. Full description

Versions affected

• Django 1.2 (patch)

• Django 1.3 (patch)

September 9, 2011 - CVE-2011-4137

Denial-of-service via URLField.verify_exists. Full description

Versions affected

• Django 1.2 (patch)

• Django 1.3 (patch)

September 9, 2011 - CVE-2011-4138

Information leakage/arbitrary request issuance via URLField.verify_exists. Full description

Versions affected

• Django 1.2: (patch)

• Django 1.3: (patch)

September 9, 2011 - CVE-2011-4139

Host header cache poisoning. Full description

Versions affected

• Django 1.2 (patch)

• Django 1.3 (patch)

9.2. Security releases 1665

https://github.com/django/django/commit/570a32a047
https://github.com/django/django/commit/194566480b
https://www.djangoproject.com/weblog/2011/sep/09/security-releases-issued/
https://github.com/django/django/commit/ac7c3a110f
https://github.com/django/django/commit/fbe2eead2f
https://www.djangoproject.com/weblog/2011/sep/09/security-releases-issued/
https://github.com/django/django/commit/7268f8af86
https://github.com/django/django/commit/1a76dbefdf
https://www.djangoproject.com/weblog/2011/sep/09/security-releases-issued/
https://github.com/django/django/commit/7268f8af86
https://github.com/django/django/commit/1a76dbefdf
https://www.djangoproject.com/weblog/2011/sep/09/security-releases-issued/
https://github.com/django/django/commit/c613af4d64
https://github.com/django/django/commit/2f7fadc38e

Django Documentation, Release 1.10.9.dev20171123183751

September 9, 2011 - CVE-2011-4140

Potential CSRF via Host header. Full description

Versions affected

This notification was an advisory only, so no patches were issued.

• Django 1.2

• Django 1.3

July 30, 2012 - CVE-2012-3442

XSS via failure to validate redirect scheme. Full description

Versions affected

• Django 1.3: (patch)

• Django 1.4: (patch)

July 30, 2012 - CVE-2012-3443

Denial-of-service via compressed image files. Full description

Versions affected

• Django 1.3: (patch)

• Django 1.4: (patch)

July 30, 2012 - CVE-2012-3444

Denial-of-service via large image files. Full description

Versions affected

• Django 1.3 (patch)

• Django 1.4 (patch)

October 17, 2012 - CVE-2012-4520

Host header poisoning. Full description

1666 Chapter 9. Release notes

https://www.djangoproject.com/weblog/2011/sep/09/security-releases-issued/
https://www.djangoproject.com/weblog/2012/jul/30/security-releases-issued/
https://github.com/django/django/commit/4dea4883e6c50d75f215a6b9bcbd95273f57c72d
https://github.com/django/django/commit/e34685034b60be1112160e76091e5aee60149fa1
https://www.djangoproject.com/weblog/2012/jul/30/security-releases-issued/
https://github.com/django/django/commit/b2eb4787a0fff9c9993b78be5c698e85108f3446
https://github.com/django/django/commit/c14f325c4eef628bc7bfd8873c3a72aeb0219141
https://www.djangoproject.com/weblog/2012/jul/30/security-releases-issued/
https://github.com/django/django/commit/9ca0ff6268eeff92d0d0ac2c315d4b6a8e229155
https://github.com/django/django/commit/da33d67181b53fe6cc737ac1220153814a1509f6
https://www.djangoproject.com/weblog/2012/oct/17/security/

Django Documentation, Release 1.10.9.dev20171123183751

Versions affected

• Django 1.3 (patch)

• Django 1.4 (patch)

December 10, 2012 - No CVE 1

Additional hardening of Host header handling. Full description

Versions affected

• Django 1.3 (patch)

• Django 1.4 (patch)

December 10, 2012 - No CVE 2

Additional hardening of redirect validation. Full description

Versions affected

• Django 1.3: (patch)

• Django 1.4: (patch)

February 19, 2013 - No CVE

Additional hardening of Host header handling. Full description

Versions affected

• Django 1.3 (patch)

• Django 1.4 (patch)

February 19, 2013 - CVE-2013-1664 / CVE-2013-1665

Entity-based attacks against Python XML libraries. Full description

Versions affected

• Django 1.3 (patch)

• Django 1.4 (patch)

9.2. Security releases 1667

https://github.com/django/django/commit/b45c377f8f488955e0c7069cad3f3dd21910b071
https://github.com/django/django/commit/92d3430f12171f16f566c9050c40feefb830a4a3
https://www.djangoproject.com/weblog/2012/dec/10/security/
https://github.com/django/django/commit/2da4ace0bc1bc1d79bf43b368cb857f6f0cd6b1b
https://github.com/django/django/commit/319627c184e71ae267d6b7f000e293168c7b6e09
https://www.djangoproject.com/weblog/2012/dec/10/security/
https://github.com/django/django/commit/1515eb46daa0897ba5ad5f0a2db8969255f1b343
https://github.com/django/django/commit/b2ae0a63aeec741f1e51bac9a95a27fd635f9652
https://www.djangoproject.com/weblog/2013/feb/19/security/
https://github.com/django/django/commit/27cd872e6e36a81d0bb6f5b8765a1705fecfc253
https://github.com/django/django/commit/9936fdb11d0bbf0bd242f259bfb97bbf849d16f8
https://www.djangoproject.com/weblog/2013/feb/19/security/
https://github.com/django/django/commit/d19a27066b2247102e65412aa66917aff0091112
https://github.com/django/django/commit/1c60d07ba23e0350351c278ad28d0bd5aa410b40

Django Documentation, Release 1.10.9.dev20171123183751

February 19, 2013 - CVE-2013-0305

Information leakage via admin history log. Full description

Versions affected

• Django 1.3 (patch)

• Django 1.4 (patch)

February 19, 2013 - CVE-2013-0306

Denial-of-service via formset max_num bypass. Full description

Versions affected

• Django 1.3 (patch)

• Django 1.4 (patch)

August 13, 2013 - CVE-2013-4249

XSS via admin trusting URLField values. Full description

Versions affected

• Django 1.5 (patch)

August 13, 2013 - CVE-2013-6044

Possible XSS via unvalidated URL redirect schemes. Full description

Versions affected

• Django 1.4 (patch)

• Django 1.5 (patch)

September 10, 2013 - CVE-2013-4315

Directory-traversal via ssi template tag. Full description

Versions affected

• Django 1.4 (patch)

• Django 1.5 (patch)

1668 Chapter 9. Release notes

https://www.djangoproject.com/weblog/2013/feb/19/security/
https://github.com/django/django/commit/d3a45e10c8ac8268899999129daa27652ec0da35
https://github.com/django/django/commit/0e7861aec73702f7933ce2a93056f7983939f0d6
https://www.djangoproject.com/weblog/2013/feb/19/security/
https://github.com/django/django/commit/d7094bbce8cb838f3b40f504f198c098ff1cf727
https://github.com/django/django/commit/0cc350a896f70ace18280410eb616a9197d862b0
https://www.djangoproject.com/weblog/2013/aug/13/security-releases-issued/
https://github.com/django/django/commit/90363e388c61874add3f3557ee654a996ec75d78
https://www.djangoproject.com/weblog/2013/aug/13/security-releases-issued/
https://github.com/django/django/commit/ec67af0bd609c412b76eaa4cc89968a2a8e5ad6a
https://github.com/django/django/commit/1a274ccd6bc1afbdac80344c9b6e5810c1162b5f
https://www.djangoproject.com/weblog/2013/sep/10/security-releases-issued/
https://github.com/django/django/commit/87d2750b39f6f2d54b7047225521a44dcd37e896
https://github.com/django/django/commit/988b61c550d798f9a66d17ee0511fb7a9a7f33ca

Django Documentation, Release 1.10.9.dev20171123183751

September 14, 2013 - CVE-2013-1443

Denial-of-service via large passwords. Full description

Versions affected

• Django 1.4 (patch and Python compatibility fix)

• Django 1.5 (patch)

April 21, 2014 - CVE-2014-0472

Unexpected code execution using reverse(). Full description

Versions affected

• Django 1.4 (patch)

• Django 1.5 (patch)

• Django 1.6 (patch)

• Django 1.7 (patch)

April 21, 2014 - CVE-2014-0473

Caching of anonymous pages could reveal CSRF token. Full description

Versions affected

• Django 1.4 (patch)

• Django 1.5 (patch)

• Django 1.6 (patch)

• Django 1.7 (patch)

April 21, 2014 - CVE-2014-0474

MySQL typecasting causes unexpected query results. Full description

Versions affected

• Django 1.4 (patch)

• Django 1.5 (patch)

• Django 1.6 (patch)

• Django 1.7 (patch)

9.2. Security releases 1669

https://www.djangoproject.com/weblog/2013/sep/15/security/
https://github.com/django/django/commit/3f3d887a6844ec2db743fee64c9e53e04d39a368
https://github.com/django/django/commit/6903d1690a92aa040adfb0c8eb37cf62e4206714
https://github.com/django/django/commit/22b74fa09d7ccbc8c52270d648a0da7f3f0fa2bc
https://www.djangoproject.com/weblog/2014/apr/21/security/
https://github.com/django/django/commit/c1a8c420fe4b27fb2caf5e46d23b5712fc0ac535
https://github.com/django/django/commit/2a5bcb69f42b84464b24b5c835dca6467b6aa7f1
https://github.com/django/django/commit/4352a50871e239ebcdf64eee6f0b88e714015c1b
https://github.com/django/django/commit/546740544d7f69254a67b06a3fc7fa0c43512958
https://www.djangoproject.com/weblog/2014/apr/21/security/
https://github.com/django/django/commit/1170f285ddd6a94a65f911a27788ba49ca08c0b0
https://github.com/django/django/commit/6872f42757d7ef6a97e0b6ec5db4d2615d8a2bd8
https://github.com/django/django/commit/d63e20942f3024f24cb8cd85a49461ba8a9b6736
https://github.com/django/django/commit/380545bf85cbf17fc698d136815b7691f8d023ca
https://www.djangoproject.com/weblog/2014/apr/21/security/
https://github.com/django/django/commit/aa80f498de6d687e613860933ac58433ab71ea4b
https://github.com/django/django/commit/985434fb1d6bf2335bf96c6ebf91c3674f1f399f
https://github.com/django/django/commit/5f0829a27e85d89ad8c433f5c6a7a7d17c9e9292
https://github.com/django/django/commit/34526c2f56b863c2103655a0893ac801667e86ea

Django Documentation, Release 1.10.9.dev20171123183751

May 18, 2014 - CVE-2014-1418

Caches may be allowed to store and serve private data. Full description

Versions affected

• Django 1.4 (patch)

• Django 1.5 (patch)

• Django 1.6 (patch)

• Django 1.7 (patch)

May 18, 2014 - CVE-2014-3730

Malformed URLs from user input incorrectly validated. Full description

Versions affected

• Django 1.4 (patch)

• Django 1.5 (patch)

• Django 1.6 (patch)

• Django 1.7 (patch)

August 20, 2014 - CVE-2014-0480

reverse() can generate URLs pointing to other hosts. Full description

Versions affected

• Django 1.4 (patch)

• Django 1.5 (patch)

• Django 1.6 (patch)

• Django 1.7 (patch)

August 20, 2014 - CVE-2014-0481

File upload denial of service. Full description

1670 Chapter 9. Release notes

https://www.djangoproject.com/weblog/2014/may/14/security-releases-issued/
https://github.com/django/django/commit/28e23306aa53bbbb8fb87db85f99d970b051026c
https://github.com/django/django/commit/4001ec8698f577b973c5a540801d8a0bbea1205b
https://github.com/django/django/commit/1abcf3a808b35abae5d425ed4d44cb6e886dc769
https://github.com/django/django/commit/7fef18ba9e5a8b47bc24b5bb259c8bf3d3879f2a
https://www.djangoproject.com/weblog/2014/may/14/security-releases-issued/
https://github.com/django/django/commit/7feb54bbae3f637ab3c4dd4831d4385964f574df
https://github.com/django/django/commit/ad32c218850ad40972dcef57beb460f8c979dd6d
https://github.com/django/django/commit/601107524523bca02376a0ddc1a06c6fdb8f22f3
https://github.com/django/django/commit/e7b0cace455c2da24492660636bfd48c45a19cdf
https://www.djangoproject.com/weblog/2014/aug/20/security/
https://github.com/django/django/commit/c2fe73133b62a1d9e8f7a6b43966570b14618d7e
https://github.com/django/django/commit/45ac9d4fb087d21902469fc22643f5201d41a0cd
https://github.com/django/django/commit/da051da8df5e69944745072611351d4cfc6435d5
https://github.com/django/django/commit/bf650a2ee78c6d1f4544a875dcc777cf27fe93e9
https://www.djangoproject.com/weblog/2014/aug/20/security/

Django Documentation, Release 1.10.9.dev20171123183751

Versions affected

• Django 1.4 (patch)

• Django 1.5 (patch)

• Django 1.6 (patch)

• Django 1.7 (patch)

August 20, 2014 - CVE-2014-0482

RemoteUserMiddleware session hijacking. Full description

Versions affected

• Django 1.4 (patch)

• Django 1.5 (patch)

• Django 1.6 (patch)

• Django 1.7 (patch)

August 20, 2014 - CVE-2014-0483

Data leakage via querystring manipulation in admin. Full description

Versions affected

• Django 1.4 (patch)

• Django 1.5 (patch)

• Django 1.6 (patch)

• Django 1.7 (patch)

January 13, 2015 - CVE-2015-0219

WSGI header spoofing via underscore/dash conflation. Full description

Versions affected

• Django 1.4 (patch)

• Django 1.6 (patch)

• Django 1.7 (patch)

9.2. Security releases 1671

https://github.com/django/django/commit/30042d475bf084c6723c6217a21598d9247a9c41
https://github.com/django/django/commit/26cd48e166ac4d84317c8ee6d63ac52a87e8da99
https://github.com/django/django/commit/dd0c3f4ee1a30c1a1e6055061c6ba6e58c6b54d1
https://github.com/django/django/commit/3123f8452cf49071be9110e277eea60ba0032216
https://www.djangoproject.com/weblog/2014/aug/20/security/
https://github.com/django/django/commit/c9e3b9949cd55f090591fbdc4a114fcb8368b6d9
https://github.com/django/django/commit/dd68f319b365f6cb38c5a6c106faf4f6142d7d88
https://github.com/django/django/commit/0268b855f9eab3377f2821164ef3e66037789e09
https://github.com/django/django/commit/1a45d059c70385fcd6f4a3955f3b4e4cc96d0150
https://www.djangoproject.com/weblog/2014/aug/20/security/
https://github.com/django/django/commit/027bd348642007617518379f8b02546abacaa6e0
https://github.com/django/django/commit/2a446c896e7c814661fb9c4f212b071b2a7fa446
https://github.com/django/django/commit/f7c494f2506250b8cb5923714360a3642ed63e0f
https://github.com/django/django/commit/2b31342cdf14fc20e07c43d258f1e7334ad664a6
https://www.djangoproject.com/weblog/2015/jan/13/security/
https://github.com/django/django/commit/4f6fffc1dc429f1ad428ecf8e6620739e8837450
https://github.com/django/django/commit/d7597b31d5c03106eeba4be14a33b32a5e25f4ee
https://github.com/django/django/commit/41b4bc73ee0da7b2e09f4af47fc1fd21144c710f

Django Documentation, Release 1.10.9.dev20171123183751

January 13, 2015 - CVE-2015-0220

Mitigated possible XSS attack via user-supplied redirect URLs. Full description

Versions affected

• Django 1.4 (patch)

• Django 1.6 (patch)

• Django 1.7 (patch)

January 13, 2015 - CVE-2015-0221

Denial-of-service attack against django.views.static.serve(). Full description

Versions affected

• Django 1.4 (patch)

• Django 1.6 (patch)

• Django 1.7 (patch)

January 13, 2015 - CVE-2015-0222

Database denial-of-service with ModelMultipleChoiceField. Full description

Versions affected

• Django 1.6 (patch)

• Django 1.7 (patch)

March 9, 2015 - CVE-2015-2241

XSS attack via properties in ModelAdmin.readonly_fields. Full description

Versions affected

• Django 1.7 (patch)

• Django 1.8 (patch)

March 18, 2015 - CVE-2015-2316

Denial-of-service possibility with strip_tags(). Full description

1672 Chapter 9. Release notes

https://www.djangoproject.com/weblog/2015/jan/13/security/
https://github.com/django/django/commit/4c241f1b710da6419d9dca160e80b23b82db7758
https://github.com/django/django/commit/72e0b033662faa11bb7f516f18a132728aa0ae28
https://github.com/django/django/commit/de67dedc771ad2edec15c1d00c083a1a084e1e89
https://www.djangoproject.com/weblog/2015/jan/13/security/
https://github.com/django/django/commit/d020da6646c5142bc092247d218a3d1ce3e993f7
https://github.com/django/django/commit/553779c4055e8742cc832ed525b9ee34b174934f
https://github.com/django/django/commit/818e59a3f0fbadf6c447754d202d88df025f8f2a
https://www.djangoproject.com/weblog/2015/jan/13/security/
https://github.com/django/django/commit/d7a06ee7e571b6dad07c0f5b519b1db02e2a476c
https://github.com/django/django/commit/bcfb47780ce7caecb409a9e9c1c314266e41d392
https://www.djangoproject.com/weblog/2015/mar/09/security-releases/
https://github.com/django/django/commit/d16e4e1d6f95e6f46bff53cc4fd0ab398b8e5059
https://github.com/django/django/commit/2654e1b93923bac55f12b4e66c5e39b16695ace5
https://www.djangoproject.com/weblog/2015/mar/18/security-releases/

Django Documentation, Release 1.10.9.dev20171123183751

Versions affected

• Django 1.6 (patch)

• Django 1.7 (patch)

• Django 1.8 (patch)

March 18, 2015 - CVE-2015-2317

Mitigated possible XSS attack via user-supplied redirect URLs. Full description

Versions affected

• Django 1.4 (patch)

• Django 1.6 (patch)

• Django 1.7 (patch)

• Django 1.8 (patch)

May 20, 2015 - CVE-2015-3982

Fixed session flushing in the cached_db backend. Full description

Versions affected

• Django 1.8 (patch)

July 8, 2015 - CVE-2015-5143

Denial-of-service possibility by filling session store. Full description

Versions affected

• Django 1.8 (patch)

• Django 1.7 (patch)

• Django 1.4 (patch)

July 8, 2015 - CVE-2015-5144

Header injection possibility since validators accept newlines in input. Full description

9.2. Security releases 1673

https://github.com/django/django/commit/b6b3cb9899214a23ebb0f4ebf0e0b300b0ee524f
https://github.com/django/django/commit/e63363f8e075fa8d66326ad6a1cc3391cc95cd97
https://github.com/django/django/commit/5447709a571cd5d95971f1d5d21d4a7edcf85bbd
https://www.djangoproject.com/weblog/2015/mar/18/security-releases/
https://github.com/django/django/commit/2342693b31f740a422abf7267c53b4e7bc487c1b
https://github.com/django/django/commit/5510f070711540aaa8d3707776cd77494e688ef9
https://github.com/django/django/commit/2a4113dbd532ce952308992633d802dc169a75f1
https://github.com/django/django/commit/770427c2896a078925abfca2317486b284d22f04
https://www.djangoproject.com/weblog/2015/may/20/security-release/
https://github.com/django/django/commit/31cb25adecba930bdeee4556709f5a1c42d88fd6
https://www.djangoproject.com/weblog/2015/jul/08/security-releases/
https://github.com/django/django/commit/66d12d1ababa8f062857ee5eb43276493720bf16
https://github.com/django/django/commit/1828f4341ec53a8684112d24031b767eba557663
https://github.com/django/django/commit/2e47f3e401c29bc2ba5ab794d483cb0820855fb9
https://www.djangoproject.com/weblog/2015/jul/08/security-releases/

Django Documentation, Release 1.10.9.dev20171123183751

Versions affected

• Django 1.8 (patch)

• Django 1.7 (patch)

• Django 1.4 (patch)

July 8, 2015 - CVE-2015-5145

Denial-of-service possibility in URL validation. Full description

Versions affected

• Django 1.8 (patch)

August 18, 2015 - CVE-2015-5963 / CVE-2015-5964

Denial-of-service possibility in logout() view by filling session store. Full description

Versions affected

• Django 1.8 (patch)

• Django 1.7 (patch)

• Django 1.4 (patch)

November 24, 2015 - CVE-2015-8213

Settings leak possibility in date template filter. Full description

Versions affected

• Django 1.8 (patch)

• Django 1.7 (patch)

February 1, 2016 - CVE-2016-2048

User with “change” but not “add” permission can create objects for ModelAdmin’s with save_as=True. Full
description

Versions affected

• Django 1.9 (patch)

1674 Chapter 9. Release notes

https://github.com/django/django/commit/574dd5e0b0fbb877ae5827b1603d298edc9bb2a0
https://github.com/django/django/commit/ae49b4d994656bc037513dcd064cb9ce5bb85649
https://github.com/django/django/commit/1ba1cdce7d58e6740fe51955d945b56ae51d072a
https://www.djangoproject.com/weblog/2015/jul/08/security-releases/
https://github.com/django/django/commit/8f9a4d3a2bc42f14bb437defd30c7315adbff22c
https://www.djangoproject.com/weblog/2015/aug/18/security-releases/
https://github.com/django/django/commit/2eb86b01d7b59be06076f6179a454d0fd0afaff6
https://github.com/django/django/commit/2f5485346ee6f84b4e52068c04e043092daf55f7
https://github.com/django/django/commit/575f59f9bc7c59a5e41a081d1f5f55fc859c5012
https://www.djangoproject.com/weblog/2015/nov/24/security-releases-issued/
https://github.com/django/django/commit/9f83fc2f66f5a0bac7c291aec55df66050bb6991
https://github.com/django/django/commit/8a01c6b53169ee079cb21ac5919fdafcc8c5e172
https://www.djangoproject.com/weblog/2016/feb/01/releases-192-and-189/
https://www.djangoproject.com/weblog/2016/feb/01/releases-192-and-189/
https://github.com/django/django/commit/adbca5e4db42542575734b8e5d26961c8ada7265

Django Documentation, Release 1.10.9.dev20171123183751

March 1, 2016 - CVE-2016-2512

Malicious redirect and possible XSS attack via user-supplied redirect URLs containing basic auth. Full description

Versions affected

• Django 1.9 (patch)

• Django 1.8 (patch)

March 1, 2016 - CVE-2016-2513

User enumeration through timing difference on password hasher work factor upgrade. Full description

Versions affected

• Django 1.9 (patch)

• Django 1.8 (patch)

July 18, 2016 - CVE-2016-6186

XSS in admin’s add/change related popup. Full description

Versions affected

• Django 1.9 (patch)

• Django 1.8 (patch)

September 26, 2016 - CVE-2016-7401

CSRF protection bypass on a site with Google Analytics. Full description

Versions affected

• Django 1.9 (patch)

• Django 1.8 (patch)

November 1, 2016 - CVE-2016-9013

User with hardcoded password created when running tests on Oracle. Full description

9.2. Security releases 1675

https://www.djangoproject.com/weblog/2016/mar/01/security-releases/
https://github.com/django/django/commit/fc6d147a63f89795dbcdecb0559256470fff4380
https://github.com/django/django/commit/382ab137312961ad62feb8109d70a5a581fe8350
https://www.djangoproject.com/weblog/2016/mar/01/security-releases/
https://github.com/django/django/commit/af7d09b0c5c6ab68e629fd9baf736f9dd203b18e
https://github.com/django/django/commit/f4e6e02f7713a6924d16540be279909ff4091eb6
https://www.djangoproject.com/weblog/2016/jul/18/security-releases/
https://github.com/django/django/commit/d03bf6fe4e9bf5b07de62c1a271c4b41a7d3d158
https://github.com/django/django/commit/f68e5a99164867ab0e071a936470958ed867479d
https://www.djangoproject.com/weblog/2016/sep/26/security-releases/
https://github.com/django/django/commit/d1bc980db1c0fffd6d60677e62f70beadb9fe64a
https://github.com/django/django/commit/6118ab7d0676f0d622278e5be215f14fb5410b6a
https://www.djangoproject.com/weblog/2016/nov/01/security-releases/

Django Documentation, Release 1.10.9.dev20171123183751

Versions affected

• Django 1.10 (patch)

• Django 1.9 (patch)

• Django 1.8 (patch)

November 1, 2016 - CVE-2016-9014

DNS rebinding vulnerability when DEBUG=True. Full description

Versions affected

• Django 1.10 (patch)

• Django 1.9 (patch)

• Django 1.8 (patch)

April 4, 2017 - CVE-2017-7233

Open redirect and possible XSS attack via user-supplied numeric redirect URLs. Full description

Versions affected

• Django 1.10 (patch)

• Django 1.9 (patch)

• Django 1.8 (patch)

April 4, 2017 - CVE-2017-7234

Open redirect vulnerability in django.views.static.serve(). Full description

Versions affected

• Django 1.10 (patch)

• Django 1.9 (patch)

• Django 1.8 (patch)

September 5, 2017 - CVE-2017-12794

Possible XSS in traceback section of technical 500 debug page. Full description

1676 Chapter 9. Release notes

https://github.com/django/django/commit/34e10720d81b8d407aa14d763b6a7fe8f13b4f2e
https://github.com/django/django/commit/4844d86c7728c1a5a3bbce4ad336a8d32304072b
https://github.com/django/django/commit/70f99952965a430daf69eeb9947079aae535d2d0
https://www.djangoproject.com/weblog/2016/nov/01/security-releases/
https://github.com/django/django/commit/884e113838e5a72b4b0ec9e5e87aa480f6aa4472
https://github.com/django/django/commit/45acd6d836895a4c36575f48b3fb36a3dae98d19
https://github.com/django/django/commit/c401ae9a7dfb1a94a8a61927ed541d6f93089587
https://www.djangoproject.com/weblog/2017/apr/04/security-releases/
https://github.com/django/django/commit/f824655bc2c50b19d2f202d7640785caabc82787
https://github.com/django/django/commit/254326cb3682389f55f886804d2c43f7b9f23e4f
https://github.com/django/django/commit/8339277518c7d8ec280070a780915304654e3b66
https://www.djangoproject.com/weblog/2017/apr/04/security-releases/
https://github.com/django/django/commit/2a9f6ef71b8e23fd267ee2be1be26dde8ab67037
https://github.com/django/django/commit/5f1ffb07afc1e59729ce2b283124116d6c0659e4
https://github.com/django/django/commit/4a6b945dffe8d10e7cec107d93e6efaebfbded29
https://www.djangoproject.com/weblog/2017/sep/05/security-releases/

Django Documentation, Release 1.10.9.dev20171123183751

Versions affected

• Django 1.11 (patch)

• Django 1.10 (patch)

9.2. Security releases 1677

https://github.com/django/django/commit/e35a0c56086924f331e9422daa266e907a4784cc
https://github.com/django/django/commit/58e08e80e362db79eb0fd775dc81faad90dca47a

Django Documentation, Release 1.10.9.dev20171123183751

1678 Chapter 9. Release notes

CHAPTER 10

Django internals

Documentation for people hacking on Django itself. This is the place to go if you’d like to help improve Django or
learn about how Django is managed.

10.1 Contributing to Django

Django is a community that lives on its volunteers. As it keeps growing, we always need more people to help others.
As soon as you learn Django, you can contribute in many ways:

• Join the django-users mailing list and answer questions. This mailing list has a huge audience, and we really
want to maintain a friendly and helpful atmosphere. If you’re new to the Django community, you should read
the posting guidelines.

• Join the #django IRC channel on Freenode and answer questions. By explaining Django to other users, you’re
going to learn a lot about the framework yourself.

• Blog about Django. We syndicate all the Django blogs we know about on the community page; if you’d like to
see your blog on that page you can register it here.

• Contribute to open-source Django projects, write some documentation, or release your own code as an open-
source pluggable application. The ecosystem of pluggable applications is a big strength of Django, help us build
it!

If you think working with Django is fun, wait until you start working on it. We’re passionate about helping Django
users make the jump to contributing members of the community, so there are several ways you can help Django’s
development:

• Report bugs in our ticket tracker.

• Join the django-developers mailing list and share your ideas for how to improve Django. We’re always open to
suggestions.

• Submit patches for new and/or fixed behavior. If you’re looking for an easy way to start contributing to Django
read the Writing your first patch for Django tutorial and have a look at the easy pickings tickets. The Patch
review checklist will also be helpful.

1679

https://code.djangoproject.com/wiki/UsingTheMailingList
irc://irc.freenode.net/django
https://www.djangoproject.com/community/
https://www.djangoproject.com/community/add/blogs/
https://code.djangoproject.com/
https://code.djangoproject.com/query?status=!closed&easy=1

Django Documentation, Release 1.10.9.dev20171123183751

• Improve the documentation or write unit tests.

• Triage tickets and review patches created by other users.

Really, ANYONE can do something to help make Django better and greater!

Browse the following sections to find out how:

10.1.1 Advice for new contributors

New contributor and not sure what to do? Want to help but just don’t know how to get started? This is the section for
you.

Basic tools and workflow

If you are new to contributing to Django, the Writing your first patch for Django tutorial will give you an introduction
to the tools and the workflow.

First steps

Start with these easy tasks to discover Django’s development process.

• Sign the Contributor License Agreement

The code that you write belongs to you or your employer. If your contribution is more than one or two lines of
code, you need to sign the CLA. See the Contributor License Agreement FAQ for a more thorough explanation.

• Triage tickets

If an unreviewed ticket reports a bug, try and reproduce it. If you can reproduce it and it seems valid, make a
note that you confirmed the bug and accept the ticket. Make sure the ticket is filed under the correct component
area. Consider writing a patch that adds a test for the bug’s behavior, even if you don’t fix the bug itself. See
more at How can I help with triaging?

• Look for tickets that are accepted and review patches to build familiarity with the codebase and the
process

Mark the appropriate flags if a patch needs docs or tests. Look through the changes a patch makes, and keep an
eye out for syntax that is incompatible with older but still supported versions of Python. Run the tests and make
sure they pass. Where possible and relevant, try them out on a database other than SQLite. Leave comments
and feedback!

• Keep old patches up to date

Oftentimes the codebase will change between a patch being submitted and the time it gets reviewed. Make sure
it still applies cleanly and functions as expected. Simply updating a patch is both useful and important! See
more on Submitting patches.

• Write some documentation

Django’s documentation is great but it can always be improved. Did you find a typo? Do you think that
something should be clarified? Go ahead and suggest a documentation patch! See also the guide on Writing
documentation.

Note: The reports page contains links to many useful Trac queries, including several that are useful for triaging
tickets and reviewing patches as suggested above.

1680 Chapter 10. Django internals

https://www.djangoproject.com/foundation/cla/
https://www.djangoproject.com/foundation/cla/faq/
https://code.djangoproject.com/query?status=!closed&stage=Unreviewed
https://code.djangoproject.com/wiki/Reports

Django Documentation, Release 1.10.9.dev20171123183751

Guidelines

As a newcomer on a large project, it’s easy to experience frustration. Here’s some advice to make your work on Django
more useful and rewarding.

• Pick a subject area that you care about, that you are familiar with, or that you want to learn about

You don’t already have to be an expert on the area you want to work on; you become an expert through your
ongoing contributions to the code.

• Analyze tickets’ context and history

Trac isn’t an absolute; the context is just as important as the words. When reading Trac, you need to take into
account who says things, and when they were said. Support for an idea two years ago doesn’t necessarily mean
that the idea will still have support. You also need to pay attention to who hasn’t spoken – for example, if a core
team member hasn’t been recently involved in a discussion, then a ticket may not have the support required to
get into trunk.

• Start small

It’s easier to get feedback on a little issue than on a big one. See the easy pickings.

• If you’re going to engage in a big task, make sure that your idea has support first

This means getting someone else to confirm that a bug is real before you fix the issue, and ensuring that the core
team supports a proposed feature before you go implementing it.

• Be bold! Leave feedback!

Sometimes it can be scary to put your opinion out to the world and say “this ticket is correct” or “this patch
needs work”, but it’s the only way the project moves forward. The contributions of the broad Django community
ultimately have a much greater impact than that of the core team. We can’t do it without you!

• Err on the side of caution when marking things Ready For Check-in

If you’re really not certain if a ticket is ready, don’t mark it as such. Leave a comment instead, letting others
know your thoughts. If you’re mostly certain, but not completely certain, you might also try asking on IRC to
see if someone else can confirm your suspicions.

• Wait for feedback, and respond to feedback that you receive

Focus on one or two tickets, see them through from start to finish, and repeat. The shotgun approach of taking
on lots of tickets and letting some fall by the wayside ends up doing more harm than good.

• Be rigorous

When we say “PEP 8, and must have docs and tests”, we mean it. If a patch doesn’t have docs and tests, there
had better be a good reason. Arguments like “I couldn’t find any existing tests of this feature” don’t carry much
weight–while it may be true, that means you have the extra-important job of writing the very first tests for that
feature, not that you get a pass from writing tests altogether.

FAQ

1. This ticket I care about has been ignored for days/weeks/months! What can I do to get it committed?

First off, it’s not personal. Django is entirely developed by volunteers (even the core team), and sometimes folks
just don’t have time. The best thing to do is to send a gentle reminder to the django-developers mailing list
asking for review on the ticket, or to bring it up in the #django-dev IRC channel.

2. I’m sure my ticket is absolutely 100% perfect, can I mark it as RFC myself?

Short answer: No. It’s always better to get another set of eyes on a ticket. If you’re having trouble getting that
second set of eyes, see question 1, above.

10.1. Contributing to Django 1681

https://code.djangoproject.com/query?status=!closed&easy=1
https://www.python.org/dev/peps/pep-0008

Django Documentation, Release 1.10.9.dev20171123183751

10.1.2 Reporting bugs and requesting features

Important: Please report security issues only to security@djangoproject.com. This is a private list only open to
long-time, highly trusted Django developers, and its archives are not public. For further details, please see our security
policies.

Otherwise, before reporting a bug or requesting a new feature, please consider these general points:

• Check that someone hasn’t already filed the bug or feature request by searching or running custom queries in
the ticket tracker.

• Don’t use the ticket system to ask support questions. Use the django-users list or the #django IRC channel for
that.

• Don’t reopen issues that have been marked “wontfix” by a core developer. This mark means that the decision
has been made that we can’t or won’t fix this particular issue. If you’re not sure why, please ask on django-
developers.

• Don’t use the ticket tracker for lengthy discussions, because they’re likely to get lost. If a particular ticket is
controversial, please move the discussion to django-developers.

Reporting bugs

Well-written bug reports are incredibly helpful. However, there’s a certain amount of overhead involved in working
with any bug tracking system so your help in keeping our ticket tracker as useful as possible is appreciated. In
particular:

• Do read the FAQ to see if your issue might be a well-known question.

• Do ask on django-users or #django first if you’re not sure if what you’re seeing is a bug.

• Do write complete, reproducible, specific bug reports. You must include a clear, concise description of the
problem, and a set of instructions for replicating it. Add as much debug information as you can: code snippets,
test cases, exception backtraces, screenshots, etc. A nice small test case is the best way to report a bug, as it
gives us an easy way to confirm the bug quickly.

• Don’t post to django-developers just to announce that you have filed a bug report. All the tickets are mailed to
another list, django-updates, which is tracked by developers and interested community members; we see them
as they are filed.

To understand the lifecycle of your ticket once you have created it, refer to Triaging tickets.

Reporting user interface bugs and features

If your bug or feature request touches on anything visual in nature, there are a few additional guidelines to follow:

• Include screenshots in your ticket which are the visual equivalent of a minimal testcase. Show off the issue, not
the crazy customizations you’ve made to your browser.

• If the issue is difficult to show off using a still image, consider capturing a brief screencast. If your software
permits it, capture only the relevant area of the screen.

• If you’re offering a patch which changes the look or behavior of Django’s UI, you must attach before and after
screenshots/screencasts. Tickets lacking these are difficult for triagers and core developers to assess quickly.

• Screenshots don’t absolve you of other good reporting practices. Make sure to include URLs, code snippets,
and step-by-step instructions on how to reproduce the behavior visible in the screenshots.

1682 Chapter 10. Django internals

mailto:security@djangoproject.com
https://code.djangoproject.com/search
https://code.djangoproject.com/query
irc://irc.freenode.net/django
irc://irc.freenode.net/django

Django Documentation, Release 1.10.9.dev20171123183751

• Make sure to set the UI/UX flag on the ticket so interested parties can find your ticket.

Requesting features

We’re always trying to make Django better, and your feature requests are a key part of that. Here are some tips on how
to make a request most effectively:

• Make sure the feature actually requires changes in Django’s core. If your idea can be developed as an inde-
pendent application or module — for instance, you want to support another database engine — we’ll probably
suggest that you to develop it independently. Then, if your project gathers sufficient community support, we
may consider it for inclusion in Django.

• First request the feature on the django-developers list, not in the ticket tracker. It’ll get read more closely if
it’s on the mailing list. This is even more important for large-scale feature requests. We like to discuss any big
changes to Django’s core on the mailing list before actually working on them.

• Describe clearly and concisely what the missing feature is and how you’d like to see it implemented. Include
example code (non-functional is OK) if possible.

• Explain why you’d like the feature. In some cases this is obvious, but since Django is designed to help real
developers get real work done, you’ll need to explain it, if it isn’t obvious why the feature would be useful.

If core developers agree on the feature, then it’s appropriate to create a ticket. Include a link the discussion on django-
developers in the ticket description.

As with most open-source projects, code talks. If you are willing to write the code for the feature yourself or, even
better, if you’ve already written it, it’s much more likely to be accepted. Just fork Django on GitHub, create a feature
branch, and show us your work!

See also: Documenting new features.

How we make decisions

Whenever possible, we strive for a rough consensus. To that end, we’ll often have informal votes on django-developers
about a feature. In these votes we follow the voting style invented by Apache and used on Python itself, where votes
are given as +1, +0, -0, or -1. Roughly translated, these votes mean:

• +1: “I love the idea and I’m strongly committed to it.”

• +0: “Sounds OK to me.”

• -0: “I’m not thrilled, but I won’t stand in the way.”

• -1: “I strongly disagree and would be very unhappy to see the idea turn into reality.”

Although these votes on django-developers are informal, they’ll be taken very seriously. After a suitable voting period,
if an obvious consensus arises we’ll follow the votes.

However, consensus is not always possible. If consensus cannot be reached, or if the discussion towards a consensus
fizzles out without a concrete decision, any core team member may defer the decision to the technical board.

Internally, the technical board will use the same voting mechanism. A proposition will be considered carried if:

• There are at least three “+1” votes from members of the technical board.

• There is no “-1” vote from any member of the technical board.

Votes should be submitted within a week.

Since this process allows any technical board member to veto a proposal, a “-1” vote should be accompanied by an
explanation of what it would take to convert that “-1” into at least a “+0”.

10.1. Contributing to Django 1683

Django Documentation, Release 1.10.9.dev20171123183751

Votes on technical matters should be announced and held in public on the django-developers mailing list.

10.1.3 Triaging tickets

Django uses Trac for managing the work on the code base. Trac is a community-tended garden of the bugs people
have found and the features people would like to see added. As in any garden, sometimes there are weeds to be pulled
and sometimes there are flowers and vegetables that need picking. We need your help to sort out one from the other,
and in the end we all benefit together.

Like all gardens, we can aspire to perfection but in reality there’s no such thing. Even in the most pristine garden there
are still snails and insects. In a community garden there are also helpful people who – with the best of intentions –
fertilize the weeds and poison the roses. It’s the job of the community as a whole to self-manage, keep the problems
to a minimum, and educate those coming into the community so that they can become valuable contributing members.

Similarly, while we aim for Trac to be a perfect representation of the state of Django’s progress, we acknowledge that
this simply will not happen. By distributing the load of Trac maintenance to the community, we accept that there will
be mistakes. Trac is “mostly accurate”, and we give allowances for the fact that sometimes it will be wrong. That’s
okay. We’re perfectionists with deadlines.

We rely on the community to keep participating, keep tickets as accurate as possible, and raise issues for discussion
on our mailing lists when there is confusion or disagreement.

Django is a community project, and every contribution helps. We can’t do this without you!

Triage workflow

Unfortunately, not all bug reports and feature requests in the ticket tracker provide all the required details. A number
of tickets have patches, but those patches don’t meet all the requirements of a good patch.

One way to help out is to triage tickets that have been created by other users. The core team and several community
members work on this regularly, but more help is always appreciated.

Most of the workflow is based around the concept of a ticket’s triage stages. Each stage describes where in its lifetime
a given ticket is at any time. Along with a handful of flags, this attribute easily tells us what and who each ticket is
waiting on.

Since a picture is worth a thousand words, let’s start there:

1684 Chapter 10. Django internals

https://code.djangoproject.com/

Django Documentation, Release 1.10.9.dev20171123183751

Closed tickets
resolution

Open tickets
triage state

Ready for
Checkin

Accepted

Unreviewed duplicate

fixed

invalid

needsinfo

worksforme

wontfix

completed
stopped

in progress
Ticket triagers

Committers
status

The ticket was already reported, was
already rejected, isn't a bug, doesn't contain
enough information, or can't be reproduced.

The ticket is a
bug and should

be fixed.

The ticket has a patch which applies cleanly and includes all
needed tests and docs. A core developer can commit it as is.

We’ve got two roles in this diagram:

• Committers (also called core developers): people with commit access who are responsible for making decisions
and integrating the contributions of the community.

• Ticket triagers: anyone in the Django community who chooses to become involved in Django’s development
process. Our Trac installation is intentionally left open to the public, and anyone can triage tickets. Django is a
community project, and we encourage triage by the community.

By way of example, here we see the lifecycle of an average ticket:

• Alice creates a ticket, and uploads an incomplete patch (no tests, incorrect implementation).

• Bob reviews the patch, marks it “Accepted”, “needs tests”, and “patch needs improvement”, and leaves a com-
ment telling Alice how the patch could be improved.

• Alice updates the patch, adding tests (but not changing the implementation). She removes the two flags.

• Charlie reviews the patch and resets the “patch needs improvement” flag with another comment about improving
the implementation.

• Alice updates the patch, fixing the implementation. She removes the “patch needs improvement” flag.

• Daisy reviews the patch, and marks it RFC.

• Jacob, a core developer, reviews the RFC patch, applies it to his checkout, and commits it.

10.1. Contributing to Django 1685

Django Documentation, Release 1.10.9.dev20171123183751

Some tickets require much less feedback than this, but then again some tickets require much much more.

Triage stages

Below we describe in more detail the various stages that a ticket may flow through during its lifetime.

Unreviewed

The ticket has not been reviewed by anyone who felt qualified to make a judgment about whether the ticket contained
a valid issue, a viable feature, or ought to be closed for any of the various reasons.

Accepted

The big gray area! The absolute meaning of “accepted” is that the issue described in the ticket is valid and is in some
stage of being worked on. Beyond that there are several considerations:

• Accepted + No Flags

The ticket is valid, but no one has submitted a patch for it yet. Often this means you could safely start writing
a patch for it. This is generally more true for the case of accepted bugs than accepted features. A ticket for a
bug that has been accepted means that the issue has been verified by at least one triager as a legitimate bug -
and should probably be fixed if possible. An accepted new feature may only mean that one triager thought the
feature would be good to have, but this alone does not represent a consensus view or imply with any certainty
that a patch will be accepted for that feature. Seek more feedback before writing an extensive patch if you are
in doubt.

• Accepted + Has Patch

The ticket is waiting for people to review the supplied patch. This means downloading the patch and trying it
out, verifying that it contains tests and docs, running the test suite with the included patch, and leaving feedback
on the ticket.

• Accepted + Has Patch + Needs ...

This means the ticket has been reviewed, and has been found to need further work. “Needs tests” and “Needs
documentation” are self-explanatory. “Patch needs improvement” will generally be accompanied by a comment
on the ticket explaining what is needed to improve the code.

Ready For Checkin

The ticket was reviewed by any member of the community other than the person who supplied the patch and found to
meet all the requirements for a commit-ready patch. A committer now needs to give the patch a final review prior to
being committed. See the New contributors’ FAQ for “My ticket has been in RFC forever! What should I do?”

Someday/Maybe

This stage isn’t shown on the diagram. It’s only used by core developers to keep track of high-level ideas or long term
feature requests.

These tickets are uncommon and overall less useful since they don’t describe concrete actionable issues. They are
enhancement requests that we might consider adding someday to the framework if an excellent patch is submitted.
They are not a high priority.

1686 Chapter 10. Django internals

Django Documentation, Release 1.10.9.dev20171123183751

Other triage attributes

A number of flags, appearing as checkboxes in Trac, can be set on a ticket:

Has patch

This means the ticket has an associated patch. These will be reviewed to see if the patch is “good”.

The following three fields (Needs documentation, Needs tests, Patch needs improvement) apply only if a patch has
been supplied.

Needs documentation

This flag is used for tickets with patches that need associated documentation. Complete documentation of features is
a prerequisite before we can check them into the codebase.

Needs tests

This flags the patch as needing associated unit tests. Again, this is a required part of a valid patch.

Patch needs improvement

This flag means that although the ticket has a patch, it’s not quite ready for checkin. This could mean the patch no
longer applies cleanly, there is a flaw in the implementation, or that the code doesn’t meet our standards.

Easy pickings

Tickets that would require small, easy, patches.

Type

Tickets should be categorized by type between:

• New Feature For adding something new.

• Bug For when an existing thing is broken or not behaving as expected.

• Cleanup/optimization For when nothing is broken but something could be made cleaner, better, faster,
stronger.

Component

Tickets should be classified into components indicating which area of the Django codebase they belong to. This makes
tickets better organized and easier to find.

10.1. Contributing to Django 1687

Django Documentation, Release 1.10.9.dev20171123183751

Severity

The severity attribute is used to identify blockers, that is, issues which should get fixed before releasing the next version
of Django. Typically those issues are bugs causing regressions from earlier versions or potentially causing severe data
losses. This attribute is quite rarely used and the vast majority of tickets have a severity of “Normal”.

Version

It is possible to use the version attribute to indicate in which version the reported bug was identified.

UI/UX

This flag is used for tickets that relate to User Interface and User Experiences questions. For example, this flag would
be appropriate for user-facing features in forms or the admin interface.

Cc

You may add your username or email address to this field to be notified when new contributions are made to the ticket.

Keywords

With this field you may label a ticket with multiple keywords. This can be useful, for example, to group several
tickets of a same theme. Keywords can either be comma or space separated. Keyword search finds the keyword string
anywhere in the keywords. For example, clicking on a ticket with the keyword “form” will yield similar tickets tagged
with keywords containing strings such as “formset”, “modelformset”, and “ManagementForm”.

Closing Tickets

When a ticket has completed its useful lifecycle, it’s time for it to be closed. Closing a ticket is a big responsibility,
though. You have to be sure that the issue is really resolved, and you need to keep in mind that the reporter of the
ticket may not be happy to have their ticket closed (unless it’s fixed, of course). If you’re not certain about closing a
ticket, just leave a comment with your thoughts instead.

If you do close a ticket, you should always make sure of the following:

• Be certain that the issue is resolved.

• Leave a comment explaining the decision to close the ticket.

• If there is a way they can improve the ticket to reopen it, let them know.

• If the ticket is a duplicate, reference the original ticket. Also cross-reference the closed ticket by leaving a
comment in the original one – this allows to access more related information about the reported bug or requested
feature.

• Be polite. No one likes having their ticket closed. It can be frustrating or even discouraging. The best way to
avoid turning people off from contributing to Django is to be polite and friendly and to offer suggestions for
how they could improve this ticket and other tickets in the future.

A ticket can be resolved in a number of ways:

• fixed Used by the core developers once a patch has been rolled into Django and the issue is fixed.

1688 Chapter 10. Django internals

Django Documentation, Release 1.10.9.dev20171123183751

• invalid Used if the ticket is found to be incorrect. This means that the issue in the ticket is actually the result
of a user error, or describes a problem with something other than Django, or isn’t a bug report or feature
request at all (for example, some new users submit support queries as tickets).

• wontfix Used when a core developer decides that this request is not appropriate for consideration in Django.
This is usually chosen after discussion in the django-developers mailing list. Feel free to start or join in
discussions of “wontfix” tickets on the django-developers mailing list, but please do not reopen tickets
closed as “wontfix” by a core developer.

• duplicate Used when another ticket covers the same issue. By closing duplicate tickets, we keep all the discus-
sion in one place, which helps everyone.

• worksforme Used when the ticket doesn’t contain enough detail to replicate the original bug.

• needsinfo Used when the ticket does not contain enough information to replicate the reported issue but is
potentially still valid. The ticket should be reopened when more information is supplied.

If you believe that the ticket was closed in error – because you’re still having the issue, or it’s popped up somewhere
else, or the triagers have made a mistake – please reopen the ticket and provide further information. Again, please do
not reopen tickets that have been marked as “wontfix” by core developers and bring the issue to django-developers
instead.

How can I help with triaging?

The triage process is primarily driven by community members. Really, ANYONE can help.

Core developers may provide feedback on issues they’re familiar with, or make decisions on controversial ones, but
they aren’t responsible for triaging tickets in general.

To get involved, start by creating an account on Trac. If you have an account but have forgotten your password, you
can reset it using the password reset page.

Then, you can help out by:

• Closing “Unreviewed” tickets as “invalid”, “worksforme” or “duplicate.”

• Closing “Unreviewed” tickets as “needsinfo” when the description is too sparse to be actionable, or when they’re
feature requests requiring a discussion on django-developers.

• Correcting the “Needs tests”, “Needs documentation”, or “Has patch” flags for tickets where they are incorrectly
set.

• Setting the “Easy pickings” flag for tickets that are small and relatively straightforward.

• Set the type of tickets that are still uncategorized.

• Checking that old tickets are still valid. If a ticket hasn’t seen any activity in a long time, it’s possible that the
problem has been fixed but the ticket hasn’t yet been closed.

• Identifying trends and themes in the tickets. If there are a lot of bug reports about a particular part of Django, it
may indicate we should consider refactoring that part of the code. If a trend is emerging, you should raise it for
discussion (referencing the relevant tickets) on django-developers.

• Verify if patches submitted by other users are correct. If they are correct and also contain appropriate documen-
tation and tests then move them to the “Ready for Checkin” stage. If they are not correct then leave a comment
to explain why and set the corresponding flags (“Patch needs improvement”, “Needs tests” etc.).

Note: The Reports page contains links to many useful Trac queries, including several that are useful for triaging
tickets and reviewing patches as suggested above.

10.1. Contributing to Django 1689

https://www.djangoproject.com/accounts/register/
https://www.djangoproject.com/accounts/password/reset/
https://code.djangoproject.com/query?status=!closed&easy=1
https://code.djangoproject.com/wiki/Reports

Django Documentation, Release 1.10.9.dev20171123183751

You can also find more Advice for new contributors.

However, we do ask the following of all general community members working in the ticket database:

• Please don’t close tickets as “wontfix.” The core developers will make the final determination of the fate of a
ticket, usually after consultation with the community.

• Please don’t promote your own tickets to “Ready for checkin”. You may mark other people’s tickets which
you’ve reviewed as “Ready for checkin”, but you should get at minimum one other community member to
review a patch that you submit.

• Please don’t reverse a decision that has been made by a core developer. If you disagree with a decision that has
been made, please post a message to django-developers.

• If you’re unsure if you should be making a change, don’t make the change but instead leave a comment with
your concerns on the ticket, or post a message to django-developers. It’s okay to be unsure, but your input is
still valuable.

Bisecting a regression

A regression is a bug that’s present in some newer version of Django but not in an older one. An extremely helpful
piece of information is the commit that introduced the regression. Knowing the commit that caused the change in
behavior helps identify if the change was intentional or if it was an inadvertent side-effect. Here’s how you can
determine this.

Begin by writing a regression test for Django’s test suite for the issue. For example, we’ll pretend we’re debugging
a regression in migrations. After you’ve written the test and confirmed that it fails on the latest master, put it in
a separate file that you can run standalone. For our example, we’ll pretend we created tests/migrations/
test_regression.py, which can be run with:

$./runtests.py migrations.test_regression

Next, we mark the current point in history as being “bad” since the test fails:

$ git bisect bad
You need to start by "git bisect start"
Do you want me to do it for you [Y/n]? y

Now, we need to find a point in git history before the regression was introduced (i.e. a point where the test passes).
Use something like git checkout HEAD~100 to checkout an earlier revision (100 commits earlier, in this case).
Check if the test fails. If so, mark that point as “bad” (git bisect bad), then checkout an earlier revision and
recheck. Once you find a revision where your test passes, mark it as “good”:

$ git bisect good
Bisecting: X revisions left to test after this (roughly Y steps)
...

Now we’re ready for the fun part: using git bisect run to automate the rest of the process:

$ git bisect run tests/runtests.py migrations.test_regression

You should see git bisect use a binary search to automatically checkout revisions between the good and bad
commits until it finds the first “bad” commit where the test fails.

Now, report your results on the Trac ticket, and please include the regression test as an attachment. When someone
writes a fix for the bug, they’ll already have your test as a starting point.

1690 Chapter 10. Django internals

Django Documentation, Release 1.10.9.dev20171123183751

10.1.4 Writing code

So you’d like to write some code to improve Django. Awesome! Browse the following sections to find out how to give
your code patches the best chances to be included in Django core:

Coding style

Please follow these coding standards when writing code for inclusion in Django.

Python style

• Please conform to the indentation style dictated in the .editorconfig file. We recommend using a text
editor with EditorConfig support to avoid indentation and whitespace issues. The Python files use 4 spaces for
indentation and the HTML files use 2 spaces.

• Unless otherwise specified, follow PEP 8.

Use flake8 to check for problems in this area. Note that our setup.cfg file contains some excluded files
(deprecated modules we don’t care about cleaning up and some third-party code that Django vendors) as well
as some excluded errors that we don’t consider as gross violations. Remember that PEP 8 is only a guide, so
respect the style of the surrounding code as a primary goal.

An exception to PEP 8 is our rules on line lengths. Don’t limit lines of code to 79 characters if it means the code
looks significantly uglier or is harder to read. We allow up to 119 characters as this is the width of GitHub code
review; anything longer requires horizontal scrolling which makes review more difficult. This check is included
when you run flake8. Documentation, comments, and docstrings should be wrapped at 79 characters, even
though PEP 8 suggests 72.

• Use four spaces for indentation.

• Use underscores, not camelCase, for variable, function and method names (i.e. poll.
get_unique_voters(), not poll.getUniqueVoters).

• Use InitialCaps for class names (or for factory functions that return classes).

• In docstrings, follow PEP 257. For example:

def foo():
"""
Calculate something and return the result.
"""
...

• In tests, use assertRaisesMessage() instead of assertRaises() so you can check the exception
message. Use assertRaisesRegex() (six.assertRaisesRegex() as long as we support Python 2)
only if you need to use regular expression matching.

Imports

• Use isort to automate import sorting using the guidelines below.

Quick start:

$ pip install isort
$ isort -rc .

10.1. Contributing to Django 1691

http://editorconfig.org/
https://www.python.org/dev/peps/pep-0008
https://pypi.python.org/pypi/flake8
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0257
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertRaises
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertRaisesRegex
https://github.com/timothycrosley/isort#readme

Django Documentation, Release 1.10.9.dev20171123183751

This runs isort recursively from your current directory, modifying any files that don’t conform to the guide-
lines. If you need to have imports out of order (to avoid a circular import, for example) use a comment like
this:

import module # isort:skip

• Put imports in these groups: future, standard library, third-party libraries, other Django components, local
Django component, try/excepts. Sort lines in each group alphabetically by the full module name. Place all
import module statements before from module import objects in each section. Use absolute im-
ports for other Django components and relative imports for local components.

• On each line, alphabetize the items with the upper case items grouped before the lower case items.

• Break long lines using parentheses and indent continuation lines by 4 spaces. Include a trailing comma after the
last import and put the closing parenthesis on its own line.

Use a single blank line between the last import and any module level code, and use two blank lines above the
first function or class.

For example (comments are for explanatory purposes only):

django/contrib/admin/example.py

future
from __future__ import unicode_literals

standard library
import json
from itertools import chain

third-party
import bcrypt

Django
from django.http import Http404
from django.http.response import (

Http404, HttpResponse, HttpResponseNotAllowed, StreamingHttpResponse,
cookie,

)

local Django
from .models import LogEntry

try/except
try:

import pytz
except ImportError:

pytz = None

CONSTANT = 'foo'

class Example(object):
...

• Use convenience imports whenever available. For example, do this:

from django.views import View

instead of:

1692 Chapter 10. Django internals

Django Documentation, Release 1.10.9.dev20171123183751

from django.views.generic.base import View

Template style

• In Django template code, put one (and only one) space between the curly brackets and the tag contents.

Do this:

{{ foo }}

Don’t do this:

{{foo}}

View style

• In Django views, the first parameter in a view function should be called request.

Do this:

def my_view(request, foo):
...

Don’t do this:

def my_view(req, foo):
...

Model style

• Field names should be all lowercase, using underscores instead of camelCase.

Do this:

class Person(models.Model):
first_name = models.CharField(max_length=20)
last_name = models.CharField(max_length=40)

Don’t do this:

class Person(models.Model):
FirstName = models.CharField(max_length=20)
Last_Name = models.CharField(max_length=40)

• The class Meta should appear after the fields are defined, with a single blank line separating the fields and
the class definition.

Do this:

class Person(models.Model):
first_name = models.CharField(max_length=20)
last_name = models.CharField(max_length=40)

10.1. Contributing to Django 1693

Django Documentation, Release 1.10.9.dev20171123183751

class Meta:
verbose_name_plural = 'people'

Don’t do this:

class Person(models.Model):
first_name = models.CharField(max_length=20)
last_name = models.CharField(max_length=40)
class Meta:

verbose_name_plural = 'people'

Don’t do this, either:

class Person(models.Model):
class Meta:

verbose_name_plural = 'people'

first_name = models.CharField(max_length=20)
last_name = models.CharField(max_length=40)

• If you define a __str__ method (previously __unicode__ before Python 3 was supported), decorate the
model class with python_2_unicode_compatible().

• The order of model inner classes and standard methods should be as follows (noting that these are not all
required):

– All database fields

– Custom manager attributes

– class Meta

– def __str__()

– def save()

– def get_absolute_url()

– Any custom methods

• If choices is defined for a given model field, define each choice as a tuple of tuples, with an all-uppercase
name as a class attribute on the model. Example:

class MyModel(models.Model):
DIRECTION_UP = 'U'
DIRECTION_DOWN = 'D'
DIRECTION_CHOICES = (

(DIRECTION_UP, 'Up'),
(DIRECTION_DOWN, 'Down'),

)

Use of django.conf.settings

Modules should not in general use settings stored in django.conf.settings at the top level (i.e. evaluated when
the module is imported). The explanation for this is as follows:

Manual configuration of settings (i.e. not relying on the DJANGO_SETTINGS_MODULE environment variable) is
allowed and possible as follows:

1694 Chapter 10. Django internals

Django Documentation, Release 1.10.9.dev20171123183751

from django.conf import settings

settings.configure({}, SOME_SETTING='foo')

However, if any setting is accessed before the settings.configure line, this will not work. (Internally,
settings is a LazyObject which configures itself automatically when the settings are accessed if it has not
already been configured).

So, if there is a module containing some code as follows:

from django.conf import settings
from django.urls import get_callable

default_foo_view = get_callable(settings.FOO_VIEW)

...then importing this module will cause the settings object to be configured. That means that the ability for third
parties to import the module at the top level is incompatible with the ability to configure the settings object manually,
or makes it very difficult in some circumstances.

Instead of the above code, a level of laziness or indirection must be used, such as django.utils.functional.
LazyObject, django.utils.functional.lazy() or lambda.

Miscellaneous

• Mark all strings for internationalization; see the i18n documentation for details.

• Remove import statements that are no longer used when you change code. flake8 will identify these imports
for you. If an unused import needs to remain for backwards-compatibility, mark the end of with # NOQA to
silence the flake8 warning.

• Systematically remove all trailing whitespaces from your code as those add unnecessary bytes, add visual clutter
to the patches and can also occasionally cause unnecessary merge conflicts. Some IDE’s can be configured to
automatically remove them and most VCS tools can be set to highlight them in diff outputs.

• Please don’t put your name in the code you contribute. Our policy is to keep contributors’ names in the
AUTHORS file distributed with Django – not scattered throughout the codebase itself. Feel free to include a
change to the AUTHORS file in your patch if you make more than a single trivial change.

JavaScript style

For details about the JavaScript code style used by Django, see JavaScript.

Unit tests

Django comes with a test suite of its own, in the tests directory of the code base. It’s our policy to make sure all
tests pass at all times.

We appreciate any and all contributions to the test suite!

The Django tests all use the testing infrastructure that ships with Django for testing applications. See Writing and
running tests for an explanation of how to write new tests.

10.1. Contributing to Django 1695

https://pypi.python.org/pypi/flake8

Django Documentation, Release 1.10.9.dev20171123183751

Running the unit tests

Quickstart

First, fork Django on GitHub.

Second, create and activate a virtual environment. If you’re not familiar with how to do that, read our contributing
tutorial.

Next, clone your fork, install some requirements, and run the tests:

$ git clone git@github.com:YourGitHubName/django.git django-repo
$ cd django-repo/tests
$ pip install -e ..
$ pip install -r requirements/py3.txt # Python 2: py2.txt
$./runtests.py

Installing the requirements will likely require some operating system packages that your computer doesn’t have in-
stalled. You can usually figure out which package to install by doing a Web search for the last line or so of the error
message. Try adding your operating system to the search query if needed.

If you have trouble installing the requirements, you can skip that step, except on Python 2, where you must pip
install mock. See Running all the tests for details on installing the optional test dependencies. If you don’t have
an optional dependency installed, the tests that require it will be skipped.

Running the tests requires a Django settings module that defines the databases to use. To make it easy to get started,
Django provides and uses a sample settings module that uses the SQLite database. See Using another settings module
to learn how to use a different settings module to run the tests with a different database.

Windows users

We recommend something like Git Bash to run the tests using the above approach.

Having problems? See Troubleshooting for some common issues.

Using another settings module

The included settings module (tests/test_sqlite.py) allows you to run the test suite using SQLite. If you
want to run the tests using a different database, you’ll need to define your own settings file. Some tests, such as those
for contrib.postgres, are specific to a particular database backend and will be skipped if run with a different
backend.

To run the tests with different settings, ensure that the module is on your PYTHONPATH and pass the module with
--settings.

The DATABASES setting in any test settings module needs to define two databases:

• A default database. This database should use the backend that you want to use for primary testing.

• A database with the alias other. The other database is used to test that queries can be directed to different
databases. This database should use the same backend as the default, and it must have a different name.

If you’re using a backend that isn’t SQLite, you will need to provide other details for each database:

• The USER option needs to specify an existing user account for the database. That user needs permission to
execute CREATE DATABASE so that the test database can be created.

• The PASSWORD option needs to provide the password for the USER that has been specified.

1696 Chapter 10. Django internals

https://github.com/django/django/fork
https://msysgit.github.io/

Django Documentation, Release 1.10.9.dev20171123183751

Test databases get their names by prepending test_ to the value of the NAME settings for the databases defined in
DATABASES. These test databases are deleted when the tests are finished.

You will also need to ensure that your database uses UTF-8 as the default character set. If your database server doesn’t
use UTF-8 as a default charset, you will need to include a value for CHARSET in the test settings dictionary for the
applicable database.

Running only some of the tests

Django’s entire test suite takes a while to run, and running every single test could be redundant if, say, you just added
a test to Django that you want to run quickly without running everything else. You can run a subset of the unit tests by
appending the names of the test modules to runtests.py on the command line.

For example, if you’d like to run tests only for generic relations and internationalization, type:

$./runtests.py --settings=path.to.settings generic_relations i18n

How do you find out the names of individual tests? Look in tests/ — each directory name there is the name of a
test.

If you just want to run a particular class of tests, you can specify a list of paths to individual test classes. For example,
to run the TranslationTests of the i18n module, type:

$./runtests.py --settings=path.to.settings i18n.tests.TranslationTests

Going beyond that, you can specify an individual test method like this:

$./runtests.py --settings=path.to.settings i18n.tests.TranslationTests.test_lazy_
→˓objects

Running the Selenium tests

Some tests require Selenium and a Web browser. To run these tests, you must install the selenium package and run the
tests with the --selenium=<BROWSERS> option. For example, if you have Firefox and Google Chrome installed:

$./runtests.py --selenium=firefox,chrome

See the selenium.webdriver package for the list of available browsers.

Specifying --selenium automatically sets --tags=selenium to run only the tests that require selenium.

Running all the tests

If you want to run the full suite of tests, you’ll need to install a number of dependencies:

• argon2-cffi 16.1.0+

• bcrypt

• docutils

• enum34 (Python 2 only)

• geoip2

• jinja2 2.7+

10.1. Contributing to Django 1697

https://pypi.python.org/pypi/selenium
https://github.com/SeleniumHQ/selenium/tree/master/py/selenium/webdriver
https://pypi.python.org/pypi/argon2_cffi
https://pypi.python.org/pypi/bcrypt
https://pypi.python.org/pypi/docutils
https://pypi.python.org/pypi/enum34
https://pypi.python.org/pypi/geoip2
https://pypi.python.org/pypi/jinja2

Django Documentation, Release 1.10.9.dev20171123183751

• numpy

• Pillow

• PyYAML

• pytz

• setuptools

• memcached, plus a supported Python binding

• mock (for Python 2)

• gettext (gettext on Windows)

• selenium

• sqlparse

You can find these dependencies in pip requirements files inside the tests/requirements directory of the Django
source tree and install them like so:

$ pip install -r tests/requirements/py3.txt # Python 2: py2.txt

If you encounter an error during the installation, your system might be missing a dependency for one or more of the
Python packages. Consult the failing package’s documentation or search the Web with the error message that you
encounter.

You can also install the database adapter(s) of your choice using oracle.txt, mysql.txt, or postgres.txt.

If you want to test the memcached cache backend, you’ll also need to define a CACHES setting that points at your
memcached instance.

To run the GeoDjango tests, you will need to setup a spatial database and install the Geospatial libraries.

Each of these dependencies is optional. If you’re missing any of them, the associated tests will be skipped.

Code coverage

Contributors are encouraged to run coverage on the test suite to identify areas that need additional tests. The coverage
tool installation and use is described in testing code coverage.

Coverage should be run in a single process to obtain accurate statistics. To run coverage on the Django test suite using
the standard test settings:

$ coverage run ./runtests.py --settings=test_sqlite --parallel=1

After running coverage, generate the html report by running:

$ coverage html

When running coverage for the Django tests, the included .coveragerc settings file defines coverage_html as
the output directory for the report and also excludes several directories not relevant to the results (test code or external
code included in Django).

Contrib apps

Tests for contrib apps can be found in the tests/ directory, typically under <app_name>_tests. For example,
tests for contrib.auth are located in tests/auth_tests.

1698 Chapter 10. Django internals

https://pypi.python.org/pypi/numpy
https://pypi.python.org/pypi/Pillow/
http://pyyaml.org/wiki/PyYAML
https://pypi.python.org/pypi/pytz/
https://pypi.python.org/pypi/setuptools/
http://memcached.org/
https://pypi.python.org/pypi/mock
https://www.gnu.org/software/gettext/manual/gettext.html
https://pypi.python.org/pypi/selenium
https://pypi.python.org/pypi/sqlparse
https://pip.pypa.io/en/latest/user_guide.html#requirements-files

Django Documentation, Release 1.10.9.dev20171123183751

Troubleshooting

Many test failures with UnicodeEncodeError

If the locales package is not installed, some tests will fail with a UnicodeEncodeError.

You can resolve this on Debian-based systems, for example, by running:

$ apt-get install locales
$ dpkg-reconfigure locales

You can resolve this for macOS systems by configuring your shell’s locale:

$ export LANG="en_US.UTF-8"
$ export LC_ALL="en_US.UTF-8"

Run the locale command to confirm the change. Optionally, add those export commands to your shell’s startup file
(e.g. ~/.bashrc for Bash) to avoid having to retype them.

Tests that only fail in combination

In case a test passes when run in isolation but fails within the whole suite, we have some tools to help analyze the
problem.

The --bisect option of runtests.py will run the failing test while halving the test set it is run together with on
each iteration, often making it possible to identify a small number of tests that may be related to the failure.

For example, suppose that the failing test that works on its own is ModelTest.test_eq, then using:

$./runtests.py --bisect basic.tests.ModelTest.test_eq

will try to determine a test that interferes with the given one. First, the test is run with the first half of the test suite. If
a failure occurs, the first half of the test suite is split in two groups and each group is then run with the specified test.
If there is no failure with the first half of the test suite, the second half of the test suite is run with the specified test and
split appropriately as described earlier. The process repeats until the set of failing tests is minimized.

The --pair option runs the given test alongside every other test from the suite, letting you check if another test has
side-effects that cause the failure. So:

$./runtests.py --pair basic.tests.ModelTest.test_eq

will pair test_eq with every test label.

With both --bisect and --pair, if you already suspect which cases might be responsible for the failure, you may
limit tests to be cross-analyzed by specifying further test labels after the first one:

$./runtests.py --pair basic.tests.ModelTest.test_eq queries transactions

You can also try running any set of tests in reverse using the --reverse option in order to verify that executing tests
in a different order does not cause any trouble:

$./runtests.py basic --reverse

10.1. Contributing to Django 1699

Django Documentation, Release 1.10.9.dev20171123183751

Seeing the SQL queries run during a test

If you wish to examine the SQL being run in failing tests, you can turn on SQL logging using the --debug-sql
option. If you combine this with --verbosity=2, all SQL queries will be output:

$./runtests.py basic --debug-sql

Seeing the full traceback of a test failure

By default tests are run in parallel with one process per core. When the tests are run in parallel, however, you’ll only
see a truncated traceback for any test failures. You can adjust this behavior with the --parallel option:

$./runtests.py basic --parallel=1

You can also use the DJANGO_TEST_PROCESSES environment variable for this purpose.

Support for running tests in parallel and the --parallel option were added.

Tips for writing tests

Isolating model registration

To avoid polluting the global apps registry and prevent unnecessary table creation, models defined in a test method
should be bound to a temporary Apps instance:

from django.apps.registry import Apps
from django.db import models
from django.test import SimpleTestCase

class TestModelDefinition(SimpleTestCase):
def test_model_definition(self):

test_apps = Apps(['app_label'])

class TestModel(models.Model):
class Meta:

apps = test_apps
...

django.test.utils.isolate_apps(*app_labels, attr_name=None, kwarg_name=None)

Since this pattern involves a lot of boilerplate, Django provides the isolate_apps() decorator. It’s used like this:

from django.db import models
from django.test import SimpleTestCase
from django.test.utils import isolate_apps

class TestModelDefinition(SimpleTestCase):
@isolate_apps('app_label')
def test_model_definition(self):

class TestModel(models.Model):
pass

...

Setting app_label

1700 Chapter 10. Django internals

Django Documentation, Release 1.10.9.dev20171123183751

Models defined in a test method with no explicit app_label are automatically assigned the label of the app in which
their test class is located.

In order to make sure the models defined within the context of isolate_apps() instances are correctly installed,
you should pass the set of targeted app_label as arguments:

tests/app_label/tests.py

from django.db import models
from django.test import SimpleTestCase
from django.test.utils import isolate_apps

class TestModelDefinition(SimpleTestCase):
@isolate_apps('app_label', 'other_app_label')
def test_model_definition(self):

This model automatically receives app_label='app_label'
class TestModel(models.Model):

pass

class OtherAppModel(models.Model):
class Meta:

app_label = 'other_app_label'
...

The decorator can also be applied to classes:

from django.db import models
from django.test import SimpleTestCase
from django.test.utils import isolate_apps

@isolate_apps('app_label')
class TestModelDefinition(SimpleTestCase):

def test_model_definition(self):
class TestModel(models.Model):

pass
...

The temporary Apps instance used to isolate model registration can be retrieved as an attribute when used as a class
decorator by using the attr_name parameter:

from django.db import models
from django.test import SimpleTestCase
from django.test.utils import isolate_apps

@isolate_apps('app_label', attr_name='apps')
class TestModelDefinition(SimpleTestCase):

def test_model_definition(self):
class TestModel(models.Model):

pass
self.assertIs(self.apps.get_model('app_label', 'TestModel'), TestModel)

Or as an argument on the test method when used as a method decorator by using the kwarg_name parameter:

from django.db import models
from django.test import SimpleTestCase
from django.test.utils import isolate_apps

class TestModelDefinition(SimpleTestCase):
@isolate_apps('app_label', kwarg_name='apps')

10.1. Contributing to Django 1701

Django Documentation, Release 1.10.9.dev20171123183751

def test_model_definition(self, apps):
class TestModel(models.Model):

pass
self.assertIs(apps.get_model('app_label', 'TestModel'), TestModel)

Submitting patches

We’re always grateful for patches to Django’s code. Indeed, bug reports with associated patches will get fixed far
more quickly than those without patches.

Typo fixes and trivial documentation changes

If you are fixing a really trivial issue, for example changing a word in the documentation, the preferred way to provide
the patch is using GitHub pull requests without a Trac ticket.

See the Working with Git and GitHub for more details on how to use pull requests.

“Claiming” tickets

In an open-source project with hundreds of contributors around the world, it’s important to manage communication
efficiently so that work doesn’t get duplicated and contributors can be as effective as possible.

Hence, our policy is for contributors to “claim” tickets in order to let other developers know that a particular bug or
feature is being worked on.

If you have identified a contribution you want to make and you’re capable of fixing it (as measured by your coding
ability, knowledge of Django internals and time availability), claim it by following these steps:

• Login using your GitHub account or create an account in our ticket system. If you have an account but have
forgotten your password, you can reset it using the password reset page.

• If a ticket for this issue doesn’t exist yet, create one in our ticket tracker.

• If a ticket for this issue already exists, make sure nobody else has claimed it. To do this, look at the “Owned by”
section of the ticket. If it’s assigned to “nobody,” then it’s available to be claimed. Otherwise, somebody else
may be working on this ticket. Either find another bug/feature to work on, or contact the developer working on
the ticket to offer your help. If a ticket has been assigned for weeks or months without any activity, it’s probably
safe to reassign it to yourself.

• Log into your account, if you haven’t already, by clicking “GitHub Login” or “DjangoProject Login” in the
upper left of the ticket page.

• Claim the ticket by clicking the “assign to myself” radio button under “Action” near the bottom of the page,
then click “Submit changes.”

Note: The Django software foundation requests that anyone contributing more than a trivial patch to Django sign
and submit a Contributor License Agreement, this ensures that the Django Software Foundation has clear license to
all contributions allowing for a clear license for all users.

1702 Chapter 10. Django internals

https://code.djangoproject.com/github/login
https://www.djangoproject.com/accounts/register/
https://www.djangoproject.com/accounts/password/reset/
https://code.djangoproject.com/
https://www.djangoproject.com/foundation/cla/

Django Documentation, Release 1.10.9.dev20171123183751

Ticket claimers’ responsibility

Once you’ve claimed a ticket, you have a responsibility to work on that ticket in a reasonably timely fashion. If you
don’t have time to work on it, either unclaim it or don’t claim it in the first place!

If there’s no sign of progress on a particular claimed ticket for a week or two, another developer may ask you to
relinquish the ticket claim so that it’s no longer monopolized and somebody else can claim it.

If you’ve claimed a ticket and it’s taking a long time (days or weeks) to code, keep everybody updated by posting
comments on the ticket. If you don’t provide regular updates, and you don’t respond to a request for a progress report,
your claim on the ticket may be revoked.

As always, more communication is better than less communication!

Which tickets should be claimed?

Of course, going through the steps of claiming tickets is overkill in some cases.

In the case of small changes, such as typos in the documentation or small bugs that will only take a few minutes to fix,
you don’t need to jump through the hoops of claiming tickets. Just submit your patch and be done with it.

Of course, it is always acceptable, regardless whether someone has claimed it or not, to submit patches to a ticket if
you happen to have a patch ready.

Patch style

Make sure that any contribution you do fulfills at least the following requirements:

• The code required to fix a problem or add a feature is an essential part of a patch, but it is not the only part. A
good patch should also include a regression test to validate the behavior that has been fixed and to prevent the
problem from arising again. Also, if some tickets are relevant to the code that you’ve written, mention the ticket
numbers in some comments in the test so that one can easily trace back the relevant discussions after your patch
gets committed, and the tickets get closed.

• If the code associated with a patch adds a new feature, or modifies behavior of an existing feature, the patch
should also contain documentation.

When you think your work is ready to be reviewed, send a GitHub pull request. Please review the patch yourself using
our patch review checklist first.

If you can’t send a pull request for some reason, you can also use patches in Trac. When using this style, follow these
guidelines.

• Submit patches in the format returned by the git diff command.

• Attach patches to a ticket in the ticket tracker, using the “attach file” button. Please don’t put the patch in the
ticket description or comment unless it’s a single line patch.

• Name the patch file with a .diff extension; this will let the ticket tracker apply correct syntax highlighting,
which is quite helpful.

Regardless of the way you submit your work, follow these steps.

• Make sure your code fulfills the requirements in our patch review checklist.

• Check the “Has patch” box on the ticket and make sure the “Needs documentation”, “Needs tests”, and “Patch
needs improvement” boxes aren’t checked. This makes the ticket appear in the “Patches needing review” queue
on the Development dashboard.

10.1. Contributing to Django 1703

https://code.djangoproject.com/
https://dashboard.djangoproject.com/

Django Documentation, Release 1.10.9.dev20171123183751

Non-trivial patches

A “non-trivial” patch is one that is more than a simple bug fix. It’s a patch that introduces Django functionality and
makes some sort of design decision.

If you provide a non-trivial patch, include evidence that alternatives have been discussed on django-developers.

If you’re not sure whether your patch should be considered non-trivial, just ask.

Deprecating a feature

There are a couple reasons that code in Django might be deprecated:

• If a feature has been improved or modified in a backwards-incompatible way, the old feature or behavior will be
deprecated.

• Sometimes Django will include a backport of a Python library that’s not included in a version of Python that
Django currently supports. When Django no longer needs to support the older version of Python that doesn’t
include the library, the library will be deprecated in Django.

As the deprecation policy describes, the first release of Django that deprecates a feature (A.B) should raise a
RemovedInDjangoXXWarning (where XX is the Django version where the feature will be removed) when
the deprecated feature is invoked. Assuming we have good test coverage, these warnings are converted to er-
rors when running the test suite with warnings enabled: python -Wall runtests.py. Thus, when adding
a RemovedInDjangoXXWarning you need to eliminate or silence any warnings generated when running the tests.

The first step is to remove any use of the deprecated behavior by Django itself. Next you can silence warnings in tests
that actually test the deprecated behavior by using the ignore_warnings decorator, either at the test or class level:

1. In a particular test:

from django.test import ignore_warnings
from django.utils.deprecation import RemovedInDjangoXXWarning

@ignore_warnings(category=RemovedInDjangoXXWarning)
def test_foo(self):

...

2. For an entire test case:

from django.test import ignore_warnings
from django.utils.deprecation import RemovedInDjangoXXWarning

@ignore_warnings(category=RemovedInDjangoXXWarning)
class MyDeprecatedTests(unittest.TestCase):

...

You can also add a test for the deprecation warning. You’ll have to disable the “warning as error” behavior in your test
by doing:

import warnings

def test_foo_deprecation_warning(self):
with warnings.catch_warnings(record=True) as warns:

warnings.simplefilter('always') # prevent warnings from appearing as errors
invoke deprecated behavior

self.assertEqual(len(warns), 1)

1704 Chapter 10. Django internals

Django Documentation, Release 1.10.9.dev20171123183751

msg = str(warns[0].message)
self.assertEqual(msg, 'Expected deprecation message')

Finally, there are a couple of updates to Django’s documentation to make:

1. If the existing feature is documented, mark it deprecated in documentation using the .. deprecated::
A.B annotation. Include a short description and a note about the upgrade path if applicable.

2. Add a description of the deprecated behavior, and the upgrade path if applicable, to the current release notes
(docs/releases/A.B.txt) under the “Features deprecated in A.B” heading.

3. Add an entry in the deprecation timeline (docs/internals/deprecation.txt) under the appropriate
version describing what code will be removed.

Once you have completed these steps, you are finished with the deprecation. In each feature release, all
RemovedInDjangoXXWarnings matching the new version are removed.

JavaScript patches

For information on JavaScript patches, see the JavaScript patches documentation.

Patch review checklist

Use this checklist to review a pull request. If you are reviewing a pull request that is not your own and it passes all the
criteria below, please set the “Triage Stage” on the corresponding Trac ticket to “Ready for checkin”. If you’ve left
comments for improvement on the pull request, please tick the appropriate flags on the Trac ticket based on the results
of your review: “Patch needs improvement”, “Needs documentation”, and/or “Needs tests”. As time and interest
permits, core developers do final reviews of “Ready for checkin” tickets and will either commit the patch or bump it
back to “Accepted” if further works need to be done. If you’re looking to become a core developer, doing thorough
reviews of patches is a great way to earn trust.

Looking for a patch to review? Check out the “Patches needing review” section of the Django Development Dashboard.
Looking to get your patch reviewed? Ensure the Trac flags on the ticket are set so that the ticket appears in that queue.

Documentation

• Does the documentation build without any errors (make html, or make.bat html on Windows, from the
docs directory)?

• Does the documentation follow the writing style guidelines in Writing documentation?

• Are there any spelling errors?

Bugs

• Is there a proper regression test (the test should fail before the fix is applied)?

New Features

• Are there tests to “exercise” all of the new code?

• Is there a release note in docs/releases/A.B.txt?

10.1. Contributing to Django 1705

https://dashboard.djangoproject.com/

Django Documentation, Release 1.10.9.dev20171123183751

• Is there documentation for the feature and is it annotated appropriately with .. versionadded:: A.B
or .. versionchanged:: A.B?

Deprecating a feature

See the Deprecating a feature guide.

All code changes

• Does the coding style conform to our guidelines? Are there any flake8 errors?

• If the change is backwards incompatible in any way, is there a note in the release notes (docs/releases/
A.B.txt)?

• Is Django’s test suite passing? Ask in #django-dev for a core dev to build the pull request against our
continuous integration server.

All tickets

• Is the pull request a single squashed commit with a message that follows our commit message format?

• Are you the patch author and a new contributor? Please add yourself to the AUTHORS file and submit a Con-
tributor License Agreement.

Working with Git and GitHub

This section explains how the community can contribute code to Django via pull requests. If you’re interested in how
core developers handle them, see Committing code.

Below, we are going to show how to create a GitHub pull request containing the changes for Trac ticket #xxxxx. By
creating a fully-ready pull request, you will make the reviewer’s job easier, meaning that your work is more likely to
be merged into Django.

You could also upload a traditional patch to Trac, but it’s less practical for reviews.

Installing Git

Django uses Git for its source control. You can download Git, but it’s often easier to install with your operating
system’s package manager.

Django’s Git repository is hosted on GitHub, and it is recommended that you also work using GitHub.

After installing Git, the first thing you should do is setup your name and email:

$ git config --global user.name "Your Real Name"
$ git config --global user.email "you@email.com"

Note that user.name should be your real name, not your GitHub nick. GitHub should know the email you use in
the user.email field, as this will be used to associate your commits with your GitHub account.

1706 Chapter 10. Django internals

https://www.djangoproject.com/foundation/cla/
https://www.djangoproject.com/foundation/cla/
http://git-scm.com/
http://git-scm.com/download
https://github.com/django/django/
https://github.com/

Django Documentation, Release 1.10.9.dev20171123183751

Setting up local repository

When you have created your GitHub account, with the nick “GitHub_nick”, and forked Django’s repository, create a
local copy of your fork:

git clone git@github.com:GitHub_nick/django.git

This will create a new directory “django”, containing a clone of your GitHub repository. The rest of the git commands
on this page need to be run within the cloned directory, so switch to it now:

cd django

Your GitHub repository will be called “origin” in Git.

You should also setup django/django as an “upstream” remote (that is, tell git that the reference Django repository
was the source of your fork of it):

git remote add upstream git@github.com:django/django.git
git fetch upstream

You can add other remotes similarly, for example:

git remote add akaariai git@github.com:akaariai/django.git

Working on a ticket

When working on a ticket, create a new branch for the work, and base that work on upstream/master:

git checkout -b ticket_xxxxx upstream/master

The -b flag creates a new branch for you locally. Don’t hesitate to create new branches even for the smallest things -
that’s what they are there for.

If instead you were working for a fix on the 1.4 branch, you would do:

git checkout -b ticket_xxxxx_1_4 upstream/stable/1.4.x

Assume the work is carried on the ticket_xxxxx branch. Make some changes and commit them:

git commit

When writing the commit message, follow the commit message guidelines to ease the work of the committer. If you’re
uncomfortable with English, try at least to describe precisely what the commit does.

If you need to do additional work on your branch, commit as often as necessary:

git commit -m 'Added two more tests for edge cases'

Publishing work

You can publish your work on GitHub just by doing:

git push origin ticket_xxxxx

10.1. Contributing to Django 1707

https://github.com/django/django/fork

Django Documentation, Release 1.10.9.dev20171123183751

When you go to your GitHub page, you will notice a new branch has been created.

If you are working on a Trac ticket, you should mention in the ticket that your work is available from branch
ticket_xxxxx of your GitHub repo. Include a link to your branch.

Note that the above branch is called a “topic branch” in Git parlance. You are free to rewrite the history of this branch,
by using git rebase for example. Other people shouldn’t base their work on such a branch, because their clone
would become corrupt when you edit commits.

There are also “public branches”. These are branches other people are supposed to fork, so the history of these
branches should never change. Good examples of public branches are the master and stable/A.B.x branches in
the django/django repository.

When you think your work is ready to be pulled into Django, you should create a pull request at GitHub. A good pull
request means:

• commits with one logical change in each, following the coding style,

• well-formed messages for each commit: a summary line and then paragraphs wrapped at 72 characters thereafter
– see the committing guidelines for more details,

• documentation and tests, if needed – actually tests are always needed, except for documentation changes.

The test suite must pass and the documentation must build without warnings.

Once you have created your pull request, you should add a comment in the related Trac ticket explaining what you’ve
done. In particular, you should note the environment in which you ran the tests, for instance: “all tests pass under
SQLite and MySQL”.

Pull requests at GitHub have only two states: open and closed. The committer who will deal with your pull request
has only two options: merge it or close it. For this reason, it isn’t useful to make a pull request until the code is ready
for merging – or sufficiently close that a committer will finish it himself.

Rebasing branches

In the example above, you created two commits, the “Fixed ticket_xxxxx” commit and “Added two more tests”
commit.

We do not want to have the entire history of your working process in your repository. Your commit “Added two more
tests” would be unhelpful noise. Instead, we would rather only have one commit containing all your work.

To rework the history of your branch you can squash the commits into one by using interactive rebase:

git rebase -i HEAD~2

The HEAD~2 above is shorthand for two latest commits. The above command will open an editor showing the two
commits, prefixed with the word “pick”.

Change “pick” on the second line to “squash” instead. This will keep the first commit, and squash the second commit
into the first one. Save and quit the editor. A second editor window should open, so you can reword the commit
message for the commit now that it includes both your steps.

You can also use the “edit” option in rebase. This way you can change a single commit, for example to fix a typo in a
docstring:

git rebase -i HEAD~3
Choose edit, pick, pick for the commits
Now you are able to rework the commit (use git add normally to add changes)
When finished, commit work with "--amend" and continue
git commit --amend
Reword the commit message if needed

1708 Chapter 10. Django internals

Django Documentation, Release 1.10.9.dev20171123183751

git rebase --continue
The second and third commits should be applied.

If your topic branch is already published at GitHub, for example if you’re making minor changes to take into account
a review, you will need to force-push the changes:

git push -f origin ticket_xxxxx

Note that this will rewrite history of ticket_xxxxx - if you check the commit hashes before and after the operation at
GitHub you will notice that the commit hashes do not match anymore. This is acceptable, as the branch is merely a
topic branch, and nobody should be basing their work on it.

After upstream has changed

When upstream (django/django) has changed, you should rebase your work. To do this, use:

git fetch upstream
git rebase

The work is automatically rebased using the branch you forked on, in the example case using upstream/master.

The rebase command removes all your local commits temporarily, applies the upstream commits, and then applies
your local commits again on the work.

If there are merge conflicts, you will need to resolve them and then use git rebase --continue. At any point
you can use git rebase --abort to return to the original state.

Note that you want to rebase on upstream, not merge the upstream.

The reason for this is that by rebasing, your commits will always be on top of the upstream’s work, not mixed in
with the changes in the upstream. This way your branch will contain only commits related to its topic, which makes
squashing easier.

After review

It is unusual to get any non-trivial amount of code into core without changes requested by reviewers. In this case, it
is often a good idea to add the changes as one incremental commit to your work. This allows the reviewer to easily
check what changes you have done.

In this case, do the changes required by the reviewer. Commit as often as necessary. Before publishing the changes,
rebase your work. If you added two commits, you would run:

git rebase -i HEAD~2

Squash the second commit into the first. Write a commit message along the lines of:

Made changes asked in review by <reviewer>

- Fixed whitespace errors in foobar
- Reworded the docstring of bar()

Finally, push your work back to your GitHub repository. Since you didn’t touch the public commits during the rebase,
you should not need to force-push:

git push origin ticket_xxxxx

10.1. Contributing to Django 1709

Django Documentation, Release 1.10.9.dev20171123183751

Your pull request should now contain the new commit too.

Note that the committer is likely to squash the review commit into the previous commit when committing the code.

Working on a patch

One of the ways that developers can contribute to Django is by reviewing patches. Those patches will typically exist
as pull requests on GitHub and can be easily integrated into your local repository:

git checkout -b pull_xxxxx upstream/master
curl https://github.com/django/django/pull/xxxxx.patch | git am

This will create a new branch and then apply the changes from the pull request to it. At this point you can run the tests
or do anything else you need to do to investigate the quality of the patch.

For more detail on working with pull requests see the guidelines for committers.

Summary

• Work on GitHub if you can.

• Announce your work on the Trac ticket by linking to your GitHub branch.

• When you have something ready, make a pull request.

• Make your pull requests as good as you can.

• When doing fixes to your work, use git rebase -i to squash the commits.

• When upstream has changed, do git fetch upstream; git rebase.

JavaScript

While most of Django core is Python, the admin and gis contrib apps contain JavaScript code.

Please follow these coding standards when writing JavaScript code for inclusion in Django.

Code style

• Please conform to the indentation style dictated in the .editorconfig file. We recommend using a text
editor with EditorConfig support to avoid indentation and whitespace issues. Most of the JavaScript files use 4
spaces for indentation, but there are some exceptions.

• When naming variables, use camelCase instead of underscore_case. Different JavaScript files some-
times use a different code style. Please try to conform to the code style of each file.

• Use the JSHint code linter to check your code for bugs and style errors. JSHint will be run when you run the
JavaScript tests. We also recommended installing a JSHint plugin in your text editor.

JavaScript patches

Django’s admin system leverages the jQuery framework to increase the capabilities of the admin interface. In conjunc-
tion, there is an emphasis on admin JavaScript performance and minimizing overall admin media file size. Serving
compressed or “minified” versions of JavaScript files is considered best practice in this regard.

1710 Chapter 10. Django internals

http://editorconfig.org/
http://jshint.com/

Django Documentation, Release 1.10.9.dev20171123183751

To that end, patches for JavaScript files should include both the original code for future development (e.g. foo.js),
and a compressed version for production use (e.g. foo.min.js). Any links to the file in the codebase should point
to the compressed version.

Compressing JavaScript

To simplify the process of providing optimized JavaScript code, Django includes a handy Python script which should
be used to create a “minified” version. To run it:

$ pip install closure
$ python django/contrib/admin/bin/compress.py

Behind the scenes, compress.py is a front-end for Google’s Closure Compiler which is written in Java. The Closure
Compiler library is not bundled with Django, but you can install it using pip as done above. The Closure Compiler
library requires Java 7 or higher.

Please don’t forget to run compress.py and include the diff of the minified scripts when submitting patches for
Django’s JavaScript.

JavaScript tests

Django’s JavaScript tests can be run in a browser or from the command line. The tests are located in a top level
js_tests directory.

Writing tests

Django’s JavaScript tests use QUnit. Here is an example test module:

module('magicTricks', {
beforeEach: function() {

var $ = django.jQuery;
$('#qunit-fixture').append('<button class="button"></button>');

}
});

test('removeOnClick removes button on click', function(assert) {
var $ = django.jQuery;
removeOnClick('.button');
assert.equal($('.button').length === 1);
$('.button').click();
assert.equal($('.button').length === 0);

});

test('copyOnClick adds button on click', function(assert) {
var $ = django.jQuery;
copyOnClick('.button');
assert.equal($('.button').length === 1);
$('.button').click();
assert.equal($('.button').length === 2);

});

Please consult the QUnit documentation for information on the types of assertions supported by QUnit.

10.1. Contributing to Django 1711

https://developers.google.com/closure/compiler/
https://www.java.com
https://qunitjs.com/
https://api.qunitjs.com/category/assert/

Django Documentation, Release 1.10.9.dev20171123183751

Running tests

The JavaScript tests may be run from a web browser or from the command line.

Testing from a web browser

To run the tests from a web browser, open up js_tests/tests.html in your browser.

To measure code coverage when running the tests, you need to view that file over HTTP. To view code coverage:

• Execute python -m http.server (or python -m SimpleHTTPServer on Python 2) from the root
directory (not from inside js_tests).

• Open http://localhost:8000/js_tests/tests.html in your web browser.

Testing from the command line

To run the tests from the command line, you need to have Node.js installed.

After installing Node.js, install the JavaScript test dependencies by running the following from the root of your Django
checkout:

$ npm install

Then run the tests with:

$ npm test

10.1.5 Writing documentation

We place a high importance on consistency and readability of documentation. After all, Django was created in a
journalism environment! So we treat our documentation like we treat our code: we aim to improve it as often as
possible.

Documentation changes generally come in two forms:

• General improvements: typo corrections, error fixes and better explanations through clearer writing and more
examples.

• New features: documentation of features that have been added to the framework since the last release.

This section explains how writers can craft their documentation changes in the most useful and least error-prone ways.

Getting the raw documentation

Though Django’s documentation is intended to be read as HTML at https://docs.djangoproject.com/, we edit it as a
collection of text files for maximum flexibility. These files live in the top-level docs/ directory of a Django release.

If you’d like to start contributing to our docs, get the development version of Django from the source code repository
(see Installing the development version). The development version has the latest-and-greatest documentation, just
as it has latest-and-greatest code. We also backport documentation fixes and improvements, at the discretion of the
committer, to the last release branch. That’s because it’s highly advantageous to have the docs for the last release be
up-to-date and correct (see Differences between versions).

1712 Chapter 10. Django internals

http://localhost:8000/js_tests/tests.html
https://nodejs.org/
https://docs.djangoproject.com/

Django Documentation, Release 1.10.9.dev20171123183751

Getting started with Sphinx

Django’s documentation uses the Sphinx documentation system, which in turn is based on docutils. The basic idea is
that lightly-formatted plain-text documentation is transformed into HTML, PDF, and any other output format.

To actually build the documentation locally, you’ll currently need to install Sphinx – pip install Sphinx should
do the trick.

Then, building the HTML is easy; just make html (or make.bat html on Windows) from the docs directory.

To get started contributing, you’ll want to read the reStructuredText Primer. After that, you’ll want to read about the
Sphinx-specific markup that’s used to manage metadata, indexing, and cross-references.

How the documentation is organized

The documentation is organized into several categories:

• Tutorials take the reader by the hand through a series of steps to create something.

The important thing in a tutorial is to help the reader achieve something useful, preferably as early as possible,
in order to give them confidence.

Explain the nature of the problem we’re solving, so that the reader understands what we’re trying to achieve.
Don’t feel that you need to begin with explanations of how things work - what matters is what the reader does,
not what you explain. It can be helpful to refer back to what you’ve done and explain afterwards.

• Topic guides aim to explain a concept or subject at a fairly high level.

Link to reference material rather than repeat it. Use examples and don’t be reluctant to explain things that seem
very basic to you - it might be the explanation someone else needs.

Providing background context helps a newcomer connect the topic to things that they already know.

• Reference guides contain technical reference for APIs. They describe the functioning of Django’s internal
machinery and instruct in its use.

Keep reference material tightly focused on the subject. Assume that the reader already understands the basic
concepts involved but needs to know or be reminded of how Django does it.

Reference guides aren’t the place for general explanation. If you find yourself explaining basic concepts, you
may want to move that material to a topic guide.

• How-to guides are recipes that take the reader through steps in key subjects.

What matters most in a how-to guide is what a user wants to achieve. A how-to should always be result-oriented
rather than focused on internal details of how Django implements whatever is being discussed.

These guides are more advanced than tutorials and assume some knowledge about how Django works. Assume
that the reader has followed the tutorials and don’t hesitate to refer the reader back to the appropriate tutorial
rather than repeat the same material.

Writing style

When using pronouns in reference to a hypothetical person, such as “a user with a session cookie”, gender neutral
pronouns (they/their/them) should be used. Instead of:

• he or she... use they.

• him or her... use them.

• his or her... use their.

10.1. Contributing to Django 1713

http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://www.sphinx-doc.org/en/stable/rest.html#rst-primer
http://www.sphinx-doc.org/en/stable/markup/index.html#sphinxmarkup

Django Documentation, Release 1.10.9.dev20171123183751

• his or hers... use theirs.

• himself or herself... use themselves.

Commonly used terms

Here are some style guidelines on commonly used terms throughout the documentation:

• Django – when referring to the framework, capitalize Django. It is lowercase only in Python code and in the
djangoproject.com logo.

• email – no hyphen.

• MySQL, PostgreSQL, SQLite

• SQL – when referring to SQL, the expected pronunciation should be “Ess Queue Ell” and not “sequel”. Thus
in a phrase like “Returns an SQL expression”, “SQL” should be preceded by “an” and not “a”.

• Python – when referring to the language, capitalize Python.

• realize, customize, initialize, etc. – use the American “ize” suffix, not “ise.”

• subclass – it’s a single word without a hyphen, both as a verb (“subclass that model”) and as a noun (“create a
subclass”).

• Web, World Wide Web, the Web – note Web is always capitalized when referring to the World Wide Web.

• website – use one word, without capitalization.

Django-specific terminology

• model – it’s not capitalized.

• template – it’s not capitalized.

• URLconf – use three capitalized letters, with no space before “conf.”

• view – it’s not capitalized.

Guidelines for reStructuredText files

These guidelines regulate the format of our reST (reStructuredText) documentation:

• In section titles, capitalize only initial words and proper nouns.

• Wrap the documentation at 80 characters wide, unless a code example is significantly less readable when split
over two lines, or for another good reason.

• The main thing to keep in mind as you write and edit docs is that the more semantic markup you can add the
better. So:

Add ``django.contrib.auth`` to your ``INSTALLED_APPS``...

Isn’t nearly as helpful as:

Add :mod:`django.contrib.auth` to your :setting:`INSTALLED_APPS`...

This is because Sphinx will generate proper links for the latter, which greatly helps readers.

You can prefix the target with a ~ (that’s a tilde) to get just the “last bit” of that path. So :mod:`~django.
contrib.auth` will just display a link with the title “auth”.

1714 Chapter 10. Django internals

Django Documentation, Release 1.10.9.dev20171123183751

• Use intersphinx to reference Python’s and Sphinx’ documentation.

• Add .. code-block:: <lang> to literal blocks so that they get highlighted. Prefer relying on automatic
highlighting simply using :: (two colons). This has the benefit that if the code contains some invalid syntax,
it won’t be highlighted. Adding .. code-block:: python, for example, will force highlighting despite
invalid syntax.

• Use these heading styles:

===
One
===

Two
===

Three

Four
~~~~

Five
^^^^

Django-specific markup

Besides the Sphinx built-in markup, Django’s docs defines some extra description units:

• Settings:

.. setting:: INSTALLED_APPS

To link to a setting, use :setting:`INSTALLED_APPS`.

• Template tags:

.. templatetag:: regroup

To link, use :ttag:`regroup`.

• Template filters:

.. templatefilter:: linebreaksbr

To link, use :tfilter:`linebreaksbr`.

• Field lookups (i.e. Foo.objects.filter(bar__exact=whatever)):

.. fieldlookup:: exact

To link, use :lookup:`exact`.

• django-admin commands:

.. django-admin:: migrate

To link, use :djadmin:`migrate`.

10.1. Contributing to Django 1715

http://www.sphinx-doc.org/en/stable/ext/intersphinx.html#module-sphinx.ext.intersphinx
http://www.sphinx-doc.org/en/stable/markup/index.html#sphinxmarkup


Django Documentation, Release 1.10.9.dev20171123183751

• django-admin command-line options:

.. django-admin-option:: --traceback

To link, use :option:`command_name --traceback` (or omit command_name for the options
shared by all commands like --verbosity).

• Links to Trac tickets (typically reserved for patch release notes):

:ticket:`12345`

Documenting new features

Our policy for new features is:

All documentation of new features should be written in a way that clearly designates the features are only
available in the Django development version. Assume documentation readers are using the latest release,
not the development version.

Our preferred way for marking new features is by prefacing the features’ documentation with: “..
versionadded:: X.Y”, followed by a mandatory blank line and an optional description (indented).

General improvements, or other changes to the APIs that should be emphasized should use the “..
versionchanged:: X.Y” directive (with the same format as the versionadded mentioned above.

These versionadded and versionchanged blocks should be “self-contained.” In other words, since we only
keep these annotations around for two releases, it’s nice to be able to remove the annotation and its contents without
having to reflow, reindent, or edit the surrounding text. For example, instead of putting the entire description of a new
or changed feature in a block, do something like this:

.. class:: Author(first_name, last_name, middle_name=None)

A person who writes books.

``first_name`` is ...

...

``middle_name`` is ...

.. versionchanged:: A.B

The ``middle_name`` argument was added.

Put the changed annotation notes at the bottom of a section, not the top.

Also, avoid referring to a specific version of Django outside a versionadded or versionchanged block. Even
inside a block, it’s often redundant to do so as these annotations render as “New in Django A.B:” and “Changed in
Django A.B”, respectively.

If a function, attribute, etc. is added, it’s also okay to use a versionadded annotation like this:

.. attribute:: Author.middle_name

.. versionadded:: A.B

An author's middle name.

1716 Chapter 10. Django internals



Django Documentation, Release 1.10.9.dev20171123183751

We can simply remove the .. versionadded:: A.B annotation without any indentation changes when the
time comes.

Minimizing images

Optimize image compression where possible. For PNG files, use OptiPNG and AdvanceCOMP’s advpng:

$ cd docs/
$ optipng -o7 -zm1-9 -i0 -strip all `find . -type f -not -path "./_build/*" -name "*.
→˓png"`
$ advpng -z4 `find . -type f -not -path "./_build/*" -name "*.png"`

This is based on OptiPNG version 0.7.5. Older versions may complain about the --strip all option being lossy.

An example

For a quick example of how it all fits together, consider this hypothetical example:

• First, the ref/settings.txt document could have an overall layout like this:

========
Settings
========

...

.. _available-settings:

Available settings
==================

...

.. _deprecated-settings:

Deprecated settings
===================

...

• Next, the topics/settings.txt document could contain something like this:

You can access a :ref:`listing of all available settings
<available-settings>`. For a list of deprecated settings see
:ref:`deprecated-settings`.

You can find both in the :doc:`settings reference document
</ref/settings>`.

We use the Sphinx doc cross reference element when we want to link to another document as a whole and the
ref element when we want to link to an arbitrary location in a document.

• Next, notice how the settings are annotated:

.. setting:: ADMINS

ADMINS

10.1. Contributing to Django 1717

http://www.sphinx-doc.org/en/stable/markup/inline.html#role-doc
http://www.sphinx-doc.org/en/stable/markup/inline.html#role-ref


Django Documentation, Release 1.10.9.dev20171123183751

======

Default: ``[]`` (Empty list)

A list of all the people who get code error notifications. When
``DEBUG=False`` and a view raises an exception, Django will email these people
with the full exception information. Each member of the list should be a tuple
of (Full name, email address). Example::

[('John', 'john@example.com'), ('Mary', 'mary@example.com')]

Note that Django will email *all* of these people whenever an error happens.
See :doc:`/howto/error-reporting` for more information.

This marks up the following header as the “canonical” target for the setting ADMINS. This means any time I
talk about ADMINS, I can reference it using :setting:`ADMINS`.

That’s basically how everything fits together.

Spelling check

Before you commit your docs, it’s a good idea to run the spelling checker. You’ll need to install a couple packages
first:

• pyenchant (which requires enchant)

• sphinxcontrib-spelling

Then from the docs directory, run make spelling. Wrong words (if any) along with the file and line number
where they occur will be saved to _build/spelling/output.txt.

If you encounter false-positives (error output that actually is correct), do one of the following:

• Surround inline code or brand/technology names with grave accents (‘).

• Find synonyms that the spell checker recognizes.

• If, and only if, you are sure the word you are using is correct - add it to docs/spelling_wordlist (please
keep the list in alphabetical order).

Translating documentation

See Localizing the Django documentation if you’d like to help translate the documentation into another language.

django-admin man page

Sphinx can generate a manual page for the django-admin command. This is configured in docs/conf.py. Unlike
other documentation output, this man page should be included in the Django repository and the releases as docs/
man/django-admin.1. There isn’t a need to update this file when updating the documentation, as it’s updated
once as part of the release process.

To generate an updated version of the man page, run make man in the docs directory. The new man page will be
written in docs/_build/man/django-admin.1.

1718 Chapter 10. Django internals

https://pypi.python.org/pypi/pyenchant/
http://www.abisource.com/projects/enchant/
https://pypi.python.org/pypi/sphinxcontrib-spelling/


Django Documentation, Release 1.10.9.dev20171123183751

10.1.6 Localizing Django

Various parts of Django, such as the admin site and validation error messages, are internationalized. This means they
display differently depending on each user’s language or country. For this, Django uses the same internationalization
and localization infrastructure available to Django applications, described in the i18n documentation.

Translations

Translations are contributed by Django users worldwide. The translation work is coordinated at Transifex.

If you find an incorrect translation or want to discuss specific translations, go to the Django project page. If you would
like to help out with translating or add a language that isn’t yet translated, here’s what to do:

• Join the Django i18n mailing list and introduce yourself.

• Make sure you read the notes about Specialties of Django translation.

• Sign up at Transifex and visit the Django project page.

• On the Django project page, choose the language you want to work on, or – in case the language doesn’t exist
yet – request a new language team by clicking on the “Request language” link and selecting the appropriate
language.

• Then, click the “Join this Team” button to become a member of this team. Every team has at least one coordinator
who is responsible to review your membership request. You can of course also contact the team coordinator to
clarify procedural problems and handle the actual translation process.

• Once you are a member of a team choose the translation resource you want to update on the team page. For
example the “core” resource refers to the translation catalog that contains all non-contrib translations. Each of
the contrib apps also have a resource (prefixed with “contrib”).

Note: For more information about how to use Transifex, read the Transifex User Guide.

Translations from Transifex are only integrated into the Django repository at the time of a new feature release. We try
to update them a second time during one of the following patch releases, but that depends on the translation manager’s
availability. So don’t miss the string freeze period (between the release candidate and the feature release) to take the
opportunity to complete and fix the translations for your language!

Formats

You can also review conf/locale/<locale>/formats.py. This file describes the date, time and numbers
formatting particularities of your locale. See Format localization for details.

The format files aren’t managed by the use of Transifex. To change them, you must create a patch against the Django
source tree, as for any code change:

• Create a diff against the current Git master branch.

• Open a ticket in Django’s ticket system, set its Component field to Translations, and attach the patch to
it.

Documentation

There is also an opportunity to translate the documentation, though this is a huge undertaking to complete entirely
(you have been warned!). We use the same Transifex tool. The translations will appear at https://docs.

10.1. Contributing to Django 1719

https://www.transifex.com/
https://www.transifex.com/django/django/
https://www.transifex.com/
https://www.transifex.com/django/django/
https://www.transifex.com/django/django/
http://docs.transifex.com/
https://www.transifex.com/django/django-docs/


Django Documentation, Release 1.10.9.dev20171123183751

djangoproject.com/<language_code>/ when at least the docs/intro/* files are fully translated in
your language.

10.1.7 Committing code

This section is addressed to the Committers and to anyone interested in knowing how code gets committed into Django
core. If you’re a community member who wants to contribute code to Django, have a look at Working with Git and
GitHub instead.

Handling pull requests

Since Django is now hosted at GitHub, most patches are provided in the form of pull requests.

When committing a pull request, make sure each individual commit matches the commit guidelines described below.
Contributors are expected to provide the best pull requests possible. In practice however, committers - who will likely
be more familiar with the commit guidelines - may decide to bring a commit up to standard themselves.

Note: Before merging, but after reviewing, have Jenkins test the pull request by commenting “buildbot, test this
please” on the PR. See our Jenkins wiki page for more details.

An easy way to checkout a pull request locally is to add an alias to your ~/.gitconfig (upstream is assumed to
be django/django):

[alias]
pr = !sh -c \"git fetch upstream pull/${1}/head:pr/${1} && git checkout pr/${1}\"

Now you can simply run git pr #### to checkout the corresponding pull request.

At this point, you can work on the code. Use git rebase -i and git commit --amend to make sure the
commits have the expected level of quality. Once you’re ready:

$ # Pull in the latest changes from master.
$ git checkout master
$ git pull upstream master
$ # Rebase the pull request on master.
$ git checkout pr/####
$ git rebase master
$ git checkout master
$ # Merge the work as "fast-forward" to master to avoid a merge commit.
$ # (in practice, you can omit "--ff-only" since you just rebased)
$ git merge --ff-only pr/XXXX
$ # If you're not sure if you did things correctly, check that only the
$ # changes you expect will be pushed to upstream.
$ git push --dry-run upstream master
$ # Push!
$ git push upstream master
$ # Delete the pull request branch.
$ git branch -d pr/xxxx

For changes on your own branches, force push to your fork after rebasing on master but before merging and pushing
to upstream. This allows the commit hashes on master and your branch to match which automatically closes the pull
request. Since you can’t push to other contributors’ branches, comment on the pull request “Merged in XXXXXXX”
(replacing with the commit hash) after you merge it. Trac checks for this message format to indicate on the ticket page
whether or not a pull request is merged.

1720 Chapter 10. Django internals

https://code.djangoproject.com/wiki/Jenkins


Django Documentation, Release 1.10.9.dev20171123183751

Avoid using GitHub’s “Merge pull request” button on the website as it creates an ugly “merge commit” and makes
navigating history more difficult.

When rewriting the commit history of a pull request, the goal is to make Django’s commit history as usable as possible:

• If a patch contains back-and-forth commits, then rewrite those into one. For example, if a commit adds some
code and a second commit fixes stylistic issues introduced in the first commit, those commits should be squashed
before merging.

• Separate changes to different commits by logical grouping: if you do a stylistic cleanup at the same time as you
do other changes to a file, separating the changes into two different commits will make reviewing history easier.

• Beware of merges of upstream branches in the pull requests.

• Tests should pass and docs should build after each commit. Neither the tests nor the docs should emit warnings.

• Trivial and small patches usually are best done in one commit. Medium to large work may be split into multiple
commits if it makes sense.

Practicality beats purity, so it is up to each committer to decide how much history mangling to do for a pull request.
The main points are engaging the community, getting work done, and having a usable commit history.

Committing guidelines

In addition, please follow the following guidelines when committing code to Django’s Git repository:

• Never change the published history of django/django branches by force pushing. If you absolutely must
(for security reasons for example), first discuss the situation with the team.

• For any medium-to-big changes, where “medium-to-big” is according to your judgment, please bring things up
on the django-developers mailing list before making the change.

If you bring something up on django-developers and nobody responds, please don’t take that to mean your idea
is great and should be implemented immediately because nobody contested it. Django’s core developers don’t
have a lot of time to read mailing-list discussions immediately, so you may have to wait a couple of days before
getting a response.

• Write detailed commit messages in the past tense, not present tense.

– Good: “Fixed Unicode bug in RSS API.”

– Bad: “Fixes Unicode bug in RSS API.”

– Bad: “Fixing Unicode bug in RSS API.”

The commit message should be in lines of 72 chars maximum. There should be a subject line, separated by a
blank line and then paragraphs of 72 char lines. The limits are soft. For the subject line, shorter is better. In the
body of the commit message more detail is better than less:

Fixed #18307 -- Added git workflow guidelines

Refactored the Django's documentation to remove mentions of SVN
specific tasks. Added guidelines of how to use Git, GitHub, and
how to use pull request together with Trac instead.

If the patch wasn’t a pull request, you should credit the contributors in the commit message: “Thanks A for
report, B for the patch and C for the review.”

• For commits to a branch, prefix the commit message with the branch name. For example: “[1.4.x] Fixed #xxxxx
– Added support for mind reading.”

10.1. Contributing to Django 1721



Django Documentation, Release 1.10.9.dev20171123183751

• Limit commits to the most granular change that makes sense. This means, use frequent small commits rather
than infrequent large commits. For example, if implementing feature X requires a small change to library Y, first
commit the change to library Y, then commit feature X in a separate commit. This goes a long way in helping
all Django core developers follow your changes.

• Separate bug fixes from feature changes. Bugfixes may need to be backported to the stable branch, according to
the backwards-compatibility policy.

• If your commit closes a ticket in the Django ticket tracker, begin your commit message with the text “Fixed
#xxxxx”, where “xxxxx” is the number of the ticket your commit fixes. Example: “Fixed #123 – Added
whizbang feature.”. We’ve rigged Trac so that any commit message in that format will automatically close
the referenced ticket and post a comment to it with the full commit message.

If your commit closes a ticket and is in a branch, use the branch name first, then the “Fixed #xxxxx.” For
example: “[1.4.x] Fixed #123 – Added whizbang feature.”

For the curious, we’re using a Trac plugin for this.

Note: Note that the Trac integration doesn’t know anything about pull requests. So if you try to close a pull request
with the phrase “closes #400” in your commit message, GitHub will close the pull request, but the Trac plugin will
also close the same numbered ticket in Trac.

• If your commit references a ticket in the Django ticket tracker but does not close the ticket, include the phrase
“Refs #xxxxx”, where “xxxxx” is the number of the ticket your commit references. This will automatically post
a comment to the appropriate ticket.

• Write commit messages for backports using this pattern:

[<Django version>] Fixed <ticket> -- <description>

Backport of <revision> from <branch>.

For example:

[1.3.x] Fixed #17028 -- Changed diveintopython.org -> diveintopython.net.

Backport of 80c0cbf1c97047daed2c5b41b296bbc56fe1d7e3 from master.

There’s a script on the wiki to automate this.

Reverting commits

Nobody’s perfect; mistakes will be committed.

But try very hard to ensure that mistakes don’t happen. Just because we have a reversion policy doesn’t relax your
responsibility to aim for the highest quality possible. Really: double-check your work, or have it checked by another
committer, before you commit it in the first place!

When a mistaken commit is discovered, please follow these guidelines:

• If possible, have the original author revert their own commit.

• Don’t revert another author’s changes without permission from the original author.

• Use git revert – this will make a reverse commit, but the original commit will still be part of the commit history.

• If the original author can’t be reached (within a reasonable amount of time – a day or so) and the problem is
severe – crashing bug, major test failures, etc. – then ask for objections on the django-developers mailing list
then revert if there are none.

1722 Chapter 10. Django internals

https://code.djangoproject.com/
https://github.com/trac-hacks/trac-github
https://code.djangoproject.com/
https://code.djangoproject.com/wiki/CommitterTips#AutomatingBackports


Django Documentation, Release 1.10.9.dev20171123183751

• If the problem is small (a feature commit after feature freeze, say), wait it out.

• If there’s a disagreement between the committer and the reverter-to-be then try to work it out on the django-
developers mailing list. If an agreement can’t be reached then it should be put to a vote.

• If the commit introduced a confirmed, disclosed security vulnerability then the commit may be reverted imme-
diately without permission from anyone.

• The release branch maintainer may back out commits to the release branch without permission if the commit
breaks the release branch.

• If you mistakenly push a topic branch to django/django, just delete it. For instance, if you did:
git push upstream feature_antigravity, just do a reverse push: git push upstream
:feature_antigravity.

10.2 Mailing lists

Important: Please report security issues only to security@djangoproject.com. This is a private list only open to
long-time, highly trusted Django developers, and its archives are not public. For further details, please see our security
policies.

Django has several official mailing lists on Google Groups that are open to anyone.

10.2.1 django-users

This is the right place if you are looking to ask any question regarding the installation, usage, or debugging of Django.

Note: If it’s the first time you send an email to this list, your email must be accepted first so don’t worry if your
message does not appear instantly.

• django-users mailing archive

• django-users subscription email address

• django-users posting email

10.2.2 django-core-mentorship

The Django Core Mentorship list is intended to provide a welcoming introductory environment for community mem-
bers interested in contributing to the Django Project.

• django-core-mentorship mailing archive

• django-core-mentorship subscription email address

• django-core-mentorship posting email

10.2.3 django-developers

The discussion about the development of Django itself takes place here.

10.2. Mailing lists 1723

mailto:security@djangoproject.com
https://groups.google.com/d/forum/django-users
mailto:django-users+subscribe@googlegroups.com
mailto:django-users@googlegroups.com
https://groups.google.com/d/forum/django-core-mentorship
mailto:django-core-mentorship+subscribe@googlegroups.com
mailto:django-core-mentorship@googlegroups.com


Django Documentation, Release 1.10.9.dev20171123183751

Note: Please make use of django-users mailing list if you want to ask for tech support, doing so in this list is
inappropriate.

• django-developers mailing archive

• django-developers subscription email address

• django-developers posting email

10.2.4 django-i18n

This is the place to discuss the internationalization and localization of Django’s components.

• django-i18n mailing archive

• django-i18n subscription email address

• django-i18n posting email

10.2.5 django-announce

A (very) low-traffic list for announcing upcoming security releases, new releases of Django, and security advisories.

• django-announce mailing archive

• django-announce subscription email address

• django-announce posting email

10.2.6 django-updates

All the ticket updates are mailed automatically to this list, which is tracked by developers and interested community
members.

• django-updates mailing archive

• django-updates subscription email address

• django-updates posting email

10.3 Organization of the Django Project

10.3.1 Principles

The Django Project is managed by a team of volunteers pursuing three goals:

• Driving the development of the Django Web Framework,

• Fostering the ecosystem of Django-related software,

• Leading the Django community in accordance with the values described in the Django Code of Conduct.

1724 Chapter 10. Django internals

https://groups.google.com/d/forum/django-developers
mailto:django-developers+subscribe@googlegroups.com
mailto:django-developers@googlegroups.com
https://groups.google.com/d/forum/django-i18n
mailto:django-i18n+subscribe@googlegroups.com
mailto:django-i18n@googlegroups.com
https://groups.google.com/d/forum/django-announce
mailto:django-announce+subscribe@googlegroups.com
mailto:django-announce@googlegroups.com
https://groups.google.com/d/forum/django-updates
mailto:django-updates+subscribe@googlegroups.com
mailto:django-updates@googlegroups.com
https://www.djangoproject.com/conduct/


Django Documentation, Release 1.10.9.dev20171123183751

The Django Project isn’t a legal entity. The Django Software Foundation, a non-profit organization, handles financial
and legal matters related to the Django Project. Other than that, the Django Software Foundation lets the Django
Project manage the development of the Django framework, its ecosystem and its community.

The Django core team makes the decisions, nominates its new members, and elects its technical board. While it holds
decision power in theory, it aims at using it as rarely as possible in practice. Rough consensus should be the norm and
formal voting an exception.

10.3.2 Core team

Role

The core team is the group of trusted volunteers who manage the Django Project. They assume many roles required to
achieve the project’s goals, especially those that require a high level of trust. They make the decisions that shape the
future of the project.

Core team members are expected to act as role models for the community and custodians of the project, on behalf of
the community and all those who rely on Django.

They will intervene, where necessary, in online discussions or at official Django events on the rare occasions that a
situation arises that requires intervention.

They have authority over the Django Project infrastructure, including the Django Project website itself, the Django
GitHub organization and repositories, the Trac bug tracker, the mailing lists, IRC channels, etc.

Prerogatives

Core team members may participate in formal votes, typically to nominate new team members and to elect the technical
board.

Some contributions don’t require commit access. Depending on the reasons why a contributor joins the team, they
may or may not have commit permissions to the Django code repository.

However, should the need arise, any team member may ask for commit access by writing to the core team’s mailing
list. Access will be granted unless the person withdraws their request or the technical board vetoes the proposal.

Core team members who have commit access are referred to as “committers” or “core developers”.

Other permissions, such as access to the servers, are granted to those who need them through the same process.

Membership

The core team finds its origins with the four people who created Django. It has grown to a few dozen people by
co-opting volunteers who demonstrate:

• a good grasp of the philosophy of the Django Project

• a solid track record of being constructive and helpful

• significant contributions to the project’s goals, in any form

• willingness to dedicate some time to improving Django

As the project matures, contributions go way beyond code. Here’s an incomplete list of areas where contributions may
be considered for joining the core team, in no particular order:

• Working on community management and outreach

• Providing support on the mailing-lists and on IRC

10.3. Organization of the Django Project 1725

https://www.djangoproject.com/foundation/


Django Documentation, Release 1.10.9.dev20171123183751

• Triaging tickets

• Writing patches (code, docs, or tests)

• Reviewing patches (code, docs, or tests)

• Participating in design decisions

• Providing expertise in a particular domain (security, i18n, etc.)

• Managing the continuous integration infrastructure

• Managing the servers (website, tracker, documentation, etc.)

• Maintaining related projects (djangoproject.com site, ex-contrib apps, etc.)

• Creating visual designs

Very few areas are reserved to core team members:

• Reviewing security reports

• Merging patches (code, docs, or tests)

• Packaging releases

Core team membership acknowledges sustained and valuable efforts that align well with the philosophy and the goals
of the Django Project.

It is granted by a four fifths majority of votes cast in a core team vote and no veto by the technical board.

Core team members are always looking for promising contributors, teaching them how the project is managed, and
submitting their names to the core team’s vote when they’re ready. If you would like to join the core team, you can
contact a core team member privately or ask for guidance on the Django Core Mentorship mailing-list.

There’s no time limit on core team membership. However, in order to provide the general public with a reasonable idea
of how many people maintain Django, core team members who have stopped contributing are encouraged to declare
themselves as “past team members”. Those who haven’t made any non-trivial contribution in two years may be asked
to move themselves to this category, and moved there if they don’t respond. Past team members lose their privileges
such as voting rights and commit access.

10.3.3 Technical board

Role

The technical board is a group of experienced and active committers who steer technical choices. Their main concern
is to maintain the quality and stability of the Django Web Framework.

Prerogatives

The technical board holds two prerogatives:

• Making major technical decisions when no consensus is found otherwise. This happens on the django-
developers mailing-list.

• Veto a grant of commit access or remove commit access. This happens on the django-core mailing-list.

In both cases, the technical board is a last resort. In these matters, it fulfills a similar function to the former Benevolent
Dictators For Life.

When the board wants to exercise one of these prerogatives, it must hold a private, simple majority vote on the
resolution. The quorum is the full committee — each member must cast a vote or abstain explicitly. Then the board

1726 Chapter 10. Django internals



Django Documentation, Release 1.10.9.dev20171123183751

communicates the result, and if possible the reasons, on the appropriate mailing-list. There’s no appeal for such
decisions.

In addition, at its discretion, the technical board may act in an advisory capacity on non-technical decisions.

Membership

The technical board is an elected group of five committers. They’re expected to be experienced but there’s no formal
seniority requirement. Its current composition is published here.

A new board is elected after each feature release of Django. The election process is managed by a returns officer
nominated by the outgoing technical board. The election process works as follows:

1. Candidates advertise their application for the technical board to the team.

They must be committers already. There’s no term limit for technical board members.

2. Each team member can vote for zero to five people among the candidates. Candidates are ranked by the total
number of votes they received.

In case of a tie, the person who joined the core team earlier wins.

Both the application and the voting period last between one and two weeks, at the outgoing board’s discretion.

10.3.4 Changing the organization

Changes to this document require a four fifths majority of votes cast in a core team vote and no veto by the technical
board.

10.4 Django team

10.4.1 The original team

Django originally started at World Online, the Web department of the Lawrence Journal-World of Lawrence, Kansas,
USA.

Adrian Holovaty Adrian is a Web developer with a background in journalism. He’s known in journalism circles
as one of the pioneers of “journalism via computer programming”, and in technical circles as “the guy who
invented Django.”

He was lead developer at World Online for 2.5 years, during which time Django was developed and implemented
on World Online’s sites. He was the leader and founder of EveryBlock, a “news feed for your block.” He now
develops Soundslice.

Adrian lives in Chicago, USA.

Simon Willison Simon is a well-respected Web developer from England. He had a one-year internship at World
Online, during which time he and Adrian developed Django from scratch. The most enthusiastic Brit you’ll ever
meet, he’s passionate about best practices in Web development and maintains a well-read web-development
blog.

Simon lives in Brighton, England.

Jacob Kaplan-Moss Jacob is Director of Platform Security at Heroku. He worked at World Online for four years,
where he helped open source Django and found the Django Software Foundation. Jacob lives on a hobby farm
outside of Lawrence where he spends his weekends playing with dirt and power tools.

10.4. Django team 1727

http://ljworld.com/
http://holovaty.com/
https://everyblock.com/
https://www.soundslice.com/
http://simonwillison.net/
http://simonwillison.net/
http://simonwillison.net/
https://jacobian.org/
https://heroku.com/


Django Documentation, Release 1.10.9.dev20171123183751

Wilson Miner Wilson’s design-fu is what makes Django look so nice. He created the design that was used for nearly
the first ten years on the Django Project website, as well as the current design for Django’s acclaimed admin
interface. Wilson was the designer for EveryBlock and Rdio. He now designs for Facebook.

Wilson lives in San Francisco, USA.

10.4.2 The current team

These are the folks who have a long history of contributions, a solid track record of being helpful on the mailing lists,
and a proven desire to dedicate serious time to Django. In return, they’ve been invited to join the core team.

Luke Plant At University Luke studied physics and Materials Science and also met Michael Meeks who introduced
him to Linux and Open Source, re-igniting an interest in programming. Since then he has contributed to a
number of Open Source projects and worked professionally as a developer.

Luke has contributed many excellent improvements to Django, including database-level improvements, the
CSRF middleware and many unit tests.

Luke currently works for a church in Bradford, UK, and part-time as a freelance developer.

Russell Keith-Magee Russell studied physics as an undergraduate, and studied neural networks for his PhD. His first
job was with a startup in the defense industry developing simulation frameworks. Over time, mostly through
work with Django, he’s become more involved in Web development.

Russell has helped with several major aspects of Django, including a couple major internal refactorings, creation
of the test system, and more.

Russell lives in the most isolated capital city in the world — Perth, Australia.

James Bennett James has been one of Django’s release managers, and also contributes to the documentation and
provide the occasional bugfix.

James came to Web development from philosophy when he discovered that programmers get to argue just as
much while collecting much better pay. He lives in San Mateo, California and previously worked at World
Online and Mozilla; currently, he’s part of the Web engineering team at Clover.

He keeps a blog, and enjoys fine port and talking to his car.

Justin Bronn Justin Bronn is a computer scientist and attorney specializing in legal topics related to intellectual
property and spatial law.

In 2007, Justin began developing django.contrib.gis in a branch, a.k.a. GeoDjango, which was merged
in time for Django 1.0. While implementing GeoDjango, Justin obtained a deep knowledge of Django’s internals
including the ORM, the admin, and Oracle support.

Justin lives in Houston, TX.

Karen Tracey Karen has a background in distributed operating systems (graduate school), communications software
(industry) and crossword puzzle construction (freelance). The last of these brought her to Django, in late 2006,
when she set out to put a Web front-end on her crossword puzzle database. That done, she stuck around in the
community answering questions, debugging problems, etc. – because coding puzzles are as much fun as word
puzzles.

Karen lives in Apex, NC, USA.

Jannis Leidel Jannis graduated in media design from Bauhaus-University Weimar, is the author of a number of
pluggable Django apps and likes to contribute to Open Source projects like virtualenv and pip.

He has worked on Django’s auth, admin and staticfiles apps as well as the form, core, internationalization and
test systems. He currently works at Mozilla.

Jannis lives in Berlin, Germany.

1728 Chapter 10. Django internals

http://wilsonminer.com/
http://rdio.com
http://lukeplant.me.uk/
https://en.wikipedia.org/wiki/Michael_Meeks_(software)
http://cecinestpasun.com/
http://b-list.org/
https://www.cloverhealth.com/
http://b-list.org/
http://geodjango.org/
https://jezdez.com/
http://www.uni-weimar.de/
https://virtualenv.pypa.io/
https://pip.pypa.io/
https://www.mozilla.org/


Django Documentation, Release 1.10.9.dev20171123183751

Andrew Godwin Andrew is a freelance Python developer and tinkerer, and has been developing against Django
since 2007. He graduated from Oxford University with a degree in Computer Science, and has become most
well known in the Django community for his work on South, the schema migrations library.

Andrew lives in San Francisco, CA, USA.

Carl Meyer Carl has been a Django user since 2007 (long enough to remember queryset-refactor, but not magic-
removal), and builds web apps at OddBird. He became a Django contributor by accident, because fixing bugs is
more interesting than working around them.

Carl lives in Rapid City, SD, USA.

Ramiro Morales Ramiro has been reading Django source code and submitting patches since mid-2006 after research-
ing for a Python Web tool with matching awesomeness and being pointed to it by an old ninja.

A software developer in the electronic transactions industry, he is a living proof of the fact that anyone with
enough enthusiasm can contribute to Django, learning a lot and having fun in the process.

Ramiro lives in Córdoba, Argentina.

Chris Beaven Chris has been submitting patches and suggesting crazy ideas for Django since early 2006. An advocate
for community involvement and a long-term triager, he is still often found answering questions in the #django
IRC channel.

Chris lives in Napier, New Zealand (adding to the pool of Oceanic core developers). He works remotely as a
developer for Lincoln Loop.

Honza Král Honza first discovered Django in 2006 and started using it right away, first for school and personal
projects and later in his full-time job. He contributed various patches and fixes mostly to the newforms library,
newforms admin and, through participation in the Google Summer of Code project, assisted in creating the
model validation functionality.

He is currently working for Whiskey Media in San Francisco developing awesome sites running on pure Django.

Tim Graham When exploring Web frameworks for an independent study project in the fall of 2008, Tim discovered
Django and was lured to it by the documentation. He enjoys contributing to the docs because they’re awesome.

Tim works as a software engineer and lives in Philadelphia, PA, USA.

Paul McMillan Paul found Django in 2008 while looking for a more structured approach to web programming. He
stuck around after figuring out that the developers of Django had already invented many of the wheels he needed.
His passion for breaking (and then fixing) things led to his current role working to maintain and improve the
security of Django.

Julien Phalip Julien has a background in software engineering and human-computer interaction. As a Web devel-
oper, he enjoys tinkering with the backend as much as designing and coding user interfaces. Julien discovered
Django in 2007 while doing his PhD in Computing Sciences. Since then he has contributed patches to various
components of the framework, in particular the admin. Julien was a co-founder of the Interaction Consortium.
He now works at Odopod, a digital agency based in San Francisco, CA, USA.

Aymeric Augustin Aymeric is an engineer with a background in mathematics and computer science. He chose
Django because he believes that software should be simple, explicit and tested. His perfectionist tendencies
quickly led him to triage tickets and contribute patches.

Aymeric has a pragmatic approach to software engineering, can’t live without a continuous integration server,
and likes proving that Django is a good choice for enterprise software.

Claude Paroz Claude is a former teacher who fell in love with free software at the beginning of the 21st century.
He’s now working as freelancer in Web development in his native Switzerland. He has found in Django a
perfect match for his needs of a stable, clean, documented and well-maintained Web framework.

He’s also helping the GNOME Translation Project as maintainer of the Django-based l10n.gnome.org.

10.4. Django team 1729

https://www.aeracode.org/
http://www.oddbird.net/
http://www.oddbird.net/
http://smileychris.com/
https://lincolnloop.com/
http://www.whiskeymedia.com/
http://julienphalip.com
http://interaction.net.au
http://odopod.com
https://myks.org/
http://www.2xlibre.net
https://l10n.gnome.org


Django Documentation, Release 1.10.9.dev20171123183751

Anssi Kääriäinen Anssi works as a developer at Finnish National Institute for Health and Welfare. He is also a
computer science student at Aalto University. In his work he uses Django for developing internal business
applications and sees Django as a great match for that use case.

Anssi is interested in developing the object relational mapper (ORM) and all related features. He’s also a fan of
benchmarking and he tries keep Django as fast as possible.

Florian Apolloner Florian is currently studying Physics at the Graz University of Technology. Soon after he started
using Django he joined the Ubuntuusers webteam to work on Inyoka, the software powering the whole Ubuntu-
users site.

For the time being he lives in Graz, Austria (not Australia ;)).

Jeremy Dunck Jeremy was rescued from corporate IT drudgery by Free Software and, in part, Django. Many of
Jeremy’s interests center around access to information.

Jeremy was the lead developer of Pegasus News, one of the first uses of Django outside World Online, and has
since joined Votizen, a startup intent on reducing the influence of money in politics.

He serves as DSF Secretary, organizes and helps organize sprints, cares about the health and equity of the Django
community. He has gone an embarrassingly long time without a working blog.

Jeremy lives in Mountain View, CA, USA.

Bryan Veloso Bryan found Django 0.96 through a fellow designer who was evangelizing its use. It was his first
foray outside of the land that was PHP-based templating. Although he has only ever used Django for personal
projects, it is the very reason he considers himself a designer/developer hybrid and is working to further design
within the Django community.

Bryan works as a designer at GitHub by day, and masquerades as a vlogger and shoutcaster in the after-hours.
Bryan lives in Los Angeles, CA, USA.

Simon Charette Simon is a mathematics student who discovered Django while searching for a replacement frame-
work to an in-house PHP entity. Since that faithful day Django has been a big part of his life. So far, he’s been
involved in some ORM and forms API fixes.

Apart from contributing to multiple open source projects he spends most of his spare-time playing Ultimate
Frisbee and working part-time at this awesome place called Reptiletech.

Simon lives in Montréal, Québec, Canada.

Donald Stufft Donald found Python and Django in 2007 while trying to find a language, and web framework that he
really enjoyed using after many years of PHP. He fell in love with the beauty of Python and the way Django
made tasks simple and easy. His contributions to Django focus primarily on ensuring that it is and remains a
secure web framework.

Donald currently works at Nebula Inc as a Software Engineer for their security team and lives in the Greater
Philadelphia Area.

Marc Tamlyn Marc started life on the web using Django 1.2 back in 2010, and has never looked back. He was
involved with rewriting the class-based view documentation at DjangoCon EU 2012, and also helped to develop
CCBV, an additional class-based view reference tool.

Marc is currently a full-time parent, part-time developer, and lives in Oxford, UK.

Shai Berger Shai started working with Python back in 1998, and with Django just before 1.0. He is a Free Software
enthusiast, but life happens, and he was driven by consulting gigs to contribute to the Oracle and SQL Server
backends of South, and then the Oracle backend of Django itself. Finally, he joined core to help maintain the
Oracle backend.

Shai works for Platonix, a small consulting company he started with a few friends in 1996, and lives near Tel
Aviv, Israel.

1730 Chapter 10. Django internals

http://tugraz.at/
https://wiki.ubuntuusers.de/ubuntuusers/Webteam
http://avalonstar.com/
https://youtube.com/bryanveloso/
http://twitch.tv/vlogalonstar/
https://github.com/charettes
http://www.montrealultimate.ca
http://www.montrealultimate.ca
https://www.reptiletech.com
https://www.nebula.com/
https://ccbv.co.uk/
http://tech.platonix.com


Django Documentation, Release 1.10.9.dev20171123183751

Baptiste Mispelon Baptiste discovered Django around the 1.2 version and promptly switched away from his home-
grown PHP framework. He started getting more involved in the project after attending DjangoCon EU 2012,
mostly by triaging tickets and submitting small patches.

Baptiste currently lives in Budapest, Hungary and works for M2BPO, a small French company providing ser-
vices to architects.

Daniele Procida Daniele unexpectedly became a Django developer on 29th April 2009. Since then he has relied daily
on Django’s documentation, which has been a constant companion to him. More recently he has been able to
contribute back to the project by helping improve the documentation itself.

He is the author of Arkestra and Don’t be afraid to commit. He lives in Cardiff, Wales, and works for Divio.

Erik Romijn Erik started using Django in the days of 1.2. His largest contribution to Django was
GenericIPAddressField, and he has worked on all sorts of patches since. While developing with Django,
he always keeps a little list of even the slightest Django frustrations, to tackle them at a later time and prevent
other developers from having to deal with the same issues.

Erik is an independent app maker, mostly developing web and mobile apps, as Solid Links. He also enjoys
helping ordinary developers to build safer web apps, for which Django is already a great start, and developed
Erik’s Pony Checkup with that goal in mind. Erik lives in Amsterdam, The Netherlands.

Loïc Bistuer Loïc studied telecommunications engineering and works as an independent software developer and
consultant.

He discovered Django in 2008 shortly before the 1.0 release and has been hooked ever since. He contributes
mostly to Django’s ORM and Form components. His main contributions include advanced query prefetch-
ing, streamlining QuerySet and Manager to improve query reusability, and a significant refactor of forms error
handling.

Loïc is originally from the South of France and currently lives in Bangkok, Thailand.

Michael Manfre Michael started running Django on Windows against a Microsoft SQL Server (MSSQL) database in
2008. He quickly became the maintainer of the django-mssql database backend. Much of his involvement
with Django relates to the ORM, the private 3rd party database API, and using Django on Windows.

Michael lives in Cary, NC, USA.

Collin Anderson Collin found Django in November 2006. He was in awe of the admin and ORM and was amazed
that the documentation was teaching him best web practices like redirecting after a successful POST request.
Why had he never learned this before? No one knows to this day.

He enjoys helping people on the django-users mailing list and making Django simple and easy for newcomers.

Collin lives in South Bend, IN, USA where he uses Django to increase unity.

Tom Christie Tom has background in speech recognition, networking, and web development. He has a particular
interest in Web API design and is the original author of Django REST framework.

Tom lives in the seaside city of Brighton, UK.

Curtis Maloney Curtis is a self-taught programmer from Melbourne, Australia, who eschews specialization. Upon
finding Django when it was first open sourced, he realized it was possible to enjoy web development.

He spends a lot of time helping people on the #django IRC channel, and has authored and released a number of
smaller Django apps.

Markus Holtermann Markus is a senior backend developer at LaterPay in Munich. He studied Computer Science at
the Technical University of Berlin. He started working with Django in 2010 when he joined the ubuntuusers.de
web team to work on Inyoka. Markus made his first contribution to the Django project during DjangoCon
Europe 2013 in Warsaw. He was the web team leader for the EuroPython 2014 website and started regular
contributions to Django after that.

10.4. Django team 1731

https://www.m2bpo.fr
http://arkestra-project.org/
https://dont-be-afraid-to-commit.readthedocs.io
https://divio.ch/
http://erik.io/
https://solidlinks.nl/
https://ponycheckup.com/
https://github.com/loic
http://manfre.net
https://github.com/collinanderson
http://onetencommunications.com/about/
https://twitter.com/_tomchristie
http://django-rest-framework.org
http://musings.tinbrain.net/blog/
https://github.com/funkybob/
https://github.com/MarkusH
https://www.laterpay.net/
http://www.tu-berlin.de/
https://ubuntuusers.de/
https://ep2014.europython.eu/


Django Documentation, Release 1.10.9.dev20171123183751

Markus lives in Berlin, Germany.

Josh Smeaton Josh was given the opportunity to work on a new Django app around version 1.1 after working with a
homegrown PHP reporting framework. The simplicity of the ORM and the power of the Admin were extremely
liberating.

Still being involved with custom reporting applications, he decided to try his hand at improving the ORM support
for analytics. His contributions focus on giving more power to users of the ORM.

Josh lives in Melbourne, Australia where he heads up development for a SaaS telecommunications company.

Preston Timmons Preston is a software developer with a background in mathematics. He enjoys Django because
it enables consistent, simple, and tested systems to be built that even new programmers can quickly dive into.
Preston lives in Dallas, TX.

Tomek Paczkowski Tomek started using Django in 2007 as a tool for quickly dealing with university projects. Since
then, he worked with various technologies like Ruby on Rails, JavaScript and Android but always returned to
Python and Django.

Tomek loves the Django community. He organized multiple Django sprints, co-organized DjangoCon Europe
2013 and has mentored at many Django Girls events.

Originally from Poland, Tomek currently lives in London, where he works at Squirrel.

Ola Sitarska Ola started working with Django in 2009, when she discovered the power of the Django admin and
quickly fell in love with the beauty of Python.

She co-organized DjangoCon Europe 2013 in Warsaw and co-authored the Django Girls Tutorial, the most
beginner friendly Django tutorial out there. Together with Ola Sendecka, she started Django Girls, a community
and series of Django workshops for women who’ve never programmed before.

In 2015, she became a Django Software Foundation board member. Ola was also a part of the team responsible
for shipping the djangoproject.com redesign.

Originally from Poland, Ola currently lives in London, where she works with friends at Potato.

Ola Sendecka Ola started her adventure with Django when writing a university project in 2009. After that she at-
tended her first DjangoCon Europe which defined her future life as a Django professional.

Since then she has been an active community member. Ola co-organized a number of Django sprints and
conferences including: DjangoCon Europe 2013, Django Under the Hood 2015 and DjangoCon Europe 2016.
Together with Ola Sitarska she founded Django Girls, co-authored the Django Girls Tutorial and is a member
of the Django Girls Foundation. She is also an author of the Coding is for Girls YouTube series teaching
programming and Django to beginners.

Originally from Poland, Ola currently lives in London, where she works for Potato.

10.4.3 Past team members

Georg “Hugo” Bauer Georg created Django’s internationalization system, managed i18n contributions and made a
ton of excellent tweaks, feature additions and bug fixes.

Robert Wittams Robert was responsible for the first refactoring of Django’s admin application to allow for easier
reuse and has made a ton of excellent tweaks, feature additions and bug fixes.

Alex Gaynor Alex was involved in many parts of Django, he contributed to the ORM, forms, admin, amongst others;
he is most known for his work on multiple-database support in Django.

Alex lives in Washington, DC, USA.

Simon Meers Simon discovered Django 0.96 during his Computer Science PhD research and has been developing
with it full-time ever since. His core code contributions are mostly in Django’s admin application.

1732 Chapter 10. Django internals

https://github.com/jarshwah
https://github.com/prestontimmons
https://hauru.eu
http://love.djangocircus.com
http://love.djangocircus.com
https://djangogirls.org
https://squirrel.me
http://ola.sitarska.com/
http://love.djangocircus.com
http://tutorial.djangogirls.org
https://djangogirls.org
https://p.ota.to
https://twitter.com/asendecka
http://love.djangocircus.com
http://www.djangounderthehood.com/
http://2016.djangocon.eu
https://djangogirls.org
http://tutorial.djangogirls.org
https://www.youtube.com/channel/UC0hNd2uW8jTR5K3KBzRuG2A
https://p.ota.to
https://alexgaynor.net
http://simonmeers.com/


Django Documentation, Release 1.10.9.dev20171123183751

Simon works as a freelance developer based in Wollongong, Australia.

Gabriel Hurley Gabriel has been working with Django since 2008, shortly after the 1.0 release. Convinced by his
business partner that Python and Django were the right direction for the company, he couldn’t have been more
happy with the decision. His contributions range across many areas in Django, but years of copy-editing and an
eye for detail lead him to be particularly at home while working on Django’s documentation.

Gabriel works as a developer in the SF Bay Area, CA, USA.

Malcolm Tredinnick Malcolm originally wanted to be a mathematician and somehow ended up a software developer.
He contributed to many Open Source projects, served on the board of the GNOME foundation, and was a great
chess player.

Malcolm was deeply involved in many part of Django - most notably, the ORM, but many other internals bear his
fingerprints. Django’s support for unicode and autoescaping in templates can both be almost entirely attributed
to Malcolm.

He was an International Man of Mystery and lived in Sydney, Australia.

Malcolm passed away on March 17, 2013.

Preston Holmes Preston is a recovering neuroscientist who originally discovered Django as part of a sweeping move
to Python from a grab bag of half a dozen languages. He was drawn to Django’s balance of practical batteries
included philosophy, care and thought in code design, and strong open source community. Currently working
in the rent-your-infra space (aka Cloud), he is always looking for opportunities to volunteer for community
oriented education projects, such as for kids and scientists (e.g. Software Carpentry).

Preston lives with his family and animal menagerie in Santa Barbara, CA, USA.

Idan Gazit As a self-professed design geek, Idan was initially attracted to Django sometime between magic-removal
and queryset-refactor. Formally trained as a software engineer, Idan straddles the worlds of design and code,
jack of two trades and master of none. He is passionate about usability and finding novel ways to extract meaning
from data, and is a longtime photographer.

Idan is currently hacking on all things data and visualization at Heroku.

Matt Boersma Matt helped with Django’s Oracle support.

Ian Kelly Ian also helped with Oracle support.

Joseph Kocherhans Joseph was the director of lead development at EveryBlock and previously developed at the
Lawrence Journal-World. He often disappears for several days into the woods, attempts to teach himself com-
putational linguistics, and annoys his neighbors with his Charango playing.

Joseph’s first contribution to Django was a series of improvements to the authorization system leading up to
support for pluggable authorization. Since then, he’s worked on the new forms system, its use in the admin, and
many other smaller improvements.

Joseph lives in Chicago, USA.

Gary Wilson Gary starting contributing patches to Django in 2006 while developing Web applications for The Uni-
versity of Texas (UT). Since, he has made contributions to the email and forms systems, as well as many other
improvements and code cleanups throughout the code base.

Gary lives in Austin, Texas, USA.

Brian Rosner Brian enjoys learning more about programming languages and system architectures and contributing
to open source projects.

He helped immensely in getting Django’s “newforms-admin” branch finished in time for Django 1.0.

Brian lives in Denver, Colorado, USA.

10.4. Django team 1733

http://strikeawe.com/
http://www.ptone.com/
http://gazit.me
https://flickr.com/photos/idangazit
https://heroku.com/
https://en.wikipedia.org/wiki/Charango
http://thegarywilson.com/
https://www.utexas.edu/
https://www.utexas.edu/
http://brosner.com/


Django Documentation, Release 1.10.9.dev20171123183751

James Tauber James is the lead developer of Pinax and the CEO and founder of Eldarion. He has been doing open
source software since 1993, Python since 1998 and Django since 2006. He serves on the board of the Python
Software Foundation and is currently on a leave of absence from a PhD in linguistics.

James currently lives in Boston, MA, USA but originally hails from Perth, Western Australia where he attended
the same high school as Russell Keith-Magee.

10.5 Roles

10.5.1 Technical board

The technical board for the 1.10 release cycle is:

• James Bennett

• Andrew Godwin

• Russell Keith-Magee

• Carl Meyer

• Marc Tamlyn

10.5.2 Committers

Most core team members have commit access. They’re called “committers” or “core developers”.

Being part of the core team is a pre-requisite for having commit access.

10.5.3 Security team

The security team is responsible for Django’s security policies. It handles private reports of security issues.

The current security team members are:

• Florian Apolloner

• James Bennett

• Tim Graham

• Adrian Holovaty

• Markus Holtermann

• Paul McMillan

• Carl Meyer

10.5.4 Releasers

Releasers take care of building Django releases.

The current releasers are:

• James Bennett

• Jacob Kaplan-Moss

1734 Chapter 10. Django internals

http://jtauber.com/
http://pinaxproject.com/
http://eldarion.com/


Django Documentation, Release 1.10.9.dev20171123183751

• Tim Graham

10.5.5 Ops team

The ops team maintains Django’s infrastructure like the Django Project server, Trac instance, and continuous integra-
tion infrastructure.

• Florian Apolloner

• Aymeric Augustin

• Tim Graham

• Markus Holtermann

• Jannis Leidel

10.6 Django’s security policies

Django’s development team is strongly committed to responsible reporting and disclosure of security-related issues.
As such, we’ve adopted and follow a set of policies which conform to that ideal and are geared toward allowing us to
deliver timely security updates to the official distribution of Django, as well as to third-party distributions.

10.6.1 Reporting security issues

Short version: please report security issues by emailing security@djangoproject.com.

Most normal bugs in Django are reported to our public Trac instance, but due to the sensitive nature of security issues,
we ask that they not be publicly reported in this fashion.

Instead, if you believe you’ve found something in Django which has security implications, please send a description
of the issue via email to security@djangoproject.com. Mail sent to that address reaches a subset of the core
team, who can forward security issues into the private team’s mailing list for broader discussion if needed.

Once you’ve submitted an issue via email, you should receive an acknowledgment from a member of the security team
within 48 hours, and depending on the action to be taken, you may receive further followup emails.

Sending encrypted reports

If you want to send an encrypted email (optional), the public key ID for security@djangoproject.com is
0xfcb84b8d1d17f80b, and this public key is available from most commonly-used keyservers.

10.6.2 Supported versions

At any given time, the Django team provides official security support for several versions of Django:

• The master development branch, hosted on GitHub, which will become the next major release of Django, re-
ceives security support. Security issues that only affect the master development branch and not any stable
released versions are fixed in public without going through the disclosure process.

• The two most recent Django release series receive security support. For example, during the development cycle
leading to the release of Django 1.5, support will be provided for Django 1.4 and Django 1.3. Upon the release
of Django 1.5, Django 1.3’s security support will end.

10.6. Django’s security policies 1735

https://code.djangoproject.com/query
https://github.com/django/django/


Django Documentation, Release 1.10.9.dev20171123183751

• Long-term support releases will receive security updates for a specified period.

When new releases are issued for security reasons, the accompanying notice will include a list of affected versions.
This list is comprised solely of supported versions of Django: older versions may also be affected, but we do not
investigate to determine that, and will not issue patches or new releases for those versions.

10.6.3 How Django discloses security issues

Our process for taking a security issue from private discussion to public disclosure involves multiple steps.

Approximately one week before public disclosure, we send two notifications:

First, we notify django-announce of the date and approximate time of the upcoming security release, as well as the
severity of the issues. This is to aid organizations that need to ensure they have staff available to handle triaging our
announcement and upgrade Django as needed. Severity levels are:

High:

• Remote code execution

• SQL injection

Moderate:

• Cross site scripting (XSS)

• Cross site request forgery (CSRF)

• Broken authentication

Low:

• Sensitive data exposure

• Broken session management

• Unvalidated redirects/forwards

• Issues requiring an uncommon configuration option

Second, we notify a list of people and organizations, primarily composed of operating-system vendors and other
distributors of Django. This email is signed with the PGP key of someone from Django’s release team and consists
of:

• A full description of the issue and the affected versions of Django.

• The steps we will be taking to remedy the issue.

• The patch(es), if any, that will be applied to Django.

• The date on which the Django team will apply these patches, issue new releases and publicly disclose the issue.

On the day of disclosure, we will take the following steps:

1. Apply the relevant patch(es) to Django’s codebase.

2. Issue the relevant release(s), by placing new packages on the Python Package Index and on the Django website,
and tagging the new release(s) in Django’s git repository.

3. Post a public entry on the official Django development blog, describing the issue and its resolution in detail,
pointing to the relevant patches and new releases, and crediting the reporter of the issue (if the reporter wishes
to be publicly identified).

4. Post a notice to the django-announce and oss-security@lists.openwall.com mailing lists that links to the blog
post.

1736 Chapter 10. Django internals

https://pypi.python.org/pypi
https://www.djangoproject.com/weblog/
mailto:oss-security@lists.openwall.com


Django Documentation, Release 1.10.9.dev20171123183751

If a reported issue is believed to be particularly time-sensitive – due to a known exploit in the wild, for example – the
time between advance notification and public disclosure may be shortened considerably.

Additionally, if we have reason to believe that an issue reported to us affects other frameworks or tools in the
Python/web ecosystem, we may privately contact and discuss those issues with the appropriate maintainers, and coor-
dinate our own disclosure and resolution with theirs.

The Django team also maintains an archive of security issues disclosed in Django.

10.6.4 Who receives advance notification

The full list of people and organizations who receive advance notification of security issues is not and will not be made
public.

We also aim to keep this list as small as effectively possible, in order to better manage the flow of confidential infor-
mation prior to disclosure. As such, our notification list is not simply a list of users of Django, and merely being a
user of Django is not sufficient reason to be placed on the notification list.

In broad terms, recipients of security notifications fall into three groups:

1. Operating-system vendors and other distributors of Django who provide a suitably-generic (i.e., not an indi-
vidual’s personal email address) contact address for reporting issues with their Django package, or for general
security reporting. In either case, such addresses must not forward to public mailing lists or bug trackers.
Addresses which forward to the private email of an individual maintainer or security-response contact are ac-
ceptable, although private security trackers or security-response groups are strongly preferred.

2. On a case-by-case basis, individual package maintainers who have demonstrated a commitment to responding
to and responsibly acting on these notifications.

3. On a case-by-case basis, other entities who, in the judgment of the Django development team, need to be made
aware of a pending security issue. Typically, membership in this group will consist of some of the largest and/or
most likely to be severely impacted known users or distributors of Django, and will require a demonstrated
ability to responsibly receive, keep confidential and act on these notifications.

10.6.5 Requesting notifications

If you believe that you, or an organization you are authorized to represent, fall into one of the groups listed above, you
can ask to be added to Django’s notification list by emailing security@djangoproject.com. Please use the
subject line “Security notification request”.

Your request must include the following information:

• Your full, real name and the name of the organization you represent, if applicable, as well as your role within
that organization.

• A detailed explanation of how you or your organization fit at least one set of criteria listed above.

• A detailed explanation of why you are requesting security notifications. Again, please keep in mind that this
is not simply a list for users of Django, and the overwhelming majority of users should subscribe to django-
announce to receive advanced notice of when a security release will happen, without the details of the issues,
rather than request detailed notifications.

• The email address you would like to have added to our notification list.

• An explanation of who will be receiving/reviewing mail sent to that address, as well as information regarding
any automated actions that will be taken (i.e., filing of a confidential issue in a bug tracker).

• For individuals, the ID of a public key associated with your address which can be used to verify email received
from you and encrypt email sent to you, as needed.

10.6. Django’s security policies 1737



Django Documentation, Release 1.10.9.dev20171123183751

Once submitted, your request will be considered by the Django development team; you will receive a reply notifying
you of the result of your request within 30 days.

Please also bear in mind that for any individual or organization, receiving security notifications is a privilege granted at
the sole discretion of the Django development team, and that this privilege can be revoked at any time, with or without
explanation.

10.7 Django’s release process

10.7.1 Official releases

Since version 1.0, Django’s release numbering works as follows:

• Versions are numbered in the form A.B or A.B.C.

• A.B is the feature release version number. Each version will be mostly backwards compatible with the previous
release. Exceptions to this rule will be listed in the release notes.

• C is the patch release version number, which is incremented for bugfix and security releases. These releases
will be 100% backwards-compatible with the previous patch release. The only exception is when a security or
data loss issue can’t be fixed without breaking backwards-compatibility. If this happens, the release notes will
provide detailed upgrade instructions.

• Before a new feature release, we’ll make alpha, beta, and release candidate releases. These are of the form A.B
alpha/beta/rc N, which means the Nth alpha/beta/release candidate of version A.B.

In git, each Django release will have a tag indicating its version number, signed with the Django release key. Addi-
tionally, each release series has its own branch, called stable/A.B.x, and bugfix/security releases will be issued
from those branches.

For more information about how the Django project issues new releases for security purposes, please see our security
policies.

Feature release Feature releases (A.B, A.B+1, etc.) will happen roughly every eight months – see release process
for details. These releases will contain new features, improvements to existing features, and such.

Patch release Patch releases (A.B.C, A.B.C+1, etc.) will be issued as needed, to fix bugs and/or security issues.

These releases will be 100% compatible with the associated feature release, unless this is impossible for security
reasons or to prevent data loss. So the answer to “should I upgrade to the latest patch release?” will always be
“yes.”

Long-term support release Certain feature releases will be designated as long-term support (LTS) releases. These
releases will get security and data loss fixes applied for a guaranteed period of time, typically three years.

See the download page for the releases that have been designated for long-term support.

10.7.2 Release cadence

Starting with Django 2.0, version numbers will use a loose form of semantic versioning such that each version follow-
ing an LTS will bump to the next “dot zero” version. For example: 2.0, 2.1, 2.2 (LTS), 3.0, 3.1, 3.2 (LTS), etc.

SemVer makes it easier to see at a glance how compatible releases are with each other. It also helps to anticipate when
compatibility shims will be removed. It’s not a pure form of SemVer as each feature release will continue to have
a few documented backwards incompatibilities where a deprecation path isn’t possible or not worth the cost. Also,
deprecations started in an LTS release (X.2) will be dropped in a non-dot-zero release (Y.1) to accommodate our policy
of keeping deprecation shims for at least two feature releases. Read on to the next section for an example.

1738 Chapter 10. Django internals

https://www.djangoproject.com/download/
http://semver.org/


Django Documentation, Release 1.10.9.dev20171123183751

10.7.3 Deprecation policy

A feature release may deprecate certain features from previous releases. If a feature is deprecated in feature release
A.x, it will continue to work in all A.x versions (for all versions of x) but raise warnings. Deprecated features will
be removed in the B.0 release, or B.1 for features deprecated in the last A.x feature release to ensure deprecations are
done over at least 2 feature releases.

So, for example, if we decided to start the deprecation of a function in Django 4.2:

• Django 4.2 will contain a backwards-compatible replica of the function which will raise a
RemovedInDjango51Warning.

• Django 5.0 (the version that follows 4.2) will still contain the backwards-compatible replica.

• Django 5.1 will remove the feature outright.

The warnings are silent by default. You can turn on display of these warnings with the python -Wd option.

A more generic example:

• X.0

• X.1

• X.2 LTS

• Y.0: Drop deprecation shims added in X.0 and X.1.

• Y.1: Drop deprecation shims added in X.2.

• Y.2 LTS: No deprecation shims dropped (while Y.0 is no longer supported, third-party apps need to maintain
compatibility back to X.2 LTS to ease LTS to LTS upgrades).

• Z.0: Drop deprecation shims added in Y.0 and Y.1.

10.7.4 Supported versions

At any moment in time, Django’s developer team will support a set of releases to varying levels. See the supported
versions section of the download page for the current state of support for each version.

• The current development master will get new features and bug fixes requiring non-trivial refactoring.

• Patches applied to the master branch must also be applied to the last feature release branch, to be released in the
next patch release of that feature series, when they fix critical problems:

– Security issues.

– Data loss bugs.

– Crashing bugs.

– Major functionality bugs in newly-introduced features.

– Regressions from older versions of Django.

The rule of thumb is that fixes will be backported to the last feature release for bugs that would have prevented
a release in the first place (release blockers).

• Security fixes and data loss bugs will be applied to the current master, the last two feature release branches, and
any other supported long-term support release branches.

• Documentation fixes generally will be more freely backported to the last release branch. That’s because it’s
highly advantageous to have the docs for the last release be up-to-date and correct, and the risk of introducing
regressions is much less of a concern.

10.7. Django’s release process 1739

https://www.djangoproject.com/download/#supported-versions
https://www.djangoproject.com/download/#supported-versions


Django Documentation, Release 1.10.9.dev20171123183751

As a concrete example, consider a moment in time halfway between the release of Django 5.1 and 5.2. At this point
in time:

• Features will be added to development master, to be released as Django 5.2.

• Critical bug fixes will be applied to the stable/5.1.x branch, and released as 5.1.1, 5.1.2, etc.

• Security fixes and bug fixes for data loss issues will be applied to master and to the stable/5.1.x,
stable/5.0.x, and stable/4.2.x (LTS) branches. They will trigger the release of 5.1.1, 5.0.5,
4.2.8, etc.

• Documentation fixes will be applied to master, and, if easily backported, to the latest stable branch, 5.1.x.

10.7.5 Release process

Django uses a time-based release schedule, with feature releases every eight months or so.

After each feature release, the release manager will announce a timeline for the next feature release.

Release cycle

Each release cycle consists of three parts:

Phase one: feature proposal

The first phase of the release process will include figuring out what major features to include in the next version. This
should include a good deal of preliminary work on those features – working code trumps grand design.

Major features for an upcoming release will be added to the wiki roadmap page, e.g. https://code.djangoproject.com/
wiki/Version1.9Roadmap.

Phase two: development

The second part of the release schedule is the “heads-down” working period. Using the roadmap produced at the end
of phase one, we’ll all work very hard to get everything on it done.

At the end of phase two, any unfinished features will be postponed until the next release.

Phase two will culminate with an alpha release. At this point, the stable/A.B.x branch will be forked from
master.

Phase three: bugfixes

The last part of a release cycle is spent fixing bugs – no new features will be accepted during this time. We’ll try to
release a beta release one month after the alpha and a release candidate one month after the beta.

The release candidate marks the string freeze, and it happens at least two weeks before the final release. After this
point, new translatable strings must not be added.

During this phase, committers will be more and more conservative with backports, to avoid introducing regressions.
After the release candidate, only release blockers and documentation fixes should be backported.

In parallel to this phase, master can receive new features, to be released in the A.B+1 cycle.

1740 Chapter 10. Django internals

https://code.djangoproject.com/wiki/Version1.9Roadmap
https://code.djangoproject.com/wiki/Version1.9Roadmap


Django Documentation, Release 1.10.9.dev20171123183751

Bug-fix releases

After a feature release (e.g. A.B), the previous release will go into bugfix mode.

The branch for the previous feature release (e.g. stable/A.B-1.x) will include bugfixes. Critical bugs fixed on
master must also be fixed on the bugfix branch; this means that commits need to cleanly separate bug fixes from feature
additions. The developer who commits a fix to master will be responsible for also applying the fix to the current bugfix
branch.

10.8 Django Deprecation Timeline

This document outlines when various pieces of Django will be removed or altered in a backward incompatible way,
following their deprecation, as per the deprecation policy. More details about each item can often be found in the
release notes of two versions prior.

10.8.1 2.0

See the Django 1.9 release notes for more details on these changes.

• The weak argument to django.dispatch.signals.Signal.disconnect() will be removed.

• django.db.backends.base.BaseDatabaseOperations.check_aggregate_support()
will be removed.

• The django.forms.extras package will be removed.

• The assignment_tag helper will be removed.

• The host argument to assertsRedirects will be removed. The compatibility layer which allows absolute
URLs to be considered equal to relative ones when the path is identical will also be removed.

• Field.rel will be removed.

• Field.remote_field.to attribute will be removed.

• The on_delete argument for ForeignKey and OneToOneField will be required.

• django.db.models.fields.add_lazy_relation() will be removed.

• When time zone support is enabled, database backends that don’t support time zones won’t convert aware
datetimes to naive values in UTC anymore when such values are passed as parameters to SQL queries executed
outside of the ORM, e.g. with cursor.execute().

• The django.contrib.auth.tests.utils.skipIfCustomUser() decorator will be removed.

• The GeoManager and GeoQuerySet classes will be removed.

• The django.contrib.gis.geoip module will be removed.

• The supports_recursion check for template loaders will be removed from:

– django.template.engine.Engine.find_template()

– django.template.loader_tags.ExtendsNode.find_template()

– django.template.loaders.base.Loader.supports_recursion()

– django.template.loaders.cached.Loader.supports_recursion()

• The load_template() and load_template_sources() template loader methods will be removed.

• The template_dirs argument for template loaders will be removed:

10.8. Django Deprecation Timeline 1741



Django Documentation, Release 1.10.9.dev20171123183751

– django.template.loaders.base.Loader.get_template()

– django.template.loaders.cached.Loader.cache_key()

– django.template.loaders.cached.Loader.get_template()

– django.template.loaders.cached.Loader.get_template_sources()

– django.template.loaders.filesystem.Loader.get_template_sources()

• The django.template.loaders.base.Loader.__call__() method will be removed.

• Support for custom error views with a single positional parameter will be dropped.

• The mime_type attribute of django.utils.feedgenerator.Atom1Feed and django.utils.
feedgenerator.RssFeed will be removed in favor of content_type.

• The app_name argument to include() will be removed.

• Support for passing a 3-tuple as the first argument to include() will be removed.

• Support for setting a URL instance namespace without an application namespace will be removed.

• Field._get_val_from_obj() will be removed in favor of Field.value_from_object().

• django.template.loaders.eggs.Loader will be removed.

• The current_app parameter to the contrib.auth views will be removed.

• The callable_obj keyword argument to SimpleTestCase.assertRaisesMessage() will be re-
moved.

• Support for the allow_tags attribute on ModelAdmin methods will be removed.

• The enclosure keyword argument to SyndicationFeed.add_item() will be removed.

• The django.template.loader.LoaderOrigin and django.template.base.StringOrigin
aliases for django.template.base.Origin will be removed.

See the Django 1.10 release notes for more details on these changes.

• The makemigrations --exit option will be removed.

• Support for direct assignment to a reverse foreign key or many-to-many relation will be removed.

• The get_srid() and set_srid() methods of django.contrib.gis.geos.GEOSGeometry will
be removed.

• The get_x(), set_x(), get_y(), set_y(), get_z(), and set_z() methods of django.
contrib.gis.geos.Point will be removed.

• The get_coords() and set_coords() methods of django.contrib.gis.geos.Point will be
removed.

• The cascaded_union property of django.contrib.gis.geos.MultiPolygon will be removed.

• django.utils.functional.allow_lazy() will be removed.

• The shell --plain option will be removed.

• The django.core.urlresolvers module will be removed.

• The model CommaSeparatedIntegerField will be removed. A stub field will remain for compatibility
with historical migrations.

• Support for the template Context.has_key() method will be removed.

• Support for the django.core.files.storage.Storage.accessed_time(),
created_time(), and modified_time() methods will be removed.

1742 Chapter 10. Django internals



Django Documentation, Release 1.10.9.dev20171123183751

• Support for query lookups using the model name when Meta.default_related_name is set will be
removed.

• The __search query lookup and the DatabaseOperations.fulltext_search_sql() method will
be removed.

• The shim for supporting custom related manager classes without a _apply_rel_filters() method will
be removed.

• Using User.is_authenticated() and User.is_anonymous() as methods will no longer be sup-
ported.

• The private attribute virtual_fields of Model._meta will be removed.

• The private keyword arguments virtual_only in Field.contribute_to_class() and virtual in
Model._meta.add_field() will be removed.

• The javascript_catalog() and json_catalog() views will be removed.

• The django.contrib.gis.utils.precision_wkt() function will be removed.

• In multi-table inheritance, implicit promotion of a OneToOneField to a parent_link will be removed.

• Support for Widget._format_value() will be removed.

• FileField methods get_directory_name() and get_filename() will be removed.

• The mark_for_escaping() function and the classes it uses: EscapeData, EscapeBytes,
EscapeText, EscapeString, and EscapeUnicode will be removed.

• The escape filter will change to use django.utils.html.conditional_escape().

• Manager.use_for_related_fields will be removed.

• Model Manager inheritance will follow MRO inheritance rules and the Meta.
manager_inheritance_from_future to opt-in to this behavior will be removed.

• Support for old-style middleware using settings.MIDDLEWARE_CLASSES will be removed.

10.8.2 1.10

See the Django 1.8 release notes for more details on these changes.

• Support for calling a SQLCompiler directly as an alias for calling its quote_name_unless_alias
method will be removed.

• cycle and firstof template tags will be removed from the future template tag library (used during the
1.6/1.7 deprecation period).

• django.conf.urls.patterns() will be removed.

• Support for the prefix argument to django.conf.urls.i18n.i18n_patterns() will be removed.

• SimpleTestCase.urls will be removed.

• Using an incorrect count of unpacked values in the for template tag will raise an exception rather than fail
silently.

• The ability to reverse URLs using a dotted Python path will be removed.

• The ability to use a dotted Python path for the LOGIN_URL and LOGIN_REDIRECT_URL settings will be
removed.

• Support for optparse will be dropped for custom management commands (replaced by argparse).

10.8. Django Deprecation Timeline 1743

https://docs.python.org/3/library/optparse.html#module-optparse
https://docs.python.org/3/library/argparse.html#module-argparse


Django Documentation, Release 1.10.9.dev20171123183751

• The class django.core.management.NoArgsCommand will be removed. Use BaseCommand instead,
which takes no arguments by default.

• django.core.context_processors module will be removed.

• django.db.models.sql.aggregates module will be removed.

• django.contrib.gis.db.models.sql.aggregates module will be removed.

• The following methods and properties of django.db.sql.query.Query will be removed:

– Properties: aggregates and aggregate_select

– Methods: add_aggregate, set_aggregate_mask, and append_aggregate_mask.

• django.template.resolve_variable will be removed.

• The following private APIs will be removed from django.db.models.options.Options (Model.
_meta):

– get_field_by_name()

– get_all_field_names()

– get_fields_with_model()

– get_concrete_fields_with_model()

– get_m2m_with_model()

– get_all_related_objects()

– get_all_related_objects_with_model()

– get_all_related_many_to_many_objects()

– get_all_related_m2m_objects_with_model()

• The error_message argument of django.forms.RegexField will be removed.

• The unordered_list filter will no longer support old style lists.

• Support for string view arguments to url() will be removed.

• The backward compatible shim to rename django.forms.Form._has_changed() to
has_changed() will be removed.

• The removetags template filter will be removed.

• The remove_tags() and strip_entities() functions in django.utils.html will be removed.

• The is_admin_site argument to django.contrib.auth.views.password_reset() will be re-
moved.

• django.db.models.field.subclassing.SubfieldBase will be removed.

• django.utils.checksums will be removed; its functionality is included in django-localflavor
1.1+.

• The original_content_type_id attribute on django.contrib.admin.helpers.
InlineAdminForm will be removed.

• The backwards compatibility shim to allow FormMixin.get_form() to be defined with no default value
for its form_class argument will be removed.

• The following settings will be removed:

– ALLOWED_INCLUDE_ROOTS

1744 Chapter 10. Django internals



Django Documentation, Release 1.10.9.dev20171123183751

– TEMPLATE_CONTEXT_PROCESSORS

– TEMPLATE_DEBUG

– TEMPLATE_DIRS

– TEMPLATE_LOADERS

– TEMPLATE_STRING_IF_INVALID

• The backwards compatibility alias django.template.loader.BaseLoader will be removed.

• Django template objects returned by get_template() and select_template() won’t accept a
Context in their render() method anymore.

• Template response APIs will enforce the use of dict and backend-dependent template objects instead of
Context and Template respectively.

• The current_app parameter for the following function and classes will be removed:

– django.shortcuts.render()

– django.template.Context()

– django.template.RequestContext()

– django.template.response.TemplateResponse()

• The dictionary and context_instance parameters for the following functions will be removed:

– django.shortcuts.render()

– django.shortcuts.render_to_response()

– django.template.loader.render_to_string()

• The dirs parameter for the following functions will be removed:

– django.template.loader.get_template()

– django.template.loader.select_template()

– django.shortcuts.render()

– django.shortcuts.render_to_response()

• Session verification will be enabled regardless of whether or not 'django.contrib.auth.
middleware.SessionAuthenticationMiddleware' is in MIDDLEWARE_CLASSES.

• Private attribute django.db.models.Field.related will be removed.

• The --list option of the migrate management command will be removed.

• The ssi template tag will be removed.

• Support for the = comparison operator in the if template tag will be removed.

• The backwards compatibility shims to allow Storage.get_available_name() and Storage.
save() to be defined without a max_length argument will be removed.

• Support for the legacy %(<foo>)s syntax in ModelFormMixin.success_url will be removed.

• GeoQuerySet aggregate methods collect(), extent(), extent3d(), make_line(), and
unionagg() will be removed.

• Ability to specify ContentType.name when creating a content type instance will be removed.

10.8. Django Deprecation Timeline 1745

https://docs.python.org/3/library/stdtypes.html#dict


Django Documentation, Release 1.10.9.dev20171123183751

• Support for the old signature of allow_migrate will be removed. It changed from
allow_migrate(self, db, model) to allow_migrate(self, db, app_label,
model_name=None, **hints).

• Support for the syntax of {% cycle %} that uses comma-separated arguments will be removed.

• The warning that Signer issues when given an invalid separator will become an exception.

10.8.3 1.9

See the Django 1.7 release notes for more details on these changes.

• django.utils.dictconfig will be removed.

• django.utils.importlib will be removed.

• django.utils.tzinfo will be removed.

• django.utils.unittest will be removed.

• The syncdb command will be removed.

• django.db.models.signals.pre_syncdb and django.db.models.signals.post_syncdb
will be removed.

• allow_syncdb on database routers will no longer automatically become allow_migrate.

• Automatic syncing of apps without migrations will be removed. Migrations will become compulsory for all
apps unless you pass the --run-syncdb option to migrate.

• The SQL management commands for apps without migrations, sql, sqlall, sqlclear,
sqldropindexes, and sqlindexes, will be removed.

• Support for automatic loading of initial_data fixtures and initial SQL data will be removed.

• All models will need to be defined inside an installed application or declare an explicit app_label. Further-
more, it won’t be possible to import them before their application is loaded. In particular, it won’t be possible
to import models inside the root package of their application.

• The model and form IPAddressField will be removed. A stub field will remain for compatibility with
historical migrations.

• AppCommand.handle_app() will no longer be supported.

• RequestSite and get_current_site() will no longer be importable from django.contrib.
sites.models.

• FastCGI support via the runfcgi management command will be removed. Please deploy your project using
WSGI.

• django.utils.datastructures.SortedDict will be removed. Use collections.
OrderedDict from the Python standard library instead.

• ModelAdmin.declared_fieldsets will be removed.

• Instances of util.py in the Django codebase have been renamed to utils.py in an effort to unify all util
and utils references. The modules that provided backwards compatibility will be removed:

– django.contrib.admin.util

– django.contrib.gis.db.backends.util

– django.db.backends.util

– django.forms.util

1746 Chapter 10. Django internals

https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict


Django Documentation, Release 1.10.9.dev20171123183751

• ModelAdmin.get_formsets will be removed.

• The backward compatibility shim introduced to rename the BaseMemcachedCache.
_get_memcache_timeout() method to get_backend_timeout() will be removed.

• The --natural and -n options for dumpdata will be removed.

• The use_natural_keys argument for serializers.serialize() will be removed.

• Private API django.forms.forms.get_declared_fields() will be removed.

• The ability to use a SplitDateTimeWidget with DateTimeField will be removed.

• The WSGIRequest.REQUEST property will be removed.

• The class django.utils.datastructures.MergeDict will be removed.

• The zh-cn and zh-tw language codes will be removed and have been replaced by the zh-hans and
zh-hant language code respectively.

• The internal django.utils.functional.memoize will be removed.

• django.core.cache.get_cache will be removed. Add suitable entries to CACHES and use django.
core.cache.caches instead.

• django.db.models.loading will be removed.

• Passing callable arguments to querysets will no longer be possible.

• BaseCommand.requires_model_validation will be removed in favor of
requires_system_checks. Admin validators will be replaced by admin checks.

• The ModelAdmin.validator_class and default_validator_class attributes will be removed.

• ModelAdmin.validate() will be removed.

• django.db.backends.DatabaseValidation.validate_field will be removed in favor of the
check_field method.

• The validate management command will be removed.

• django.utils.module_loading.import_by_path will be removed in favor of django.utils.
module_loading.import_string.

• ssi and url template tags will be removed from the future template tag library (used during the 1.3/1.4
deprecation period).

• django.utils.text.javascript_quote will be removed.

• Database test settings as independent entries in the database settings, prefixed by TEST_, will no longer be
supported.

• The cache_choices option to ModelChoiceField and ModelMultipleChoiceField will be removed.

• The default value of the RedirectView.permanent attribute will change from True to False.

• django.contrib.sitemaps.FlatPageSitemap will be removed in favor of django.contrib.
flatpages.sitemaps.FlatPageSitemap.

• Private API django.test.utils.TestTemplateLoader will be removed.

• The django.contrib.contenttypes.generic module will be removed.

• Private APIs django.db.models.sql.where.WhereNode.make_atom() and django.db.
models.sql.where.Constraint will be removed.

10.8. Django Deprecation Timeline 1747



Django Documentation, Release 1.10.9.dev20171123183751

10.8.4 1.8

See the Django 1.6 release notes for more details on these changes.

• django.contrib.comments will be removed.

• The following transaction management APIs will be removed:

– TransactionMiddleware,

– the decorators and context managers autocommit, commit_on_success, and
commit_manually, defined in django.db.transaction,

– the functions commit_unless_managed and rollback_unless_managed, also defined in
django.db.transaction,

– the TRANSACTIONS_MANAGED setting.

• The cycle and firstof template tags will auto-escape their arguments. In 1.6 and 1.7, this behavior is
provided by the version of these tags in the future template tag library.

• The SEND_BROKEN_LINK_EMAILS setting will be removed. Add the django.middleware.common.
BrokenLinkEmailsMiddleware middleware to your MIDDLEWARE_CLASSES setting instead.

• django.middleware.doc.XViewMiddleware will be removed. Use django.contrib.
admindocs.middleware.XViewMiddleware instead.

• Model._meta.module_name was renamed to model_name.

• Remove the backward compatible shims introduced to rename get_query_set and simi-
lar queryset methods. This affects the following classes: BaseModelAdmin, ChangeList,
BaseCommentNode, GenericForeignKey, Manager, SingleRelatedObjectDescriptor
and ReverseSingleRelatedObjectDescriptor.

• Remove the backward compatible shims introduced to rename the attributes ChangeList.
root_query_set and ChangeList.query_set.

• django.views.defaults.shortcut will be removed, as part of the goal of removing all django.
contrib references from the core Django codebase. Instead use django.contrib.contenttypes.
views.shortcut. django.conf.urls.shortcut will also be removed.

• Support for the Python Imaging Library (PIL) module will be removed, as it no longer appears to be actively
maintained & does not work on Python 3. You are advised to install Pillow, which should be used instead.

• The following private APIs will be removed:

– django.db.backend

– django.db.close_connection()

– django.db.backends.creation.BaseDatabaseCreation.set_autocommit()

– django.db.transaction.is_managed()

– django.db.transaction.managed()

• django.forms.widgets.RadioInput will be removed in favor of django.forms.widgets.
RadioChoiceInput.

• The module django.test.simple and the class django.test.simple.
DjangoTestSuiteRunner will be removed. Instead use django.test.runner.DiscoverRunner.

• The module django.test._doctest will be removed. Instead use the doctest module from the Python
standard library.

• The CACHE_MIDDLEWARE_ANONYMOUS_ONLY setting will be removed.

1748 Chapter 10. Django internals

https://pypi.python.org/pypi/Pillow


Django Documentation, Release 1.10.9.dev20171123183751

• Usage of the hard-coded Hold down “Control”, or “Command” on a Mac, to select more than one. string to
override or append to user-provided help_text in forms for ManyToMany model fields will not be performed
by Django anymore either at the model or forms layer.

• The Model._meta.get_(add|change|delete)_permission methods will be removed.

• The session key django_language will no longer be read for backwards compatibility.

• Geographic Sitemaps will be removed (django.contrib.gis.sitemaps.views.index and
django.contrib.gis.sitemaps.views.sitemap).

• django.utils.html.fix_ampersands, the fix_ampersands template filter and django.
utils.html.clean_html will be removed following an accelerated deprecation.

10.8.5 1.7

See the Django 1.5 release notes for more details on these changes.

• The module django.utils.simplejson will be removed. The standard library provides json which
should be used instead.

• The function django.utils.itercompat.productwill be removed. The Python builtin version should
be used instead.

• Auto-correction of INSTALLED_APPS and TEMPLATE_DIRS settings when they are specified as a plain
string instead of a tuple will be removed and raise an exception.

• The mimetype argument to the __init__ methods of HttpResponse, SimpleTemplateResponse,
and TemplateResponse, will be removed. content_type should be used instead. This also applies to
the render_to_response() shortcut and the sitemap views, index() and sitemap().

• When HttpResponse is instantiated with an iterator, or when content is set to an iterator, that iterator will
be immediately consumed.

• The AUTH_PROFILE_MODULE setting, and the get_profile() method on the User model, will be re-
moved.

• The cleanup management command will be removed. It’s replaced by clearsessions.

• The daily_cleanup.py script will be removed.

• The depth keyword argument will be removed from select_related().

• The undocumented get_warnings_state()/restore_warnings_state() functions from
django.test.utils and the save_warnings_state()/ restore_warnings_state()
django.test.*TestCase methods are deprecated. Use the warnings.catch_warnings context manager
available starting with Python 2.6 instead.

• The undocumented check_for_test_cookie method in AuthenticationForm will be removed fol-
lowing an accelerated deprecation. Users subclassing this form should remove calls to this method, and instead
ensure that their auth related views are CSRF protected, which ensures that cookies are enabled.

• The version of django.contrib.auth.views.password_reset_confirm() that supports base36
encoded user IDs (django.contrib.auth.views.password_reset_confirm_uidb36) will be
removed. If your site has been running Django 1.6 for more than PASSWORD_RESET_TIMEOUT_DAYS, this
change will have no effect. If not, then any password reset links generated before you upgrade to Django 1.7
won’t work after the upgrade.

• The django.utils.encoding.StrAndUnicode mix-in will be removed. Define a __str__ method
and apply the python_2_unicode_compatible() decorator instead.

10.8. Django Deprecation Timeline 1749

https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/warnings.html#warnings.catch_warnings


Django Documentation, Release 1.10.9.dev20171123183751

10.8.6 1.6

See the Django 1.4 release notes for more details on these changes.

• django.contrib.databrowse will be removed.

• django.contrib.localflavor will be removed following an accelerated deprecation.

• django.contrib.markup will be removed following an accelerated deprecation.

• The compatibility modules django.utils.copycompat and django.utils.hashcompat as well
as the functions django.utils.itercompat.all and django.utils.itercompat.any will be
removed. The Python builtin versions should be used instead.

• The csrf_response_exempt and csrf_view_exempt decorators will be removed. Since 1.4
csrf_response_exempt has been a no-op (it returns the same function), and csrf_view_exempt has
been a synonym for django.views.decorators.csrf.csrf_exempt, which should be used to re-
place it.

• The django.core.cache.backends.memcached.CacheClass backend was split into two in
Django 1.3 in order to introduce support for PyLibMC. The historical CacheClass will be removed in fa-
vor of django.core.cache.backends.memcached.MemcachedCache.

• The UK-prefixed objects of django.contrib.localflavor.uk will only be accessible through their
GB-prefixed names (GB is the correct ISO 3166 code for United Kingdom).

• The IGNORABLE_404_STARTS and IGNORABLE_404_ENDS settings have been superseded by
IGNORABLE_404_URLS in the 1.4 release. They will be removed.

• The form wizard has been refactored to use class-based views with pluggable backends in 1.4. The previous
implementation will be removed.

• Legacy ways of calling cache_page() will be removed.

• The backward-compatibility shim to automatically add a debug-false filter to the 'mail_admins' logging
handler will be removed. The LOGGING setting should include this filter explicitly if it is desired.

• The builtin truncation functions django.utils.text.truncate_words() and django.utils.
text.truncate_html_words() will be removed in favor of the django.utils.text.Truncator
class.

• The django.contrib.gis.geoip.GeoIP class was moved to django.contrib.gis.geoip in 1.4
– the shortcut in django.contrib.gis.utils will be removed.

• django.conf.urls.defaultswill be removed. The functions include(), patterns() and url()
plus handler404, handler500, are now available through django.conf.urls .

• The functions setup_environ() and execute_manager() will be removed from django.core.
management. This also means that the old (pre-1.4) style of manage.py file will no longer work.

• Setting the is_safe and needs_autoescape flags as attributes of template filter functions will no longer
be supported.

• The attribute HttpRequest.raw_post_data was renamed to HttpRequest.body in 1.4. The back-
ward compatibility will be removed – HttpRequest.raw_post_data will no longer work.

• The value for the post_url_continue parameter in ModelAdmin.response_add() will have to be
either None (to redirect to the newly created object’s edit page) or a pre-formatted url. String formats, such as
the previous default '../%s/', will not be accepted any more.

1750 Chapter 10. Django internals



Django Documentation, Release 1.10.9.dev20171123183751

10.8.7 1.5

See the Django 1.3 release notes for more details on these changes.

• Starting Django without a SECRET_KEY will result in an exception rather than a DeprecationWarning.
(This is accelerated from the usual deprecation path; see the Django 1.4 release notes.)

• The mod_python request handler will be removed. The mod_wsgi handler should be used instead.

• The template attribute on django.test.client.Response objects returned by the test client will be
removed. The templates attribute should be used instead.

• The django.test.simple.DjangoTestRunner will be removed. Instead use a unittest-native class.
The features of the django.test.simple.DjangoTestRunner (including fail-fast and Ctrl-C test ter-
mination) can currently be provided by the unittest-native TextTestRunner.

• The undocumented function django.contrib.formtools.utils.security_hash will be re-
moved, instead use django.contrib.formtools.utils.form_hmac

• The function-based generic view modules will be removed in favor of their class-based equivalents, outlined
here.

• The django.core.servers.basehttp.AdminMediaHandler will be removed. In its place use
django.contrib.staticfiles.handlers.StaticFilesHandler.

• The template tags library adminmedia and the template tag {% admin_media_prefix %} will be re-
moved in favor of the generic static files handling. (This is faster than the usual deprecation path; see the Django
1.4 release notes.)

• The url and ssi template tags will be modified so that the first argument to each tag is a template variable, not
an implied string. In 1.4, this behavior is provided by a version of the tag in the future template tag library.

• The reset and sqlreset management commands will be removed.

• Authentication backends will need to support an inactive user being passed to all methods dealing with per-
missions. The supports_inactive_user attribute will no longer be checked and can be removed from
custom backends.

• transform() will raise a GEOSException when called on a geometry with no SRID value.

• django.http.CompatCookie will be removed in favor of django.http.SimpleCookie.

• django.core.context_processors.PermWrapper and django.core.
context_processors.PermLookupDict will be removed in favor of the corresponding
django.contrib.auth.context_processors.PermWrapper and django.contrib.auth.
context_processors.PermLookupDict, respectively.

• The MEDIA_URL or STATIC_URL settings will be required to end with a trailing slash to ensure there is a
consistent way to combine paths in templates.

• django.db.models.fields.URLField.verify_exists will be removed. The feature was depre-
cated in 1.3.1 due to intractable security and performance issues and will follow a slightly accelerated depreca-
tion timeframe.

• Translations located under the so-called project path will be ignored during the translation building process
performed at runtime. The LOCALE_PATHS setting can be used for the same task by including the filesystem
path to a locale directory containing non-app-specific translations in its value.

• The Markup contrib app will no longer support versions of Python-Markdown library earlier than 2.1. An
accelerated timeline was used as this was a security related deprecation.

• The CACHE_BACKEND setting will be removed. The cache backend(s) should be specified in the CACHES
setting.

10.8. Django Deprecation Timeline 1751

https://docs.python.org/3/library/unittest.html#unittest.TextTestRunner


Django Documentation, Release 1.10.9.dev20171123183751

10.8.8 1.4

See the Django 1.2 release notes for more details on these changes.

• CsrfResponseMiddleware and CsrfMiddleware will be removed. Use the {% csrf_token %}
template tag inside forms to enable CSRF protection. CsrfViewMiddleware remains and is enabled by
default.

• The old imports for CSRF functionality (django.contrib.csrf.*), which moved to core in 1.2, will be
removed.

• The django.contrib.gis.db.backend module will be removed in favor of the specific backends.

• SMTPConnection will be removed in favor of a generic Email backend API.

• The many to many SQL generation functions on the database backends will be removed.

• The ability to use the DATABASE_* family of top-level settings to define database connections will be removed.

• The ability to use shorthand notation to specify a database backend (i.e., sqlite3 instead of django.db.
backends.sqlite3) will be removed.

• The get_db_prep_save, get_db_prep_value and get_db_prep_lookup methods will have to
support multiple databases.

• The Message model (in django.contrib.auth), its related manager in the User model
(user.message_set), and the associated methods (user.message_set.create() and user.
get_and_delete_messages()), will be removed. The messages framework should be used instead. The
related messages variable returned by the auth context processor will also be removed. Note that this means
that the admin application will depend on the messages context processor.

• Authentication backends will need to support the obj parameter for permission checking. The
supports_object_permissions attribute will no longer be checked and can be removed from custom
backends.

• Authentication backends will need to support the AnonymousUser class being passed to all methods deal-
ing with permissions. The supports_anonymous_user variable will no longer be checked and can be
removed from custom backends.

• The ability to specify a callable template loader rather than a Loader class will be removed, as will the
load_template_source functions that are included with the built in template loaders for backwards com-
patibility.

• django.utils.translation.get_date_formats() and django.utils.translation.
get_partial_date_formats(). These functions will be removed; use the locale-aware django.
utils.formats.get_format() to get the appropriate formats.

• In django.forms.fields, the constants: DEFAULT_DATE_INPUT_FORMATS,
DEFAULT_TIME_INPUT_FORMATS and DEFAULT_DATETIME_INPUT_FORMATS will be removed.
Use django.utils.formats.get_format() to get the appropriate formats.

• The ability to use a function-based test runner will be removed, along with the django.test.simple.
run_tests() test runner.

• The views.feed() view and feeds.Feed class in django.contrib.syndication will be re-
moved. The class-based view views.Feed should be used instead.

• django.core.context_processors.auth. This release will remove the old method in favor of the
new method in django.contrib.auth.context_processors.auth.

• The postgresql database backend will be removed, use the postgresql_psycopg2 backend instead.

• The no language code will be removed and has been replaced by the nb language code.

1752 Chapter 10. Django internals



Django Documentation, Release 1.10.9.dev20171123183751

• Authentication backends will need to define the boolean attribute supports_inactive_user until version
1.5 when it will be assumed that all backends will handle inactive users.

• django.db.models.fields.XMLField will be removed. This was deprecated as part of the 1.3 release.
An accelerated deprecation schedule has been used because the field hasn’t performed any role beyond that
of a simple TextField since the removal of oldforms. All uses of XMLField can be replaced with
TextField.

• The undocumented mixin parameter to the open() method of django.core.files.storage.
Storage (and subclasses) will be removed.

10.8.9 1.3

See the Django 1.1 release notes for more details on these changes.

• AdminSite.root(). This method of hooking up the admin URLs will be removed in favor of including
admin.site.urls.

• Authentication backends need to define the boolean attributes supports_object_permissions and
supports_anonymous_user until version 1.4, at which point it will be assumed that all backends will
support these options.

10.9 The Django source code repository

When deploying a Django application into a real production environment, you will almost always want to use an
official packaged release of Django.

However, if you’d like to try out in-development code from an upcoming release or contribute to the development of
Django, you’ll need to obtain a clone of Django’s source code repository.

This document covers the way the code repository is laid out and how to work with and find things in it.

10.9.1 High-level overview

The Django source code repository uses Git to track changes to the code over time, so you’ll need a copy of the Git
client (a program called git) on your computer, and you’ll want to familiarize yourself with the basics of how Git
works.

Git’s website offers downloads for various operating systems. The site also contains vast amounts of documentation.

The Django Git repository is located online at github.com/django/django. It contains the full source code for all Django
releases, which you can browse online.

The Git repository includes several branches:

• master contains the main in-development code which will become the next packaged release of Django. This
is where most development activity is focused.

• stable/A.B.x are the branches where release preparation work happens. They are also used for bugfix and
security releases which occur as necessary after the initial release of a feature version.

• soc20XX/<project> branches were used by students who worked on Django during the 2009 and 2010
Google Summer of Code programs.

• attic/<project> branches were used to develop major or experimental new features without affecting the
rest of Django’s code.

10.9. The Django source code repository 1753

https://www.djangoproject.com/download/
https://www.djangoproject.com/download/
http://git-scm.com/
http://git-scm.com/documentation
https://github.com/django/django
https://github.com/django/django/branches


Django Documentation, Release 1.10.9.dev20171123183751

The Git repository also contains tags. These are the exact revisions from which packaged Django releases were
produced, since version 1.0.

The source code for the Djangoproject.com website can be found at github.com/django/djangoproject.com.

10.9.2 The master branch

If you’d like to try out the in-development code for the next release of Django, or if you’d like to contribute to Django
by fixing bugs or developing new features, you’ll want to get the code from the master branch.

Note that this will get all of Django: in addition to the top-level django module containing Python code, you’ll also
get a copy of Django’s documentation, test suite, packaging scripts and other miscellaneous bits. Django’s code will
be present in your clone as a directory named django.

To try out the in-development code with your own applications, simply place the directory containing your clone on
your Python import path. Then import statements which look for Django will find the django module within your
clone.

If you’re going to be working on Django’s code (say, to fix a bug or develop a new feature), you can probably stop
reading here and move over to the documentation for contributing to Django, which covers things like the preferred
coding style and how to generate and submit a patch.

10.9.3 Other branches

Django uses branches to prepare for releases of Django.

In the past when Django was hosted on Subversion, branches were also used for feature development. Now Django is
hosted on Git and feature development is done on contributor’s forks, but the Subversion feature branches remain in
Git for historical reference.

Stable branches

These branches can be found in the repository as stable/A.B.x branches and will be created right after the first
alpha is tagged.

For example, immediately after Django 1.5 alpha 1 was tagged, the branch stable/1.5.x was created and all
further work on preparing the code for the final 1.5 release was done there.

These branches also provide limited bugfix support for the most recent released version of Django and security support
for the two most recently-released versions of Django.

For example, after the release of Django 1.5, the branch stable/1.5.x receives only fixes for security and critical
stability bugs, which are eventually released as Django 1.5.1 and so on, stable/1.4.x receives only security fixes,
and stable/1.3.x no longer receives any updates.

Historical information

This policy for handling stable/A.B.x branches was adopted starting with the Django 1.5 release cycle.

Previously, these branches weren’t created until right after the releases and the stabilization work occurred on the main
repository branch. Thus, no new features development work for the next release of Django could be committed until
the final release happened.

For example, shortly after the release of Django 1.3 the branch stable/1.3.x was created. Official support for
that release has expired, and so it no longer receives direct maintenance from the Django project. However, that and

1754 Chapter 10. Django internals

https://github.com/django/django/tags
https://www.djangoproject.com/
https://github.com/django/djangoproject.com


Django Documentation, Release 1.10.9.dev20171123183751

all other similarly named branches continue to exist and interested community members have occasionally used them
to provide unofficial support for old Django releases.

Feature-development branches

Historical information

Since Django moved to Git in 2012, anyone can clone the repository and create their own branches, alleviating the
need for official branches in the source code repository.

The following section is mostly useful if you’re exploring the repository’s history, for example if you’re trying to
understand how some features were designed.

Feature-development branches tend by their nature to be temporary. Some produce successful features which are
merged back into Django’s master to become part of an official release, but others do not; in either case there comes a
time when the branch is no longer being actively worked on by any developer. At this point the branch is considered
closed.

Unfortunately, Django used to be maintained with the Subversion revision control system, that has no standard way
of indicating this. As a workaround, branches of Django which are closed and no longer maintained were moved into
attic.

For reference, the following are branches whose code eventually became part of Django itself, and so are no longer
separately maintained:

• boulder-oracle-sprint: Added support for Oracle databases to Django’s object-relational mapper. This
has been part of Django since the 1.0 release.

• gis: Added support for geographic/spatial queries to Django’s object-relational mapper. This has been part of
Django since the 1.0 release, as the bundled application django.contrib.gis.

• i18n: Added internationalization support to Django. This has been part of Django since the 0.90 release.

• magic-removal: A major refactoring of both the internals and public APIs of Django’s object-relational
mapper. This has been part of Django since the 0.95 release.

• multi-auth: A refactoring of Django’s bundled authentication framework which added support for authen-
tication backends. This has been part of Django since the 0.95 release.

• new-admin: A refactoring of Django’s bundled administrative application. This became part of Django as of
the 0.91 release, but was superseded by another refactoring (see next listing) prior to the Django 1.0 release.

• newforms-admin: The second refactoring of Django’s bundled administrative application. This became part
of Django as of the 1.0 release, and is the basis of the current incarnation of django.contrib.admin.

• queryset-refactor: A refactoring of the internals of Django’s object-relational mapper. This became part
of Django as of the 1.0 release.

• unicode: A refactoring of Django’s internals to consistently use Unicode-based strings in most places within
Django and Django applications. This became part of Django as of the 1.0 release.

When Django moved from SVN to Git, the information about branch merges wasn’t preserved in the source code
repository. This means that the master branch of Django doesn’t contain merge commits for the above branches.

However, this information is available as a grafts file. You can restore it by putting the following lines in .git/
info/grafts in your local clone:

10.9. The Django source code repository 1755

https://github.com/ramiro/django-git-grafts


Django Documentation, Release 1.10.9.dev20171123183751

ac64e91a0cadc57f4bc5cd5d66955832320ca7a1 553a20075e6991e7a60baee51ea68c8adc520d9a
→˓0cb8e31823b2e9f05c4ae868c19f5f38e78a5f2e
79e68c225b926302ebb29c808dda8afa49856f5c d0f57e7c7385a112cb9e19d314352fc5ed5b0747
→˓aa239e3e5405933af6a29dac3cf587b59a099927
5cf8f684237ab5addaf3549b2347c3adf107c0a7 cb45fd0ae20597306cd1f877efc99d9bd7cbee98
→˓e27211a0deae2f1d402537f0ebb64ad4ccf6a4da
f69cf70ed813a8cd7e1f963a14ae39103e8d5265 d5dbeaa9be359a4c794885c2e9f1b5a7e5e51fb8
→˓d2fcbcf9d76d5bb8a661ee73dae976c74183098b
aab3a418ac9293bb4abd7670f65d930cb0426d58 4ea7a11659b8a0ab07b0d2e847975f7324664f10
→˓adf4b9311d5d64a2bdd58da50271c121ea22e397
ff60c5f9de3e8690d1e86f3e9e3f7248a15397c8 7ef212af149540aa2da577a960d0d87029fd1514
→˓45b4288bb66a3cda401b45901e85b645674c3988
9dda4abee1225db7a7b195b84c915fdd141a7260 4fe5c9b7ee09dc25921918a6dbb7605edb374bc9
→˓3a7c14b583621272d4ef53061287b619ce3c290d
a19ed8aea395e8e07164ff7d85bd7dff2f24edca dc375fb0f3b7fbae740e8cfcd791b8bccb8a4e66
→˓42ea7a5ce8aece67d16c6610a49560c1493d4653
9c52d56f6f8a9cdafb231adf9f4110473099c9b5 c91a30f00fd182faf8ca5c03cd7dbcf8b735b458
→˓4a5c5c78f2ecd4ed8859cd5ac773ff3a01bccf96
953badbea5a04159adbfa970f5805c0232b6a401 4c958b15b250866b70ded7d82aa532f1e57f96ae
→˓5664a678b29ab04cad425c15b2792f4519f43928
471596fc1afcb9c6258d317c619eaf5fd394e797 4e89105d64bb9e04c409139a41e9c7aac263df4c
→˓3e9035a9625c8a8a5e88361133e87ce455c4fc13
9233d0426537615e06b78d28010d17d5a66adf44 6632739e94c6c38b4c5a86cf5c80c48ae50ac49f
→˓18e151bc3f8a85f2766d64262902a9fcad44d937

Additionally, the following branches are closed, but their code was never merged into Django and the features they
aimed to implement were never finished:

• full-history

• generic-auth

• multiple-db-support

• per-object-permissions

• schema-evolution

• schema-evolution-ng

• search-api

• sqlalchemy

All of the above-mentioned branches now reside in attic.

Finally, the repository contains soc2009/xxx and soc2010/xxx feature branches, used for Google Summer of
Code projects.

10.9.4 Tags

Each Django release is tagged and signed by a releaser.

The tags can be found on GitHub’s tags page.

10.10 How is Django Formed?

This document explains how to release Django.

1756 Chapter 10. Django internals

https://github.com/django/django/tags


Django Documentation, Release 1.10.9.dev20171123183751

Please, keep these instructions up-to-date if you make changes! The point here is to be descriptive, not prescriptive,
so feel free to streamline or otherwise make changes, but update this document accordingly!

10.10.1 Overview

There are three types of releases that you might need to make:

• Security releases: disclosing and fixing a vulnerability. This’ll generally involve two or three simultaneous
releases – e.g. 1.5.x, 1.6.x, and, depending on timing, perhaps a 1.7 alpha/beta/rc.

• Regular version releases: either a final release (e.g. 1.5) or a bugfix update (e.g. 1.5.1).

• Pre-releases: e.g. 1.6 alpha, beta, or rc.

The short version of the steps involved is:

1. If this is a security release, pre-notify the security distribution list one week before the actual release.

2. Proofread the release notes, looking for organization and writing errors. Draft a blog post and email announce-
ment.

3. Update version numbers and create the release package(s).

4. Upload the package(s) to the djangoproject.com server.

5. Upload the new version(s) to PyPI.

6. Declare the new version in the admin on djangoproject.com.

7. Post the blog entry and send out the email announcements.

8. Update version numbers post-release.

There are a lot of details, so please read on.

10.10.2 Prerequisites

You’ll need a few things before getting started:

• A GPG key. If the key you want to use is not your default signing key, you’ll need to add -u you@example.
com to every GPG signing command below, where you@example.com is the email address associated with
the key you want to use.

• An install of some required Python packages:

$ pip install wheel twine

• Access to Django’s record on PyPI. Create a file with your credentials:

/.pypirc

[pypi]
username:YourUsername
password:YourPassword

• Access to the djangoproject.com server to upload files.

• Access to the admin on djangoproject.com as a “Site maintainer”.

• Access to post to django-announce.

• If this is a security release, access to the pre-notification distribution list.

If this is your first release, you’ll need to coordinate with James and/or Jacob to get all these things lined up.

10.10. How is Django Formed? 1757



Django Documentation, Release 1.10.9.dev20171123183751

10.10.3 Pre-release tasks

A few items need to be taken care of before even beginning the release process. This stuff starts about a week before
the release; most of it can be done any time leading up to the actual release:

1. If this is a security release, send out pre-notification one week before the release. We maintain a list
of who gets these pre-notification emails in the private django-core repository. Send the mail to
security@djangoproject.com and BCC the pre-notification recipients. This email should be signed
by the key you’ll use for the release, and should include patches for each issue being fixed.

2. As the release approaches, watch Trac to make sure no release blockers are left for the upcoming release.

3. Check with the other committers to make sure they don’t have any uncommitted changes for the release.

4. Proofread the release notes, including looking at the online version to catch any broken links or reST errors, and
make sure the release notes contain the correct date.

5. Double-check that the release notes mention deprecation timelines for any APIs noted as deprecated, and that
they mention any changes in Python version support.

6. Double-check that the release notes index has a link to the notes for the new release; this will be in docs/
releases/index.txt.

7. If this is a feature release, ensure translations from Transifex have been integrated. This is typically done by a
separate translation’s manager rather than the releaser, but here are the steps. Provided you have an account on
Transifex:

$ python scripts/manage_translations.py fetch

and then commit the changed/added files (both .po and .mo). Sometimes there are validation errors which need
to be debugged, so avoid doing this task immediately before a release is needed.

8. Update the django-admin manual page:

$ cd docs
$ make man
$ man _build/man/django-admin.1 # do a quick sanity check
$ cp _build/man/django-admin.1 man/django-admin.1

and then commit the changed man page.

10.10.4 Preparing for release

Write the announcement blog post for the release. You can enter it into the admin at any time and mark it as inactive.
Here are a few examples: example security release announcement, example regular release announcement, example
pre-release announcement.

10.10.5 Actually rolling the release

OK, this is the fun part, where we actually push out a release!

1. Check Jenkins is green for the version(s) you’re putting out. You probably shouldn’t issue a release until it’s
green.

2. A release always begins from a release branch, so you should make sure you’re on a stable branch and up-to-date.
For example:

1758 Chapter 10. Django internals

https://www.djangoproject.com/weblog/2013/feb/19/security/
https://www.djangoproject.com/weblog/2012/mar/23/14/
https://www.djangoproject.com/weblog/2012/nov/27/15-beta-1/
https://www.djangoproject.com/weblog/2012/nov/27/15-beta-1/
http://djangoci.com


Django Documentation, Release 1.10.9.dev20171123183751

$ git checkout stable/1.5.x
$ git pull

3. If this is a security release, merge the appropriate patches from django-private. Rebase these patches as
necessary to make each one a simple commit on the release branch rather than a merge commit. To ensure this,
merge them with the --ff-only flag; for example:

$ git checkout stable/1.5.x
$ git merge --ff-only security/1.5.x

(This assumes security/1.5.x is a branch in the django-private repo containing the necessary secu-
rity patches for the next release in the 1.5 series.)

If git refuses to merge with --ff-only, switch to the security-patch branch and rebase it on the branch you are
about to merge it into (git checkout security/1.5.x; git rebase stable/1.5.x) and then
switch back and do the merge. Make sure the commit message for each security fix explains that the commit is
a security fix and that an announcement will follow (example security commit).

4. For a feature release, remove the UNDER DEVELOPMENT header at the top of the release notes and add the
release date on the next line. For a patch release, replace *Under Development* with the release date.
Make this change on all branches where the release notes for a particular version are located.

5. Update the version number in django/__init__.py for the release. Please see notes on setting the VER-
SION tuple below for details on VERSION.

6. If this is a pre-release package, update the “Development Status” trove classifier in setup.py to reflect this.
Otherwise, make sure the classifier is set to Development Status :: 5 - Production/Stable.

7. Tag the release using git tag. For example:

$ git tag --sign --message="Tag 1.5.1" 1.5.1

You can check your work by running git tag --verify <tag>.

8. Push your work, including the tag: git push --tags.

9. Make sure you have an absolutely clean tree by running git clean -dfx.

10. Run make -f extras/Makefile to generate the release packages. This will create the release packages
in a dist/ directory.

11. Generate the hashes of the release packages:

$ cd dist
$ md5sum *
$ sha1sum *
$ sha256sum *

12. Create a “checksums” file, Django-<<VERSION>>.checksum.txt containing the hashes and release in-
formation. Start with this template and insert the correct version, date, GPG key ID (from gpg --list-keys
--keyid-format LONG), release URL, and checksums:

This file contains MD5, SHA1, and SHA256 checksums for the source-code
tarball and wheel files of Django <<VERSION>>, released <<DATE>>.

To use this file, you will need a working install of PGP or other
compatible public-key encryption software. You will also need to have
the Django release manager's public key in your keyring; this key has
the ID ``XXXXXXXXXXXXXXXX`` and can be imported from the MIT
keyserver. For example, if using the open-source GNU Privacy Guard

10.10. How is Django Formed? 1759

https://github.com/django/django/commit/3ef4bbf495cc6c061789132e3d50a8231a89406b


Django Documentation, Release 1.10.9.dev20171123183751

implementation of PGP:

gpg --keyserver pgp.mit.edu --recv-key XXXXXXXXXXXXXXXX

Once the key is imported, verify this file::

gpg --verify <<THIS FILENAME>>

Once you have verified this file, you can use normal MD5, SHA1, or SHA256
checksumming applications to generate the checksums of the Django
package and compare them to the checksums listed below.

Release packages:
=================

https://www.djangoproject.com/m/releases/<<RELEASE TAR.GZ FILENAME>>
https://www.djangoproject.com/m/releases/<<RELEASE WHL FILENAME>>

MD5 checksums:
==============

<<MD5SUM>> <<RELEASE TAR.GZ FILENAME>>
<<MD5SUM>> <<RELEASE WHL FILENAME>>

SHA1 checksums:
===============

<<SHA1SUM>> <<RELEASE TAR.GZ FILENAME>>
<<SHA1SUM>> <<RELEASE WHL FILENAME>>

SHA256 checksums:
=================

<<SHA256SUM>> <<RELEASE TAR.GZ FILENAME>>
<<SHA256SUM>> <<RELEASE WHL FILENAME>>

13. Sign the checksum file (gpg --clearsign --digest-algo SHA256 Django-<version>.
checksum.txt). This generates a signed document, Django-<version>.checksum.txt.asc which
you can then verify using gpg --verify Django-<version>.checksum.txt.asc.

If you’re issuing multiple releases, repeat these steps for each release.

10.10.6 Making the release(s) available to the public

Now you’re ready to actually put the release out there. To do this:

1. Upload the release package(s) to the djangoproject server, replacing A.B. with the appropriate version number,
e.g. 1.5 for a 1.5.x release:

$ scp Django-* djangoproject.com:/home/www/www/media/releases/A.B

2. Upload the checksum file(s):

$ scp Django-A.B.C.checksum.txt.asc djangoproject.com:/home/www/www/media/pgp/
→˓Django-A.B.C.checksum.txt

1760 Chapter 10. Django internals



Django Documentation, Release 1.10.9.dev20171123183751

3. Test that the release packages install correctly using easy_install and pip. Here’s one method (which
requires virtualenvwrapper):

$ RELEASE_VERSION='1.7.2'
$ MAJOR_VERSION=`echo $RELEASE_VERSION| cut -c 1-3`

$ mktmpenv
$ easy_install https://www.djangoproject.com/m/releases/$MAJOR_VERSION/Django-
→˓$RELEASE_VERSION.tar.gz
$ deactivate
$ mktmpenv
$ pip install https://www.djangoproject.com/m/releases/$MAJOR_VERSION/Django-
→˓$RELEASE_VERSION.tar.gz
$ deactivate
$ mktmpenv
$ pip install https://www.djangoproject.com/m/releases/$MAJOR_VERSION/Django-
→˓$RELEASE_VERSION-py2.py3-none-any.whl
$ deactivate

This just tests that the tarballs are available (i.e. redirects are up) and that they install correctly, but it’ll catch
silly mistakes.

4. Ask a few people on IRC to verify the checksums by visiting the checksums file (e.g. https://www.djangoproject.
com/m/pgp/Django-1.5b1.checksum.txt) and following the instructions in it. For bonus points, they can also
unpack the downloaded release tarball and verify that its contents appear to be correct (proper version numbers,
no stray .pyc or other undesirable files).

5. Upload the release packages to PyPI (for pre-releases, only upload the wheel file):

$ twine upload -s dist/*

6. Go to the Add release page in the admin, enter the new release number exactly as it appears in the name of the
tarball (Django-<version>.tar.gz). So for example enter “1.5.1” or “1.4c2”, etc. If the release is part of an LTS
branch, mark it so.

7. Make the blog post announcing the release live.

8. For a new version release (e.g. 1.5, 1.6), update the default stable version of the docs by flipping the
is_default flag to True on the appropriate DocumentRelease object in the docs.djangoproject.
com database (this will automatically flip it to False for all others); you can do this using the site’s admin.

9. Post the release announcement to the django-announce, django-developers, and django-users mailing lists.
This should include a link to the announcement blog post. If this is a security release, also include oss-
security@lists.openwall.com.

10. Add a link to the blog post in the topic of the #django IRC channel: /msg chanserv TOPIC #django
new topic goes here.

10.10.7 Post-release

You’re almost done! All that’s left to do now is:

1. Update the VERSION tuple in django/__init__.py again, incrementing to whatever the next expected re-
lease will be. For example, after releasing 1.5.1, update VERSION to VERSION = (1, 5, 2, 'alpha',
0).

2. Add the release in Trac’s versions list if necessary (and make it the default if it’s a final release). Not all versions
are declared; take example on previous releases.

10.10. How is Django Formed? 1761

https://pypi.python.org/pypi/virtualenvwrapper
https://www.djangoproject.com/m/pgp/Django-1.5b1.checksum.txt
https://www.djangoproject.com/m/pgp/Django-1.5b1.checksum.txt
https://www.djangoproject.com/admin/releases/release/add/
mailto:oss-security@lists.openwall.com
mailto:oss-security@lists.openwall.com
https://code.djangoproject.com/admin/ticket/versions


Django Documentation, Release 1.10.9.dev20171123183751

3. If this was a security release, update Archive of security issues with details of the issues addressed.

10.10.8 New stable branch tasks

There are several items to do in the time following the creation of a new stable branch (often following an alpha
release). Some of these tasks don’t need to be done by the releaser.

1. Create a new DocumentRelease object in the docs.djangoproject.com database for the new ver-
sion’s docs, and update the docs/fixtures/doc_releases.json JSON fixture, so people without ac-
cess to the production DB can still run an up-to-date copy of the docs site.

2. Create a stub release note for the new feature version. Use the stub from the previous feature release version or
copy the contents from the previous feature version and delete most of the contents leaving only the headings.

3. Increase the default PBKDF2 iterations in django.contrib.auth.hashers.
PBKDF2PasswordHasher by about 20% (pick a round number). Run the tests, and update the 3
failing hasher tests with the new values. Make sure this gets noted in the release notes (see the 1.8 release notes
for an example).

4. Remove features that have reached the end of their deprecation cycle. Each removal should be done in a separate
commit for clarity. In the commit message, add a “refs #XXXX” to the original ticket where the deprecation
began if possible.

5. Remove .. versionadded::, .. versionadded::, and .. deprecated:: annotations in the
documentation from two releases ago. For example, in Django 1.9, notes for 1.7 will be removed.

6. Add the new branch to Read the Docs. Since the automatically generated version names (“stable-A.B.x”) differ
from the version numbers we’ve used historically in Read the Docs (“A.B.x”), we currently ask Eric Holscher
to add the version for us. Someday the alias functionality may be built-in to the Read the Docs UI.

10.10.9 Notes on setting the VERSION tuple

Django’s version reporting is controlled by the VERSION tuple in django/__init__.py. This is a five-element
tuple, whose elements are:

1. Major version.

2. Minor version.

3. Micro version.

4. Status – can be one of “alpha”, “beta”, “rc” or “final”.

5. Series number, for alpha/beta/RC packages which run in sequence (allowing, for example, “beta 1”, “beta 2”,
etc.).

For a final release, the status is always “final” and the series number is always 0. A series number of 0 with an “alpha”
status will be reported as “pre-alpha”.

Some examples:

• (1, 2, 1, 'final', 0)→ “1.2.1”

• (1, 3, 0, 'alpha', 0)→ “1.3 pre-alpha”

• (1, 3, 0, 'beta', 2)→ “1.3 beta 2”

1762 Chapter 10. Django internals

https://readthedocs.org/projects/django/


CHAPTER 11

Indices, glossary and tables

• genindex

• modindex

• Glossary

1763



Django Documentation, Release 1.10.9.dev20171123183751

1764 Chapter 11. Indices, glossary and tables



Python Module Index

a
django.apps, 629

c
django.conf.urls, 1363
django.conf.urls.i18n, 459
django.contrib.admin, 696
django.contrib.admindocs, 703
django.contrib.auth, 404
django.contrib.auth.backends, 754
django.contrib.auth.forms, 376
django.contrib.auth.hashers, 385
django.contrib.auth.middleware, 1081
django.contrib.auth.password_validation,

385
django.contrib.auth.signals, 754
django.contrib.auth.views, 368
django.contrib.contenttypes, 756
django.contrib.contenttypes.admin, 762
django.contrib.contenttypes.fields, 758
django.contrib.contenttypes.forms, 761
django.contrib.flatpages, 762
django.contrib.gis, 767
django.contrib.gis.admin, 882
django.contrib.gis.db.backends, 796
django.contrib.gis.db.models, 792
django.contrib.gis.db.models.functions,

824
django.contrib.gis.feeds, 883
django.contrib.gis.forms, 802
django.contrib.gis.gdal, 849
django.contrib.gis.geoip, 871
django.contrib.gis.geoip2, 874
django.contrib.gis.geos, 833
django.contrib.gis.measure, 831
django.contrib.gis.serializers.geojson,

880
django.contrib.gis.utils, 877
django.contrib.gis.utils.layermapping,

877

django.contrib.gis.utils.ogrinspect, 880
django.contrib.gis.widgets, 804
django.contrib.humanize, 887
django.contrib.messages, 889
django.contrib.messages.middleware, 1079
django.contrib.postgres, 895
django.contrib.postgres.aggregates, 896
django.contrib.postgres.validators, 921
django.contrib.redirects, 921
django.contrib.sessions, 210
django.contrib.sessions.middleware, 1081
django.contrib.sitemaps, 922
django.contrib.sites, 930
django.contrib.sites.middleware, 1081
django.contrib.staticfiles, 937
django.contrib.syndication, 943
django.core.checks, 531
django.core.exceptions, 1007
django.core.files, 1011
django.core.files.storage, 1013
django.core.files.uploadedfile, 1016
django.core.files.uploadhandler, 1017
django.core.mail, 428
django.core.management, 539
django.core.paginator, 495
django.core.signals, 1283
django.core.signing, 425
django.core.validators, 1380

d
django.db, 84
django.db.backends, 1285
django.db.backends.base.schema, 1229
django.db.migrations, 304
django.db.migrations.operations, 1083
django.db.models, 84
django.db.models.fields, 1090
django.db.models.fields.related, 1106
django.db.models.functions, 1203

1765



Django Documentation, Release 1.10.9.dev20171123183751

django.db.models.functions.datetime,
1208

django.db.models.lookups, 1187
django.db.models.options, 1116
django.db.models.signals, 1278
django.db.transaction, 144
django.dispatch, 527

f
django.forms, 1019
django.forms.fields, 1038
django.forms.formsets, 232
django.forms.models, 243
django.forms.widgets, 1058

h
django.http, 1215

m
django.middleware, 1077
django.middleware.cache, 1077
django.middleware.clickjacking, 1082
django.middleware.common, 1077
django.middleware.csrf, 1082
django.middleware.exception, 1078
django.middleware.gzip, 1078
django.middleware.http, 1078
django.middleware.locale, 1079
django.middleware.security, 1079

s
django.shortcuts, 201

t
django.template, 267
django.template.backends, 271
django.template.backends.django, 271
django.template.backends.jinja2, 272
django.template.loader, 268
django.template.response, 1350
django.test, 318
django.test.signals, 1284
django.test.utils, 355

u
django.urls, 1360
django.utils, 1366
django.utils.cache, 1366
django.utils.dateparse, 1367
django.utils.decorators, 1367
django.utils.encoding, 1368
django.utils.feedgenerator, 1369
django.utils.functional, 1371
django.utils.html, 1373

django.utils.http, 1375
django.utils.log, 485
django.utils.module_loading, 1375
django.utils.safestring, 1376
django.utils.six, 505
django.utils.text, 1376
django.utils.timezone, 1377
django.utils.translation, 438

v
django.views, 1384
django.views.decorators.cache, 197
django.views.decorators.csrf, 964
django.views.decorators.gzip, 197
django.views.decorators.http, 196
django.views.decorators.vary, 197
django.views.generic.dates, 656
django.views.i18n, 452

1766 Python Module Index



Index

Symbols
–addrport ADDRPORT

testserver command line option, 1000
–admins

sendtestemail command line option, 994
–all

diffsettings command line option, 985
–all, -a

dumpdata command line option, 985
makemessages command line option, 990

–app APP_LABEL
loaddata command line option, 987

–backwards
sqlmigrate command line option, 996

–blank BLANK
ogrinspect command line option, 881

–check
makemigrations command line option, 992

–clear, -c
collectstatic command line option, 938

–command COMMAND, -c COMMAND
shell command line option, 995

–database DATABASE
changepassword command line option, 1001
createcachetable command line option, 984
createsuperuser command line option, 1002
dbshell command line option, 985
dumpdata command line option, 986
flush command line option, 986
inspectdb command line option, 987
loaddata command line option, 987
migrate command line option, 992
showmigrations command line option, 995
sqlflush command line option, 996
sqlmigrate command line option, 996
sqlsequencereset command line option, 996

–debug-sql, -d
test command line option, 999

–decimal DECIMAL

ogrinspect command line option, 881
–deploy

check command line option, 984
–domain DOMAIN, -d DOMAIN

makemessages command line option, 990
–dry-run

createcachetable command line option, 985
makemigrations command line option, 991

–dry-run, -n
collectstatic command line option, 938

–email EMAIL
createsuperuser command line option, 1002

–empty
makemigrations command line option, 991

–exclude EXCLUDE, -e EXCLUDE
dumpdata command line option, 986

–exclude EXCLUDE, -x EXCLUDE
compilemessages command line option, 984
makemessages command line option, 990

–exclude-tag EXCLUDE_TAGS
test command line option, 1000

–exit, -e
makemigrations command line option, 991

–extension EXTENSIONS, -e EXTENSIONS
makemessages command line option, 990
startapp command line option, 997
startproject command line option, 998

–fail-level {CRITICAL,ERROR,WARNING,INFO,DEBUG}
check command line option, 984

–failfast
test command line option, 999

–fake
migrate command line option, 992

–fake-initial
migrate command line option, 992

–format FORMAT
dumpdata command line option, 985

–geom-name GEOM_NAME
ogrinspect command line option, 881

–ignore PATTERN, -i PATTERN

1767



Django Documentation, Release 1.10.9.dev20171123183751

collectstatic command line option, 938
makemessages command line option, 990

–ignorenonexistent, -i
loaddata command line option, 987

–indent INDENT
dumpdata command line option, 986

–insecure
runserver command line option, 940

–interface {ipython,bpython,python}, -i
{ipython,bpython,python}

shell command line option, 995
–ipv6, -6

runserver command line option, 993
–keep-pot

makemessages command line option, 991
–keepdb, -k

test command line option, 999
–layer LAYER_KEY

ogrinspect command line option, 882
–link, -l

collectstatic command line option, 938
–list, -l

showmigrations command line option, 995
–list-tags

check command line option, 983
–liveserver LIVESERVER

test command line option, 999
–locale LOCALE, -l LOCALE

compilemessages command line option, 984
makemessages command line option, 990

–managers
sendtestemail command line option, 994

–mapping
ogrinspect command line option, 882

–merge
makemigrations command line option, 991

–multi-geom
ogrinspect command line option, 882

–name FILES, -n FILES
startapp command line option, 997
startproject command line option, 998

–name NAME, -n NAME
makemigrations command line option, 991

–name-field NAME_FIELD
ogrinspect command line option, 882

–natural-foreign
dumpdata command line option, 986

–natural-primary
dumpdata command line option, 986

–no-color
command line option, 1003

–no-default-ignore
collectstatic command line option, 938
makemessages command line option, 991

–no-imports
ogrinspect command line option, 882

–no-location
makemessages command line option, 991

–no-optimize
squashmigrations command line option, 996

–no-post-process
collectstatic command line option, 938

–no-wrap
makemessages command line option, 991

–noinput, –no-input
collectstatic command line option, 938
flush command line option, 986
makemigrations command line option, 991
migrate command line option, 992
squashmigrations command line option, 997
test command line option, 999
testserver command line option, 1001

–noreload
runserver command line option, 993

–nostartup
shell command line option, 995

–nostatic
runserver command line option, 939

–nothreading
runserver command line option, 993

–null NULL
ogrinspect command line option, 882

–output OUTPUT, -o OUTPUT
dumpdata command line option, 986

–parallel [N]
test command line option, 999

–pks PRIMARY_KEYS
dumpdata command line option, 986

–plan, -p
showmigrations command line option, 995

–pythonpath PYTHONPATH
command line option, 1003

–reverse, -r
test command line option, 999

–run-syncdb
migrate command line option, 992

–settings SETTINGS
command line option, 1003

–srid SRID
ogrinspect command line option, 882

–symlinks, -s
makemessages command line option, 990

–tag TAGS
test command line option, 1000

–tag TAGS, -t TAGS
check command line option, 983

–template TEMPLATE
startapp command line option, 997

1768 Index



Django Documentation, Release 1.10.9.dev20171123183751

startproject command line option, 998
–testrunner TESTRUNNER

test command line option, 999
–traceback

command line option, 1003
–use-fuzzy, -f

compilemessages command line option, 984
–username USERNAME

createsuperuser command line option, 1002
–verbosity {0,1,2,3}, -v {0,1,2,3}

command line option, 1003
__contains__() (QueryDict method), 1220
__contains__() (backends.base.SessionBase method), 212
__delitem__() (HttpResponse method), 1225
__delitem__() (backends.base.SessionBase method), 212
__eq__() (Model method), 1139
__getattr__() (Area method), 833
__getattr__() (Distance method), 832
__getitem__() (HttpResponse method), 1225
__getitem__() (OGRGeometry method), 856
__getitem__() (QueryDict method), 1220
__getitem__() (SpatialReference method), 862
__getitem__() (backends.base.SessionBase method), 212
__hash__() (Model method), 1140
__init__() (HttpResponse method), 1224
__init__() (QueryDict method), 1220
__init__() (SimpleTemplateResponse method), 1351
__init__() (SyndicationFeed method), 1370
__init__() (TemplateResponse method), 1352
__init__() (requests.RequestSite method), 936
__iter__() (File method), 1012
__iter__() (HttpRequest method), 1220
__iter__() (OGRGeometry method), 856
__len__() (OGRGeometry method), 855
__setitem__() (HttpResponse method), 1225
__setitem__() (QueryDict method), 1220
__setitem__() (backends.base.SessionBase method), 212
__str__() (Model method), 1139
_base_manager (Model attribute), 135
_default_manager (Model attribute), 135
_open() (in module django.core.files.storage), 577
_save() (in module django.core.files.storage), 577

A
A (class in django.contrib.gis.measure), 833
ABSOLUTE_URL_OVERRIDES

setting, 1232
abstract (Options attribute), 1123
accessed_time() (Storage method), 1014
AccessMixin (class in django.contrib.auth.mixins), 367
action_flag (LogEntry attribute), 747
action_time (LogEntry attribute), 747
actions (ModelAdmin attribute), 708
actions_on_bottom (ModelAdmin attribute), 708

actions_on_top (ModelAdmin attribute), 708
actions_selection_counter (ModelAdmin attribute), 708
activate() (in module django.utils.timezone), 1377
activate() (in module django.utils.translation), 1379
add

template filter, 1313
add() (GeometryCollection method), 860
add() (RelatedManager method), 1121
add_action() (AdminSite method), 702
add_arguments() (BaseCommand method), 543
add_arguments() (django.test.runner.DiscoverRunner

class method), 354
add_error() (Form method), 1021
add_field() (BaseDatabaseSchemaEditor method), 1231
add_form_template (ModelAdmin attribute), 725
add_item() (SyndicationFeed method), 1370
add_item_elements() (SyndicationFeed method), 1370
add_message() (in module django.contrib.messages), 891
add_never_cache_headers() (in module

django.utils.cache), 1366
add_post_render_callback() (SimpleTemplateResponse

method), 1352
add_root_elements() (SyndicationFeed method), 1370
add_view() (ModelAdmin method), 733
AddField (class in django.db.migrations.operations),

1085
addslashes

template filter, 1313
AdminEmailHandler (class in django.utils.log), 493
AdminPasswordChangeForm (class in

django.contrib.auth.forms), 376
ADMINS

setting, 1232
AdminSite (class in django.contrib.admin), 743
Aggregate (class in django.db.models), 1194
aggregate() (in module

django.db.models.query.QuerySet), 1171
all() (in module django.db.models.query.QuerySet), 1152
allow_database_queries (SimpleTestCase attribute), 332
allow_empty (BaseDateListView attribute), 679
allow_empty (django.views.generic.list.MultipleObjectMixin

attribute), 670
allow_files (FilePathField attribute), 1048, 1102
allow_folders (FilePathField attribute), 1048, 1102
allow_future (DateMixin attribute), 678
allow_lazy() (in module django.utils.functional), 1372
allow_migrate(), 156
allow_relation(), 156
allow_unicode (SlugField attribute), 1051, 1104
AllowAllUsersModelBackend (class in

django.contrib.auth.backends), 755
AllowAllUsersRemoteUserBackend (class in

django.contrib.auth.backends), 756
ALLOWED_HOSTS

Index 1769



Django Documentation, Release 1.10.9.dev20171123183751

setting, 1232
alter_db_table() (BaseDatabaseSchemaEditor method),

1230
alter_db_tablespace() (BaseDatabaseSchemaEditor

method), 1230
alter_field() (BaseDatabaseSchemaEditor method), 1231
alter_index_together() (BaseDatabaseSchemaEditor

method), 1230
alter_unique_together() (BaseDatabaseSchemaEditor

method), 1230
AlterField (class in django.db.migrations.operations),

1085
AlterIndexTogether (class in

django.db.migrations.operations), 1084
AlterModelManagers (class in

django.db.migrations.operations), 1085
AlterModelOptions (class in

django.db.migrations.operations), 1084
AlterModelTable (class in

django.db.migrations.operations), 1084
AlterOrderWithRespectTo (class in

django.db.migrations.operations), 1084
AlterUniqueTogether (class in

django.db.migrations.operations), 1084
angular_name (SpatialReference attribute), 863
angular_units (SpatialReference attribute), 863
annotate() (in module django.db.models.query.QuerySet),

1145
apnumber

template filter, 887
app_directories.Loader (class in

django.template.loaders), 1344
app_index_template (AdminSite attribute), 743
app_label (ContentType attribute), 757
app_label (Options attribute), 1124
app_name (ResolverMatch attribute), 1362
app_names (ResolverMatch attribute), 1362
AppCommand (class in django.core.management), 543
AppConfig (class in django.apps), 631
APPEND_SLASH

setting, 1233
appendlist() (QueryDict method), 1222
application namespace, 191
AppRegistryNotReady, 1007
apps (in module django.apps), 633
apps.AdminConfig (class in django.contrib.admin), 708
apps.SimpleAdminConfig (class in

django.contrib.admin), 708
ArchiveIndexView (built-in class), 686
ArchiveIndexView (class in django.views.generic.dates),

657
Area (class in django.contrib.gis.db.models.functions),

824
Area (class in django.contrib.gis.measure), 833

area (GEOSGeometry attribute), 841
area (OGRGeometry attribute), 856
area() (GeoQuerySet method), 816
arg_joiner (Func attribute), 1194
args (ResolverMatch attribute), 1362
arity (Func attribute), 1194
ArrayAgg (class in django.contrib.postgres.aggregates),

896
ArrayField (class in django.contrib.postgres.fields), 899
arrayfield.contained_by

field lookup type, 901
arrayfield.contains

field lookup type, 900
arrayfield.index

field lookup type, 902
arrayfield.len

field lookup type, 901
arrayfield.overlap

field lookup type, 901
arrayfield.slice

field lookup type, 902
as_data() (Form.errors method), 1020
as_datetime() (Field method), 855
as_double() (Field method), 854
as_hidden() (BoundField method), 1034
as_int() (Field method), 855
as_json() (Form.errors method), 1021
as_manager() (in module

django.db.models.query.QuerySet), 1174
as_p() (Form method), 1026
as_sql() (Func method), 1194
as_sql() (in module django.db.models), 1188
as_string() (Field method), 855
as_table() (Form method), 1027
as_ul() (Form method), 1026
as_vendorname() (in module django.db.models), 1188
as_view() (django.views.generic.base.View class

method), 647
as_widget() (BoundField method), 1034
asc() (Expression method), 1197
AsGeoJSON (class in

django.contrib.gis.db.models.functions),
825

AsGML (class in django.contrib.gis.db.models.functions),
825

AsKML (class in django.contrib.gis.db.models.functions),
825

assertContains() (SimpleTestCase method), 343
assertFieldOutput() (SimpleTestCase method), 342
assertFormError() (SimpleTestCase method), 343
assertFormsetError() (SimpleTestCase method), 343
assertHTMLEqual() (SimpleTestCase method), 344
assertHTMLNotEqual() (SimpleTestCase method), 344
assertInHTML() (SimpleTestCase method), 345

1770 Index



Django Documentation, Release 1.10.9.dev20171123183751

assertJSONEqual() (SimpleTestCase method), 345
assertJSONNotEqual() (SimpleTestCase method), 345
assertNotContains() (SimpleTestCase method), 343
assertNumQueries() (TransactionTestCase method), 345
assertQuerysetEqual() (TransactionTestCase method),

345
assertRaisesMessage() (SimpleTestCase method), 342
assertRedirects() (SimpleTestCase method), 344
assertTemplateNotUsed() (SimpleTestCase method), 343
assertTemplateUsed() (SimpleTestCase method), 343
assertXMLEqual() (SimpleTestCase method), 344
assertXMLNotEqual() (SimpleTestCase method), 345
assignment_tag() (django.template.Library method), 568
AsSVG (class in django.contrib.gis.db.models.functions),

826
Atom1Feed (class in django.utils.feedgenerator), 1371
atomic() (in module django.db.transaction), 146
attr_value() (SpatialReference method), 862
attrs (Widget attribute), 1061
auth() (in module django.contrib.auth.context_processors),

1341
auth_code() (SpatialReference method), 863
auth_name() (SpatialReference method), 862
AUTH_PASSWORD_VALIDATORS

setting, 1267
AUTH_USER_MODEL

setting, 1266
authenticate() (in module django.contrib.auth), 358
authenticate() (ModelBackend method), 755
authenticate() (RemoteUserBackend method), 755
AUTHENTICATION_BACKENDS

setting, 1266
AuthenticationForm (class in django.contrib.auth.forms),

376
AuthenticationMiddleware (class in

django.contrib.auth.middleware), 1081
auto_created (Field attribute), 1116
auto_id (BoundField attribute), 1032
auto_id (Form attribute), 1028
auto_now (DateField attribute), 1097
auto_now_add (DateField attribute), 1097
autodiscover() (in module django.contrib.admin), 708
autoescape

template tag, 1295
AutoField (class in django.db.models), 1095
available_apps (TransactionTestCase attribute), 351
Avg (class in django.db.models), 1184

B
backends.base.SessionBase (class in

django.contrib.sessions), 212
backends.cached_db.SessionStore (class in

django.contrib.sessions), 220

backends.db.SessionStore (class in
django.contrib.sessions), 220

backends.smtp.EmailBackend (class in django.core.mail),
434

bands (GDALRaster attribute), 867
base36_to_int() (in module django.utils.http), 1375
base_field (ArrayField attribute), 899
base_field (django.contrib.postgres.forms.BaseRangeField

attribute), 911
base_field (RangeField attribute), 911
base_field (SimpleArrayField attribute), 911
base_field (SplitArrayField attribute), 912
base_manager_name (Options attribute), 1124
base_session.AbstractBaseSession (class in

django.contrib.sessions), 220
base_session.BaseSessionManager (class in

django.contrib.sessions), 220
base_url (FileSystemStorage attribute), 1013
base_widget (RangeWidget attribute), 915
BaseArchiveIndexView (class in

django.views.generic.dates), 666
BaseCommand (class in django.core.management), 541
BaseDatabaseSchemaEditor (class in

django.db.backends.base.schema), 1229
BaseDateDetailView (class in

django.views.generic.dates), 666
BaseDateListView (class in django.views.generic.dates),

678
BaseDayArchiveView (class in

django.views.generic.dates), 666
BaseFormSet (class in django.forms.formsets), 232
BaseGenericInlineFormSet (class in

django.contrib.contenttypes.forms), 761
BaseGeometryWidget (class in

django.contrib.gis.widgets), 804
BaseMonthArchiveView (class in

django.views.generic.dates), 666
BaseTodayArchiveView (class in

django.views.generic.dates), 666
BaseWeekArchiveView (class in

django.views.generic.dates), 666
BaseYearArchiveView (class in

django.views.generic.dates), 666
bbcontains

field lookup type, 806
bboverlaps

field lookup type, 806
BigAutoField (class in django.db.models), 1096
BigIntegerField (class in django.db.models), 1096
BigIntegerRangeField (class in

django.contrib.postgres.fields), 907
bilateral (Transform attribute), 1189
BinaryField (class in django.db.models), 1096
BitAnd (class in django.contrib.postgres.aggregates), 896

Index 1771



Django Documentation, Release 1.10.9.dev20171123183751

BitOr (class in django.contrib.postgres.aggregates), 896
blank (Field attribute), 1091
block

template tag, 1295
blocktrans

template tag, 447
body (HttpRequest attribute), 1215
BoolAnd (class in django.contrib.postgres.aggregates),

896
BooleanField (class in django.db.models), 1096
BooleanField (class in django.forms), 1043
BoolOr (class in django.contrib.postgres.aggregates), 897
boundary (GEOSGeometry attribute), 840
boundary() (OGRGeometry method), 858
BoundField (class in django.forms), 1032
BoundingCircle (class in

django.contrib.gis.db.models.functions),
826

BrokenLinkEmailsMiddleware (class in
django.middleware.common), 1077

buffer() (GEOSGeometry method), 840
build_absolute_uri() (HttpRequest method), 1218
build_suite() (DiscoverRunner method), 354
bulk_create() (in module

django.db.models.query.QuerySet), 1168
byteorder (WKBWriter attribute), 847

C
cache

template tag, 413
cache_control() (in module

django.views.decorators.cache), 197
cache_key_prefix (backends.cached_db.SessionStore at-

tribute), 220
CACHE_MIDDLEWARE_ALIAS

setting, 1235
CACHE_MIDDLEWARE_KEY_PREFIX

setting, 1235
CACHE_MIDDLEWARE_SECONDS

setting, 1235
cached.Loader (class in django.template.loaders), 1344
cached_property (class in django.utils.functional), 1371
CACHES

setting, 1233
CACHES-BACKEND

setting, 1233
CACHES-KEY_FUNCTION

setting, 1234
CACHES-KEY_PREFIX

setting, 1234
CACHES-LOCATION

setting, 1234
CACHES-OPTIONS

setting, 1234

CACHES-TIMEOUT
setting, 1235

CACHES-VERSION
setting, 1235

CallbackFilter (class in django.utils.log), 494
can_delete (BaseFormSet attribute), 239
can_delete (InlineModelAdmin attribute), 737
can_import_settings (BaseCommand attribute), 542
can_order (BaseFormSet attribute), 238
capfirst

template filter, 1313
CASCADE (in module django.db.models), 1107
cascaded_union (MultiPolygon attribute), 844
Case (class in django.db.models.expressions), 1201
Cast (class in django.db.models.functions), 1204
center

template filter, 1313
Centroid (class in django.contrib.gis.db.models.functions),

826
centroid (GEOSGeometry attribute), 840
centroid (Polygon attribute), 860
centroid() (GeoQuerySet method), 817
change_form_template (ModelAdmin attribute), 725
change_list_template (ModelAdmin attribute), 725
change_message (LogEntry attribute), 747
change_view() (ModelAdmin method), 733
changed_data (Form attribute), 1022
changed_objects (models.BaseModelFormSet attribute),

256
changefreq (Sitemap attribute), 925
changelist_view() (ModelAdmin method), 733
changepassword

django-admin command, 1001
changepassword command line option

–database DATABASE, 1001
CharField (class in django.db.models), 1096
CharField (class in django.forms), 1044
charset (HttpResponse attribute), 1224
charset (UploadedFile attribute), 1016
check

django-admin command, 983
check command line option

–deploy, 984
–fail-level {CRITI-

CAL,ERROR,WARNING,INFO,DEBUG},
984

–list-tags, 983
–tag TAGS, -t TAGS, 983

check() (BaseCommand method), 543
check_for_language() (in module

django.utils.translation), 1379
check_password() (in module

django.contrib.auth.hashers), 385

1772 Index



Django Documentation, Release 1.10.9.dev20171123183751

check_password() (models.AbstractBaseUser method),
397

check_password() (models.User method), 751
check_test (CheckboxInput attribute), 1067
CheckboxInput (class in django.forms), 1067
CheckboxSelectMultiple (class in django.forms), 1069
CheckMessage (class in django.core.checks), 635
ChoiceField (class in django.forms), 1044
choices (ChoiceField attribute), 1044
choices (Field attribute), 1091
choices (MultipleHiddenInput attribute), 1069
choices (Select attribute), 1067
chunk_size (FileUploadHandler attribute), 1018
chunks() (File method), 1012
chunks() (UploadedFile method), 1016
city() (GeoIP method), 873
city() (GeoIP2 method), 876
city_info (GeoIP attribute), 874
classes (InlineModelAdmin attribute), 736
clean() (Field method), 1038
clean() (Form method), 1020
clean() (Model method), 1134
clean() (models.AbstractBaseUser method), 397
clean_fields() (Model method), 1134
clean_savepoints() (in module django.db.transaction),

151
clean_username() (RemoteUserBackend method), 755
cleaned_data (Form attribute), 1023
clear() (backends.base.SessionBase method), 213
clear() (RelatedManager method), 1122
clear_cache() (ContentTypeManager method), 758
clear_expired() (backends.base.SessionBase method),

214
ClearableFileInput (class in django.forms), 1069
clearsessions

django-admin command, 1002
Client (class in django.test), 324
client (Response attribute), 328
client (SimpleTestCase attribute), 336
client.RedirectCycleError, 1011
client_class (SimpleTestCase attribute), 337
clone() (GEOSGeometry method), 841
clone() (OGRGeometry method), 858
clone() (SpatialReference method), 863
close() (FieldFile method), 1101
close() (File method), 1012
close_rings() (OGRGeometry method), 858
closed (HttpResponse attribute), 1224
closed (LineString attribute), 842
closed (MultiLineString attribute), 844
Coalesce (class in django.db.models.functions), 1204
code (EmailValidator attribute), 1382
code (RegexValidator attribute), 1381
codename (models.Permission attribute), 753

coerce (TypedChoiceField attribute), 1045
Collect (class in django.contrib.gis.db.models), 822
collectstatic

django-admin command, 937
collectstatic command line option

–clear, -c, 938
–dry-run, -n, 938
–ignore PATTERN, -i PATTERN, 938
–link, -l, 938
–no-default-ignore, 938
–no-post-process, 938
–noinput, –no-input, 938

ComboField (class in django.forms), 1052
command line option

–no-color, 1003
–pythonpath PYTHONPATH, 1003
–settings SETTINGS, 1003
–traceback, 1003
–verbosity {0,1,2,3}, -v {0,1,2,3}, 1003

CommandError, 544
CommaSeparatedIntegerField (class in

django.db.models), 1097
comment

template tag, 1295
commit() (in module django.db.transaction), 151
CommonMiddleware (class in

django.middleware.common), 1077
CommonPasswordValidator (class in

django.contrib.auth.password_validation),
387

compilemessages
django-admin command, 984

compilemessages command line option
–exclude EXCLUDE, -x EXCLUDE, 984
–locale LOCALE, -l LOCALE, 984
–use-fuzzy, -f, 984

compress() (MultiValueField method), 1054
Concat (class in django.db.models.functions), 1205
concrete (Field attribute), 1116
concrete model, 1395
condition() (in module django.views.decorators.http), 197
conditional_escape() (in module django.utils.html), 1373
ConditionalGetMiddleware (class in

django.middleware.http), 1078
configure_user() (RemoteUserBackend method), 756
confirm_login_allowed() (AuthenticationForm method),

376
CONN_MAX_AGE

setting, 1239
connect() (Signal method), 528
connection (SchemaEditor attribute), 1231
contained

field lookup type, 806
contains

Index 1773



Django Documentation, Release 1.10.9.dev20171123183751

field lookup type, 1175
contains() (GEOSGeometry method), 839
contains() (OGRGeometry method), 858
contains() (PreparedGeometry method), 845
contains_aggregate (Expression attribute), 1197
contains_properly

field lookup type, 807
contains_properly() (PreparedGeometry method), 845
content (HttpResponse attribute), 1224
content (Response attribute), 328
content_params (HttpRequest attribute), 1216
content_type (django.views.generic.base.TemplateResponseMixin

attribute), 667
content_type (HttpRequest attribute), 1216
content_type (LogEntry attribute), 747
content_type (models.Permission attribute), 753
content_type (UploadedFile attribute), 1016
content_type_extra (UploadedFile attribute), 1016
ContentFile (class in django.core.files.base), 1012
ContentType (class in

django.contrib.contenttypes.models), 757
ContentTypeManager (class in

django.contrib.contenttypes.models), 758
Context (class in django.template), 1334
context (Response attribute), 329
context_data (SimpleTemplateResponse attribute), 1351
context_object_name (django.views.generic.detail.SingleObjectMixin

attribute), 668
context_object_name (django.views.generic.list.MultipleObjectMixin

attribute), 671
ContextPopException, 1338
convert_value() (Expression method), 1197
convex_hull (GEOSGeometry attribute), 840
convex_hull (OGRGeometry attribute), 859
cookie_date() (in module django.utils.http), 1375
cookies (Client attribute), 330
COOKIES (HttpRequest attribute), 1216
coord_dim (OGRGeometry attribute), 856
coords (GEOSGeometry attribute), 836
coords (OGRGeometry attribute), 859
coords() (GeoIP method), 873
coords() (GeoIP2 method), 876
CoordTransform (class in django.contrib.gis.gdal), 864
copy() (QueryDict method), 1221
Corr (class in django.contrib.postgres.aggregates), 897
Count (class in django.db.models), 1184
count (Paginator attribute), 498
count() (in module django.db.models.query.QuerySet),

1168
country() (GeoIP method), 873
country() (GeoIP2 method), 876
country_code() (GeoIP method), 873
country_code() (GeoIP2 method), 876
country_code_by_addr() (GeoIP method), 874

country_code_by_name() (GeoIP method), 874
country_info (GeoIP attribute), 874
country_name() (GeoIP method), 873
country_name() (GeoIP2 method), 876
country_name_by_addr() (GeoIP method), 874
country_name_by_name() (GeoIP method), 874
coupling

loose, 1388
CovarPop (class in django.contrib.postgres.aggregates),

897
coveredby

field lookup type, 807
covers

field lookup type, 807
covers() (GEOSGeometry method), 839
covers() (PreparedGeometry method), 845
create() (in module django.db.models.query.QuerySet),

1165
create() (RelatedManager method), 1121
create_model() (BaseDatabaseSchemaEditor method),

1230
create_model_instance() (backends.db.SessionStore

method), 220
create_superuser() (models.CustomUserManager

method), 398
create_superuser() (models.UserManager method), 752
create_test_db() (in module

django.db.connection.creation), 355
create_unknown_user (RemoteUserBackend attribute),

755
create_user() (models.CustomUserManager method), 398
create_user() (models.UserManager method), 752
createcachetable

django-admin command, 984
createcachetable command line option

–database DATABASE, 984
–dry-run, 985

created_time() (Storage method), 1014
CreateExtension (class in

django.contrib.postgres.operations), 916
CreateModel (class in django.db.migrations.operations),

1083
createsuperuser

django-admin command, 1001
createsuperuser command line option

–database DATABASE, 1002
–email EMAIL, 1002
–username USERNAME, 1002

CreateView (built-in class), 683
Critical (class in django.core.checks), 636
crosses

field lookup type, 808
crosses() (GEOSGeometry method), 839
crosses() (OGRGeometry method), 858

1774 Index



Django Documentation, Release 1.10.9.dev20171123183751

crosses() (PreparedGeometry method), 845
CSRF_COOKIE_AGE

setting, 1235
CSRF_COOKIE_DOMAIN

setting, 1236
CSRF_COOKIE_HTTPONLY

setting, 1236
CSRF_COOKIE_NAME

setting, 1236
CSRF_COOKIE_PATH

setting, 1236
CSRF_COOKIE_SECURE

setting, 1236
csrf_exempt() (in module django.views.decorators.csrf),

967
CSRF_FAILURE_VIEW

setting, 1237
CSRF_HEADER_NAME

setting, 1237
csrf_protect() (in module django.views.decorators.csrf),

964
csrf_token

template tag, 1296
CSRF_TRUSTED_ORIGINS

setting, 1237
CsrfViewMiddleware (class in django.middleware.csrf),

1082
css_classes() (BoundField method), 1034
ct_field (GenericInlineModelAdmin attribute), 762
ct_fk_field (GenericInlineModelAdmin attribute), 762
current_app (HttpRequest attribute), 1217
CurrentSiteMiddleware (class in

django.contrib.sites.middleware), 1081
cut

template filter, 1313
cycle

template tag, 1296
cycle_key() (backends.base.SessionBase method), 214

D
D (class in django.contrib.gis.measure), 833
data (BoundField attribute), 1032
data() (GDALBand method), 870
DATA_UPLOAD_MAX_MEMORY_SIZE

setting, 1243
DATA_UPLOAD_MAX_NUMBER_FIELDS

setting, 1243
DATABASE-ATOMIC_REQUESTS

setting, 1238
DATABASE-AUTOCOMMIT

setting, 1238
DATABASE-ENGINE

setting, 1238
DATABASE-TEST

setting, 1240
DATABASE-TIME_ZONE

setting, 1240
DATABASE_ROUTERS

setting, 1244
DatabaseError, 1010
DATABASES

setting, 1237
DataError, 1010
DATAFILE

setting, 1242
DATAFILE_MAXSIZE

setting, 1243
DATAFILE_TMP

setting, 1243
DATAFILE_TMP_MAXSIZE

setting, 1243
DataSource (class in django.contrib.gis.gdal), 850
datatype() (GDALBand method), 870
date

field lookup type, 1179
template filter, 1314

date_field (DateMixin attribute), 678
DATE_FORMAT

setting, 1244
date_format (SplitDateTimeWidget attribute), 1070
date_hierarchy (ModelAdmin attribute), 709
DATE_INPUT_FORMATS

setting, 1244
date_joined (models.User attribute), 750
date_list_period (BaseDateListView attribute), 679
DateDetailView (built-in class), 693
DateDetailView (class in django.views.generic.dates),

665
DateField (class in django.db.models), 1097
DateField (class in django.forms), 1045
DateInput (class in django.forms), 1066
DateMixin (class in django.views.generic.dates), 678
DateRangeField (class in django.contrib.postgres.fields),

908
DateRangeField (class in django.contrib.postgres.forms),

914
dates() (in module django.db.models.query.QuerySet),

1151
DATETIME_FORMAT

setting, 1244
DATETIME_INPUT_FORMATS

setting, 1244
DateTimeField (class in django.db.models), 1098
DateTimeField (class in django.forms), 1045
DateTimeInput (class in django.forms), 1066
DateTimeRangeField (class in

django.contrib.postgres.fields), 908

Index 1775



Django Documentation, Release 1.10.9.dev20171123183751

DateTimeRangeField (class in
django.contrib.postgres.forms), 914

datetimes() (in module
django.db.models.query.QuerySet), 1152

day
field lookup type, 1180

day (DayMixin attribute), 677
day_format (DayMixin attribute), 677
DayArchiveView (built-in class), 690
DayArchiveView (class in django.views.generic.dates),

662
DayMixin (class in django.views.generic.dates), 677
db (QuerySet attribute), 1144
db_column (Field attribute), 1092
db_constraint (ForeignKey attribute), 1109
db_constraint (ManyToManyField attribute), 1112
db_for_read(), 155
db_for_write(), 155
db_index (Field attribute), 1093
db_table (ManyToManyField attribute), 1112
db_table (Options attribute), 1124
db_tablespace (Field attribute), 1093
db_tablespace (Options attribute), 1125
db_type() (Field method), 1114
dbshell

django-admin command, 985
dbshell command line option

–database DATABASE, 985
deactivate() (in module django.utils.timezone), 1377
deactivate() (in module django.utils.translation), 1379
deactivate_all() (in module django.utils.translation), 1379
DEBUG

setting, 1245
debug

template tag, 1298
Debug (class in django.core.checks), 636
debug() (in module django.template.context_processors),

1341
DEBUG_PROPAGATE_EXCEPTIONS

setting, 1246
decimal_places (DecimalField attribute), 1046, 1098
DECIMAL_SEPARATOR

setting, 1246
DecimalField (class in django.db.models), 1098
DecimalField (class in django.forms), 1046
DecimalValidator (class in django.core.validators), 1384
decompress() (MultiWidget method), 1063
decompress() (RangeWidget method), 915
deconstruct() (Field method), 1115
decorator_from_middleware() (in module

django.utils.decorators), 1367
decorator_from_middleware_with_args() (in module

django.utils.decorators), 1368
default

template filter, 1315
default (Field attribute), 1093
DEFAULT_CHARSET

setting, 1246
DEFAULT_CONTENT_TYPE

setting, 1246
DEFAULT_EXCEPTION_REPORTER_FILTER

setting, 1246
DEFAULT_FILE_STORAGE

setting, 1246
DEFAULT_FROM_EMAIL

setting, 1247
default_if_none

template filter, 1315
DEFAULT_INDEX_TABLESPACE

setting, 1247
default_lat (GeoModelAdmin attribute), 882
default_lon (GeoModelAdmin attribute), 882
default_manager_name (Options attribute), 1125
default_permissions (Options attribute), 1128
default_related_name (Options attribute), 1125
DEFAULT_TABLESPACE

setting, 1247
default_zoom (GeoModelAdmin attribute), 882
defaults.bad_request() (in module django.views), 1386
defaults.page_not_found() (in module django.views),

1385
defaults.permission_denied() (in module django.views),

1385
defaults.server_error() (in module django.views), 1385
DefaultStorage (class in django.core.files.storage), 1013
defer() (in module django.db.models.query.QuerySet),

1161
delete() (Client method), 327
delete() (FieldFile method), 1101
delete() (File method), 1013
delete() (in module django.db.models.query.QuerySet),

1173
delete() (Model method), 1138
delete() (Storage method), 1014
delete_confirmation_template (ModelAdmin attribute),

725
delete_cookie() (HttpResponse method), 1225
delete_model() (BaseDatabaseSchemaEditor method),

1230
delete_model() (ModelAdmin method), 726
delete_selected_confirmation_template (ModelAdmin at-

tribute), 725
delete_test_cookie() (backends.base.SessionBase

method), 213
delete_view() (ModelAdmin method), 733
deleted_objects (models.BaseModelFormSet attribute),

256

1776 Index



Django Documentation, Release 1.10.9.dev20171123183751

DeleteModel (class in django.db.migrations.operations),
1084

DeleteView (built-in class), 685
delimiter (SimpleArrayField attribute), 912
delimiter (StringAgg attribute), 897
desc() (Expression method), 1197
description (Field attribute), 1113
description (GDALBand attribute), 869
destroy_test_db() (in module

django.db.connection.creation), 356
DetailView (built-in class), 681
dict() (QueryDict method), 1222
dictsort

template filter, 1316
dictsortreversed

template filter, 1317
Difference (class in django.contrib.gis.db.models.functions),

826
difference() (GeoQuerySet method), 819
difference() (GEOSGeometry method), 840
difference() (OGRGeometry method), 859
diffsettings

django-admin command, 985
diffsettings command line option

–all, 985
dim (GeometryField attribute), 795
dimension (OGRGeometry attribute), 856
dims (GEOSGeometry attribute), 836
directory_permissions_mode (FileSystemStorage at-

tribute), 1013
disable_action() (AdminSite method), 702
disabled (Field attribute), 1043
DISALLOWED_USER_AGENTS

setting, 1247
disconnect() (Signal method), 531
DiscoverRunner (class in django.test.runner), 353
disjoint

field lookup type, 808
disjoint() (GEOSGeometry method), 839
disjoint() (OGRGeometry method), 858
disjoint() (PreparedGeometry method), 845
dispatch() (django.views.generic.base.View method), 647
display_raw (BaseGeometryWidget attribute), 804
Distance (class in django.contrib.gis.db.models.functions),

827
Distance (class in django.contrib.gis.measure), 832
distance() (GeoQuerySet method), 816
distance() (GEOSGeometry method), 841
distance_gt

field lookup type, 813
distance_gte

field lookup type, 814
distance_lt

field lookup type, 814

distance_lte
field lookup type, 814

distinct (Count attribute), 1184
distinct() (in module django.db.models.query.QuerySet),

1147
divisibleby

template filter, 1317
django (OGRGeomType attribute), 861
django-admin command

changepassword, 1001
check, 983
clearsessions, 1002
collectstatic, 937
compilemessages, 984
createcachetable, 984
createsuperuser, 1001
dbshell, 985
diffsettings, 985
dumpdata, 985
findstatic, 939
flush, 986
help, 983
inspectdb, 987
loaddata, 987
makemessages, 989
makemigrations, 991
migrate, 992
ogrinspect, 881
ping_google, 930
runserver, 939, 992
sendtestemail, 994
shell, 995
showmigrations, 995
sqlflush, 996
sqlmigrate, 996
sqlsequencereset, 996
squashmigrations, 996
startapp, 997
startproject, 998
test, 999
testserver, 1000
version, 983

django.apps (module), 629
django.conf.settings.configure() (built-in function), 525
django.conf.urls (module), 1363
django.conf.urls.i18n (module), 459
django.contrib.admin (module), 696
django.contrib.admindocs (module), 703
django.contrib.auth (module), 404
django.contrib.auth.backends (module), 754
django.contrib.auth.forms (module), 376
django.contrib.auth.hashers (module), 385
django.contrib.auth.middleware (module), 1081
django.contrib.auth.password_validation (module), 385

Index 1777



Django Documentation, Release 1.10.9.dev20171123183751

django.contrib.auth.signals (module), 754
django.contrib.auth.views (module), 368
django.contrib.contenttypes (module), 756
django.contrib.contenttypes.admin (module), 762
django.contrib.contenttypes.fields (module), 758
django.contrib.contenttypes.forms (module), 761
django.contrib.flatpages (module), 762
django.contrib.gis (module), 767
django.contrib.gis.admin (module), 882
django.contrib.gis.db.backends (module), 796
django.contrib.gis.db.models (module), 792, 796
django.contrib.gis.db.models.functions (module), 802,

824
django.contrib.gis.feeds (module), 883
django.contrib.gis.forms (module), 802
django.contrib.gis.gdal (module), 849
django.contrib.gis.geoip (module), 871
django.contrib.gis.geoip2 (module), 874
django.contrib.gis.geos (module), 833
django.contrib.gis.measure (module), 831
django.contrib.gis.serializers.geojson (module), 880
django.contrib.gis.utils (module), 877
django.contrib.gis.utils.layermapping (module), 877
django.contrib.gis.utils.ogrinspect (module), 880
django.contrib.gis.widgets (module), 804
django.contrib.humanize (module), 887
django.contrib.messages (module), 889
django.contrib.messages.middleware (module), 1079
django.contrib.postgres (module), 895
django.contrib.postgres.aggregates (module), 896
django.contrib.postgres.forms.BaseRangeField (class in

django.contrib.postgres.fields), 911
django.contrib.postgres.validators (module), 921
django.contrib.redirects (module), 921
django.contrib.sessions (module), 210
django.contrib.sessions.middleware (module), 1081
django.contrib.sitemaps (module), 922
django.contrib.sites (module), 930
django.contrib.sites.middleware (module), 1081
django.contrib.staticfiles (module), 937
django.contrib.syndication (module), 943
django.core.cache.cache (built-in variable), 415
django.core.cache.caches (built-in variable), 415
django.core.cache.utils.make_template_fragment_key()

(built-in function), 414
django.core.checks (module), 531
django.core.exceptions (module), 1007
django.core.files (module), 1011
django.core.files.storage (module), 1013
django.core.files.uploadedfile (module), 1016
django.core.files.uploadhandler (module), 1017
django.core.mail (module), 428
django.core.mail.outbox (in module django.core.mail),

346

django.core.management (module), 539
django.core.management.call_command() (built-in func-

tion), 1006
django.core.paginator (module), 495
django.core.serializers.get_serializer() (built-in function),

515
django.core.serializers.json.DjangoJSONEncoder (built-

in class), 518
django.core.signals (module), 1283
django.core.signals.got_request_exception (built-in vari-

able), 1284
django.core.signals.request_finished (built-in variable),

1283
django.core.signals.request_started (built-in variable),

1283
django.core.signing (module), 425
django.core.validators (module), 1380
django.db (module), 84
django.db.backends (module), 1285
django.db.backends.base.schema (module), 1229
django.db.backends.signals.connection_created (built-in

variable), 1285
django.db.migrations (module), 304
django.db.migrations.operations (module), 1083
django.db.models (module), 84
django.db.models.fields (module), 1090
django.db.models.fields.related (module), 1106
django.db.models.functions (module), 1203
django.db.models.functions.datetime (module), 1208
django.db.models.lookups (module), 1187
django.db.models.options (module), 1116
django.db.models.signals (module), 1278
django.db.models.signals.class_prepared (built-in vari-

able), 1281
django.db.models.signals.m2m_changed (built-in vari-

able), 1280
django.db.models.signals.post_delete (built-in variable),

1279
django.db.models.signals.post_init (built-in variable),

1278
django.db.models.signals.post_migrate (built-in variable),

1282
django.db.models.signals.post_save (built-in variable),

1279
django.db.models.signals.pre_delete (built-in variable),

1279
django.db.models.signals.pre_migrate (built-in variable),

1282
django.db.models.signals.pre_save (built-in variable),

1279
django.db.transaction (module), 144
django.dispatch (module), 527
django.forms (module), 1019
django.forms.fields (module), 1038

1778 Index



Django Documentation, Release 1.10.9.dev20171123183751

django.forms.formsets (module), 232, 1058
django.forms.models (module), 243, 1057
django.forms.widgets (module), 1058
django.http (module), 1215
django.http.Http404 (built-in class), 195
django.middleware (module), 1077
django.middleware.cache (module), 1077
django.middleware.clickjacking (module), 694, 1082
django.middleware.common (module), 1077
django.middleware.csrf (module), 962, 1082
django.middleware.exception (module), 1078
django.middleware.gzip (module), 1078
django.middleware.http (module), 1078
django.middleware.locale (module), 1079
django.middleware.security (module), 1079
django.shortcuts (module), 201
django.template (module), 267
django.template.backends (module), 271
django.template.backends.django (module), 271
django.template.backends.jinja2 (module), 272
django.template.loader (module), 268
django.template.response (module), 1350
django.test (module), 318
django.test.signals (module), 1284
django.test.signals.setting_changed (built-in variable),

1284
django.test.signals.template_rendered (built-in variable),

1284
django.test.utils (module), 355
django.test.utils.isolate_apps() (built-in function), 1700
django.urls (module), 1360
django.utils (module), 1366
django.utils.cache (module), 1366
django.utils.dateparse (module), 1367
django.utils.decorators (module), 1367
django.utils.deprecation.MiddlewareMixin (built-in

class), 209
django.utils.encoding (module), 1368
django.utils.feedgenerator (module), 1369
django.utils.functional (module), 1371
django.utils.html (module), 1373
django.utils.http (module), 1375
django.utils.log (module), 485
django.utils.module_loading (module), 1375
django.utils.safestring (module), 1376
django.utils.six (module), 505
django.utils.text (module), 1376
django.utils.timezone (module), 1377
django.utils.translation (module), 438, 1378
django.views (module), 1384
django.views.decorators.cache (module), 197
django.views.decorators.cache.cache_page() (built-in

function), 412
django.views.decorators.csrf (module), 964

django.views.decorators.gzip (module), 197
django.views.decorators.http (module), 196
django.views.decorators.vary (module), 197
django.views.generic.base.ContextMixin (built-in class),

666
django.views.generic.base.RedirectView (built-in class),

648
django.views.generic.base.TemplateResponseMixin

(built-in class), 667
django.views.generic.base.TemplateView (built-in class),

647
django.views.generic.base.View (built-in class), 646
django.views.generic.dates (module), 656
django.views.generic.detail.DetailView (built-in class),

650
django.views.generic.detail.SingleObjectMixin (built-in

class), 668
django.views.generic.detail.SingleObjectTemplateResponseMixin

(built-in class), 669
django.views.generic.edit.CreateView (built-in class),

654
django.views.generic.edit.DeleteView (built-in class),

656
django.views.generic.edit.DeletionMixin (built-in class),

675
django.views.generic.edit.FormMixin (built-in class), 673
django.views.generic.edit.FormView (built-in class), 653
django.views.generic.edit.ModelFormMixin (built-in

class), 674
django.views.generic.edit.ProcessFormView (built-in

class), 674
django.views.generic.edit.UpdateView (built-in class),

655
django.views.generic.list.BaseListView (built-in class),

652
django.views.generic.list.ListView (built-in class), 651
django.views.generic.list.MultipleObjectMixin (built-in

class), 670
django.views.generic.list.MultipleObjectTemplateResponseMixin

(built-in class), 672
django.views.i18n (module), 452
DJANGO_SETTINGS_MODULE, 24, 527, 585, 934,

982, 1509
DjangoTemplates (class in

django.template.backends.django), 271
DO_NOTHING (in module django.db.models), 1108
domain (JavaScriptCatalog attribute), 452
domain (models.Site attribute), 930
Don’t repeat yourself, 1389
Driver (class in django.contrib.gis.gdal), 855
driver (GDALRaster attribute), 865
driver_count (Driver attribute), 855
DRY, 1389
dumpdata

Index 1779



Django Documentation, Release 1.10.9.dev20171123183751

django-admin command, 985
dumpdata command line option

–all, -a, 985
–database DATABASE, 986
–exclude EXCLUDE, -e EXCLUDE, 986
–format FORMAT, 985
–indent INDENT, 986
–natural-foreign, 986
–natural-primary, 986
–output OUTPUT, -o OUTPUT, 986
–pks PRIMARY_KEYS, 986

dumps() (in module django.core.signing), 428
DurationField (class in django.db.models), 1098
DurationField (class in django.forms), 1047
dwithin

field lookup type, 814

E
each_context() (AdminSite method), 744
earliest() (in module django.db.models.query.QuerySet),

1170
editable (Field attribute), 1093
eggs.Loader (class in django.template.loaders), 1344
ellipsoid (SpatialReference attribute), 864
email (models.User attribute), 749
EMAIL_BACKEND

setting, 1247
EMAIL_FILE_PATH

setting, 1247
EMAIL_HOST

setting, 1247
EMAIL_HOST_PASSWORD

setting, 1247
EMAIL_HOST_USER

setting, 1248
EMAIL_PORT

setting, 1248
EMAIL_SSL_CERTFILE

setting, 1248
EMAIL_SSL_KEYFILE

setting, 1248
EMAIL_SUBJECT_PREFIX

setting, 1248
EMAIL_TIMEOUT

setting, 1249
EMAIL_USE_SSL

setting, 1248
EMAIL_USE_TLS

setting, 1248
email_user() (models.User method), 752
EmailField (class in django.db.models), 1099
EmailField (class in django.forms), 1047
EmailInput (class in django.forms), 1065
EmailMessage (class in django.core.mail), 431

EmailValidator (class in django.core.validators), 1381
empty (GEOSGeometry attribute), 837
empty_label (ModelChoiceField attribute), 1055
empty_label (SelectDateWidget attribute), 1070
empty_value (TypedChoiceField attribute), 1045
empty_value_display (AdminSite attribute), 743
empty_value_display (ModelAdmin attribute), 709
EmptyPage, 498
Enclosure (class in django.utils.feedgenerator), 1371
encode() (base_session.BaseSessionManager method),

220
encoding (HttpRequest attribute), 1216
end_index() (Page method), 499
endswith

field lookup type, 1177
Engine (class in django.template), 1332
engines (in module django.template.loader), 271
ensure_csrf_cookie() (in module

django.views.decorators.csrf), 967
Envelope (class in django.contrib.gis.db.models.functions),

827
Envelope (class in django.contrib.gis.gdal), 861
envelope (GEOSGeometry attribute), 841
envelope (OGRGeometry attribute), 857
envelope() (GeoQuerySet method), 817
environment variable

DJANGO_SETTINGS_MODULE, 24, 523, 527,
585, 934, 982, 1509

PYTHONHASHSEED, 590
PYTHONPATH, 1510
PYTHONSTARTUP, 995
PYTHONWARNINGS, 591

equals
field lookup type, 808

equals() (GEOSGeometry method), 839
equals() (OGRGeometry method), 858
equals_exact() (GEOSGeometry method), 839
Error, 1010
Error (class in django.core.checks), 636
error_css_class (Form attribute), 1027
error_messages (Field attribute), 1042, 1093
errors (BoundField attribute), 1033
errors (Form attribute), 1020
escape

template filter, 1317
escape() (in module django.utils.html), 1373
escape_uri_path() (in module django.utils.encoding),

1369
escapejs

template filter, 1318
etag() (in module django.views.decorators.http), 197
ewkb (GEOSGeometry attribute), 838
ewkt (GEOSGeometry attribute), 838
ewkt (OGRGeometry attribute), 858

1780 Index



Django Documentation, Release 1.10.9.dev20171123183751

exact
field lookup type, 808, 1174

ExceptionMiddleware (class in
django.middleware.exception), 1078

exclude (ModelAdmin attribute), 709
exclude() (in module django.db.models.query.QuerySet),

1144
execute() (BaseCommand method), 543
execute() (BaseDatabaseSchemaEditor method), 1230
exists() (in module django.db.models.query.QuerySet),

1171
exists() (Storage method), 1014
expand_to_include() (Envelope method), 861
expire_date (base_session.AbstractBaseSession at-

tribute), 220
Expression (class in django.db.models), 1197
ExpressionWrapper (class in django.db.models), 1196
extends

template tag, 1298
Extent (class in django.contrib.gis.db.models), 823
extent (GDALRaster attribute), 867
extent (GEOSGeometry attribute), 841
extent (Layer attribute), 851
extent (OGRGeometry attribute), 857
Extent3D (class in django.contrib.gis.db.models), 823
exterior_ring (Polygon attribute), 860
extra (InlineModelAdmin attribute), 736
extra() (in module django.db.models.query.QuerySet),

1158
extra_js (GeoModelAdmin attribute), 882
Extract (class in django.db.models.functions.datetime),

1208
ExtractDay (class in django.db.models.functions.datetime),

1209
ExtractHour (class in django.db.models.functions.datetime),

1210
ExtractMinute (class in

django.db.models.functions.datetime), 1210
ExtractMonth (class in

django.db.models.functions.datetime), 1209
ExtractSecond (class in

django.db.models.functions.datetime), 1210
ExtractWeekDay (class in

django.db.models.functions.datetime), 1209
ExtractYear (class in django.db.models.functions.datetime),

1209

F
F (class in django.db.models), 1191
Feature (class in django.contrib.gis.gdal), 853
Feature release, 1738
Feed (class in django.contrib.gis.feeds), 883
FetchFromCacheMiddleware (class in

django.middleware.cache), 1077

fid (Feature attribute), 853
field, 1395
field (BoundField attribute), 1033
Field (class in django.contrib.gis.gdal), 854
Field (class in django.db.models), 1113
Field (class in django.forms), 1038
field lookup type

arrayfield.contained_by, 901
arrayfield.contains, 900
arrayfield.index, 902
arrayfield.len, 901
arrayfield.overlap, 901
arrayfield.slice, 902
bbcontains, 806
bboverlaps, 806
contained, 806
contains, 1175
contains_properly, 807
coveredby, 807
covers, 807
crosses, 808
date, 1179
day, 1180
disjoint, 808
distance_gt, 813
distance_gte, 814
distance_lt, 814
distance_lte, 814
dwithin, 814
endswith, 1177
equals, 808
exact, 808, 1174
gis-contains, 807
gt, 1176
gte, 1177
hour, 1180
hstorefield.contained_by, 904
hstorefield.contains, 904
hstorefield.has_any_keys, 904
hstorefield.has_key, 904
hstorefield.has_keys, 905
hstorefield.key, 903
hstorefield.keys, 905
hstorefield.values, 905
icontains, 1175
iendswith, 1178
iexact, 1174
in, 1175
intersects, 808
iregex, 1183
isnull, 1182
istartswith, 1177
isvalid, 809
jsonfield.contained_by, 907

Index 1781



Django Documentation, Release 1.10.9.dev20171123183751

jsonfield.contains, 907
jsonfield.has_any_keys, 907
jsonfield.has_key, 907
jsonfield.has_keys, 907
jsonfield.key, 906
left, 811
lt, 1177
lte, 1177
minute, 1181
month, 1179
overlaps, 809
overlaps_above, 812
overlaps_below, 812
overlaps_left, 811
overlaps_right, 812
range, 1178
rangefield.adjacent_to, 910
rangefield.contained_by, 909
rangefield.contains, 909
rangefield.endswith, 910
rangefield.fully_gt, 909
rangefield.fully_lt, 909
rangefield.isempty, 911
rangefield.not_gt, 910
rangefield.not_lt, 910
rangefield.overlap, 909
rangefield.startswith, 910
regex, 1182
relate, 809
right, 811
same_as, 808
search, 917, 1182
second, 1181
startswith, 1177
strictly_above, 812
strictly_below, 813
touches, 810
trigram_similar, 915
unaccent, 916
week_day, 1180
within, 810
year, 1179

field_order (Form attribute), 1030
field_precisions (Layer attribute), 851
field_widths (Layer attribute), 851
FieldDoesNotExist, 1007
FieldError, 1009
FieldFile (class in django.db.models.fields.files), 1100
fields (ComboField attribute), 1052
fields (django.views.generic.edit.ModelFormMixin at-

tribute), 674
fields (Feature attribute), 853
fields (Form attribute), 1023
fields (Layer attribute), 851

fields (ModelAdmin attribute), 710
fields (MultiValueField attribute), 1053
fieldsets (ModelAdmin attribute), 710
File (class in django.core.files), 1011
file (File attribute), 1011
FILE_CHARSET

setting, 1249
file_complete() (FileUploadHandler method), 1017
file_hash() (storage.ManifestStaticFilesStorage method),

941
file_permissions_mode (FileSystemStorage attribute),

1013
FILE_UPLOAD_DIRECTORY_PERMISSIONS

setting, 1249
FILE_UPLOAD_HANDLERS

setting, 1249
FILE_UPLOAD_MAX_MEMORY_SIZE

setting, 1249
FILE_UPLOAD_PERMISSIONS

setting, 1250
FILE_UPLOAD_TEMP_DIR

setting, 1250
FileField (class in django.db.models), 1099
FileField (class in django.forms), 1047
FileInput (class in django.forms), 1069
filepath_to_uri() (in module django.utils.encoding), 1369
FilePathField (class in django.db.models), 1102
FilePathField (class in django.forms), 1048
FileResponse (class in django.http), 1229
FILES (HttpRequest attribute), 1216
filesizeformat

template filter, 1318
filesystem.Loader (class in django.template.loaders),

1343
FileSystemStorage (class in django.core.files.storage),

1013
FileUploadHandler (class in

django.core.files.uploadhandler), 1017
filter

template tag, 1298
filter() (django.template.Library method), 561
filter() (in module django.db.models.query.QuerySet),

1144
filter_horizontal (ModelAdmin attribute), 712
filter_vertical (ModelAdmin attribute), 712
findstatic

django-admin command, 939
findstatic –first

findstatic command line option, 939
findstatic command line option

findstatic –first, 939
first

template filter, 1318

1782 Index



Django Documentation, Release 1.10.9.dev20171123183751

first() (in module django.db.models.query.QuerySet),
1170

FIRST_DAY_OF_WEEK
setting, 1250

first_name (models.User attribute), 749
firstof

template tag, 1299
FixedOffset (class in django.utils.timezone), 1377
FIXTURE_DIRS

setting, 1250
fixtures (TransactionTestCase attribute), 337
fk_name (InlineModelAdmin attribute), 736
flags (RegexValidator attribute), 1381
FlatPage (class in django.contrib.flatpages.models), 765
FlatpageFallbackMiddleware (class in

django.contrib.flatpages.middleware), 764
FlatPageSitemap (class in

django.contrib.flatpages.sitemaps), 767
flatten() (Context method), 1339
FloatField (class in django.db.models), 1102
FloatField (class in django.forms), 1048
floatformat

template filter, 1319
FloatRangeField (class in django.contrib.postgres.fields),

908
FloatRangeField (class in django.contrib.postgres.forms),

914
flush

django-admin command, 986
flush command line option

–database DATABASE, 986
–noinput, –no-input, 986

flush() (backends.base.SessionBase method), 213
flush() (HttpResponse method), 1225
for

template tag, 1299
for_concrete_model (GenericForeignKey attribute), 759
force_bytes() (in module django.utils.encoding), 1368
force_escape

template filter, 1319
force_login() (Client method), 328
force_rhr() (GeoQuerySet method), 817
FORCE_SCRIPT_NAME

setting, 1250
force_str() (in module django.utils.encoding), 1369
force_text() (in module django.utils.encoding), 1368
force_unicode() (in module django.utils.encoding), 1368
ForceRHR (class in django.contrib.gis.db.models.functions),

827
ForeignKey (class in django.db.models), 1106
form (BoundField attribute), 1033
Form (class in django.forms), 1019
form (InlineModelAdmin attribute), 736
form (ModelAdmin attribute), 712

form_class (django.views.generic.edit.FormMixin at-
tribute), 673

form_field (RangeField attribute), 911
form_invalid() (django.views.generic.edit.FormMixin

method), 673
form_invalid() (django.views.generic.edit.ModelFormMixin

method), 674
form_valid() (django.views.generic.edit.FormMixin

method), 673
form_valid() (django.views.generic.edit.ModelFormMixin

method), 674
format (DateInput attribute), 1066
format (DateTimeInput attribute), 1066
format (TimeInput attribute), 1066
format file, 485
format_html() (in module django.utils.html), 1373
format_html_join() (in module django.utils.html), 1374
FORMAT_MODULE_PATH

setting, 1251
format_output() (MultiWidget method), 1064
format_value() (Widget method), 1062
formfield() (Field method), 1115
formfield_for_choice_field() (ModelAdmin method), 730
formfield_for_foreignkey() (ModelAdmin method), 730
formfield_for_manytomany() (ModelAdmin method),

730
formfield_overrides (ModelAdmin attribute), 713
formset (InlineModelAdmin attribute), 736
formset_factory() (in module django.forms.formsets),

1058
FormView (built-in class), 682
from_bbox() (django.contrib.gis.gdal.OGRGeometry

class method), 855
from_bbox() (django.contrib.gis.geos.Polygon class

method), 843
from_db() (django.db.models.Model class method), 1131
from_db_value() (Field method), 1114
from_esri() (SpatialReference method), 863
from_queryset() (in module django.db.models), 137
from_string() (Engine method), 1334
fromfile() (in module django.contrib.gis.geos), 845
fromstr() (in module django.contrib.gis.geos), 845
full_clean() (Model method), 1133
Func (class in django.db.models), 1193
func (ResolverMatch attribute), 1362
function (Aggregate attribute), 1195
function (Func attribute), 1193

G
GDAL_LIBRARY_PATH

setting, 871
GDALBand (class in django.contrib.gis.gdal), 869
GDALRaster (class in django.contrib.gis.gdal), 865
generate_filename() (Storage method), 1015

Index 1783



Django Documentation, Release 1.10.9.dev20171123183751

generic view, 1395
generic_inlineformset_factory() (in module

django.contrib.contenttypes.forms), 761
GenericForeignKey (class in

django.contrib.contenttypes.fields), 759
GenericInlineModelAdmin (class in

django.contrib.contenttypes.admin), 762
GenericIPAddressField (class in django.db.models), 1103
GenericIPAddressField (class in django.forms), 1049
GenericRelation (class in

django.contrib.contenttypes.fields), 760
GenericSitemap (class in django.contrib.sitemaps), 926
GenericStackedInline (class in

django.contrib.contenttypes.admin), 762
GenericTabularInline (class in

django.contrib.contenttypes.admin), 762
GeoAtom1Feed (class in django.contrib.gis.feeds), 884
geographic (SpatialReference attribute), 864
geography (GeometryField attribute), 795
GeoHash (class in django.contrib.gis.db.models.functions),

827
geohash() (GeoQuerySet method), 820
GeoIP (class in django.contrib.gis.geoip), 872
GeoIP2 (class in django.contrib.gis.geoip2), 875
GEOIP_CITY

setting, 872, 875
GEOIP_COUNTRY

setting, 872, 875
GEOIP_LIBRARY_PATH

setting, 872
GEOIP_PATH

setting, 872, 875
geojson (GEOSGeometry attribute), 838
geojson() (GeoQuerySet method), 820
geom (Feature attribute), 853
geom_count (OGRGeometry attribute), 856
geom_name (OGRGeometry attribute), 856
geom_type (BaseGeometryWidget attribute), 804
geom_type (Feature attribute), 853
geom_type (Field attribute), 803
geom_type (GEOSGeometry attribute), 837
geom_type (Layer attribute), 851
geom_type (OGRGeometry attribute), 856
geom_typeid (GEOSGeometry attribute), 837
GeoManager (class in django.contrib.gis.db.models), 796
geometry() (Feed method), 884
GeometryCollection (class in django.contrib.gis.gdal),

860
GeometryCollection (class in django.contrib.gis.geos),

844
GeometryCollectionField (class in

django.contrib.gis.db.models), 793
GeometryCollectionField (class in

django.contrib.gis.forms), 804

GeometryField (class in django.contrib.gis.db.models),
792

GeometryField (class in django.contrib.gis.forms), 803
GeoModelAdmin (class in django.contrib.gis.admin), 882
GeoQuerySet (class in django.contrib.gis.db.models), 805
GeoRSSFeed (class in django.contrib.gis.feeds), 884
geos (OGRGeometry attribute), 857
geos() (GeoIP method), 873
geos() (GeoIP2 method), 876
GEOS_LIBRARY_PATH

setting, 849
GEOSException, 849
GEOSGeometry (class in django.contrib.gis.geos), 836
geotransform (GDALRaster attribute), 866
get (Feature attribute), 853
GET (HttpRequest attribute), 1216
get() (backends.base.SessionBase method), 213
get() (Client method), 325
get() (Context method), 1338
get() (django.views.generic.edit.ProcessFormView

method), 675
get() (django.views.generic.list.BaseListView method),

652
get() (in module django.db.models.query.QuerySet), 1165
get() (QueryDict method), 1221
get_absolute_url() (Model method), 1140
get_accessed_time() (Storage method), 1014
get_actions() (ModelAdmin method), 703
get_all_permissions() (ModelBackend method), 755
get_all_permissions() (models.PermissionsMixin

method), 400
get_all_permissions() (models.User method), 751
get_allow_empty() (django.views.generic.list.MultipleObjectMixin

method), 671
get_allow_future() (DateMixin method), 678
get_app_config() (apps method), 633
get_app_configs() (apps method), 633
get_autocommit() (in module django.db.transaction), 150
get_available_languages

template tag, 450
get_available_name() (in module

django.core.files.storage), 577
get_available_name() (Storage method), 1014
get_bound_field() (Field method), 1035
get_by_natural_key() (ContentTypeManager method),

758
get_by_natural_key() (models.BaseUserManager

method), 398
get_cache_key() (in module django.utils.cache), 1366
get_change_message() (LogEntry method), 747
get_changeform_initial_data() (ModelAdmin method),

733
get_changelist() (ModelAdmin method), 731
get_changelist_form() (ModelAdmin method), 731

1784 Index



Django Documentation, Release 1.10.9.dev20171123183751

get_changelist_formset() (ModelAdmin method), 731
get_connection() (in module django.core.mail), 434
get_contents() (Loader method), 1346
get_context_data() (django.views.generic.base.ContextMixin

method), 666
get_context_data() (django.views.generic.detail.SingleObjectMixin

method), 669
get_context_data() (django.views.generic.edit.FormMixin

method), 673
get_context_data() (django.views.generic.list.MultipleObjectMixin

method), 672
get_context_data() (Feed method), 945
get_context_object_name()

(django.views.generic.detail.SingleObjectMixin
method), 669

get_context_object_name()
(django.views.generic.list.MultipleObjectMixin
method), 672

get_created_time() (Storage method), 1014
get_current_language

template tag, 450
get_current_language_bidi

template tag, 451
get_current_timezone

template tag, 478
get_current_timezone() (in module

django.utils.timezone), 1377
get_current_timezone_name() (in module

django.utils.timezone), 1377
get_date_field() (DateMixin method), 678
get_date_list() (BaseDateListView method), 679
get_date_list_period() (BaseDateListView method), 679
get_dated_items() (BaseDateListView method), 679
get_dated_queryset() (BaseDateListView method), 679
get_day() (DayMixin method), 677
get_day_format() (DayMixin method), 677
get_db_prep_save() (Field method), 1114
get_db_prep_value() (Field method), 1114
get_decoded() (base_session.AbstractBaseSession

method), 220
get_default() (Engine static method), 1334
get_default_timezone() (in module

django.utils.timezone), 1377
get_default_timezone_name() (in module

django.utils.timezone), 1377
get_deferred_fields() (Model method), 1133
get_digit

template filter, 1319
get_edited_object() (LogEntry method), 747
get_expire_at_browser_close() (back-

ends.base.SessionBase method), 214
get_expiry_age() (backends.base.SessionBase method),

213
get_expiry_date() (backends.base.SessionBase method),

214
get_extra() (InlineModelAdmin method), 737
get_field() (Options method), 1117
get_fields() (Layer method), 852
get_fields() (ModelAdmin method), 727
get_fields() (Options method), 1117
get_fieldsets() (ModelAdmin method), 728
get_fixed_timezone() (in module django.utils.timezone),

1377
get_flatpages

template tag, 766
get_FOO_display() (Model method), 1141
get_for_id() (ContentTypeManager method), 758
get_for_model() (ContentTypeManager method), 758
get_for_models() (ContentTypeManager method), 758
get_form() (django.views.generic.edit.FormMixin

method), 673
get_form() (ModelAdmin method), 729
get_form_class() (django.views.generic.edit.FormMixin

method), 673
get_form_class() (django.views.generic.edit.ModelFormMixin

method), 674
get_form_kwargs() (django.views.generic.edit.FormMixin

method), 673
get_form_kwargs() (django.views.generic.edit.ModelFormMixin

method), 674
get_formset() (InlineModelAdmin method), 737
get_formsets_with_inlines() (ModelAdmin method), 730
get_full_name() (models.CustomUser method), 396
get_full_name() (models.User method), 751
get_full_path() (HttpRequest method), 1218
get_geoms() (Layer method), 852
get_group_by_cols() (Expression method), 1197
get_group_permissions() (ModelBackend method), 755
get_group_permissions() (models.PermissionsMixin

method), 400
get_group_permissions() (models.User method), 751
get_host() (HttpRequest method), 1218
get_initial() (django.views.generic.edit.FormMixin

method), 673
get_inline_instances() (ModelAdmin method), 728
get_internal_type() (Field method), 1114
get_language() (in module django.utils.translation), 1379
get_language_bidi() (in module django.utils.translation),

1379
get_language_from_request() (in module

django.utils.translation), 1379
get_language_info

template tag, 451
get_language_info() (in module django.utils.translation),

446
get_language_info_list

template tag, 451
get_latest_by (Options attribute), 1125

Index 1785



Django Documentation, Release 1.10.9.dev20171123183751

get_list_display() (ModelAdmin method), 727
get_list_display_links() (ModelAdmin method), 727
get_list_filter() (ModelAdmin method), 728
get_list_or_404() (in module django.shortcuts), 204
get_list_select_related() (ModelAdmin method), 728
get_login_url() (AccessMixin method), 367
get_lookup() (in module django.db.models), 1188
get_lookup() (lookups.RegisterLookupMixin method),

1187
get_make_object_list() (YearArchiveView method), 658
get_max_age() (in module django.utils.cache), 1366
get_max_num() (InlineModelAdmin method), 737
get_media_prefix

template tag, 1331
get_messages() (in module django.contrib.messages), 891
get_min_num() (InlineModelAdmin method), 738
get_model() (AppConfig method), 632
get_model() (apps method), 633
get_model_class() (django.contrib.sessions.backends.db.SessionStore

class method), 220
get_models() (AppConfig method), 632
get_modified_time() (Storage method), 1015
get_month() (MonthMixin method), 676
get_month_format() (MonthMixin method), 676
get_next_by_FOO() (Model method), 1141
get_next_day() (DayMixin method), 677
get_next_month() (MonthMixin method), 676
get_next_week() (WeekMixin method), 678
get_next_year() (YearMixin method), 676
get_object() (django.views.generic.detail.SingleObjectMixin

method), 668
get_object_for_this_type() (ContentType method), 757
get_object_or_404() (in module django.shortcuts), 203
get_or_create() (in module

django.db.models.query.QuerySet), 1165
get_ordering() (django.views.generic.list.MultipleObjectMixin

method), 671
get_ordering() (ModelAdmin method), 726
get_paginate_by() (django.views.generic.list.MultipleObjectMixin

method), 671
get_paginate_orphans() (django.views.generic.list.MultipleObjectMixin

method), 671
get_paginator() (django.views.generic.list.MultipleObjectMixin

method), 671
get_paginator() (ModelAdmin method), 732
get_password_validators() (in module

django.contrib.auth.password_validation),
387

get_permission_denied_message() (AccessMixin
method), 367

get_permission_required() (PermissionRequiredMixin
method), 366

get_port() (HttpRequest method), 1218

get_post_parameters() (SafeExceptionReporterFilter
method), 595

get_prefix() (django.views.generic.edit.FormMixin
method), 673

get_prep_value() (Field method), 1114
get_prepopulated_fields() (ModelAdmin method), 727
get_prev_week() (WeekMixin method), 678
get_previous_by_FOO() (Model method), 1141
get_previous_day() (DayMixin method), 677
get_previous_month() (MonthMixin method), 676
get_previous_year() (YearMixin method), 676
get_queryset() (django.views.generic.detail.SingleObjectMixin

method), 668
get_queryset() (django.views.generic.list.MultipleObjectMixin

method), 671
get_queryset() (ModelAdmin method), 732
get_readonly_fields() (ModelAdmin method), 727
get_redirect_field_name() (AccessMixin method), 367
get_redirect_url() (django.views.generic.base.RedirectView

method), 649
get_rollback() (in module django.db.transaction), 152
get_script_prefix() (in module django.urls), 1363
get_search_fields() (ModelAdmin method), 728
get_search_results() (ModelAdmin method), 726
get_session_auth_hash() (models.AbstractBaseUser

method), 397
get_session_store_class()

(django.contrib.sessions.base_session.AbstractBaseSession
class method), 220

get_short_name() (models.CustomUser method), 396
get_short_name() (models.User method), 751
get_signed_cookie() (HttpRequest method), 1219
get_slug_field() (django.views.generic.detail.SingleObjectMixin

method), 669
get_source_expressions() (Expression method), 1197
get_static_prefix

template tag, 1331
get_storage_class() (in module django.core.files.storage),

1013
get_success_message() (views.SuccessMessageMixin

method), 894
get_success_url() (django.views.generic.edit.DeletionMixin

method), 675
get_success_url() (django.views.generic.edit.FormMixin

method), 673
get_success_url() (django.views.generic.edit.ModelFormMixin

method), 674
get_tag_uri() (in module django.utils.feedgenerator),

1370
get_template() (Engine method), 1334
get_template() (in module django.template.loader), 268
get_template() (Loader method), 1346
get_template_names() (django.views.generic.base.TemplateResponseMixin

method), 667

1786 Index



Django Documentation, Release 1.10.9.dev20171123183751

get_template_names() (django.views.generic.detail.SingleObjectTemplateResponseMixin
method), 669

get_template_names() (django.views.generic.list.MultipleObjectTemplateResponseMixin
method), 672

get_template_sources() (Loader method), 1346
get_test_func() (UserPassesTestMixin method), 365
get_traceback_frame_variables() (SafeExceptionRe-

porterFilter method), 595
get_transform() (in module django.db.models), 1188
get_transform() (lookups.RegisterLookupMixin method),

1188
get_urls() (ModelAdmin method), 728
get_user() (in module django.contrib.auth), 756
get_user_model() (in module django.contrib.auth), 394
get_user_permissions() (ModelBackend method), 755
get_username() (models.AbstractBaseUser method), 397
get_username() (models.User method), 751
get_valid_name() (in module django.core.files.storage),

577
get_valid_name() (Storage method), 1015
get_version() (BaseCommand method), 543
get_week() (WeekMixin method), 677
get_week_format() (WeekMixin method), 677
get_year() (YearMixin method), 676
get_year_format() (YearMixin method), 676
getlist() (QueryDict method), 1221
gettext() (in module django.utils.translation), 1378
gettext_lazy() (in module django.utils.translation), 1378
gettext_noop() (in module django.utils.translation), 1378
getvalue() (HttpResponse method), 1226
gis-contains

field lookup type, 807
gml (OGRGeometry attribute), 857
gml() (GeoQuerySet method), 820
Greatest (class in django.db.models.functions), 1205
groups (models.User attribute), 750
gt

field lookup type, 1176
gte

field lookup type, 1177
gzip_page() (in module django.views.decorators.gzip),

197
GZipMiddleware (class in django.middleware.gzip), 1078

H
handle() (BaseCommand method), 543
handle_app_config() (AppCommand method), 543
handle_label() (LabelCommand method), 544
handle_no_permission() (AccessMixin method), 367
handle_raw_input() (FileUploadHandler method), 1018
handler400 (in module django.conf.urls), 1365
handler403 (in module django.conf.urls), 1365
handler404 (in module django.conf.urls), 1365
handler500 (in module django.conf.urls), 1365

has_add_permission() (ModelAdmin method), 731
has_change_permission() (ModelAdmin method), 732
has_changed() (Field method), 1043
has_changed() (Form method), 1022
has_delete_permission() (ModelAdmin method), 732
has_error() (Form method), 1021
has_header() (HttpResponse method), 1225
has_module_permission() (ModelAdmin method), 732
has_module_perms() (ModelBackend method), 755
has_module_perms() (models.PermissionsMixin

method), 400
has_module_perms() (models.User method), 752
has_next() (Page method), 499
has_other_pages() (Page method), 499
has_perm() (ModelBackend method), 755
has_perm() (models.PermissionsMixin method), 400
has_perm() (models.User method), 751
has_permission() (AdminSite method), 744
has_permission() (PermissionRequiredMixin method),

366
has_perms() (models.PermissionsMixin method), 400
has_perms() (models.User method), 751
has_previous() (Page method), 499
has_usable_password() (models.AbstractBaseUser

method), 397
has_usable_password() (models.User method), 751
hasz (GEOSGeometry attribute), 837
head() (Client method), 327
height (GDALBand attribute), 869
height (GDALRaster attribute), 866
height (ImageFile attribute), 1012
height_field (ImageField attribute), 1103
help

django-admin command, 983
help (BaseCommand attribute), 542
help_text (BoundField attribute), 1033
help_text (Field attribute), 1041, 1094
hex (GEOSGeometry attribute), 838
hex (OGRGeometry attribute), 857
hexewkb (GEOSGeometry attribute), 838
hidden (Field attribute), 1116
HiddenInput (class in django.forms), 1066
history_view() (ModelAdmin method), 733
HOST

setting, 1239
hour

field lookup type, 1180
HStoreExtension (class in

django.contrib.postgres.operations), 917
HStoreField (class in django.contrib.postgres.fields), 903
HStoreField (class in django.contrib.postgres.forms), 913
hstorefield.contained_by

field lookup type, 904
hstorefield.contains

Index 1787



Django Documentation, Release 1.10.9.dev20171123183751

field lookup type, 904
hstorefield.has_any_keys

field lookup type, 904
hstorefield.has_key

field lookup type, 904
hstorefield.has_keys

field lookup type, 905
hstorefield.key

field lookup type, 903
hstorefield.keys

field lookup type, 905
hstorefield.values

field lookup type, 905
html_name (BoundField attribute), 1033
html_safe() (in module django.utils.html), 1374
http_date() (in module django.utils.http), 1375
http_method_names (django.views.generic.base.View at-

tribute), 646
http_method_not_allowed()

(django.views.generic.base.View method),
647

HttpRequest (class in django.http), 1215
HttpResponse (class in django.http), 1223
HttpResponseBadRequest (class in django.http), 1226
HttpResponseForbidden (class in django.http), 1226
HttpResponseGone (class in django.http), 1226
HttpResponseNotAllowed (class in django.http), 1226
HttpResponseNotFound (class in django.http), 1226
HttpResponseNotModified (class in django.http), 1226
HttpResponsePermanentRedirect (class in django.http),

1226
HttpResponseRedirect (class in django.http), 1226
HttpResponseServerError (class in django.http), 1227

I
i18n (Sitemap attribute), 926
i18n_patterns() (in module django.conf.urls.i18n), 459
icontains

field lookup type, 1175
id_for_label (BoundField attribute), 1033
id_for_label() (Widget method), 1062
identify_epsg() (SpatialReference method), 863
iendswith

field lookup type, 1178
iexact

field lookup type, 1174
if

template tag, 1300
ifchanged

template tag, 1304
IGNORABLE_404_URLS

setting, 1251
ImageField (class in django.db.models), 1103
ImageField (class in django.forms), 1048

ImageFile (class in django.core.files.images), 1012
import_epsg() (SpatialReference method), 863
import_proj() (SpatialReference method), 863
import_string() (in module django.utils.module_loading),

1375
import_user_input() (SpatialReference method), 863
import_wkt() (SpatialReference method), 863
import_xml() (SpatialReference method), 863
ImproperlyConfigured, 1008
in

field lookup type, 1175
in_bulk() (in module django.db.models.query.QuerySet),

1169
include

template tag, 1305
include() (in module django.conf.urls), 1364
inclusion_tag() (django.template.Library method), 566
index (Feature attribute), 853
index_template (AdminSite attribute), 743
index_title (AdminSite attribute), 743
index_together (Options attribute), 1129
Info (class in django.core.checks), 636
info (GeoIP attribute), 874
initial (django.views.generic.edit.FormMixin attribute),

673
initial (Field attribute), 1040
initial (Form attribute), 1021
initial (Migration attribute), 308
inlineformset_factory() (in module

django.forms.models), 1058
InlineModelAdmin (class in django.contrib.admin), 735
inlines (ModelAdmin attribute), 713
InMemoryUploadedFile (class in

django.core.files.uploadedfile), 1017
input_date_formats (SplitDateTimeField attribute), 1054
input_formats (DateField attribute), 1045
input_formats (DateTimeField attribute), 1046
input_formats (TimeField attribute), 1051
input_time_formats (SplitDateTimeField attribute), 1054
inspectdb

django-admin command, 987
inspectdb command line option

–database DATABASE, 987
INSTALLED_APPS

setting, 1251
instance namespace, 191
int_list_validator() (in module django.core.validators),

1383
int_to_base36() (in module django.utils.http), 1375
intcomma

template filter, 887
IntegerField (class in django.db.models), 1103
IntegerField (class in django.forms), 1049

1788 Index



Django Documentation, Release 1.10.9.dev20171123183751

IntegerRangeField (class in
django.contrib.postgres.fields), 907

IntegerRangeField (class in
django.contrib.postgres.forms), 914

IntegrityError, 1010
InterfaceError, 1010
INTERNAL_IPS

setting, 1252
InternalError, 1010
internationalization, 484
interpolate() (GEOSGeometry method), 840
interpolate_normalized() (GEOSGeometry method), 840
Intersection (class in django.contrib.gis.db.models.functions),

828
intersection() (GeoQuerySet method), 819
intersection() (GEOSGeometry method), 840
intersection() (OGRGeometry method), 859
intersects

field lookup type, 808
intersects() (GEOSGeometry method), 839
intersects() (OGRGeometry method), 858
intersects() (PreparedGeometry method), 845
intword

template filter, 887
InvalidPage, 498
inverse_flattening (SpatialReference attribute), 864
inverse_match (RegexValidator attribute), 1381
iregex

field lookup type, 1183
iri_to_uri() (in module django.utils.encoding), 1369
iriencode

template filter, 1320
is_active (in module django.contrib.auth), 399
is_active (models.CustomUser attribute), 396
is_active (models.User attribute), 750
is_active() (SafeExceptionReporterFilter method), 595
is_ajax() (HttpRequest method), 1219
is_anonymous (models.AbstractBaseUser attribute), 397
is_anonymous (models.User attribute), 750
is_authenticated (models.AbstractBaseUser attribute),

397
is_authenticated (models.User attribute), 750
is_aware() (in module django.utils.timezone), 1378
is_bound (Form attribute), 1019
is_hidden (BoundField attribute), 1033
is_installed() (apps method), 633
is_multipart() (Form method), 1036
is_naive() (in module django.utils.timezone), 1378
is_password_usable() (in module

django.contrib.auth.hashers), 385
is_protected_type() (in module django.utils.encoding),

1368
is_relation (Field attribute), 1116
is_rendered (SimpleTemplateResponse attribute), 1351

is_secure() (HttpRequest method), 1219
is_staff (in module django.contrib.auth), 399
is_staff (models.User attribute), 750
is_superuser (models.PermissionsMixin attribute), 400
is_superuser (models.User attribute), 750
is_valid() (Form method), 1020
isnull

field lookup type, 1182
istartswith

field lookup type, 1177
isvalid

field lookup type, 809
IsValid (class in django.contrib.gis.db.models.functions),

828
item_attributes() (SyndicationFeed method), 1370
item_geometry() (Feed method), 884
items (Sitemap attribute), 924
items() (backends.base.SessionBase method), 213
items() (QueryDict method), 1221
iterator() (in module django.db.models.query.QuerySet),

1169
iteritems() (QueryDict method), 1221
iterlists() (QueryDict method), 1221
itervalues() (QueryDict method), 1221

J
Java, 597
javascript_catalog() (in module django.views.i18n), 453
JavaScriptCatalog (class in django.views.i18n), 452
Jinja2 (class in django.template.backends.jinja2), 272
join

template filter, 1320
json (GEOSGeometry attribute), 838
json (OGRGeometry attribute), 857
json() (Response method), 329
json_catalog() (in module django.views.i18n), 457
JSONCatalog (class in django.views.i18n), 457
JSONField (class in django.contrib.postgres.fields), 905
JSONField (class in django.contrib.postgres.forms), 914
jsonfield.contained_by

field lookup type, 907
jsonfield.contains

field lookup type, 907
jsonfield.has_any_keys

field lookup type, 907
jsonfield.has_key

field lookup type, 907
jsonfield.has_keys

field lookup type, 907
jsonfield.key

field lookup type, 906
JsonResponse (class in django.http), 1227
JVM, 597
Jython, 597

Index 1789



Django Documentation, Release 1.10.9.dev20171123183751

JYTHONPATH, 598

K
keep_lazy() (in module django.utils.functional), 1372
keep_lazy_text() (in module django.utils.functional),

1373
keys() (backends.base.SessionBase method), 213
KeysValidator (class in

django.contrib.postgres.validators), 921
kml (GEOSGeometry attribute), 838
kml (OGRGeometry attribute), 857
kml() (GeoQuerySet method), 821
kwargs (ResolverMatch attribute), 1362

L
label (AppConfig attribute), 631
label (BoundField attribute), 1033
label (Field attribute), 1039
label (LabelCommand attribute), 544
label (Options attribute), 1130
label_lower (Options attribute), 1130
label_suffix (Field attribute), 1040
label_suffix (Form attribute), 1029
label_tag() (BoundField method), 1034
LabelCommand (class in django.core.management), 543
language

template tag, 450
language code, 484
language_bidi

template filter, 451
LANGUAGE_CODE

setting, 1252
LANGUAGE_COOKIE_AGE

setting, 1253
LANGUAGE_COOKIE_DOMAIN

setting, 1253
LANGUAGE_COOKIE_NAME

setting, 1253
LANGUAGE_COOKIE_PATH

setting, 1253
language_name

template filter, 451
language_name_local

template filter, 451
language_name_translated

template filter, 451
LANGUAGE_SESSION_KEY (in module

django.utils.translation), 1380
LANGUAGES

setting, 1253
last

template filter, 1320
last() (in module django.db.models.query.QuerySet),

1170

last_login (models.User attribute), 750
last_modified() (in module django.views.decorators.http),

197
last_name (models.User attribute), 749
lastmod (Sitemap attribute), 925
lat_lon() (GeoIP method), 873
lat_lon() (GeoIP2 method), 876
latest() (in module django.db.models.query.QuerySet),

1170
latest_post_date() (SyndicationFeed method), 1370
Layer (class in django.contrib.gis.gdal), 850
layer_count (DataSource attribute), 850
layer_name (Feature attribute), 853
LayerMapping (class in django.contrib.gis.utils), 878
learn_cache_key() (in module django.utils.cache), 1367
Least (class in django.db.models.functions), 1206
leave_locale_alone (BaseCommand attribute), 542
left

field lookup type, 811
length

template filter, 1320
Length (class in django.contrib.gis.db.models.functions),

828
Length (class in django.db.models.functions), 1206
length (GEOSGeometry attribute), 841
length() (GeoQuerySet method), 816
length_is

template filter, 1320
lhs (Lookup attribute), 1189
lhs (Transform attribute), 1189
limit (Sitemap attribute), 925
limit_choices_to (ForeignKey attribute), 1108
limit_choices_to (ManyToManyField attribute), 1110
linear_name (SpatialReference attribute), 863
linear_units (SpatialReference attribute), 863
LinearRing (class in django.contrib.gis.geos), 843
linebreaks

template filter, 1321
linebreaksbr

template filter, 1321
linenumbers

template filter, 1321
LineString (class in django.contrib.gis.gdal), 859
LineString (class in django.contrib.gis.geos), 842
LineStringField (class in django.contrib.gis.db.models),

793
LineStringField (class in django.contrib.gis.forms), 803
list_display (ModelAdmin attribute), 714
list_display_links (ModelAdmin attribute), 717
list_editable (ModelAdmin attribute), 718
list_filter (ModelAdmin attribute), 718
list_max_show_all (ModelAdmin attribute), 721
list_per_page (ModelAdmin attribute), 721
list_select_related (ModelAdmin attribute), 721

1790 Index



Django Documentation, Release 1.10.9.dev20171123183751

listdir() (Storage method), 1015
lists() (QueryDict method), 1222
ListView (built-in class), 682
LiveServerTestCase (class in django.test), 335
ljust

template filter, 1321
ll (Envelope attribute), 861
load

template tag, 1306
load_template() (Loader method), 1346
load_template_source() (Loader method), 1346
loaddata

django-admin command, 987
loaddata command line option

–app APP_LABEL, 987
–database DATABASE, 987
–ignorenonexistent, -i, 987

Loader (class in django.template.loaders.base), 1346
loads() (in module django.core.signing), 428
local (SpatialReference attribute), 864
locale name, 484
LOCALE_PATHS

setting, 1254
LocaleMiddleware (class in django.middleware.locale),

1079
localization, 484
localize

template filter, 473
template tag, 472

localize (Field attribute), 1043
localtime

template filter, 478
template tag, 477

localtime() (in module django.utils.timezone), 1377
location (FileSystemStorage attribute), 1013
location (Sitemap attribute), 924
locmem.Loader (class in django.template.loaders), 1345
LOGGING

setting, 1254
LOGGING_CONFIG

setting, 1254
login() (Client method), 327
login() (in module django.contrib.auth), 361
login() (in module django.contrib.auth.views), 369
login_form (AdminSite attribute), 743
LOGIN_REDIRECT_URL

setting, 1266
login_required() (in module

django.contrib.auth.decorators), 362
login_template (AdminSite attribute), 743
LOGIN_URL

setting, 1266
login_url (AccessMixin attribute), 367

LoginRequiredMixin (class in
django.contrib.auth.mixins), 363

logout() (Client method), 328
logout() (in module django.contrib.auth), 362
logout() (in module django.contrib.auth.views), 371
LOGOUT_REDIRECT_URL

setting, 1266
logout_template (AdminSite attribute), 743
logout_then_login() (in module

django.contrib.auth.views), 372
lon_lat() (GeoIP method), 873
lon_lat() (GeoIP2 method), 876
Long-term support release, 1738
Lookup (class in django.db.models), 1189
lookup_name (Lookup attribute), 1189
lookup_name (Transform attribute), 1189
lookups.RegisterLookupMixin (class in

django.db.models), 1187
lorem

template tag, 1306
lower

template filter, 1322
Lower (class in django.db.models.functions), 1207
lt

field lookup type, 1177
lte

field lookup type, 1177

M
mail_admins() (in module django.core.mail), 430
mail_managers() (in module django.core.mail), 430
make_aware() (in module django.utils.timezone), 1378
make_list

template filter, 1322
make_naive() (in module django.utils.timezone), 1378
make_object_list (YearArchiveView attribute), 658
make_password() (in module

django.contrib.auth.hashers), 385
make_random_password() (models.BaseUserManager

method), 398
MakeLine (class in django.contrib.gis.db.models), 823
makemessages

django-admin command, 989
makemessages command line option

–all, -a, 990
–domain DOMAIN, -d DOMAIN, 990
–exclude EXCLUDE, -x EXCLUDE, 990
–extension EXTENSIONS, -e EXTENSIONS, 990
–ignore PATTERN, -i PATTERN, 990
–keep-pot, 991
–locale LOCALE, -l LOCALE, 990
–no-default-ignore, 991
–no-location, 991
–no-wrap, 991

Index 1791



Django Documentation, Release 1.10.9.dev20171123183751

–symlinks, -s, 990
makemigrations

django-admin command, 991
makemigrations command line option

–check, 992
–dry-run, 991
–empty, 991
–exit, -e, 991
–merge, 991
–name NAME, -n NAME, 991
–noinput, –no-input, 991

MakeValid (class in django.contrib.gis.db.models.functions),
828

managed (Options attribute), 1126
Manager (class in django.db.models), 132
MANAGERS

setting, 1254
managers.CurrentSiteManager (class in

django.contrib.sites), 934
many_to_many (Field attribute), 1116
many_to_one (Field attribute), 1116
ManyToManyField (class in django.db.models), 1110
map_height (BaseGeometryWidget attribute), 804
map_height (GeoModelAdmin attribute), 882
map_srid (BaseGeometryWidget attribute), 804
map_template (GeoModelAdmin attribute), 882
map_width (BaseGeometryWidget attribute), 804
map_width (GeoModelAdmin attribute), 882
mapping() (in module django.contrib.gis.utils), 880
mark_for_escaping() (in module django.utils.safestring),

1376
mark_safe() (in module django.utils.safestring), 1376
match (FilePathField attribute), 1048, 1102
Max (class in django.db.models), 1184
max (GDALBand attribute), 869
max_digits (DecimalField attribute), 1046, 1098
max_length (CharField attribute), 1044, 1096
max_length (SimpleArrayField attribute), 912
max_length (URLField attribute), 1052
max_num (InlineModelAdmin attribute), 737
max_value (DecimalField attribute), 1046
max_value (IntegerField attribute), 1049
max_x (Envelope attribute), 861
max_y (Envelope attribute), 861
MaxLengthValidator (class in django.core.validators),

1383
MaxValueValidator (class in django.core.validators),

1383
mean (GDALBand attribute), 869
MEDIA_ROOT

setting, 1255
MEDIA_URL

setting, 1255
mem_size() (GeoQuerySet method), 822

MemoryFileUploadHandler (class in
django.core.files.uploadhandler), 1017

MemSize (class in django.contrib.gis.db.models.functions),
828

merged (MultiLineString attribute), 844
message (EmailValidator attribute), 1381
message (RegexValidator attribute), 1381
message file, 484
MESSAGE_LEVEL

setting, 1267
MESSAGE_STORAGE

setting, 1268
MESSAGE_TAGS

setting, 1268
message_user() (ModelAdmin method), 732
MessageMiddleware (class in

django.contrib.messages.middleware), 1079
META (HttpRequest attribute), 1216
method (HttpRequest attribute), 1215
method_decorator() (in module django.utils.decorators),

1367
MIDDLEWARE

setting, 1255
middleware.RedirectFallbackMiddleware (class in

django.contrib.redirects), 922
MIDDLEWARE_CLASSES

setting, 1255
MiddlewareNotUsed, 1008
migrate

django-admin command, 992
migrate command line option

–database DATABASE, 992
–fake, 992
–fake-initial, 992
–noinput, –no-input, 992
–run-syncdb, 992

MIGRATION_MODULES
setting, 1256

Min (class in django.db.models), 1185
min (GDALBand attribute), 869
min_length (CharField attribute), 1044
min_length (SimpleArrayField attribute), 912
min_length (URLField attribute), 1052
min_num (InlineModelAdmin attribute), 737
min_value (DecimalField attribute), 1046
min_value (IntegerField attribute), 1049
min_x (Envelope attribute), 861
min_y (Envelope attribute), 861
MinimumLengthValidator (class in

django.contrib.auth.password_validation),
386

MinLengthValidator (class in django.core.validators),
1383

minute

1792 Index



Django Documentation, Release 1.10.9.dev20171123183751

field lookup type, 1181
MinValueValidator (class in django.core.validators), 1383
missing_args_message (BaseCommand attribute), 542
mode (File attribute), 1011
model, 1395
Model (class in django.db.models), 1130
model (ContentType attribute), 757
model (django.views.generic.detail.SingleObjectMixin

attribute), 668
model (django.views.generic.edit.ModelFormMixin at-

tribute), 674
model (django.views.generic.list.MultipleObjectMixin

attribute), 670
model (Field attribute), 1116
model (InlineModelAdmin attribute), 736
Model.DoesNotExist, 1142
model_class() (ContentType method), 757
ModelAdmin (class in django.contrib.admin), 707
ModelBackend (class in django.contrib.auth.backends),

754
ModelChoiceField (class in django.forms), 1055
ModelForm (class in django.forms), 243
modelform_factory() (in module django.forms.models),

1057
modelformset_factory() (in module

django.forms.models), 1058
ModelMultipleChoiceField (class in django.forms), 1056
models.AbstractBaseUser (class in django.contrib.auth),

397
models.AnonymousUser (class in django.contrib.auth),

752
models.BaseInlineFormSet (class in django.forms), 259
models.BaseModelFormSet (class in django.forms), 254
models.BaseUserManager (class in django.contrib.auth),

398
models.CustomUser (class in django.contrib.auth), 395,

399
models.CustomUserManager (class in

django.contrib.auth), 398
models.Group (class in django.contrib.auth), 753
models.LogEntry (class in django.contrib.admin), 747
models.Permission (class in django.contrib.auth), 753
models.PermissionsMixin (class in django.contrib.auth),

400
models.ProtectedError, 1010
models.Redirect (class in django.contrib.redirects), 922
models.Site (class in django.contrib.sites), 930
models.User (class in django.contrib.auth), 749–751
models.UserManager (class in django.contrib.auth), 752
models_module (AppConfig attribute), 632
modifiable (GeoModelAdmin attribute), 883
modified_time() (Storage method), 1015
modify_settings() (in module django.test), 340
modify_settings() (SimpleTestCase method), 339

module (AppConfig attribute), 632
month

field lookup type, 1179
month (MonthMixin attribute), 676
MONTH_DAY_FORMAT

setting, 1256
month_format (MonthMixin attribute), 676
MonthArchiveView (built-in class), 688
MonthArchiveView (class in django.views.generic.dates),

659
MonthMixin (class in django.views.generic.dates), 676
months (SelectDateWidget attribute), 1070
MTV, 1395
multi_db (TransactionTestCase attribute), 338
MultiLineString (class in django.contrib.gis.geos), 844
MultiLineStringField (class in

django.contrib.gis.db.models), 793
MultiLineStringField (class in django.contrib.gis.forms),

803
multiple_chunks() (File method), 1012
multiple_chunks() (UploadedFile method), 1016
MultipleChoiceField (class in django.forms), 1050
MultipleHiddenInput (class in django.forms), 1069
MultipleObjectsReturned, 1007
MultiPoint (class in django.contrib.gis.geos), 843
MultiPointField (class in django.contrib.gis.db.models),

793
MultiPointField (class in django.contrib.gis.forms), 803
MultiPolygon (class in django.contrib.gis.geos), 844
MultiPolygonField (class in

django.contrib.gis.db.models), 793
MultiPolygonField (class in django.contrib.gis.forms),

804
MultiValueField (class in django.forms), 1053
MultiWidget (class in django.forms), 1063
MVC, 1395

N
NAME

setting, 1239
name (AppConfig attribute), 631
name (BoundField attribute), 1033
name (ContentType attribute), 757
name (CreateExtension attribute), 916
name (DataSource attribute), 850
name (Field attribute), 854
name (FieldFile attribute), 1101
name (File attribute), 1011
name (GDALRaster attribute), 865
name (Layer attribute), 851
name (models.Group attribute), 753
name (models.Permission attribute), 753
name (models.Site attribute), 930
name (OGRGeomType attribute), 860

Index 1793



Django Documentation, Release 1.10.9.dev20171123183751

name (Origin attribute), 1347
name (SpatialReference attribute), 863
name (UploadedFile attribute), 1016
namespace (ResolverMatch attribute), 1362
namespaces (ResolverMatch attribute), 1362
naturalday

template filter, 888
naturaltime

template filter, 888
never_cache() (in module

django.views.decorators.cache), 197
new_file() (FileUploadHandler method), 1018
new_objects (models.BaseModelFormSet attribute), 256
next_page_number() (Page method), 499
ngettext() (in module django.utils.translation), 1378
ngettext_lazy() (in module django.utils.translation), 1379
nodata_value (GDALBand attribute), 870
non_atomic_requests() (in module

django.db.transaction), 145
NON_FIELD_ERRORS (in module

django.core.exceptions), 1009
non_field_errors() (Form method), 1021
none() (in module django.db.models.query.QuerySet),

1152
noop (RunSQL attribute), 1086
noop() (RunPython static method), 1088
NoReverseMatch, 1009
normalize_email() (django.contrib.auth.models.BaseUserManager

class method), 398
normalize_username() (django.contrib.auth.models.AbstractBaseUser

class method), 397
NotSupportedError, 1010
now

template tag, 1307
Now (class in django.db.models.functions), 1207
now() (in module django.utils.timezone), 1377
npgettext() (in module django.utils.translation), 1379
npgettext_lazy() (in module django.utils.translation),

1379
null (Field attribute), 1090
NullBooleanField (class in django.db.models), 1104
NullBooleanField (class in django.forms), 1050
NullBooleanSelect (class in django.forms), 1067
num (OGRGeomType attribute), 861
num_coords (GEOSGeometry attribute), 837
num_coords (OGRGeometry attribute), 856
num_feat (Layer attribute), 851
num_fields (Feature attribute), 853
num_fields (Layer attribute), 851
num_geom (GEOSGeometry attribute), 837
num_geom() (GeoQuerySet method), 822
num_interior_rings (Polygon attribute), 843
num_items() (SyndicationFeed method), 1370
num_pages (Paginator attribute), 498

num_points (OGRGeometry attribute), 856
num_points() (GeoQuerySet method), 822
number (Page attribute), 499
NUMBER_GROUPING

setting, 1256
NumberInput (class in django.forms), 1065
NumericPasswordValidator (class in

django.contrib.auth.password_validation),
387

NumGeometries (class in
django.contrib.gis.db.models.functions),
829

NumPoints (class in django.contrib.gis.db.models.functions),
829

O
object (django.views.generic.edit.CreateView attribute),

654
object (django.views.generic.edit.UpdateView attribute),

655
object_history_template (ModelAdmin attribute), 725
object_id (LogEntry attribute), 747
object_list (Page attribute), 499
object_repr (LogEntry attribute), 747
ObjectDoesNotExist, 1007
objects (Model attribute), 1123
ogr (GEOSGeometry attribute), 838
OGRGeometry (class in django.contrib.gis.gdal), 855
OGRGeomType (class in django.contrib.gis.gdal), 860
ogrinspect

django-admin command, 881
ogrinspect command line option

–blank BLANK, 881
–decimal DECIMAL, 881
–geom-name GEOM_NAME, 881
–layer LAYER_KEY, 882
–mapping, 882
–multi-geom, 882
–name-field NAME_FIELD, 882
–no-imports, 882
–null NULL, 882
–srid SRID, 882

on_commit() (in module django.db.transaction), 148
on_delete (ForeignKey attribute), 1107
one_to_many (Field attribute), 1116
one_to_one (Field attribute), 1116
OneToOneField (class in django.db.models), 1112
only() (in module django.db.models.query.QuerySet),

1162
open() (django.contrib.gis.geoip.GeoIP class method),

874
open() (django.contrib.gis.geoip2.GeoIP2 class method),

876
open() (FieldFile method), 1101

1794 Index



Django Documentation, Release 1.10.9.dev20171123183751

open() (File method), 1011
open() (Storage method), 1015
openlayers_url (GeoModelAdmin attribute), 883
OpenLayersWidget (class in django.contrib.gis.widgets),

805
OperationalError, 1010
OPTIONS

setting, 1239
Options (class in django.db.models.options), 1116
options() (Client method), 327
options() (django.views.generic.base.View method), 647
order_by() (in module

django.db.models.query.QuerySet), 1145
order_fields() (Form method), 1030
order_with_respect_to (Options attribute), 1126
ordered (QuerySet attribute), 1144
ordering (django.views.generic.list.MultipleObjectMixin

attribute), 671
ordering (ModelAdmin attribute), 721
ordering (Options attribute), 1127
ordinal

template filter, 889
Origin (class in django.template.base), 1347
origin (GDALRaster attribute), 867
OSMGeoAdmin (class in django.contrib.gis.admin), 883
OSMWidget (class in django.contrib.gis.widgets), 805
outdim (WKBWriter attribute), 847
outdim (WKTWriter attribute), 848
output_field (in module django.db.models), 1188
output_field (Transform attribute), 1189
output_transaction (BaseCommand attribute), 542
overlaps

field lookup type, 809
overlaps() (GEOSGeometry method), 839
overlaps() (OGRGeometry method), 858
overlaps() (PreparedGeometry method), 845
overlaps_above

field lookup type, 812
overlaps_below

field lookup type, 812
overlaps_left

field lookup type, 811
overlaps_right

field lookup type, 812
override() (in module django.utils.timezone), 1377
override() (in module django.utils.translation), 1379
override_settings() (in module django.test), 340

P
packages (JavaScriptCatalog attribute), 452
Page (class in django.core.paginator), 498
page() (Paginator method), 498
page_kwarg (django.views.generic.list.MultipleObjectMixin

attribute), 671

page_range (Paginator attribute), 498
PageNotAnInteger, 498
paginate_by (django.views.generic.list.MultipleObjectMixin

attribute), 671
paginate_orphans (django.views.generic.list.MultipleObjectMixin

attribute), 671
paginate_queryset() (django.views.generic.list.MultipleObjectMixin

method), 671
Paginator (class in django.core.paginator), 497
paginator (ModelAdmin attribute), 722
paginator (Page attribute), 499
paginator_class (django.views.generic.list.MultipleObjectMixin

attribute), 671
parent_link (OneToOneField attribute), 1113
parse_date() (in module django.utils.dateparse), 1367
parse_datetime() (in module django.utils.dateparse), 1367
parse_duration() (in module django.utils.dateparse), 1367
parse_time() (in module django.utils.dateparse), 1367
PASSWORD

setting, 1239
password (models.User attribute), 750
password_change() (in module

django.contrib.auth.views), 372
password_change_done() (in module

django.contrib.auth.views), 372
password_change_done_template (AdminSite attribute),

744
password_change_template (AdminSite attribute), 744
password_changed() (in module

django.contrib.auth.password_validation),
387

PASSWORD_HASHERS
setting, 1267

password_reset() (in module django.contrib.auth.views),
373

password_reset_complete() (in module
django.contrib.auth.views), 375

password_reset_confirm() (in module
django.contrib.auth.views), 374

password_reset_done() (in module
django.contrib.auth.views), 374

PASSWORD_RESET_TIMEOUT_DAYS
setting, 1267

password_validators_help_text_html() (in module
django.contrib.auth.password_validation), 387

password_validators_help_texts() (in module
django.contrib.auth.password_validation),
387

PasswordChangeForm (class in
django.contrib.auth.forms), 377

PasswordInput (class in django.forms), 1065
PasswordResetForm (class in django.contrib.auth.forms),

377
Patch release, 1738

Index 1795



Django Documentation, Release 1.10.9.dev20171123183751

patch() (Client method), 327
patch_cache_control() (in module django.utils.cache),

1366
patch_response_headers() (in module django.utils.cache),

1366
patch_vary_headers() (in module django.utils.cache),

1366
path (AppConfig attribute), 631
path (FilePathField attribute), 1048, 1102
path (HttpRequest attribute), 1215
path() (Storage method), 1015
path_info (HttpRequest attribute), 1215
pattern_name (django.views.generic.base.RedirectView

attribute), 649
Perimeter (class in django.contrib.gis.db.models.functions),

829
perimeter() (GeoQuerySet method), 817
permanent (django.views.generic.base.RedirectView at-

tribute), 649
permission_denied_message (AccessMixin attribute),

367
permission_required() (in module

django.contrib.auth.decorators), 365
PermissionDenied, 1008
PermissionRequiredMixin (class in

django.contrib.auth.mixins), 366
permissions (models.Group attribute), 753
permissions (Options attribute), 1128
PersistentRemoteUserMiddleware (class in

django.contrib.auth.middleware), 1081
pgettext() (in module django.utils.translation), 1378
pgettext_lazy() (in module django.utils.translation), 1378
phone2numeric

template filter, 1322
ping_google

django-admin command, 930
ping_google() (in module django.contrib.sitemaps), 929
pixel_count (GDALBand attribute), 869
pk (Model attribute), 1135
pk_url_kwarg (django.views.generic.detail.SingleObjectMixin

attribute), 668
pluralize

template filter, 1322
Point (class in django.contrib.gis.gdal), 859
Point (class in django.contrib.gis.geos), 842
point_count (OGRGeometry attribute), 856
point_on_surface (GEOSGeometry attribute), 841
point_on_surface() (GeoQuerySet method), 817
PointField (class in django.contrib.gis.db.models), 792
PointField (class in django.contrib.gis.forms), 803
PointOnSurface (class in

django.contrib.gis.db.models.functions),
829

Polygon (class in django.contrib.gis.gdal), 860

Polygon (class in django.contrib.gis.geos), 843
PolygonField (class in django.contrib.gis.db.models), 793
PolygonField (class in django.contrib.gis.forms), 803
pop() (backends.base.SessionBase method), 213
pop() (Context method), 1338
pop() (QueryDict method), 1222
popitem() (QueryDict method), 1222
PORT

setting, 1239
PositiveIntegerField (class in django.db.models), 1104
PositiveSmallIntegerField (class in django.db.models),

1104
POST (HttpRequest attribute), 1216
post() (Client method), 325
post() (django.views.generic.edit.ProcessFormView

method), 675
post_process() (storage.StaticFilesStorage method), 940
POSTGIS_VERSION

setting, 885
pprint

template filter, 1323
pre_init (django.db.models.signals attribute), 1278
pre_save() (Field method), 1115
precision (Field attribute), 854
precision (WKTWriter attribute), 848
Prefetch (class in django.db.models), 1186
prefetch_related() (in module

django.db.models.query.QuerySet), 1154
prefetch_related_objects() (in module django.db.models),

1187
prefix (django.views.generic.edit.FormMixin attribute),

673
prefix (Form attribute), 1037
prepared (GEOSGeometry attribute), 841
PreparedGeometry (class in django.contrib.gis.geos), 845
PREPEND_WWW

setting, 1257
prepopulated_fields (ModelAdmin attribute), 722
preserve_filters (ModelAdmin attribute), 722
pretty_wkt (SpatialReference attribute), 864
previous_page_number() (Page method), 499
primary_key (Field attribute), 1094
priority (Sitemap attribute), 925
process_exception(), 208
process_lhs() (Lookup method), 1189
process_rhs() (Lookup method), 1189
process_template_response(), 208
process_view(), 208
ProgrammingError, 1010
proj (SpatialReference attribute), 864
proj4 (SpatialReference attribute), 864
project, 1395
project() (GEOSGeometry method), 840
project_normalized() (GEOSGeometry method), 840

1796 Index



Django Documentation, Release 1.10.9.dev20171123183751

projected (SpatialReference attribute), 864
property, 1395
PROTECT (in module django.db.models), 1107
protocol (GenericIPAddressField attribute), 1050, 1103
protocol (Sitemap attribute), 925
proxy (Options attribute), 1128
push() (Context method), 1338
put() (Client method), 327
put() (django.views.generic.edit.ProcessFormView

method), 675
Python Enhancement Proposals

PEP 20, 1389
PEP 234, 1169
PEP 249, 144, 148, 150, 973, 1010
PEP 257, 1691
PEP 3134, 1010
PEP 318, 340
PEP 3333, 82, 502, 620, 1218
PEP 343, 339
PEP 414, 500
PEP 420, 633
PEP 440, 983, 1412
PEP 8, 1681, 1691

python_2_unicode_compatible() (in module
django.utils.encoding), 1368

PYTHONHASHSEED, 590
PYTHONPATH, 1510
PYTHONSTARTUP, 995
PYTHONWARNINGS, 591

Q
Q (class in django.db.models), 1186
query_pk_and_slug (django.views.generic.detail.SingleObjectMixin

attribute), 668
query_string (django.views.generic.base.RedirectView

attribute), 649
QueryDict (class in django.http), 1220
queryset, 1395
QuerySet (class in django.db.models.query), 1143
queryset (django.views.generic.detail.SingleObjectMixin

attribute), 668
queryset (django.views.generic.list.MultipleObjectMixin

attribute), 670
queryset (ModelChoiceField attribute), 1055
queryset (ModelMultipleChoiceField attribute), 1057

R
radio_fields (ModelAdmin attribute), 722
RadioSelect (class in django.forms), 1067
raise_exception (AccessMixin attribute), 367
random

template filter, 1323
range

field lookup type, 1178

range_type (django.contrib.postgres.forms.BaseRangeField
attribute), 911

range_type (RangeField attribute), 911
RangeField (class in django.contrib.postgres.fields), 911
rangefield.adjacent_to

field lookup type, 910
rangefield.contained_by

field lookup type, 909
rangefield.contains

field lookup type, 909
rangefield.endswith

field lookup type, 910
rangefield.fully_gt

field lookup type, 909
rangefield.fully_lt

field lookup type, 909
rangefield.isempty

field lookup type, 911
rangefield.not_gt

field lookup type, 910
rangefield.not_lt

field lookup type, 910
rangefield.overlap

field lookup type, 909
rangefield.startswith

field lookup type, 910
RangeMaxValueValidator (class in

django.contrib.postgres.validators), 921
RangeMinValueValidator (class in

django.contrib.postgres.validators), 921
RangeWidget (class in django.contrib.postgres.forms),

915
RasterField (class in django.contrib.gis.db.models), 793
raw() (in module django.db.models.query.QuerySet),

1164
raw() (Manager method), 139
raw_id_fields (InlineModelAdmin attribute), 737
raw_id_fields (ModelAdmin attribute), 722
RawSQL (class in django.db.models.expressions), 1196
read() (File method), 1012
read() (HttpRequest method), 1219
read() (UploadedFile method), 1016
readable() (HttpResponse method), 1226
readline() (HttpRequest method), 1219
readlines() (HttpRequest method), 1219
readonly_fields (ModelAdmin attribute), 723
ready (apps attribute), 633
ready() (AppConfig method), 632
reason_phrase (HttpResponse attribute), 1224
reason_phrase (StreamingHttpResponse attribute), 1229
receive_data_chunk() (FileUploadHandler method), 1017
receiver() (in module django.dispatch), 528
record_by_addr() (GeoIP method), 874
record_by_name() (GeoIP method), 874

Index 1797



Django Documentation, Release 1.10.9.dev20171123183751

recursive (FilePathField attribute), 1048, 1102
redirect() (in module django.shortcuts), 202
redirect_field_name (AccessMixin attribute), 367
redirect_to_login() (in module

django.contrib.auth.views), 375
RedirectView (built-in class), 680
refresh_from_db() (Model method), 1132
regex

field lookup type, 1182
regex (RegexField attribute), 1051
regex (RegexValidator attribute), 1381
RegexField (class in django.forms), 1051
RegexValidator (class in django.core.validators), 1381
region_by_addr() (GeoIP method), 874
region_by_name() (GeoIP method), 874
register() (AdminSite method), 744
register() (in module django.contrib.admin), 707
register() (in module django.core.checks), 532
register_lookup() (django.db.models.lookups.RegisterLookupMixin

class method), 1187
RegrAvgX (class in django.contrib.postgres.aggregates),

897
RegrAvgY (class in django.contrib.postgres.aggregates),

897
RegrCount (class in django.contrib.postgres.aggregates),

898
RegrIntercept (class in

django.contrib.postgres.aggregates), 898
regroup

template tag, 1307
RegrR2 (class in django.contrib.postgres.aggregates), 898
RegrSlope (class in django.contrib.postgres.aggregates),

898
RegrSXX (class in django.contrib.postgres.aggregates),

898
RegrSXY (class in django.contrib.postgres.aggregates),

898
RegrSYY (class in django.contrib.postgres.aggregates),

898
rel_db_type() (Field method), 1114
relabeled_clone() (Expression method), 1197
relate

field lookup type, 809
relate() (GEOSGeometry method), 840
relate_pattern() (GEOSGeometry method), 839
related_model (Field attribute), 1116
related_name (ForeignKey attribute), 1108
related_name (ManyToManyField attribute), 1110
related_query_name (ForeignKey attribute), 1109
related_query_name (GenericRelation attribute), 760
related_query_name (ManyToManyField attribute), 1110
RelatedManager (class in

django.db.models.fields.related), 1120

RemoteUserBackend (class in
django.contrib.auth.backends), 755

RemoteUserMiddleware (class in
django.contrib.auth.middleware), 1081

remove() (RelatedManager method), 1121
remove_field() (BaseDatabaseSchemaEditor method),

1231
remove_trailing_nulls (SplitArrayField attribute), 913
RemoveField (class in django.db.migrations.operations),

1085
RenameField (class in django.db.migrations.operations),

1085
RenameModel (class in django.db.migrations.operations),

1084
render() (in module django.shortcuts), 201
render() (MultiWidget method), 1063
render() (SimpleTemplateResponse method), 1352
render() (Template method), 269, 1334
render() (Widget method), 1062
render_to_response() (django.views.generic.base.TemplateResponseMixin

method), 667
render_to_response() (in module django.shortcuts), 202
render_to_string() (in module django.template.loader),

270
render_value (PasswordInput attribute), 1065
rendered_content (SimpleTemplateResponse attribute),

1351
request (Response attribute), 329
RequestContext (class in django.template), 1340
RequestFactory (class in django.test), 348
requests.RequestSite (class in django.contrib.sites), 936
require_all_fields (MultiValueField attribute), 1053
require_GET() (in module django.views.decorators.http),

196
require_http_methods() (in module

django.views.decorators.http), 196
require_POST() (in module

django.views.decorators.http), 196
require_safe() (in module django.views.decorators.http),

196
required (Field attribute), 1038
required_css_class (Form attribute), 1027
required_db_features (Options attribute), 1128
required_db_vendor (Options attribute), 1128
REQUIRED_FIELDS (models.CustomUser attribute),

396
RequireDebugFalse (class in django.utils.log), 494
RequireDebugTrue (class in django.utils.log), 494
requires_csrf_token() (in module

django.views.decorators.csrf), 967
requires_migrations_checks (BaseCommand attribute),

542
requires_system_checks (BaseCommand attribute), 542
reset_sequences (TransactionTestCase attribute), 351

1798 Index



Django Documentation, Release 1.10.9.dev20171123183751

resolve() (in module django.urls), 1362
resolve_context() (SimpleTemplateResponse method),

1351
resolve_expression() (Expression method), 1197
resolve_template() (SimpleTemplateResponse method),

1351
Resolver404, 1009
resolver_match (HttpRequest attribute), 1217
resolver_match (Response attribute), 329
ResolverMatch (class in django.urls), 1362
Response (class in django.test), 328
response_add() (ModelAdmin method), 732
response_change() (ModelAdmin method), 732
response_class (django.views.generic.base.TemplateResponseMixin

attribute), 667
response_delete() (ModelAdmin method), 732
response_gone_class (middle-

ware.RedirectFallbackMiddleware attribute),
922

response_redirect_class (CommonMiddleware attribute),
1077

response_redirect_class (LocaleMiddleware attribute),
1079

response_redirect_class (middle-
ware.RedirectFallbackMiddleware attribute),
922

Reverse (class in django.contrib.gis.db.models.functions),
829

reverse() (in module django.db.models.query.QuerySet),
1147

reverse() (in module django.urls), 1360
reverse_geom() (GeoQuerySet method), 818
reverse_lazy() (in module django.urls), 1361
reverse_ordering() (Expression method), 1197
RFC

RFC 1034, 1408, 1437
RFC 1123, 1375
RFC 2046#section-5.2.1, 433
RFC 2109, 1225, 1269
RFC 2396, 1141
RFC 2616, 1438, 1590
RFC 2732, 1382
RFC 3987#section-3.1, 1356, 1369
RFC 3987#section-3.2, 1357, 1369
RFC 4291#section-2.2, 1049, 1103
RFC 5322, 1314
RFC 6265, 1225, 1407, 1422, 1450
RFC 7231, 966, 1438
RFC 7231#section-4.2.1, 962, 1166
RFC 7231#section-4.3.8, 327
RFC 7231#section-6, 1224, 1228
RFC 7231#section-6.1, 1224, 1229
RFC 7231#section-6.5.3, 1385
RFC 7231#section-7.1.1.1, 1375

RFC 7231#section-7.1.4, 421, 1366
RFC 7232#section-4.1, 424
RFC 7234, 421
RFC 7234#section-5.2.2.8, 421
RFC 7239#page-7, 1265

rhs (Lookup attribute), 1189
right

field lookup type, 811
ring (GEOSGeometry attribute), 837
rjust

template filter, 1323
rollback() (in module django.db.transaction), 151
root_attributes() (SyndicationFeed method), 1370
ROOT_URLCONF

setting, 1257
Rss201rev2Feed (class in django.utils.feedgenerator),

1371
RssFeed (class in django.utils.feedgenerator), 1371
RssUserland091Feed (class in

django.utils.feedgenerator), 1371
run_suite() (DiscoverRunner method), 355
run_tests() (DiscoverRunner method), 354
RunPython (class in django.db.migrations.operations),

1087
runserver

django-admin command, 939, 992
runserver command line option

–insecure, 940
–ipv6, -6, 993
–noreload, 993
–nostatic, 939
–nothreading, 993

RunSQL (class in django.db.migrations.operations), 1086

S
safe

template filter, 1323
SafeBytes (class in django.utils.safestring), 1376
SafeExceptionReporterFilter (class in

django.views.debug), 595
safeseq

template filter, 1324
SafeString (class in django.utils.safestring), 1376
SafeText (class in django.utils.safestring), 1376
SafeUnicode (class in django.utils.safestring), 1376
same_as

field lookup type, 808
sample (CovarPop attribute), 897
sample (StdDev attribute), 1185
sample (Variance attribute), 1185
save() (base_session.BaseSessionManager method), 220
save() (FieldFile method), 1101
save() (File method), 1013
save() (LayerMapping method), 879

Index 1799



Django Documentation, Release 1.10.9.dev20171123183751

save() (Model method), 1135
save() (Storage method), 1015
save_as (ModelAdmin attribute), 723
save_as_continue (ModelAdmin attribute), 723
save_formset() (ModelAdmin method), 726
save_model() (ModelAdmin method), 726
save_on_top (ModelAdmin attribute), 723
save_related() (ModelAdmin method), 727
savepoint() (in module django.db.transaction), 151
savepoint_commit() (in module django.db.transaction),

151
savepoint_rollback() (in module django.db.transaction),

151
Scale (class in django.contrib.gis.db.models.functions),

829
scale (GDALRaster attribute), 867
scale() (GeoQuerySet method), 818
scheme (HttpRequest attribute), 1215
schemes (URLValidator attribute), 1382
search

field lookup type, 917, 1182
search_fields (ModelAdmin attribute), 724
SearchQuery (class in django.contrib.postgres.search),

918
SearchRank (class in django.contrib.postgres.search), 918
SearchVector (class in django.contrib.postgres.search),

917
SearchVectorField (class in

django.contrib.postgres.search), 919
second

field lookup type, 1181
SECRET_KEY

setting, 1257
SECURE_BROWSER_XSS_FILTER

setting, 1257
SECURE_CONTENT_TYPE_NOSNIFF

setting, 1258
SECURE_HSTS_INCLUDE_SUBDOMAINS

setting, 1258
SECURE_HSTS_SECONDS

setting, 1258
SECURE_PROXY_SSL_HEADER

setting, 1258
SECURE_REDIRECT_EXEMPT

setting, 1259
SECURE_SSL_HOST

setting, 1259
SECURE_SSL_REDIRECT

setting, 1259
SecurityMiddleware (class in

django.middleware.security), 1079
seekable() (HttpResponse method), 1226
Select (class in django.forms), 1067

select_for_update() (in module
django.db.models.query.QuerySet), 1163

select_on_save (Options attribute), 1129
select_related() (in module

django.db.models.query.QuerySet), 1153
select_template() (Engine method), 1334
select_template() (in module django.template.loader),

268
SelectDateWidget (class in django.forms), 1070
SelectMultiple (class in django.forms), 1067
semi_major (SpatialReference attribute), 864
semi_minor (SpatialReference attribute), 864
send() (Signal method), 530
send_mail() (AdminEmailHandler method), 493
send_mail() (in module django.core.mail), 428
send_mail() (PasswordResetForm method), 377
send_mass_mail() (in module django.core.mail), 429
send_robust() (Signal method), 530
sendtestemail

django-admin command, 994
sendtestemail command line option

–admins, 994
–managers, 994

sensitive_post_parameters() (in module
django.views.decorators.debug), 594

sensitive_variables() (in module
django.views.decorators.debug), 593

SeparateDatabaseAndState (class in
django.db.migrations.operations), 1088

SERIALIZATION_MODULES
setting, 1260

serializers.JSONSerializer (class in
django.contrib.sessions), 214

serializers.PickleSerializer (class in
django.contrib.sessions), 214

SERVER_EMAIL
setting, 1260

session (Client attribute), 330
session (HttpRequest attribute), 1217
SESSION_CACHE_ALIAS

setting, 1269
SESSION_COOKIE_AGE

setting, 1269
SESSION_COOKIE_DOMAIN

setting, 1269
SESSION_COOKIE_HTTPONLY

setting, 1269
SESSION_COOKIE_NAME

setting, 1269
SESSION_COOKIE_PATH

setting, 1270
SESSION_COOKIE_SECURE

setting, 1270

1800 Index



Django Documentation, Release 1.10.9.dev20171123183751

session_data (base_session.AbstractBaseSession at-
tribute), 220

SESSION_ENGINE
setting, 1270

SESSION_EXPIRE_AT_BROWSER_CLOSE
setting, 1270

SESSION_FILE_PATH
setting, 1270

session_key (base_session.AbstractBaseSession at-
tribute), 220

SESSION_SAVE_EVERY_REQUEST
setting, 1271

SESSION_SERIALIZER
setting, 1271

SessionMiddleware (class in
django.contrib.sessions.middleware), 1081

SET() (in module django.db.models), 1107
set() (RelatedManager method), 1122
set_autocommit() (in module django.db.transaction), 150
set_cookie() (HttpResponse method), 1225
SET_DEFAULT (in module django.db.models), 1107
set_expiry() (backends.base.SessionBase method), 213
set_language() (in module django.views.i18n), 466
SET_NULL (in module django.db.models), 1107
set_password() (models.AbstractBaseUser method), 397
set_password() (models.User method), 751
set_rollback() (in module django.db.transaction), 152
set_signed_cookie() (HttpResponse method), 1225
set_source_expressions() (Expression method), 1197
set_test_cookie() (backends.base.SessionBase method),

213
set_unusable_password() (models.AbstractBaseUser

method), 397
set_unusable_password() (models.User method), 751
setdefault() (backends.base.SessionBase method), 213
setdefault() (Context method), 1338
setdefault() (HttpResponse method), 1225
setdefault() (QueryDict method), 1221
setlist() (QueryDict method), 1222
setlistdefault() (QueryDict method), 1222
SetPasswordForm (class in django.contrib.auth.forms),

377
setting

ABSOLUTE_URL_OVERRIDES, 1232
ADMINS, 1232
ALLOWED_HOSTS, 1232
APPEND_SLASH, 1233
AUTH_PASSWORD_VALIDATORS, 1267
AUTH_USER_MODEL, 1266
AUTHENTICATION_BACKENDS, 1266
CACHE_MIDDLEWARE_ALIAS, 1235
CACHE_MIDDLEWARE_KEY_PREFIX, 1235
CACHE_MIDDLEWARE_SECONDS, 1235
CACHES, 1233

CACHES-BACKEND, 1233
CACHES-KEY_FUNCTION, 1234
CACHES-KEY_PREFIX, 1234
CACHES-LOCATION, 1234
CACHES-OPTIONS, 1234
CACHES-TIMEOUT, 1235
CACHES-VERSION, 1235
CONN_MAX_AGE, 1239
CSRF_COOKIE_AGE, 1235
CSRF_COOKIE_DOMAIN, 1236
CSRF_COOKIE_HTTPONLY, 1236
CSRF_COOKIE_NAME, 1236
CSRF_COOKIE_PATH, 1236
CSRF_COOKIE_SECURE, 1236
CSRF_FAILURE_VIEW, 1237
CSRF_HEADER_NAME, 1237
CSRF_TRUSTED_ORIGINS, 1237
DATA_UPLOAD_MAX_MEMORY_SIZE, 1243
DATA_UPLOAD_MAX_NUMBER_FIELDS,

1243
DATABASE-ATOMIC_REQUESTS, 1238
DATABASE-AUTOCOMMIT, 1238
DATABASE-ENGINE, 1238
DATABASE-TEST, 1240
DATABASE-TIME_ZONE, 1240
DATABASE_ROUTERS, 1244
DATABASES, 1237
DATAFILE, 1242
DATAFILE_MAXSIZE, 1243
DATAFILE_TMP, 1243
DATAFILE_TMP_MAXSIZE, 1243
DATE_FORMAT, 1244
DATE_INPUT_FORMATS, 1244
DATETIME_FORMAT, 1244
DATETIME_INPUT_FORMATS, 1244
DEBUG, 1245
DEBUG_PROPAGATE_EXCEPTIONS, 1246
DECIMAL_SEPARATOR, 1246
DEFAULT_CHARSET, 1246
DEFAULT_CONTENT_TYPE, 1246
DEFAULT_EXCEPTION_REPORTER_FILTER,

1246
DEFAULT_FILE_STORAGE, 1246
DEFAULT_FROM_EMAIL, 1247
DEFAULT_INDEX_TABLESPACE, 1247
DEFAULT_TABLESPACE, 1247
DISALLOWED_USER_AGENTS, 1247
EMAIL_BACKEND, 1247
EMAIL_FILE_PATH, 1247
EMAIL_HOST, 1247
EMAIL_HOST_PASSWORD, 1247
EMAIL_HOST_USER, 1248
EMAIL_PORT, 1248
EMAIL_SSL_CERTFILE, 1248

Index 1801



Django Documentation, Release 1.10.9.dev20171123183751

EMAIL_SSL_KEYFILE, 1248
EMAIL_SUBJECT_PREFIX, 1248
EMAIL_TIMEOUT, 1249
EMAIL_USE_SSL, 1248
EMAIL_USE_TLS, 1248
FILE_CHARSET, 1249
FILE_UPLOAD_DIRECTORY_PERMISSIONS,

1249
FILE_UPLOAD_HANDLERS, 1249
FILE_UPLOAD_MAX_MEMORY_SIZE, 1249
FILE_UPLOAD_PERMISSIONS, 1250
FILE_UPLOAD_TEMP_DIR, 1250
FIRST_DAY_OF_WEEK, 1250
FIXTURE_DIRS, 1250
FORCE_SCRIPT_NAME, 1250
FORMAT_MODULE_PATH, 1251
GDAL_LIBRARY_PATH, 871
GEOIP_CITY, 872, 875
GEOIP_COUNTRY, 872, 875
GEOIP_LIBRARY_PATH, 872
GEOIP_PATH, 872, 875
GEOS_LIBRARY_PATH, 849
HOST, 1239
IGNORABLE_404_URLS, 1251
INSTALLED_APPS, 1251
INTERNAL_IPS, 1252
LANGUAGE_CODE, 1252
LANGUAGE_COOKIE_AGE, 1253
LANGUAGE_COOKIE_DOMAIN, 1253
LANGUAGE_COOKIE_NAME, 1253
LANGUAGE_COOKIE_PATH, 1253
LANGUAGES, 1253
LOCALE_PATHS, 1254
LOGGING, 1254
LOGGING_CONFIG, 1254
LOGIN_REDIRECT_URL, 1266
LOGIN_URL, 1266
LOGOUT_REDIRECT_URL, 1266
MANAGERS, 1254
MEDIA_ROOT, 1255
MEDIA_URL, 1255
MESSAGE_LEVEL, 1267
MESSAGE_STORAGE, 1268
MESSAGE_TAGS, 1268
MIDDLEWARE, 1255
MIDDLEWARE_CLASSES, 1255
MIGRATION_MODULES, 1256
MONTH_DAY_FORMAT, 1256
NAME, 1239
NUMBER_GROUPING, 1256
OPTIONS, 1239
PASSWORD, 1239
PASSWORD_HASHERS, 1267
PASSWORD_RESET_TIMEOUT_DAYS, 1267

PORT, 1239
POSTGIS_VERSION, 885
PREPEND_WWW, 1257
ROOT_URLCONF, 1257
SECRET_KEY, 1257
SECURE_BROWSER_XSS_FILTER, 1257
SECURE_CONTENT_TYPE_NOSNIFF, 1258
SECURE_HSTS_INCLUDE_SUBDOMAINS,

1258
SECURE_HSTS_SECONDS, 1258
SECURE_PROXY_SSL_HEADER, 1258
SECURE_REDIRECT_EXEMPT, 1259
SECURE_SSL_HOST, 1259
SECURE_SSL_REDIRECT, 1259
SERIALIZATION_MODULES, 1260
SERVER_EMAIL, 1260
SESSION_CACHE_ALIAS, 1269
SESSION_COOKIE_AGE, 1269
SESSION_COOKIE_DOMAIN, 1269
SESSION_COOKIE_HTTPONLY, 1269
SESSION_COOKIE_NAME, 1269
SESSION_COOKIE_PATH, 1270
SESSION_COOKIE_SECURE, 1270
SESSION_ENGINE, 1270
SESSION_EXPIRE_AT_BROWSER_CLOSE,

1270
SESSION_FILE_PATH, 1270
SESSION_SAVE_EVERY_REQUEST, 1271
SESSION_SERIALIZER, 1271
SHORT_DATE_FORMAT, 1260
SHORT_DATETIME_FORMAT, 1260
SIGNING_BACKEND, 1260
SILENCED_SYSTEM_CHECKS, 1260
SITE_ID, 1271
STATIC_ROOT, 1271
STATIC_URL, 1272
STATICFILES_DIRS, 1272
STATICFILES_FINDERS, 1273
STATICFILES_STORAGE, 1273
TEMPLATES, 1261
TEMPLATES-APP_DIRS, 1262
TEMPLATES-BACKEND, 1261
TEMPLATES-DIRS, 1261
TEMPLATES-NAME, 1261
TEMPLATES-OPTIONS, 1262
TEST_CHARSET, 1240
TEST_COLLATION, 1241
TEST_CREATE, 1241
TEST_DEPENDENCIES, 1241
TEST_MIRROR, 1241
TEST_NAME, 1241
TEST_NON_SERIALIZED_APPS, 1262
TEST_PASSWD, 1242
TEST_RUNNER, 1262

1802 Index



Django Documentation, Release 1.10.9.dev20171123183751

TEST_SERIALIZE, 1241
TEST_TBLSPACE, 1242
TEST_TBLSPACE_TMP, 1242
TEST_USER, 1242
TEST_USER_CREATE, 1242
THOUSAND_SEPARATOR, 1262
TIME_FORMAT, 1262
TIME_INPUT_FORMATS, 1263
TIME_ZONE, 1263
USE_ETAGS, 1264
USE_I18N, 1264
USE_L10N, 1264
USE_THOUSAND_SEPARATOR, 1264
USE_TZ, 1264
USE_X_FORWARDED_HOST, 1265
USE_X_FORWARDED_PORT, 1265
USER, 1240
WSGI_APPLICATION, 1265
X_FRAME_OPTIONS, 1266
YEAR_MONTH_FORMAT, 1265

settings() (SimpleTestCase method), 339
setup() (in module django), 634
setup_databases() (DiscoverRunner method), 355
setup_test_environment() (DiscoverRunner method), 354
setup_test_environment() (in module django.test.utils),

355
setUpTestData() (django.test.TestCase class method), 334
shell

django-admin command, 995
shell (Polygon attribute), 860
shell command line option

–command COMMAND, -c COMMAND, 995
–interface {ipython,bpython,python}, -i

{ipython,bpython,python}, 995
–nostartup, 995

SHORT_DATE_FORMAT
setting, 1260

SHORT_DATETIME_FORMAT
setting, 1260

shortcuts, 201
shortcuts.get_current_site() (in module

django.contrib.sites), 937
show_change_link (InlineModelAdmin attribute), 737
show_full_result_count (ModelAdmin attribute), 724
showmigrations

django-admin command, 995
showmigrations command line option

–database DATABASE, 995
–list, -l, 995
–plan, -p, 995

sign() (TimestampSigner method), 427
Signal (class in django.dispatch), 530
Signer (class in django.core.signing), 426
SIGNING_BACKEND

setting, 1260
SILENCED_SYSTEM_CHECKS

setting, 1260
simple (GEOSGeometry attribute), 837
simple_tag() (django.template.Library method), 565
SimpleArrayField (class in

django.contrib.postgres.forms), 911
SimpleTemplateResponse (class in

django.template.response), 1351
SimpleTestCase (class in django.test), 332
simplify() (GEOSGeometry method), 840
site (HttpRequest attribute), 1217
site_header (AdminSite attribute), 743
SITE_ID

setting, 1271
site_title (AdminSite attribute), 743
site_url (AdminSite attribute), 743
Sitemap (class in django.contrib.sitemaps), 924
size (ArrayField attribute), 900
size (FieldFile attribute), 1101
size (File attribute), 1011
size (SplitArrayField attribute), 913
size (UploadedFile attribute), 1016
size() (Storage method), 1015
skew (GDALRaster attribute), 867
skipIfDBFeature() (in module django.test), 348
skipUnlessDBFeature() (in module django.test), 348
slice

template filter, 1324
slug, 1395
slug_field (django.views.generic.detail.SingleObjectMixin

attribute), 668
slug_url_kwarg (django.views.generic.detail.SingleObjectMixin

attribute), 668
SlugField (class in django.db.models), 1104
SlugField (class in django.forms), 1051
slugify

template filter, 1324
slugify() (in module django.utils.text), 1376
SmallIntegerField (class in django.db.models), 1104
smart_bytes() (in module django.utils.encoding), 1368
smart_str() (in module django.utils.encoding), 1368
smart_text() (in module django.utils.encoding), 1368
smart_unicode() (in module django.utils.encoding), 1368
snap_to_grid() (GeoQuerySet method), 818
SnapToGrid (class in django.contrib.gis.db.models.functions),

830
spaceless

template tag, 1309
spatial_filter (Layer attribute), 852
spatial_index (BaseSpatialField attribute), 794
SpatialReference (class in django.contrib.gis.gdal), 862
SplitArrayField (class in django.contrib.postgres.forms),

912

Index 1803



Django Documentation, Release 1.10.9.dev20171123183751

SplitDateTimeField (class in django.forms), 1054
SplitDateTimeWidget (class in django.forms), 1070
SplitHiddenDateTimeWidget (class in django.forms),

1070
sqlflush

django-admin command, 996
sqlflush command line option

–database DATABASE, 996
sqlmigrate

django-admin command, 996
sqlmigrate command line option

–backwards, 996
–database DATABASE, 996

sqlsequencereset
django-admin command, 996

sqlsequencereset command line option
–database DATABASE, 996

squashmigrations
django-admin command, 996

squashmigrations command line option
–no-optimize, 996
–noinput, –no-input, 997

srid (BaseSpatialField attribute), 793
srid (Field attribute), 803
srid (GDALRaster attribute), 866
srid (GEOSGeometry attribute), 837
srid (OGRGeometry attribute), 857
srid (SpatialReference attribute), 863
srid (WKBWriter attribute), 847
srs (GDALRaster attribute), 866
srs (GEOSGeometry attribute), 841
srs (Layer attribute), 852
srs (OGRGeometry attribute), 857
StackedInline (class in django.contrib.admin), 735
staff_member_required() (in module

django.contrib.admin.views.decorators), 749
start_index() (Page method), 499
startapp

django-admin command, 997
startapp command line option

–extension EXTENSIONS, -e EXTENSIONS, 997
–name FILES, -n FILES, 997
–template TEMPLATE, 997

startproject
django-admin command, 998

startproject command line option
–extension EXTENSIONS, -e EXTENSIONS, 998
–name FILES, -n FILES, 998
–template TEMPLATE, 998

startswith
field lookup type, 1177

static
template tag, 1331

static() (in module django.template.context_processors),
1342

static.serve() (in module django.views), 1384
static.static() (in module django.conf.urls), 1363
STATIC_ROOT

setting, 1271
STATIC_URL

setting, 1272
STATICFILES_DIRS

setting, 1272
STATICFILES_FINDERS

setting, 1273
STATICFILES_STORAGE

setting, 1273
statistics() (GDALBand method), 869
status_code (HttpResponse attribute), 1224
status_code (Response attribute), 329
status_code (StreamingHttpResponse attribute), 1228
std (GDALBand attribute), 869
StdDev (class in django.db.models), 1185
Storage (class in django.core.files.storage), 1014
storage (FileField attribute), 1100
storage.base.BaseStorage (class in

django.contrib.messages), 890
storage.base.Message (class in django.contrib.messages),

892
storage.CachedStaticFilesStorage (class in

django.contrib.staticfiles), 941
storage.cookie.CookieStorage (class in

django.contrib.messages), 890
storage.fallback.FallbackStorage (class in

django.contrib.messages), 890
storage.ManifestStaticFilesStorage (class in

django.contrib.staticfiles), 940
storage.session.SessionStorage (class in

django.contrib.messages), 890
storage.StaticFilesStorage (class in

django.contrib.staticfiles), 940
streaming (HttpResponse attribute), 1224
streaming (StreamingHttpResponse attribute), 1229
streaming_content (StreamingHttpResponse attribute),

1228
StreamingHttpResponse (class in django.http), 1228
strictly_above

field lookup type, 812
strictly_below

field lookup type, 813
string_concat() (in module django.utils.translation), 1379
StringAgg (class in django.contrib.postgres.aggregates),

897
stringfilter() (django.template.defaultfilters method), 562
stringformat

template filter, 1324
strip (CharField attribute), 1044

1804 Index



Django Documentation, Release 1.10.9.dev20171123183751

strip (RegexField attribute), 1051
strip_tags() (in module django.utils.html), 1374
striptags

template filter, 1324
style (BaseCommand attribute), 542
Substr (class in django.db.models.functions), 1207
success_url (django.views.generic.edit.DeletionMixin at-

tribute), 675
success_url (django.views.generic.edit.FormMixin

attribute), 673
success_url (django.views.generic.edit.ModelFormMixin

attribute), 674
suite_result() (DiscoverRunner method), 355
Sum (class in django.db.models), 1185
supports_3d (BaseGeometryWidget attribute), 804
supports_microseconds (Widget attribute), 1062
SuspiciousOperation, 1008
svg() (GeoQuerySet method), 821
swappable (ForeignKey attribute), 1109
swappable (ManyToManyField attribute), 1112
sym_difference() (GeoQuerySet method), 819
sym_difference() (GEOSGeometry method), 840
sym_difference() (OGRGeometry method), 859
SymDifference (class in

django.contrib.gis.db.models.functions),
830

symmetrical (ManyToManyField attribute), 1110
SyndicationFeed (class in django.utils.feedgenerator),

1370

T
TabularInline (class in django.contrib.admin), 735
teardown_databases() (DiscoverRunner method), 355
teardown_test_environment() (DiscoverRunner method),

355
teardown_test_environment() (in module

django.test.utils), 355
tell() (HttpResponse method), 1226
template, 1396
template (Aggregate attribute), 1195
Template (class in django.template), 1334
template (Func attribute), 1193
template (InlineModelAdmin attribute), 737
template filter

add, 1313
addslashes, 1313
apnumber, 887
capfirst, 1313
center, 1313
cut, 1313
date, 1314
default, 1315
default_if_none, 1315
dictsort, 1316

dictsortreversed, 1317
divisibleby, 1317
escape, 1317
escapejs, 1318
filesizeformat, 1318
first, 1318
floatformat, 1319
force_escape, 1319
get_digit, 1319
intcomma, 887
intword, 887
iriencode, 1320
join, 1320
language_bidi, 451
language_name, 451
language_name_local, 451
language_name_translated, 451
last, 1320
length, 1320
length_is, 1320
linebreaks, 1321
linebreaksbr, 1321
linenumbers, 1321
ljust, 1321
localize, 473
localtime, 478
lower, 1322
make_list, 1322
naturalday, 888
naturaltime, 888
ordinal, 889
phone2numeric, 1322
pluralize, 1322
pprint, 1323
random, 1323
rjust, 1323
safe, 1323
safeseq, 1324
slice, 1324
slugify, 1324
stringformat, 1324
striptags, 1324
time, 1325
timesince, 1325
timeuntil, 1326
timezone, 479
title, 1326
truncatechars, 1326
truncatechars_html, 1326
truncatewords, 1327
truncatewords_html, 1327
unlocalize, 473
unordered_list, 1327
upper, 1328

Index 1805



Django Documentation, Release 1.10.9.dev20171123183751

urlencode, 1328
urlize, 1328
urlizetrunc, 1329
utc, 478
wordcount, 1329
wordwrap, 1329
yesno, 1329

template tag
autoescape, 1295
block, 1295
blocktrans, 447
cache, 413
comment, 1295
csrf_token, 1296
cycle, 1296
debug, 1298
extends, 1298
filter, 1298
firstof, 1299
for, 1299
get_available_languages, 450
get_current_language, 450
get_current_language_bidi, 451
get_current_timezone, 478
get_flatpages, 766
get_language_info, 451
get_language_info_list, 451
get_media_prefix, 1331
get_static_prefix, 1331
if, 1300
ifchanged, 1304
include, 1305
language, 450
load, 1306
localize, 472
localtime, 477
lorem, 1306
now, 1307
regroup, 1307
spaceless, 1309
static, 1331
templatetag, 1310
timezone, 478
trans, 446
url, 1310
verbatim, 1311
widthratio, 1312
with, 1312

template_engine (django.views.generic.base.TemplateResponseMixin
attribute), 667

template_name (BaseGeometryWidget attribute), 804
template_name (django.views.generic.base.TemplateResponseMixin

attribute), 667
template_name (Origin attribute), 1347

template_name (SimpleTemplateResponse attribute),
1351

template_name_field (django.views.generic.detail.SingleObjectTemplateResponseMixin
attribute), 669

template_name_suffix (django.views.generic.detail.SingleObjectTemplateResponseMixin
attribute), 669

template_name_suffix (django.views.generic.edit.CreateView
attribute), 654

template_name_suffix (django.views.generic.edit.DeleteView
attribute), 656

template_name_suffix (django.views.generic.edit.UpdateView
attribute), 655

template_name_suffix (django.views.generic.list.MultipleObjectTemplateResponseMixin
attribute), 672

TemplateDoesNotExist, 269
TemplateResponse (class in django.template.response),

1352
TEMPLATES

setting, 1261
templates (Response attribute), 329
TEMPLATES-APP_DIRS

setting, 1262
TEMPLATES-BACKEND

setting, 1261
TEMPLATES-DIRS

setting, 1261
TEMPLATES-NAME

setting, 1261
TEMPLATES-OPTIONS

setting, 1262
TemplateSyntaxError, 269
templatetag

template tag, 1310
TemplateView (built-in class), 680
templatize() (in module django.utils.translation), 1380
temporary_file_path() (TemporaryUploadedFile method),

1017
TemporaryFileUploadHandler (class in

django.core.files.uploadhandler), 1017
TemporaryUploadedFile (class in

django.core.files.uploadedfile), 1016
test

django-admin command, 999
test command line option

–debug-sql, -d, 999
–exclude-tag EXCLUDE_TAGS, 1000
–failfast, 999
–keepdb, -k, 999
–liveserver LIVESERVER, 999
–noinput, –no-input, 999
–parallel [N], 999
–reverse, -r, 999
–tag TAGS, 1000
–testrunner TESTRUNNER, 999

1806 Index



Django Documentation, Release 1.10.9.dev20171123183751

test_capability() (Layer method), 852
TEST_CHARSET

setting, 1240
TEST_COLLATION

setting, 1241
test_cookie_worked() (backends.base.SessionBase

method), 213
TEST_CREATE

setting, 1241
TEST_DEPENDENCIES

setting, 1241
test_func() (UserPassesTestMixin method), 365
test_loader (DiscoverRunner attribute), 354
TEST_MIRROR

setting, 1241
TEST_NAME

setting, 1241
TEST_NON_SERIALIZED_APPS

setting, 1262
TEST_PASSWD

setting, 1242
TEST_RUNNER

setting, 1262
test_runner (DiscoverRunner attribute), 354
TEST_SERIALIZE

setting, 1241
test_suite (DiscoverRunner attribute), 354
TEST_TBLSPACE

setting, 1242
TEST_TBLSPACE_TMP

setting, 1242
TEST_USER

setting, 1242
TEST_USER_CREATE

setting, 1242
TestCase (class in django.test), 334
testing.StaticLiveServerTestCase (class in

django.contrib.staticfiles), 943
testserver

django-admin command, 1000
testserver command line option

–addrport ADDRPORT, 1000
–noinput, –no-input, 1001

Textarea (class in django.forms), 1067
TextField (class in django.db.models), 1105
TextInput (class in django.forms), 1065
THOUSAND_SEPARATOR

setting, 1262
through (ManyToManyField attribute), 1110
through_fields (ManyToManyField attribute), 1111
time

template filter, 1325
TIME_FORMAT

setting, 1262

time_format (SplitDateTimeWidget attribute), 1070
TIME_INPUT_FORMATS

setting, 1263
TIME_ZONE

setting, 1263
TimeField (class in django.db.models), 1105
TimeField (class in django.forms), 1051
TimeInput (class in django.forms), 1066
timesince

template filter, 1325
TimestampSigner (class in django.core.signing), 427
timeuntil

template filter, 1326
timezone

template filter, 479
template tag, 478

title
template filter, 1326

to_esri() (SpatialReference method), 863
to_field (ForeignKey attribute), 1109
to_field_name (ModelChoiceField attribute), 1055
to_field_name (ModelMultipleChoiceField attribute),

1057
to_locale() (in module django.utils.translation), 1380
to_python() (Field method), 1115
TodayArchiveView (built-in class), 691
TodayArchiveView (class in django.views.generic.dates),

664
total_error_count() (BaseFormSet method), 235
touches

field lookup type, 810
touches() (GEOSGeometry method), 839
touches() (OGRGeometry method), 858
touches() (PreparedGeometry method), 845
trace() (Client method), 327
trans

template tag, 446
TransactionManagementError, 1010
TransactionNow (class in

django.contrib.postgres.functions), 915
TransactionTestCase (class in django.test), 333
Transform (class in django.contrib.gis.db.models.functions),

830
Transform (class in django.db.models), 1188
transform() (GDALRaster method), 868
transform() (GeoQuerySet method), 818
transform() (GEOSGeometry method), 841
transform() (OGRGeometry method), 858
Translate (class in django.contrib.gis.db.models.functions),

830
translate() (GeoQuerySet method), 819
translation string, 485
trigram_similar

field lookup type, 915

Index 1807



Django Documentation, Release 1.10.9.dev20171123183751

TrigramDistance (class in
django.contrib.postgres.search), 920

TrigramExtension (class in
django.contrib.postgres.operations), 917

TrigramSimilarity (class in
django.contrib.postgres.search), 920

trim (WKTWriter attribute), 848
Trunc (class in django.db.models.functions.datetime),

1211
truncatechars

template filter, 1326
truncatechars_html

template filter, 1326
truncatewords

template filter, 1327
truncatewords_html

template filter, 1327
TruncDate (class in django.db.models.functions.datetime),

1214
TruncDay (class in django.db.models.functions.datetime),

1214
TruncHour (class in django.db.models.functions.datetime),

1214
TruncMinute (class in

django.db.models.functions.datetime), 1214
TruncMonth (class in django.db.models.functions.datetime),

1213
TruncSecond (class in

django.db.models.functions.datetime), 1214
TruncYear (class in django.db.models.functions.datetime),

1213
tuple (Envelope attribute), 861
tuple (OGRGeometry attribute), 859
type (Field attribute), 854
type_name (Field attribute), 854
TypedChoiceField (class in django.forms), 1044
TypedMultipleChoiceField (class in django.forms), 1050
tz() (in module django.template.context_processors),

1342

U
ugettext() (in module django.utils.translation), 1378
ugettext_lazy() (in module django.utils.translation), 1378
ugettext_noop() (in module django.utils.translation),

1378
unaccent

field lookup type, 916
UnaccentExtension (class in

django.contrib.postgres.operations), 917
unary_union (GEOSGeometry attribute), 841
ungettext() (in module django.utils.translation), 1379
ungettext_lazy() (in module django.utils.translation),

1379
Union (class in django.contrib.gis.db.models), 824

Union (class in django.contrib.gis.db.models.functions),
831

union() (GeoQuerySet method), 820
union() (GEOSGeometry method), 840
union() (OGRGeometry method), 859
unique (Field attribute), 1094
unique_for_date (Field attribute), 1094
unique_for_month (Field attribute), 1095
unique_for_year (Field attribute), 1095
unique_together (Options attribute), 1129
unit_attname() (django.contrib.gis.measure.Area class

method), 833
unit_attname() (django.contrib.gis.measure.Distance

class method), 833
units (SpatialReference attribute), 863
unlocalize

template filter, 473
unordered_list

template filter, 1327
unpack_ipv4 (GenericIPAddressField attribute), 1050,

1103
UnreadablePostError, 1010
unsign() (TimestampSigner method), 427
update() (Context method), 1339
update() (in module django.db.models.query.QuerySet),

1172
update() (QueryDict method), 1221
update_or_create() (in module

django.db.models.query.QuerySet), 1167
update_session_auth_hash() (in module

django.contrib.auth), 368
UpdateCacheMiddleware (class in

django.middleware.cache), 1077
UpdateView (built-in class), 684
upload_complete() (FileUploadHandler method), 1018
upload_to (FileField attribute), 1099
UploadedFile (class in django.core.files.uploadedfile),

1016
upper

template filter, 1328
Upper (class in django.db.models.functions), 1208
ur (Envelope attribute), 861
uri_to_iri() (in module django.utils.encoding), 1369
url

template tag, 1310
url (django.views.generic.base.RedirectView attribute),

649
url (FieldFile attribute), 1101
url (HttpResponseRedirect attribute), 1226
url() (in module django.conf.urls), 1363
url() (Storage method), 1015
url_name (ResolverMatch attribute), 1362
urlconf (HttpRequest attribute), 1217
urlencode

1808 Index



Django Documentation, Release 1.10.9.dev20171123183751

template filter, 1328
urlencode() (in module django.utils.http), 1375
urlencode() (QueryDict method), 1222
URLField (class in django.db.models), 1105
URLField (class in django.forms), 1052
URLInput (class in django.forms), 1065
urlize

template filter, 1328
urlizetrunc

template filter, 1329
urlquote() (in module django.utils.http), 1375
urlquote_plus() (in module django.utils.http), 1375
urls

definitive, 1390
urls.staticfiles_urlpatterns() (in module

django.contrib.staticfiles), 942
urlsafe_base64_decode() (in module django.utils.http),

1375
urlsafe_base64_encode() (in module django.utils.http),

1375
URLValidator (class in django.core.validators), 1382
USE_ETAGS

setting, 1264
USE_I18N

setting, 1264
USE_L10N

setting, 1264
use_required_attribute (Form attribute), 1030
use_required_attribute() (Widget method), 1062
USE_THOUSAND_SEPARATOR

setting, 1264
USE_TZ

setting, 1264
USE_X_FORWARDED_HOST

setting, 1265
USE_X_FORWARDED_PORT

setting, 1265
USER

setting, 1240
user (HttpRequest attribute), 1217
user (LogEntry attribute), 747
user_can_authenticate() (ModelBackend method), 755
user_can_authenticate() (RemoteUserBackend method),

756
user_logged_in() (in module django.contrib.auth.signals),

754
user_logged_out() (in module

django.contrib.auth.signals), 754
user_login_failed() (in module

django.contrib.auth.signals), 754
user_passes_test() (in module

django.contrib.auth.decorators), 364
user_permissions (models.User attribute), 750
UserAttributeSimilarityValidator (class in

django.contrib.auth.password_validation),
387

UserChangeForm (class in django.contrib.auth.forms),
377

UserCreationForm (class in django.contrib.auth.forms),
377

username (models.User attribute), 749
USERNAME_FIELD (models.CustomUser attribute),

395
UserPassesTestMixin (class in

django.contrib.auth.mixins), 365
using() (in module django.db.models.query.QuerySet),

1163
utc

template filter, 478
utc (in module django.utils.timezone), 1377
UUIDField (class in django.db.models), 1105
UUIDField (class in django.forms), 1052

V
valid (GEOSGeometry attribute), 837
valid_reason (GEOSGeometry attribute), 837
validate() (SpatialReference method), 863
validate_comma_separated_integer_list (in module

django.core.validators), 1383
validate_email (in module django.core.validators), 1382
validate_ipv46_address (in module

django.core.validators), 1383
validate_ipv4_address (in module

django.core.validators), 1382
validate_ipv6_address (in module

django.core.validators), 1383
validate_password() (in module

django.contrib.auth.password_validation),
387

validate_slug (in module django.core.validators), 1382
validate_unicode_slug (in module

django.core.validators), 1382
validate_unique() (Model method), 1135
ValidationError, 1009
validators (Field attribute), 1042, 1095
validators.ASCIIUsernameValidator (class in

django.contrib.auth), 754
validators.UnicodeUsernameValidator (class in

django.contrib.auth), 754
Value (class in django.db.models), 1195
value (Field attribute), 854
value() (BoundField method), 1034
value_from_datadict() (Widget method), 1062
value_omitted_from_data() (Widget method), 1062
value_to_string() (Field method), 1115
values() (in module django.db.models.query.QuerySet),

1149
values() (QueryDict method), 1221

Index 1809



Django Documentation, Release 1.10.9.dev20171123183751

values_list() (in module
django.db.models.query.QuerySet), 1150

Variance (class in django.db.models), 1185
vary_on_cookie() (in module

django.views.decorators.vary), 197
vary_on_headers() (in module

django.views.decorators.vary), 197
verbatim

template tag, 1311
verbose_name (AppConfig attribute), 631
verbose_name (Field attribute), 1095
verbose_name (InlineModelAdmin attribute), 737
verbose_name (Options attribute), 1130
verbose_name_plural (InlineModelAdmin attribute), 737
verbose_name_plural (Options attribute), 1130
version

django-admin command, 983
view, 1396
View (built-in class), 679
view_name (ResolverMatch attribute), 1362
view_on_site (ModelAdmin attribute), 725
ViewDoesNotExist, 1008
views.Feed (class in django.contrib.syndication), 949
views.index() (in module django.contrib.sitemaps), 927
views.serve() (in module django.contrib.staticfiles), 942
views.sitemap() (in module django.contrib.sitemaps), 923
views.SuccessMessageMixin (class in

django.contrib.messages), 894

W
W3CGeoFeed (class in django.contrib.gis.feeds), 884
Warning (class in django.core.checks), 636
warp() (GDALRaster method), 868
week (WeekMixin attribute), 677
week_day

field lookup type, 1180
week_format (WeekMixin attribute), 677
WeekArchiveView (built-in class), 689
WeekArchiveView (class in django.views.generic.dates),

661
WeekMixin (class in django.views.generic.dates), 677
When (class in django.db.models.expressions), 1200
whitelist (EmailValidator attribute), 1382
Widget (class in django.forms), 1061
widget (Field attribute), 1041
widget (MultiValueField attribute), 1054
widgets (MultiWidget attribute), 1063
width (Field attribute), 854
width (GDALBand attribute), 869
width (GDALRaster attribute), 866
width (ImageFile attribute), 1012
width_field (ImageField attribute), 1103
widthratio

template tag, 1312

with
template tag, 1312

within
field lookup type, 810

within() (GEOSGeometry method), 839
within() (OGRGeometry method), 858
within() (PreparedGeometry method), 845
wkb (GEOSGeometry attribute), 838
wkb (OGRGeometry attribute), 857
wkb_size (OGRGeometry attribute), 857
WKBReader (class in django.contrib.gis.geos), 846
WKBWriter (class in django.contrib.gis.geos), 846
wkt (Envelope attribute), 861
wkt (GEOSGeometry attribute), 838
wkt (OGRGeometry attribute), 858
wkt (SpatialReference attribute), 864
WKTReader (class in django.contrib.gis.geos), 846
WKTWriter (class in django.contrib.gis.geos), 848
wordcount

template filter, 1329
wordwrap

template filter, 1329
writable() (HttpResponse method), 1226
write() (File method), 1012
write() (HttpResponse method), 1225
write() (SyndicationFeed method), 1370
write() (WKBWriter method), 846
write() (WKTWriter method), 848
write_hex() (WKBWriter method), 847
writelines() (HttpResponse method), 1226
writeString() (SyndicationFeed method), 1370
WSGI_APPLICATION

setting, 1265
wsgi_request (Response attribute), 329

X
x (LineString attribute), 860
x (Point attribute), 859
X_FRAME_OPTIONS

setting, 1266
XFrameOptionsMiddleware (class in

django.middleware.clickjacking), 1082
xml

suckiness of, 1391
xml (SpatialReference attribute), 864
xreadlines() (HttpRequest method), 1220

Y
y (LineString attribute), 860
y (Point attribute), 859
year

field lookup type, 1179
year (YearMixin attribute), 675
year_format (YearMixin attribute), 675

1810 Index



Django Documentation, Release 1.10.9.dev20171123183751

YEAR_MONTH_FORMAT
setting, 1265

YearArchiveView (built-in class), 687
YearArchiveView (class in django.views.generic.dates),

658
YearMixin (class in django.views.generic.dates), 675
years (SelectDateWidget attribute), 1070
yesno

template filter, 1329

Z
z (LineString attribute), 860
z (Point attribute), 859

Index 1811


	Django documentation
	Getting help
	How the documentation is organized
	First steps
	The model layer
	The view layer
	The template layer
	Forms
	The development process
	The admin
	Security
	Internationalization and localization
	Performance and optimization
	Python compatibility
	Geographic framework
	Common Web application tools
	Other core functionalities
	The Django open-source project

	Getting started
	Django at a glance
	Quick install guide
	Writing your first Django app, part 1
	Writing your first Django app, part 2
	Writing your first Django app, part 3
	Writing your first Django app, part 4
	Writing your first Django app, part 5
	Writing your first Django app, part 6
	Writing your first Django app, part 7
	Advanced tutorial: How to write reusable apps
	What to read next
	Writing your first patch for Django

	Using Django
	How to install Django
	Models and databases
	Handling HTTP requests
	Working with forms
	Templates
	Class-based views
	Migrations
	Managing files
	Testing in Django
	User authentication in Django
	Django's cache framework
	Conditional View Processing
	Cryptographic signing
	Sending email
	Internationalization and localization
	Logging
	Pagination
	Porting to Python 3
	Security in Django
	Performance and optimization
	Serializing Django objects
	Django settings
	Signals
	System check framework
	External packages

	How-to guides
	Authentication using REMOTE_USER
	Writing custom django-admin commands
	Writing custom model fields
	Custom Lookups
	Custom template tags and filters
	Writing a custom storage system
	Deploying Django
	Upgrading Django to a newer version
	Error reporting
	Providing initial data for models
	Running Django on Jython
	Integrating Django with a legacy database
	Outputting CSV with Django
	Outputting PDFs with Django
	Managing static files (e.g. images, JavaScript, CSS)
	Deploying static files
	How to install Django on Windows
	Writing database migrations

	Django FAQ
	FAQ: General
	FAQ: Installation
	FAQ: Using Django
	FAQ: Getting Help
	FAQ: Databases and models
	FAQ: The admin
	FAQ: Contributing code
	Troubleshooting

	API Reference
	Applications
	System check framework
	Built-in class-based views API
	Clickjacking Protection
	contrib packages
	Cross Site Request Forgery protection
	Databases
	django-admin and manage.py
	Running management commands from your code
	Django Exceptions
	File handling
	Forms
	Middleware
	Migration Operations
	Models
	Request and response objects
	SchemaEditor
	Settings
	Signals
	Templates
	TemplateResponse and SimpleTemplateResponse
	Unicode data
	django.urls utility functions
	django.conf.urls utility functions
	Django Utils
	Validators
	Built-in Views

	Meta-documentation and miscellany
	API stability
	Design philosophies
	Third-party distributions of Django

	Glossary
	Release notes
	Final releases
	Security releases

	Django internals
	Contributing to Django
	Mailing lists
	Organization of the Django Project
	Django team
	Roles
	Django's security policies
	Django's release process
	Django Deprecation Timeline
	The Django source code repository
	How is Django Formed?

	Indices, glossary and tables
	Python Module Index

